JPH10184404A - Device and method for controlling intake and exhaust valves for internal combustion engine - Google Patents

Device and method for controlling intake and exhaust valves for internal combustion engine

Info

Publication number
JPH10184404A
JPH10184404A JP34701396A JP34701396A JPH10184404A JP H10184404 A JPH10184404 A JP H10184404A JP 34701396 A JP34701396 A JP 34701396A JP 34701396 A JP34701396 A JP 34701396A JP H10184404 A JPH10184404 A JP H10184404A
Authority
JP
Japan
Prior art keywords
valve
intake
exhaust
closing timing
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34701396A
Other languages
Japanese (ja)
Other versions
JP3777691B2 (en
Inventor
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34701396A priority Critical patent/JP3777691B2/en
Publication of JPH10184404A publication Critical patent/JPH10184404A/en
Application granted granted Critical
Publication of JP3777691B2 publication Critical patent/JP3777691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce incurring of a pump loss without worsening of combustion during partial load, in a four-cycle gasoline engine. SOLUTION: Both an intake valve and an exhaust valve are provided with a variable valve mechanism to continuously vary and control a valve opening and closing timing together with a working angle. During idling (a) and during high speed (c), the central angle of a valve overlap is situated approximately at a top dead center but during low speed partial load (b), the closing timing of the exhaust valve is more delayed than the top dead center and at the opening timing of the intake valve, it is also more delayed tan the top dead center. At the initial stage of a suction stroke, a cylinder pressure is rendered equal to an exhaust pressure and incurring of a pump loss is reduced. Further, since residual gas does not reversely flow to an intake system, combustion is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ガソリン機関に
代表される4サイクル火花点火式内燃機関に関し、特
に、吸気弁および排気弁の双方に可変動弁機構を具備し
た内燃機関の吸排気弁制御装置および制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-cycle spark ignition type internal combustion engine represented by a gasoline engine, and more particularly, to a control of intake and exhaust valves of an internal combustion engine having a variable valve mechanism for both an intake valve and an exhaust valve. The present invention relates to an apparatus and a control method.

【0002】[0002]

【従来の技術】4サイクル内燃機関の吸気弁や排気弁の
開閉時期を可変制御する可変動弁機構は従来から種々の
形式のものが提案されており、一部で既に実用に供され
ている。例えば、カムシャフトと該カムシャフトを駆動
するクランクシャフトとの間の位相関係を相対的にずら
すことによって、吸排気弁の開閉時期を同方向へ変化さ
せるものや、異なるカムプロフィールを有する2つのカ
ムに従動する2つのロッカアームを設け、吸排気弁が実
際に連動するロッカアームを選択的に切り換えることに
よって、バルブリフト特性を2種類に切り換えるように
した装置などが実用されている。また、特開平6−18
5321号公報には、不等速軸継手の原理を応用して、
円筒状カムシャフトを不等速回転させることでバルブリ
フト特性を連続的に可変制御し得るようにした可変動弁
機構が開示されている。
2. Description of the Related Art Various types of variable valve mechanisms for variably controlling the opening / closing timing of intake and exhaust valves of a four-cycle internal combustion engine have been proposed in the past, and some of them have already been put to practical use. . For example, the camshaft and the crankshaft that drives the camshaft are relatively shifted in phase relationship to change the opening / closing timing of the intake / exhaust valve in the same direction, or two cams having different cam profiles. There are practically used devices in which two rocker arms are provided, and the valve lift characteristics are switched between two types by selectively switching the rocker arm in which the intake / exhaust valve actually interlocks. Also, Japanese Patent Laid-Open No. 6-18 / 1994
No. 5321, applying the principle of a non-constant velocity shaft coupling,
There is disclosed a variable valve mechanism capable of continuously variably controlling a valve lift characteristic by rotating a cylindrical camshaft at an irregular speed.

【0003】そして、このような可変動弁機構を用いて
吸排気弁のバルブオーバラップを可変制御し、いわゆる
内部EGR(内部排気環流)の有効利用により部分負荷
時の燃費低減を図ることが試みられている。
Attempts have been made to variably control the valve overlap of the intake and exhaust valves by using such a variable valve mechanism, and to reduce the fuel consumption at the time of partial load by effectively using the so-called internal EGR (internal exhaust recirculation). Have been.

【0004】ところで、この内部EGRにより燃費が向
上する要因は、冷却損失の減少とポンブ損失の低減であ
り、燃焼そのものは、残留ガスの増加によってむしろ悪
化する傾向にある。従って、燃費の向上を目的として内
部EGRを行うときには、バルブタイミングによる実庄
縮比の低下や、残留ガスの温度低下(実質的に圧縮比低
下と同じ影響があり、ポンブ損失低減効果も減少する)
を避けることが、非常に重要である。
The fuel efficiency is improved by the internal EGR due to a reduction in cooling loss and a reduction in pump loss, and the combustion itself tends to be worsened by an increase in residual gas. Therefore, when the internal EGR is performed for the purpose of improving the fuel efficiency, the actual contraction ratio decreases due to the valve timing and the temperature of the residual gas decreases (substantially has the same effect as the compression ratio decreases, and the effect of reducing the pump loss also decreases. )
It is very important to avoid.

【0005】バルブオーバラップによる内部EGRの場
合、残留ガスは、吸気系と排気系の差圧により、吸気
弁、排気弁の開口部から音速に近い速度で逆流する。
In the case of internal EGR due to valve overlap, residual gas flows backward from the openings of the intake valve and the exhaust valve at a speed close to the speed of sound due to the differential pressure between the intake system and the exhaust system.

【0006】図1は、バルブオーバラップ期間における
残留ガスの逆流特性を示す。この図には、バルブオーバ
ラップ(O/L)が小さい場合(20°)の特性(実
線)と、バルブオーバラップが大きい場合(40°)の
特性(破線)とを対比して示している。なお、条件とし
ては、図2に示すように、排気弁1によって開閉される
排気ポート2内の圧力P1が大気圧(1.033kg/
cm2)であり、吸気弁3によって開閉される吸気ポー
ト4内の圧力P3が−500mmHgの負圧(0.35
3kg/cm2)である。なお、図示する特性は、一例
としてバルブオーバラップが排気上死点を中心として対
称に設定されている場合を示す。
FIG. 1 shows the backflow characteristics of the residual gas during the valve overlap period. In this figure, the characteristic (solid line) when the valve overlap (O / L) is small (20 °) is compared with the characteristic (dashed line) when the valve overlap (O / L) is large (40 °). . As shown in FIG. 2, the pressure P1 in the exhaust port 2 opened and closed by the exhaust valve 1 is set to the atmospheric pressure (1.033 kg /
a cm 2), the negative pressure pressure P3 of -500mmHg in the intake port 4 is opened and closed by the intake valve 3 (0.35
3 kg / cm 2 ). Note that the illustrated characteristics show a case where the valve overlap is set symmetrically about the exhaust top dead center as an example.

【0007】排気行程の後期において吸気弁3が開弁す
る時点からオーバラップが始まり、吸気行程の初期に排
気弁1が閉じる時点でオーバラップは終了するのである
が、バルブオーバラップ初期の吸気弁3開弁時点では、
燃焼室5内の圧力P2は、排圧(低速では大気圧に近
い)であり、吸気弁3が開くと、該吸気弁3の吸気ポー
ト4側の圧力は500mmHg程度の大きな負圧である
ため、吸気弁3におけるガス流れは音速になり、吸気弁
リフトに比例した流量となる。この条件下では、排気弁
1の開度は十分に大であるため、燃焼室5内の圧力P2
は排圧のレベルを保つ。その後、吸気弁3の開度がさら
に増大(排気弁1の開度は逆に減少)すると、図示する
ように、燃焼室5内の圧力P2は急速に低下し、吸気系
への排気の逆流量も急激に上昇して、最大値をとる。こ
の時点でも吸気側と排気側の差圧は大きい(250mm
Hg程度)ため、ガスは音速に近い速度で逆流する。そ
して、排気弁1の開度が減少してくると、排気弁1の流
れが律速となるために、逆流する残留ガス流量は急速に
減少し、排気弁1が閉じる時点で逆流は終了する。
The overlap starts at the time when the intake valve 3 opens in the latter half of the exhaust stroke, and ends when the exhaust valve 1 closes at the beginning of the intake stroke. At the time of opening 3,
The pressure P2 in the combustion chamber 5 is exhaust pressure (close to atmospheric pressure at low speed), and when the intake valve 3 is opened, the pressure on the intake port 4 side of the intake valve 3 is a large negative pressure of about 500 mmHg. The gas flow in the intake valve 3 has a sonic velocity, and has a flow rate proportional to the intake valve lift. Under this condition, the opening degree of the exhaust valve 1 is sufficiently large, so that the pressure P2 in the combustion chamber 5
Keep the level of exhaust pressure. Thereafter, when the opening degree of the intake valve 3 further increases (the opening degree of the exhaust valve 1 decreases conversely), as shown in the figure, the pressure P2 in the combustion chamber 5 rapidly decreases, and the reverse flow of exhaust gas to the intake system occurs. The flow rate also rises sharply and reaches a maximum. Even at this point, the differential pressure between the intake side and the exhaust side is large (250 mm
Therefore, the gas flows backward at a speed close to the speed of sound. When the opening degree of the exhaust valve 1 decreases, the flow of the exhaust valve 1 becomes rate-determining, so that the flow rate of the residual gas flowing backward decreases rapidly, and the reverse flow ends when the exhaust valve 1 closes.

【0008】このようにバルブオーバラップ期間の間に
吸気系に流れる全ガス量の大半は、オーバラップ中心角
付近の吸気弁3,排気弁1の双方がバランス良くリフト
している期問に流れるため、バルブオーバラップ量の増
大と共に加速度的に流量は増加する。
As described above, most of the total gas amount flowing to the intake system during the valve overlap period flows during the period when both the intake valve 3 and the exhaust valve 1 near the overlap center angle are lifted in a well-balanced manner. Therefore, the flow rate increases at an accelerating rate as the valve overlap amount increases.

【0009】[0009]

【発明が解決しようとする課題】上述したように、バル
ブオーバラップを利用した内部EGRは、比較的小さな
オーバラップ(例えば40〜50°)でも残留ガス量を
増やせる利点がある反面、バルブオーバラップ量が大き
くなると、加速度的に逆流量が増えるために、オーバラ
ップの僅かな差による残留ガス量のバラツキが間題とな
る。また、残留ガス流量は時間の関数となるため、回転
数の変動も大きな影響を与える。従って、急減速時など
バルブオーバラップ量を速やかに減少させないと、いわ
ゆるエンストを起こす危険性がある。このため、バルブ
オーバラップによる内部EGR制御の場合には、バルブ
タイミングの制御精度と応答性が非常に高く要求される
という問題がある。また、音速に近い速度で吸排気弁の
微小リフト部を流れるため、熱伝達率が大きく、残留ガ
ス温度は低下しやすい。
As described above, the internal EGR utilizing the valve overlap has an advantage that the residual gas amount can be increased even with a relatively small overlap (for example, 40 to 50 °). When the flow rate increases, the reverse flow rate increases at an accelerated rate, and therefore, the variation in the residual gas flow rate due to a slight difference in overlap is a problem. Also, since the residual gas flow rate is a function of time, fluctuations in the number of revolutions also have a significant effect. Therefore, unless the valve overlap amount is rapidly reduced, such as during rapid deceleration, there is a danger of causing a so-called engine stall. Therefore, in the case of the internal EGR control by the valve overlap, there is a problem that the control accuracy and the responsiveness of the valve timing are required to be very high. Further, since the gas flows through the minute lift portion of the intake / exhaust valve at a speed close to the speed of sound, the heat transfer coefficient is large, and the temperature of the residual gas tends to decrease.

【0010】さらにバルブオーバラップによる内部EG
Rの場合、残留ガスが吸気側に絞り膨張で逆流するた
め、圧力エネルギーを有効に回収できない、という本質
的な問題がある。
Further, internal EG due to valve overlap
In the case of R, there is an essential problem that the pressure energy cannot be effectively recovered because the residual gas flows back to the intake side by throttling and expansion.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、弁開閉時期を制御可能な可変動弁機構
が、吸気弁側および排気弁側の双方に設けられてなる内
燃機関において、機関の部分負荷時に、上記排気弁の閉
時期を吸入上死点より遅らせるとともに、上記吸気弁の
開時期を、吸入上死点よりも遅らせるようにした。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an internal combustion engine in which a variable valve mechanism capable of controlling the valve opening / closing timing is provided on both an intake valve side and an exhaust valve side. In the engine, when the engine is partially loaded, the closing timing of the exhaust valve is delayed from the intake top dead center, and the opening timing of the intake valve is delayed from the intake top dead center.

【0012】すなわち、請求項1に係る内燃機関の吸排
気弁制御装置は、弁開閉時期および作動角を制御信号に
より連続的に制御可能な可変動弁機構が、吸気弁側およ
び排気弁側の双方に設けられてなる内燃機関において、
機関の部分負荷時に、上記排気弁の閉時期が吸入上死点
よりも遅れた位置に制御されるとともに、上記吸気弁の
開時期が、吸入上死点よりも遅れた位置に制御されるこ
とを特徴としている。
That is, in the intake / exhaust valve control device for an internal combustion engine according to the first aspect, the variable valve mechanism capable of continuously controlling the valve opening / closing timing and the operating angle by the control signal includes an intake valve side and an exhaust valve side. In the internal combustion engine provided in both,
When the engine is partially loaded, the closing timing of the exhaust valve is controlled to a position delayed from the intake top dead center, and the opening timing of the intake valve is controlled to a position delayed from the intake top dead center. It is characterized by.

【0013】また請求項2では、さらに上記排気弁の開
時期の変化量が閉時期の変化量よりも小さく設定されて
いる。
According to the present invention, the change amount of the opening timing of the exhaust valve is set smaller than the change amount of the closing timing.

【0014】図3は、部分負荷時におけるP−V線図で
あり、従来のものと本発明の特性を対比して示してい
る。また、それぞれのバルブリフト特性を併せて記載し
てある。
FIG. 3 is a PV diagram at the time of partial load, and shows the characteristics of the conventional device and the characteristics of the present invention in comparison. The respective valve lift characteristics are also described.

【0015】図3のAは、従来例として標準的な小オー
バラップの場合(オーバラップの中心は排気上死点であ
る)であって、吸入行程の初期に筒内の残留ガスが吸気
側に逆流するが、排気弁からの逆流は少ない。このよう
な設定の場合のポンプ損失についてみると、吸入行程の
初期に筒内の残留ガスが吸気側に逆流する結果、吸入行
程の大半で吸入負圧に近い大きな負圧がピストンに作用
し、ピストンはこれに抗して仕事をすることになる。さ
らに筒内の残留ガスは、その半分以上が吸気弁から絞り
膨張して吸気ポート側に流出し、圧力エネルギーは有効
に活かされない。従って、図3の実線Aで示されるよう
に、大きなポンブ損失が発生する。
FIG. 3A shows a conventional case of a small overlap which is a standard example (the center of the overlap is the upper dead center of the exhaust gas). , But the backflow from the exhaust valve is small. Looking at the pump loss in such a setting, as a result of the residual gas in the cylinder flowing back to the intake side at the beginning of the suction stroke, a large negative pressure close to the suction negative pressure acts on the piston in most of the suction stroke, The piston will work against this. Further, more than half of the residual gas in the cylinder is throttled and expanded from the intake valve and flows out to the intake port side, and the pressure energy is not effectively utilized. Therefore, as shown by the solid line A in FIG. 3, a large pump loss occurs.

【0016】また図3のBは、同じく従来例として、内
部EGRを行うべくバルブオーバラップを拡大した場合
であり、特にバルブオーバラップの中心角が吸入上死点
近傍に位置しているものである。つまり部分負荷時に、
吸排気弁の作動角の拡大または位相角変化により、吸気
弁開時期を上死点前に進めるとともに、排気弁閉時期を
上死点後に遅らせている。この場合、バルブオーバラッ
プ期間において、吸気系へ大量の残留ガスが逆流する。
従って、図3に破線Bで示されるように、残留ガス量が
増えた分、吸入負圧が滅少するため、吸入行程初期の筒
内圧の低下は少なくなり、ポンプ損失は低減する。しか
しながら、大量の残留ガスは吸気弁から絞り膨張して吸
気ポート側に流出するため、圧カエネルギーは有効に活
かされない。
FIG. 3B shows a conventional example in which the valve overlap is enlarged in order to perform internal EGR. In particular, the central angle of the valve overlap is located near the top dead center of the suction. is there. In other words, at partial load,
By increasing the operating angle of the intake and exhaust valves or changing the phase angle, the intake valve opening timing is advanced before top dead center, and the exhaust valve closing timing is delayed after top dead center. In this case, a large amount of residual gas flows back into the intake system during the valve overlap period.
Accordingly, as indicated by the broken line B in FIG. 3, the suction negative pressure decreases as the residual gas amount increases, so that the in-cylinder pressure in the initial stage of the suction stroke decreases and the pump loss decreases. However, since a large amount of residual gas is throttled and expanded from the intake valve and flows out to the intake port side, the pressure energy is not effectively utilized.

【0017】これに対し、Cとして示す本発明の場合、
部分負荷時に、吸気弁の開時期を上死点後とし、排気弁
の閉時期を同じく上死点後に遅らせる。なお、排気弁の
開時期の変化量が閉時期の変化量よりも小さく設定され
ており、排気弁の作動角が拡大している。この場合、吸
入行程の初期に筒内に排気弁から排気を再吸入するが、
バルブバルブオーバラップは小さく、吸気系への大量の
残留ガス逆流は発生しない。すなわち、排気上死点が過
ぎても排気弁が開いており、吸気弁は未だ開いていない
ため、吸入行程の初期には筒内の圧力は排圧に等しくな
る。この状態で高温の排気を再吸入しながらビストンが
下降するので、この段階でのポンプ損失は小さい。やが
て吸気弁が開いて筒内の残留ガスの一部が吸気側に逆流
する。その結果、筒内には吸気側と同じ負圧が作用する
が、ピストンが既に相当下降しているため、負圧の作用
する割合は減少する。また、この場合、残留ガスは吸気
弁が開いた時点で筒内に残っているガスの分のみである
ため、上記のBの場合に比べれば、残留ガス量は大幅に
少なくなる。従って、図中に一点鎖線Cとして示すよう
に、本格的な吸入が開始された段階で見ると、吸入負圧
はBの場合に比べて高いレベルとなるが、作用時間が短
いため、サイクル全体でのポンプ損失としてはBの場合
とほぼ同レベルに維持できる。そして、上述したよう
に、残留ガスの吹き抜けが防止され、またガスの冷却が
少ない分、温度が高く保たれ、燃焼の悪化はほとんどな
い。
On the other hand, in the case of the present invention shown as C,
At the time of partial load, the opening timing of the intake valve is set after the top dead center, and the closing timing of the exhaust valve is also delayed after the top dead center. Note that the change amount of the opening timing of the exhaust valve is set smaller than the change amount of the closing timing, and the operating angle of the exhaust valve is increased. In this case, the exhaust gas is re-inhaled from the exhaust valve into the cylinder at the beginning of the intake stroke.
Valve valve overlap is small, and no large amount of residual gas backflow to the intake system occurs. That is, the exhaust valve is open even after the exhaust top dead center has passed, and the intake valve has not been opened yet, so that the pressure in the cylinder becomes equal to the exhaust pressure at the beginning of the suction stroke. In this state, the piston falls while re-inhaling the high-temperature exhaust gas, so that the pump loss at this stage is small. Eventually, the intake valve opens, and a part of the residual gas in the cylinder flows back to the intake side. As a result, the same negative pressure acts on the cylinder as on the intake side, but since the piston has already descended considerably, the rate at which the negative pressure acts decreases. Further, in this case, the residual gas is only the gas remaining in the cylinder at the time when the intake valve is opened, so that the residual gas amount is significantly reduced as compared with the case B described above. Therefore, as shown by the one-dot chain line C in the figure, when the full-scale suction is started, the suction negative pressure is at a higher level than in the case of B, but since the operation time is short, the whole cycle is not performed. Can be maintained at substantially the same level as in the case of B. As described above, blow-through of the residual gas is prevented, and the temperature is kept high because the cooling of the gas is small, so that the combustion is hardly deteriorated.

【0018】また請求項3に係る内燃機関の吸排気弁制
御装置は、弁開閉時期および作動角を制御信号により連
続的に制御可能な可変動弁機構が、吸気弁側に設けられ
るとともに、作動角を一定としたまま弁開閉時期の位相
を制御信号により連続的に制御可能な第2の可変動弁機
構が、排気弁側に設けられてなる内燃機関において、機
関の部分負荷時に、上記排気弁の閉時期が吸入上死点よ
りも遅れた位置に制御されるとともに、上記吸気弁の開
時期が、吸入上死点よりも遅れた位置に制御されること
を特徴としている。
According to a third aspect of the present invention, there is provided an intake / exhaust valve control device for an internal combustion engine, wherein a variable valve mechanism capable of continuously controlling a valve opening / closing timing and an operating angle by a control signal is provided on the intake valve side. In an internal combustion engine provided on the exhaust valve side, a second variable valve mechanism capable of continuously controlling the phase of the valve opening / closing timing by a control signal while the angle is kept constant, when the engine is partially loaded, It is characterized in that the valve closing timing is controlled to a position delayed from the suction top dead center, and the opening timing of the intake valve is controlled to a position delayed from the suction top dead center.

【0019】すなわち、排気弁側に設けられた第2の可
変動弁機構は、例えばカムシャフトとクランクシャフト
の位相を相対的に変化させるなどして、弁開閉時期を変
化させる。この場合、部分負荷時に、排気弁は作動角が
一定のまま閉時期および開時期の双方が遅れることにな
るが、低速の部分負荷域であれば、排気弁の開時期が遅
れることにより、膨張仕事の有効活用のメリットが生じ
る方向であり、悪影響は少ない。
That is, the second variable valve mechanism provided on the exhaust valve side changes the valve opening / closing timing by, for example, relatively changing the phase of the camshaft and the crankshaft. In this case, at the time of partial load, both the closing timing and the opening timing of the exhaust valve are delayed while the operating angle is constant. The benefits of effective use of work will be generated, and there will be little adverse effect.

【0020】また請求項4では、吸排気弁のバルブオー
バラップの中心角の変化量が、該バルブオーバラップの
角度変化量よりも大きく設定されている。
According to the present invention, the amount of change in the central angle of the valve overlap of the intake and exhaust valves is set to be larger than the amount of change in the angle of the valve overlap.

【0021】また請求項5の発明では、機関の部分負荷
時に、さらに、吸気弁の閉時期が圧縮下死点に近づくよ
うに早められる。
According to the fifth aspect of the invention, when the engine is partially loaded, the closing timing of the intake valve is further advanced so as to approach the compression bottom dead center.

【0022】このようにすることで、部分負荷時におけ
る実圧縮比が向上し、燃焼の一層の改善が図れる。
In this way, the actual compression ratio at the time of partial load is improved, and the combustion can be further improved.

【0023】そして、上記のような吸排気弁開閉時期の
可変制御を実現するために、請求項6に係る内燃機関の
吸排気弁制御装置は、上記の弁開閉時期および作動角を
連続的に制御可能な可変動弁機構として、機関の回転に
同期して回転する駆動軸と、この駆動軸と同軸上に配設
され、かつ吸気弁もしくは排気弁を駆動するカムを外周
に有するカムシャフトと、このカムシャフトの端部に設
けられ、かつ半径方向に沿って係合溝が形成された一方
のフランジ部と、この一方のフランジ部に対向するよう
に上記駆動軸側に設けられ、かつ半径方向に沿って係合
溝が形成された他方のフランジ部と、上記両フランジ部
の間に揺動自在に配設された環状ディスクと、この環状
ディスクの両側部に互いに反対方向に突設されて、上記
両フランジ部の各係合溝内に夫々係合するピンと、上記
環状ディスクを機関運転状態に応じて揺動させる駆動機
構とを備え、上記環状ディスクの位置に応じて吸気弁も
しくは排気弁の作動角が変化するものとなっている。
In order to realize the above-described variable control of the intake / exhaust valve opening / closing timing, the intake / exhaust valve control device for an internal combustion engine according to claim 6 continuously adjusts the valve opening / closing timing and operating angle. As a controllable variable valve mechanism, a drive shaft that rotates in synchronization with the rotation of the engine, and a cam shaft that is disposed coaxially with the drive shaft and has a cam that drives a suction valve or an exhaust valve on the outer periphery. A flange portion provided at an end of the camshaft and having an engagement groove formed in a radial direction, and a flange portion provided on the drive shaft side so as to face the one flange portion; and The other flange portion having an engaging groove formed along the direction, an annular disk disposed swingably between the two flange portions, and projecting in opposite directions on both sides of the annular disk. And each of the above flanges A pin that engages in the mating groove, and a drive mechanism that swings the annular disk according to the engine operating state, wherein the operating angle of the intake valve or the exhaust valve changes according to the position of the annular disk. Has become.

【0024】この構成においては、環状ディスクの回転
中心が駆動軸およびカムシャフトの中心と同心状態にあ
る場合には、駆動軸とカムシャフトとが等速回転し、ま
た環状ディスクが偏心位置にある場合には、両者が不等
速回転する。従って、上記環状ディスクの位置に応じ
て、吸排気弁のバルブリフト特性が連続的に変化し、吸
排気弁の開閉時期と作動角とが変化する。
In this configuration, when the center of rotation of the annular disk is concentric with the center of the drive shaft and the camshaft, the drive shaft and the camshaft rotate at a constant speed, and the annular disk is at an eccentric position. In such a case, the two rotate unequally. Therefore, the valve lift characteristics of the intake and exhaust valves change continuously according to the position of the annular disk, and the opening / closing timing and operating angle of the intake and exhaust valves change.

【0025】[0025]

【発明の効果】本発明によれば、機関の部分負荷時に、
吸気系への残留ガスの過度の逆流を伴わずに内部EGR
を促進することができ、燃焼の悪化を最小限に抑制しつ
つポンプ損失を低減できる。従って、ポンプ損失の低減
ならびに燃焼の改善による燃費の向上が図れる。また、
バルブオーバラップの僅かな差による残留ガスの大きな
ばらつきが発生せず、常に安定した特性を得ることがで
きる。
According to the present invention, when the engine is partially loaded,
Internal EGR without excessive backflow of residual gas into the intake system
And pump loss can be reduced while deterioration of combustion is minimized. Therefore, the fuel consumption can be improved by reducing the pump loss and improving the combustion. Also,
A large variation in the residual gas due to a slight difference in valve overlap does not occur, and stable characteristics can always be obtained.

【0026】また請求項5のように、同時に吸気弁閉時
期を早めてやれば、実圧縮比を高めることができ、部分
負荷時に、一層の燃焼の改善が図れる。
Further, if the intake valve closing timing is advanced at the same time as in claim 5, the actual compression ratio can be increased, and the combustion can be further improved at the partial load.

【0027】[0027]

【発明の実施の形態】以下、この発明の好ましい実施の
形態を図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0028】本発明の第1の実施例においては、内燃機
関の吸気弁側および排気弁側の双方に、弁開閉時期およ
び作動角を連続的に制御可能な可変動弁機構11が設け
られている。
In the first embodiment of the present invention, a variable valve mechanism 11 capable of continuously controlling the valve opening / closing timing and the operating angle is provided on both the intake valve side and the exhaust valve side of the internal combustion engine. I have.

【0029】この可変動弁機構11は、特開平6−18
5321号公報や米国特許第5,365,896号明細
書等において開示されているように、不等速軸継手の原
理を応用して各気筒の円筒状カムシャフトを不等速回転
させることでバルブリフト特性を連続的に可変制御し得
るようにしたものである。
This variable valve mechanism 11 is disclosed in
As disclosed in Japanese Patent No. 5321 and U.S. Pat. No. 5,365,896, the cylindrical camshaft of each cylinder is rotated at a non-uniform speed by applying the principle of a non-uniform shaft coupling. The valve lift characteristic can be continuously variably controlled.

【0030】この機構自体は公知であるので、図4およ
び図5を参照して簡単に説明すると、図において、21
は図外の機関クランク軸からタイミングチェーン14
(図4参照)を介して回転力が伝達される駆動軸、22
は該駆動軸21の外周に回転自在に嵌合した中空円筒状
のカムシャフトである。このカムシャフト22は、各気
筒毎に分割して構成されている。
Since this mechanism itself is known, the mechanism will be briefly described with reference to FIGS.
Is the timing chain 14 from the unillustrated engine crankshaft.
A drive shaft to which rotational force is transmitted via (see FIG. 4), 22
Is a hollow cylindrical camshaft rotatably fitted on the outer periphery of the drive shaft 21. The camshaft 22 is divided for each cylinder.

【0031】上記カムシャフト22は、シリンダヘッド
上端部のカム軸受(図示せず)に回転自在に支持されて
いると共に、外周に、各気筒一対の吸気弁12を開作動
させる一対のカム26が形成されている。また、カムシ
ャフト22は、上述したように複数個に分割形成されて
いるが、その一方の分割端部に、第1フランジ部27が
設けられている。また、この複数に分割されたカムシャ
フト22の端部間に、それぞれスリーブ28と環状ディ
スク29が配置されている。上記第1フランジ部27に
は、半径方向に沿った細長い係合溝が形成されている。
The camshaft 22 is rotatably supported by a cam bearing (not shown) at the upper end of a cylinder head. A pair of cams 26 for opening the pair of intake valves 12 of each cylinder are provided on the outer periphery. Is formed. The camshaft 22 is divided into a plurality of pieces as described above, and a first flange portion 27 is provided at one of the divided ends. A sleeve 28 and an annular disk 29 are arranged between the ends of the plurality of divided camshafts 22, respectively. The first flange portion 27 is formed with an elongated engagement groove extending in the radial direction.

【0032】上記スリーブ28は、駆動軸21に固定さ
れているものであって、該スリーブ28に、上記第1フ
ランジ部27に対向する第2フランジ部32が形成され
ている。この第2フランジ部32には、やはり半径方向
に沿った細長い係合溝が形成されている。
The sleeve 28 is fixed to the drive shaft 21. The sleeve 28 has a second flange 32 facing the first flange 27. The second flange portion 32 is also formed with an elongated engagement groove along the radial direction.

【0033】両フランジ部27,32の間に位置する上
記環状ディスク29は、略ドーナツ板状を呈し、駆動軸
21の外周面との間に環状の間隙を有するとともに、デ
ィスクハウジング34の内周面に回転自在に保持されて
いる。また、互いに180°異なる直径線上の対向位置
にそれぞれ反対側へ突出する一対のピン36,37を有
し、各ピン36,37が各係合溝に係合している。
The annular disk 29 located between the flange portions 27 and 32 has a substantially donut shape, has an annular gap with the outer peripheral surface of the drive shaft 21, and has an inner peripheral surface of the disk housing 34. It is rotatably held on a surface. Further, a pair of pins 36 and 37 projecting to opposite sides are provided at opposite positions on diameter lines different from each other by 180 °, and the pins 36 and 37 are engaged with the respective engagement grooves.

【0034】ディスクハウジング34は、略三角形をな
し、その円形の開口部内に環状ディスク29が保持され
ているとともに、三角形の頂部となる2カ所に、それぞ
れ第1カム嵌合孔38および第2カム嵌合孔39が貫通
形成されている。
The disk housing 34 has a substantially triangular shape, the circular disk 29 is held in a circular opening thereof, and the first cam fitting hole 38 and the second cam A fitting hole 39 is formed through.

【0035】そして、上記第1カム嵌合孔38および第
2カム嵌合孔39内には、それぞれ第1偏心カム41お
よび第2偏心カム43の円形カム部41a,43aが回
動自在に嵌合している。
The circular cam portions 41a and 43a of the first eccentric cam 41 and the second eccentric cam 43 are rotatably fitted in the first cam fitting hole 38 and the second cam fitting hole 39, respectively. I agree.

【0036】上記第2偏心カム43は、図5に示すよう
に、互いに所定量偏心している円柱状の軸部43bと円
形カム部43aとからなり、両者が回転可能に嵌合され
て一体化されている。なお、円形カム部43aは、スナ
ップリング30により抜け止めされている。上記軸部4
3bは、図4に示すように、フレーム33の隔壁部に圧
入固定されている。
As shown in FIG. 5, the second eccentric cam 43 is composed of a cylindrical shaft portion 43b and a circular cam portion 43a which are eccentric to each other by a predetermined amount. Have been. The circular cam portion 43a is prevented from coming off by the snap ring 30. Shaft 4
3b is press-fitted and fixed to the partition wall of the frame 33 as shown in FIG.

【0037】また上記第1偏心カム41は、機関前後方
向に沿って複数気筒に亙って連続した制御カム軸42
と、該カム軸42に各気筒に対応して固設された複数個
の円形カム部41aとからなり、両者が所定量偏心して
いる。なお、各気筒の円形カム部41aは、それぞれカ
ム軸42の所定の角度位置において偏心している。上記
制御カム軸42は、上記フレーム33にカムブラケット
35を介して回転自在に保持されている。内燃機関の一
端部に位置する上記制御カム軸42の一端には、駆動機
構として回転型の油圧アクチュエータ46が取り付けら
れている。また、内燃機関の前部に位置する制御カム軸
42の他端には、該制御カム軸42の回転位置つまり円
形カム部41aの位相を検出する回転型のポテンショメ
ータ47が取り付けられている。
The first eccentric cam 41 is provided with a control camshaft 42 continuous over a plurality of cylinders in the longitudinal direction of the engine.
And a plurality of circular cam portions 41a fixed to the camshaft 42 corresponding to the respective cylinders, and both are eccentric by a predetermined amount. The circular cam portion 41a of each cylinder is eccentric at a predetermined angular position of the cam shaft 42. The control cam shaft 42 is rotatably held by the frame 33 via a cam bracket 35. At one end of the control camshaft 42 located at one end of the internal combustion engine, a rotary hydraulic actuator 46 is attached as a drive mechanism. At the other end of the control camshaft 42 located at the front of the internal combustion engine, a rotary potentiometer 47 for detecting the rotational position of the control camshaft 42, that is, the phase of the circular cam portion 41a, is attached.

【0038】上記の可変動弁機構11においては、第1
偏心カム41を介して環状ディスク29の偏心位置を可
変制御することにより、カムシャフト22が不等速回転
し、駆動軸21との間で、その偏心量に応じた位相差が
生じる。例えば、図5の(A)に示すように、環状ディ
スク29の中心Yと駆動軸21の中心Xとが一致してい
る状態では、カムシャフト22が駆動軸21と等速で同
期回転するため、カムプロフィールに沿ったバルブリフ
ト特性が得られる。これに対し、図5の(B)に示すよ
うに、環状ディスク29の中心Yが一方へ偏心した状態
では、偏心量に応じた位相差が生じ、カムプロフィール
を変形させた形でバルブリフト特性が得られる。これに
より、図6に例示するように、弁開閉時期および作動角
が連続的に変化する。図6には、作動角を小さくした特
性と作動角を大きくした特性とが例示されているが、こ
の図に示すように、各特性は必ずしも相似形とはならな
い。
In the variable valve mechanism 11 described above, the first
By variably controlling the eccentric position of the annular disk 29 via the eccentric cam 41, the camshaft 22 rotates at an irregular speed, and a phase difference is generated between the camshaft 22 and the drive shaft 21 according to the amount of eccentricity. For example, as shown in FIG. 5A, when the center Y of the annular disk 29 and the center X of the drive shaft 21 match, the camshaft 22 rotates synchronously with the drive shaft 21 at a constant speed. , A valve lift characteristic along the cam profile is obtained. On the other hand, as shown in FIG. 5B, when the center Y of the annular disk 29 is eccentric to one side, a phase difference corresponding to the amount of eccentricity occurs, and the valve lift characteristic is changed in a form in which the cam profile is deformed. Is obtained. Thereby, as illustrated in FIG. 6, the valve opening / closing timing and the operating angle continuously change. FIG. 6 illustrates a characteristic in which the operating angle is reduced and a characteristic in which the operating angle is increased. However, as shown in FIG. 6, the characteristics do not always have similar shapes.

【0039】また、第1実施例においては、排気弁側に
も、同様の可変動弁機構が設けられており、排気弁の弁
開閉時期および作動角が連続的に変化するようになって
いる。特に、この実施例では、排気弁については、図6
のように、バルブ作動角が増減変化しても、開時期は殆
ど変化せず、閉時期のみが大きく変化するように各部が
設定されている。
In the first embodiment, a similar variable valve mechanism is also provided on the exhaust valve side, so that the valve opening / closing timing and the operating angle of the exhaust valve are continuously changed. . In particular, in this embodiment, the exhaust valve shown in FIG.
Each part is set so that the opening timing hardly changes and only the closing timing greatly changes even if the valve operating angle increases or decreases as shown in FIG.

【0040】上記油圧アクチュエータ46に供給される
油圧は、図示せぬコントロールユニットからの制御信号
に基づき図示せぬ油圧制御弁を介して制御される。コン
トロールユニットには、機関運転条件を示す機関回転数
信号、負荷信号(例えば吸入空気量信号)、機関の温度
として例えば冷却水温を検出する水温センサからの水温
信号等が入力され、これらに基づいて吸気弁12および
排気弁のバルブリフト特性を可変制御している。
The hydraulic pressure supplied to the hydraulic actuator 46 is controlled via a hydraulic control valve (not shown) based on a control signal from a control unit (not shown). The control unit receives an engine speed signal indicating an engine operating condition, a load signal (for example, an intake air amount signal), a water temperature signal from a water temperature sensor for detecting, for example, a cooling water temperature, as the engine temperature, and the like. The valve lift characteristics of the intake valve 12 and the exhaust valve are variably controlled.

【0041】図7は、この第1実施例におけるバルブリ
フト特性の一例を示しており、aはアイドリング時、b
は低速部分負荷時、cは高速時の特性である。この図7
に示すように、アイドリング時には、残留ガスを減少さ
せて燃焼を安定化するようにバルブオーバラップが非常
に小さなものとなる。その中心角は、ほぼ上死点位置で
ある。また、高速時には、新気の充填効率を高めるべく
バルブオーバラップが拡大するが、その中心角はやはり
ほぼ上死点位置である。
FIG. 7 shows an example of the valve lift characteristic in the first embodiment.
Is a characteristic at a low speed partial load, and c is a characteristic at a high speed. This FIG.
As shown in (1), when idling, the valve overlap becomes very small so as to reduce residual gas and stabilize combustion. The central angle is almost at the top dead center position. Also, at high speeds, the valve overlap increases in order to increase the efficiency of charging fresh air, but the center angle is still almost at the top dead center position.

【0042】これに対し、燃費特性の上で重要な使用頻
度の高い低速の部分負荷時には、吸気弁作動角が大幅に
縮小し、吸気弁開時期が吸入上死点後まで大幅に遅らせ
られる。そして、その間、排気弁が開弁しているように
排気弁の作動角は逆に拡大しており、排気弁閉時期も上
死点後となっている。これにより、バルブオーバラップ
期間は、その全体が上死点後となっている。従って、ポ
ンプ損失が低減するとともに、吹き抜けによる残留ガス
量の増大が防止でき、またガスの冷却が少ない分、温度
が高く保たれ、燃焼の悪化が抑制される。なお、上述し
たように排気弁の開時期の変化は小さい。また、吸気弁
については、閉時期が早められ、下死点に近づいてい
る。このようにすることで、実圧縮比が向上し、燃焼の
一層の改善が図れる。
On the other hand, at the time of low-speed partial load, which is important in terms of fuel consumption characteristics and is frequently used, the operating angle of the intake valve is greatly reduced, and the opening timing of the intake valve is greatly delayed until after the intake top dead center. In the meantime, the operating angle of the exhaust valve is increasing conversely as the exhaust valve is open, and the exhaust valve closing timing is also after the top dead center. Thus, the entire valve overlap period is after the top dead center. Accordingly, the pump loss is reduced, the increase in the amount of residual gas due to blow-by can be prevented, and the temperature is kept high by the small amount of gas cooling, thereby suppressing the deterioration of combustion. As described above, the change in the opening timing of the exhaust valve is small. Further, the closing timing of the intake valve is advanced, and the intake valve is approaching the bottom dead center. By doing so, the actual compression ratio is improved, and the combustion can be further improved.

【0043】図8および図9は、コントロールユニット
により実行される可変動弁機構の制御特性の一例を示し
たものであり、図8は排気弁閉時期と吸気弁開時期とで
定まるバルブオーバラップの中心角の制御特性を示し、
図9は吸気弁閉時期の制御特性を示している。図8に明
らかなように、低速の部分負荷代表点(40km/h定
常走行等)つまり最も使用頻度の高い運転条件におい
て、バルブオーバラップ中心角を最も遅らせる設定とし
てある。また図9に明らかなように、バルブオーバラッ
プ中心角の変化に沿うような特性でもって吸気弁閉時期
が早められ、実圧縮比の向上を図っている。なお、本実
施例では、吸気弁の作動角の変化は、開時期および閉時
期でほぼ対称となっている。
FIGS. 8 and 9 show examples of control characteristics of the variable valve mechanism executed by the control unit. FIG. 8 shows a valve overlap determined by the exhaust valve closing timing and the intake valve opening timing. Shows the control characteristic of the central angle of
FIG. 9 shows control characteristics of the intake valve closing timing. As is clear from FIG. 8, the valve overlap center angle is set to be the slowest at the low-speed partial load representative point (40 km / h steady running or the like), that is, at the most frequently used operating condition. Further, as is apparent from FIG. 9, the closing timing of the intake valve is advanced by the characteristic along the change of the central angle of the valve overlap, and the actual compression ratio is improved. In this embodiment, the change in the operating angle of the intake valve is substantially symmetrical between the opening timing and the closing timing.

【0044】図10は、吸気弁12および排気弁の開閉
時期の具体的な制御の流れを示すフローチャートであっ
て、まずステップ1において、バルブオーバラップ中心
角の制御マップを読み込む。この制御マップとしては、
図8に特性の一例を示した暖機後用のマップと、図示せ
ぬ冷間時用のマップとが、予め設定されている。次にス
テップ2において、冷却水温twを所定の基準温度(暖
機が完了したとみなせる温度)t0と比較し、このt0
以下である場合には、ステップ3へ進む。ステップ3で
は、冷間時用の制御マップを用いて、そのときの負荷と
機関回転数に対応するバルブオーバラップ中心角の目標
値を決定する。なお、この冷間時用の特性としては、例
えばほぼ上死点(TDC)に固定するようにしても良
い。また、暖機が完了していて冷却水温twが基準温度
t0より高い場合には、ステップ4へ進む。ステップ4
では、暖機後用の制御マップを用いて、そのときの負荷
と機関回転数に対応するバルブオーバラップ中心角の目
標値を決定する。
FIG. 10 is a flowchart showing a specific flow of control of the opening and closing timings of the intake valve 12 and the exhaust valve. First, in step 1, a control map of the valve overlap center angle is read. As this control map,
A map for after warm-up, which shows an example of the characteristics in FIG. 8, and a map for cold time, not shown, are set in advance. Next, in step 2, the cooling water temperature tw is compared with a predetermined reference temperature (temperature at which the warm-up is considered completed) t0.
If so, go to step 3. In step 3, the target value of the valve overlap center angle corresponding to the load and the engine speed at that time is determined using the control map for the cold state. In addition, as the characteristic for the cold state, for example, the characteristic may be fixed to approximately the top dead center (TDC). If the warm-up is completed and the cooling water temperature tw is higher than the reference temperature t0, the process proceeds to step 4. Step 4
Then, the target value of the valve overlap center angle corresponding to the load and the engine speed at that time is determined using the post-warm-up control map.

【0045】このようにしてバルブオーバラップ中心角
目標値を決定した後、ステップ5へ進み、機関の潤滑系
統における油圧が基準油圧p0以上であるか否かを、図
示せぬ油圧センサの信号に基づいて判定する。この基準
油圧p0は、上述した可変動弁機構を正常に制御し得る
レベルに設定されており、始動直後のように、油圧がこ
の基準油圧p0以下である場合には、油圧が十分に上昇
するまで待機する。そして、油圧が基準油圧p0より大
きければ、ステップ6へ進み、油圧アクチュエータ46
をバルブオーバラップ中心角目標値に沿って駆動する。
また、ステップ7では、ポテンショメータ47によって
実際の制御カム軸42の回転位置が検出され、油圧アク
チュエータ46が閉ループ制御される。
After determining the target value of the valve overlap center angle in this way, the routine proceeds to step 5, where whether or not the oil pressure in the lubrication system of the engine is equal to or higher than the reference oil pressure p0 is determined by a signal from an oil pressure sensor (not shown). Judgment based on The reference oil pressure p0 is set to a level at which the above-described variable valve mechanism can be normally controlled. When the oil pressure is equal to or lower than the reference oil pressure p0, for example, immediately after starting, the oil pressure is sufficiently increased. Wait until. If the hydraulic pressure is greater than the reference hydraulic pressure p0, the process proceeds to step 6, where the hydraulic actuator 46
Is driven along the target value of the valve overlap center angle.
In step 7, the actual rotational position of the control camshaft 42 is detected by the potentiometer 47, and the hydraulic actuator 46 is closed-loop controlled.

【0046】次に、本発明の第2実施例について説明す
る。この第2実施例においては、吸気弁側には、前述し
た図4,図5の可変動弁機構11が用いられている。そ
して、排気側には、作動角が一定の第2の可変動弁機構
61が用いられている。
Next, a second embodiment of the present invention will be described. In the second embodiment, the above-described variable valve mechanism 11 shown in FIGS. 4 and 5 is used on the intake valve side. A second variable valve mechanism 61 having a constant operating angle is used on the exhaust side.

【0047】図11は、この第2の可変動弁機構61の
要部を拡大して示す断面図であって、この第2の可変動
弁機構61は、内筒62,外筒63,ピストン64等を
主体として構成されている。
FIG. 11 is an enlarged sectional view showing a main part of the second variable valve mechanism 61. The second variable valve mechanism 61 includes an inner cylinder 62, an outer cylinder 63, and a piston. 64 and the like.

【0048】すなわち、カムシャフト65の前端に、内
筒62が取付ボルト66を介して固着され、この内筒6
2の外周側に、カップ状の外筒63が一定角度相対回転
可能に嵌合されている。上記外筒63には、タイミング
ベルトとかみ合うスプロケット部63aが設けられてい
る。
That is, the inner cylinder 62 is fixed to the front end of the camshaft 65 via the mounting bolt 66.
A cup-shaped outer cylinder 63 is fitted to the outer peripheral side of 2 so as to be relatively rotatable by a certain angle. The outer cylinder 63 is provided with a sprocket portion 63a that meshes with the timing belt.

【0049】また、内筒62と外筒63との間にはリン
グ状のピストン64が設けられ、このピストン64はヘ
リカル状の螺条を介して内筒62の外周面と外筒63の
外周面とにそれぞれ噛合している。
A ring-shaped piston 64 is provided between the inner cylinder 62 and the outer cylinder 63. The piston 64 is connected to the outer peripheral surface of the inner cylinder 62 and the outer periphery of the outer cylinder 63 through a helical thread. Face and each other.

【0050】さらに、ピストン64は、リターンスプリ
ング67により前方に向けて常時付勢されており、この
ばね力に対抗すべく、ピストン64の前面と外筒63の
蓋部裏面との間に油圧室68が環状に画成されている。
そして、この油圧室68は、取付ボルト66内の油通路
69とカムシャフト65内部を通る油通路70を介し
て、その制御用油圧回路に接続されている。
Further, the piston 64 is constantly urged forward by a return spring 67. To counter this spring force, a hydraulic chamber is provided between the front surface of the piston 64 and the back surface of the lid of the outer cylinder 63. 68 is annularly defined.
The hydraulic chamber 68 is connected to a control hydraulic circuit via an oil passage 69 in the mounting bolt 66 and an oil passage 70 passing through the camshaft 65.

【0051】すなわち油通路70等を介して油圧室68
内に油圧が供給されると、ピストン64が軸方向に移動
し、この軸方向の運動が内筒62と外筒63との相対回
転運動に変換される。このため、カムシャフト65とク
ランクシャフトとの位相が所定量だけ変化する。従っ
て、図12に示すように、所定の角度範囲以内で、バル
ブリフト特性の位相を連続的に変化させることができ
る。
That is, the hydraulic chamber 68 via the oil passage 70 and the like
When the hydraulic pressure is supplied to the inside, the piston 64 moves in the axial direction, and the movement in the axial direction is converted into the relative rotational movement between the inner cylinder 62 and the outer cylinder 63. Therefore, the phase between the camshaft 65 and the crankshaft changes by a predetermined amount. Therefore, as shown in FIG. 12, the phase of the valve lift characteristic can be continuously changed within a predetermined angle range.

【0052】図13は、この第2の可変動弁機構61を
排気側に用いた第2実施例におけるバルブリフト特性の
一例を示しており、aはアイドリング時、bは低速部分
負荷時、cは高速時の特性である。この図13に示すよ
うに、アイドリング時には、排気弁開閉時期は比較的早
く、残留ガスを減少させて燃焼を安定化するようにバル
ブオーバラップが非常に小さなものとなる。その中心角
は、上死点後となる。また、高速時には、新気の充填効
率を高めるべくバルブオーバラップが拡大するが、その
中心角はほぼ上死点位置である。
FIG. 13 shows an example of a valve lift characteristic in the second embodiment in which the second variable valve mechanism 61 is used on the exhaust side. Is the characteristic at high speed. As shown in FIG. 13, at the time of idling, the exhaust valve opening / closing timing is relatively early, and the valve overlap is very small so as to reduce residual gas and stabilize combustion. The central angle is after the top dead center. At high speeds, the valve overlap increases in order to increase the efficiency of charging fresh air, but the central angle is almost at the top dead center position.

【0053】これに対し、燃費特性の上で重要な使用頻
度の高い低速の部分負荷時には、吸気弁作動角が大幅に
縮小し、吸気弁開時期が吸入上死点後まで大幅に遅らせ
られる。そして、その間、排気弁が開弁しているよう
に、排気弁の位相が遅れ側に制御され、排気弁閉時期も
上死点後となっている。これにより、バルブオーバラッ
プ期間は、その全体が上死点後となっている。従って、
ポンプ損失が低減するとともに、残留ガス量の吹き抜け
による増大が防止され、またガスの冷却が少ない分、温
度が高く保たれ、燃焼の悪化が抑制される。なお、排気
弁の開時期も遅くなるが、低速の部分負荷域では、その
悪影響は少ない。また、吸気弁については、第1実施例
と同じく、閉時期が早められ、下死点に近づいている。
このようにすることで、実圧縮比が向上し、燃焼の一層
の改善が図れる。
On the other hand, at the time of low-speed partial load, which is important in terms of fuel efficiency, and is frequently used, the operating angle of the intake valve is greatly reduced, and the opening timing of the intake valve is greatly delayed until after the intake top dead center. During this time, the phase of the exhaust valve is controlled to be delayed so that the exhaust valve is open, and the exhaust valve closing timing is also after the top dead center. Thus, the entire valve overlap period is after the top dead center. Therefore,
The pump loss is reduced, the increase in the residual gas amount due to blow-through is prevented, and the temperature is kept high due to less gas cooling, thereby suppressing the deterioration of combustion. Although the opening timing of the exhaust valve is delayed, the adverse effect is small in a low-speed partial load region. Further, as with the first embodiment, the closing timing of the intake valve is advanced, and the intake valve is approaching the bottom dead center.
By doing so, the actual compression ratio is improved, and the combustion can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バルブオーバラップ期間における燃焼室内の負
圧と吸気系への排気逆流量の特性を示す特性図。
FIG. 1 is a characteristic diagram showing characteristics of a negative pressure in a combustion chamber and a backflow of exhaust gas to an intake system during a valve overlap period.

【図2】吸排気系の一般的なレイアウトを示す説明図。FIG. 2 is an explanatory diagram showing a general layout of an intake / exhaust system.

【図3】本発明と従来とを対比して示すP−V線図。FIG. 3 is a PV diagram showing a comparison between the present invention and the related art.

【図4】本発明に用いられる可変動弁機構の一実施例を
示す斜視図。
FIG. 4 is a perspective view showing one embodiment of a variable valve mechanism used in the present invention.

【図5】この可変動弁機構の作動を示す説明図であっ
て、(A)は同心状態、(B)は偏心状態の様子を示す
説明図。
FIGS. 5A and 5B are explanatory views showing the operation of the variable valve mechanism, wherein FIG. 5A is an explanatory view showing a concentric state, and FIG. 5B is an explanatory view showing an eccentric state.

【図6】この可変動弁機構により得られるバルブリフト
特性を示す特性図。
FIG. 6 is a characteristic diagram showing valve lift characteristics obtained by the variable valve mechanism.

【図7】本発明の第1実施例における吸排気弁のバルブ
リフト特性を示す特性図。
FIG. 7 is a characteristic diagram showing valve lift characteristics of the intake and exhaust valves according to the first embodiment of the present invention.

【図8】バルブオーバラップ中心角の制御特性を示す特
性図。
FIG. 8 is a characteristic diagram showing control characteristics of a valve overlap center angle.

【図9】吸気弁閉時期の制御特性を示す特性図。FIG. 9 is a characteristic diagram showing control characteristics of intake valve closing timing.

【図10】本発明の制御の流れを示すフローチャート。FIG. 10 is a flowchart showing the flow of control according to the present invention.

【図11】本発明の第2実施例に用いられる第2の可変
動弁機構を示す断面図。
FIG. 11 is a sectional view showing a second variable valve mechanism used in a second embodiment of the present invention.

【図12】この第2の可変動弁機構により得られるバル
ブリフト特性を示す特性図。
FIG. 12 is a characteristic diagram showing valve lift characteristics obtained by the second variable valve mechanism.

【図13】本発明の第2実施例における吸排気弁のバル
ブリフト特性を示す特性図。
FIG. 13 is a characteristic diagram showing valve lift characteristics of an intake / exhaust valve according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…可変動弁機構 12…吸気弁 61…第2の可変動弁機構 11 Variable valve mechanism 12 Intake valve 61 Second variable valve mechanism

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弁開閉時期および作動角を制御信号によ
り連続的に制御可能な可変動弁機構が、吸気弁側および
排気弁側の双方に設けられてなる内燃機関において、機
関の部分負荷時に、上記排気弁の閉時期が吸入上死点よ
りも遅れた位置に制御されるとともに、上記吸気弁の開
時期が、吸入上死点よりも遅れた位置に制御されること
を特徴とする内燃機関の吸排気弁制御装置。
In an internal combustion engine provided with a variable valve mechanism capable of continuously controlling a valve opening / closing timing and an operating angle by a control signal on both an intake valve side and an exhaust valve side, when the engine is partially loaded, Wherein the closing timing of the exhaust valve is controlled to a position delayed from the intake top dead center, and the opening timing of the intake valve is controlled to a position delayed from the intake top dead center. Engine intake and exhaust valve control device.
【請求項2】 上記排気弁の開時期の変化量が閉時期の
変化量よりも小さく設定されていることを特徴とする請
求項1記載の内燃機関の吸気弁制御装置。
2. The intake valve control device for an internal combustion engine according to claim 1, wherein a change amount of the opening timing of the exhaust valve is set smaller than a change amount of the closing timing.
【請求項3】 弁開閉時期および作動角を制御信号によ
り連続的に制御可能な可変動弁機構が、吸気弁側に設け
られるとともに、作動角を一定としたまま弁開閉時期の
位相を制御信号により連続的に制御可能な第2の可変動
弁機構が、排気弁側に設けられてなる内燃機関におい
て、機関の部分負荷時に、上記排気弁の閉時期が吸入上
死点よりも遅れた位置に制御されるとともに、上記吸気
弁の開時期が、吸入上死点よりも遅れた位置に制御され
ることを特徴とする内燃機関の吸排気弁制御装置。
3. A variable valve mechanism capable of continuously controlling a valve opening / closing timing and an operating angle by a control signal is provided on an intake valve side, and controls a phase of the valve opening / closing timing while keeping the operating angle constant. In the internal combustion engine in which the second variable valve mechanism that can be continuously controlled by the exhaust valve is provided on the exhaust valve side, when the engine is partially loaded, the position where the closing timing of the exhaust valve is later than the intake top dead center And the opening timing of the intake valve is controlled to a position delayed from the intake top dead center.
【請求項4】 吸排気弁のバルブオーバラップの中心角
の変化量が、該バルブオーバラップの角度変化量よりも
大きく設定されていることを特徴とする請求項1〜3の
いずれかに記載の内燃機関の吸気弁制御装置。
4. The valve according to claim 1, wherein the change amount of the central angle of the valve overlap of the intake and exhaust valves is set to be larger than the change amount of the valve overlap angle. Control device for an internal combustion engine.
【請求項5】 機関の部分負荷時に、さらに、吸気弁の
閉時期が圧縮下死点に近づくように早められることを特
徴とする請求項1〜4のいずれかに記載の内燃機関の吸
排気弁制御装置。
5. The intake and exhaust of an internal combustion engine according to claim 1, wherein the closing timing of the intake valve is further advanced so as to approach the compression bottom dead center when the engine is partially loaded. Valve control device.
【請求項6】 上記の弁開閉時期および作動角を連続的
に制御可能な可変動弁機構は、機関の回転に同期して回
転する駆動軸と、この駆動軸と同軸上に配設され、かつ
吸気弁もしくは排気弁を駆動するカムを外周に有するカ
ムシャフトと、このカムシャフトの端部に設けられ、か
つ半径方向に沿って係合溝が形成された一方のフランジ
部と、この一方のフランジ部に対向するように上記駆動
軸側に設けられ、かつ半径方向に沿って係合溝が形成さ
れた他方のフランジ部と、上記両フランジ部の間に揺動
自在に配設された環状ディスクと、この環状ディスクの
両側部に互いに反対方向に突設されて、上記両フランジ
部の各係合溝内に夫々係合するピンと、上記環状ディス
クを機関運転状態に応じて揺動させる駆動機構とを備
え、上記環状ディスクの位置に応じて吸気弁もしくは排
気弁の作動角が変化するものであることを特徴とする請
求項1〜5のいずれかに記載の内燃機関の吸排気弁制御
装置。
6. The variable valve mechanism capable of continuously controlling the valve opening / closing timing and the operating angle is provided on a drive shaft rotating in synchronization with the rotation of the engine, and coaxially with the drive shaft. A camshaft having a cam for driving an intake valve or an exhaust valve on an outer periphery thereof; one flange provided at an end of the camshaft and having an engagement groove formed in a radial direction; The other flange portion, which is provided on the drive shaft side so as to face the flange portion and has an engagement groove formed in the radial direction, and is annularly disposed between the two flange portions so as to be swingable. A disk, pins protruding from opposite sides of the annular disk in opposite directions to engage in respective engagement grooves of the flange portions, and a drive for swinging the annular disk according to an engine operating state. The annular disk 6. The intake / exhaust valve control device for an internal combustion engine according to claim 1, wherein the operating angle of the intake valve or the exhaust valve changes according to the position of the intake valve.
【請求項7】 弁開閉時期を制御可能な可変動弁機構
が、吸気弁側および排気弁側の双方に設けられてなる内
燃機関において、機関の部分負荷時に、上記排気弁の閉
時期を吸入上死点より遅らせるとともに、上記吸気弁の
開時期を、吸入上死点よりも遅らせることを特徴とする
内燃機関の吸排気弁制御方法。
7. An internal combustion engine having variable valve mechanisms capable of controlling the valve opening / closing timing provided on both an intake valve side and an exhaust valve side. A method for controlling intake and exhaust valves of an internal combustion engine, wherein the method is delayed from top dead center and the opening timing of the intake valve is delayed from intake top dead center.
JP34701396A 1996-12-26 1996-12-26 Intake / exhaust valve control device and control method for internal combustion engine Expired - Lifetime JP3777691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34701396A JP3777691B2 (en) 1996-12-26 1996-12-26 Intake / exhaust valve control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34701396A JP3777691B2 (en) 1996-12-26 1996-12-26 Intake / exhaust valve control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10184404A true JPH10184404A (en) 1998-07-14
JP3777691B2 JP3777691B2 (en) 2006-05-24

Family

ID=18387334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34701396A Expired - Lifetime JP3777691B2 (en) 1996-12-26 1996-12-26 Intake / exhaust valve control device and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3777691B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405694B2 (en) 2000-06-09 2002-06-18 Denso Corporation Variable valve timing control device for internal combustion engine
EP1643086A2 (en) 2004-10-04 2006-04-05 Toyota Jidosha Kabushiki Kaisha Multi-cylinder internal combustion engine
JP2007278133A (en) * 2006-04-04 2007-10-25 Denso Corp Engine shaft torque estimation device
JP2009097339A (en) * 2007-10-12 2009-05-07 Yamaha Motor Co Ltd Spark ignition internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405694B2 (en) 2000-06-09 2002-06-18 Denso Corporation Variable valve timing control device for internal combustion engine
EP1643086A2 (en) 2004-10-04 2006-04-05 Toyota Jidosha Kabushiki Kaisha Multi-cylinder internal combustion engine
US7204214B2 (en) 2004-10-04 2007-04-17 Toyota Jidosha Kabushiki Kaisha Multi-cylinder internal combustion engine
JP2007278133A (en) * 2006-04-04 2007-10-25 Denso Corp Engine shaft torque estimation device
JP2009097339A (en) * 2007-10-12 2009-05-07 Yamaha Motor Co Ltd Spark ignition internal combustion engine

Also Published As

Publication number Publication date
JP3777691B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP4416377B2 (en) Control device for internal combustion engine
JP3912147B2 (en) Variable valve operating device for internal combustion engine
US5622144A (en) System for operating internal combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JP4186613B2 (en) Intake control device for internal combustion engine
JP4035963B2 (en) Control device for internal combustion engine
JPS5838603B2 (en) Internal combustion engine valve lift device
JP2007239555A (en) Internal combustion engine
JPH0849576A (en) Intake/exhaust valve driving control unit of internal combustion engine
JP3355225B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2002089341A (en) Control device for internal combustion engine in vehicle
JP3829629B2 (en) Combustion control device for internal combustion engine
JP2001263099A (en) Controller for internal combustion engine
JPH09317520A (en) Intake valve control device and method for internal combustion engine with supercharger
JP4345197B2 (en) Knocking control device for internal combustion engine
JP3814887B2 (en) Diesel engine intake valve control device and control method
JPH1193710A (en) Exhaust valve control device of 2-stroke diesel engine with supercharger
JP3777691B2 (en) Intake / exhaust valve control device and control method for internal combustion engine
JPH1136906A (en) Knocking control device for internal combustion engine
JP3726364B2 (en) Intake valve control device and control method for supercharged internal combustion engine
JP2010059945A (en) Variable valve gear device for internal combustion engine
JP4248036B2 (en) Intake valve control device and control method for turbocharged internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP3094762B2 (en) Variable valve train for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7