JPH10183347A - Film forming apparatus for magneto-resistive head - Google Patents

Film forming apparatus for magneto-resistive head

Info

Publication number
JPH10183347A
JPH10183347A JP34621896A JP34621896A JPH10183347A JP H10183347 A JPH10183347 A JP H10183347A JP 34621896 A JP34621896 A JP 34621896A JP 34621896 A JP34621896 A JP 34621896A JP H10183347 A JPH10183347 A JP H10183347A
Authority
JP
Japan
Prior art keywords
substrate
chamber
film forming
vacuum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34621896A
Other languages
Japanese (ja)
Inventor
Akira Hoshino
明 星野
Toyoji Uchiyama
豊司 内山
憲一 ▲高▼木
Kenichi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP34621896A priority Critical patent/JPH10183347A/en
Priority to US08/988,071 priority patent/US6254747B1/en
Priority to KR1019970071961A priority patent/KR100486330B1/en
Priority to TW086119586A priority patent/TW350074B/en
Publication of JPH10183347A publication Critical patent/JPH10183347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus which forms flat and extremely thin films of several tens nm or below to multilayered films and efficiently forms multilayered films for magneto-resistive heads having the clean boundaries of the films by using an induction coupled RF plasma enhanced magnetron sputtering apparatus. SOLUTION: This apparatus has a load locking chamber 1 into and from which substrates for the magneto-resistive heads are put and which is freely changeable to the atm. pressure and high vacuum of order of <=10<-6> Pa, a pretreatment chamber 3 which has an etching device 4 to clean the substrates 1 vacuum transported into the load locking chamber and in which the high vacuum of the order of <=10<-6> Pa is provided and a vacuum film forming chamber 5 which has plural units of sputtering devices 6 for forming films of multiple layers on the substrates vacuum transported into these chambers and in which the high vacuum of the order of <=10<-7> Pa is maintained. The respective sputtering devices are constituted as the induction coupled RF plasma enhanced magnetron sputtering apparatus. The respective sputtering devices are provided with shutters in front thereof and the vacuum film forming chamber is internally provided with a permanent magnet to apply magnetic fields of a uniform and specified direction on the substrate and a turn table for moving the substrates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果(Ma
gneto-Resistance Effect)を利用して磁気記録の再生
を行う磁気抵抗ヘッドの製作に適した成膜装置に関す
る。
The present invention relates to a magnetoresistive effect (Ma
The present invention relates to a film forming apparatus suitable for manufacturing a magnetoresistive head for reproducing magnetic recording using gneto-resistance effect.

【0002】[0002]

【従来の技術】近時、この種の磁気抵抗ヘッド(Magnet
o-Resistance Head)は、強磁性膜と非磁性膜を重層し
て磁気抵抗効果を得るもので、再生出力が記録ディスク
の周速に依存しないことやコイルによる共振周波数の制
限がないこと、インピーダンスノイズを低減できること
などの理由で高密度記録された磁気記録の再生手段とし
て有利であるとして研究開発が行われている。この磁気
抵抗ヘッドの種類と構造は様々であり、例えばシールド
型の磁気抵抗ヘッドとして図1に示す膜構成を備えたも
のが知られている。同図の符号aはAlTiC等の耐摩
耗性・低熱膨張性の基板、bはFeSiAlなどの下部
シールド層、cはAl23などの下部ギャップ層、dは
Co系合金やFe34などの強磁性体のハードバイアス
層、eはNiFe系合金やCo系アモルファスなどの強
磁性体のSAL(Soft AdjacentLayer)層、fはT
a、Cuなどの磁気分離層、gはNiFeなどのMRス
トライプ(強磁性薄膜)、hはCu、Au、Wなどの電
極、iはAl23などの上部ギャップ層、jはNiFe
などの上部シールド層である。MRストライプ層gは磁
気抵抗効果により記録媒体からの信号磁界を電圧に変換
し、磁気分離層fはMRストライプ層gとSAL層eの
磁気的分離を行い、SAL層eはMRストライプ層gに
横バイアスを印加し、ハードバイアス層dはSAL層e
を磁化させるためのものである。
2. Description of the Related Art Recently, this type of magnetoresistive head (Magnet
o-Resistance Head) is to obtain a magnetoresistive effect by layering a ferromagnetic film and a non-magnetic film. The reproduction output does not depend on the peripheral speed of the recording disk, there is no restriction on the resonance frequency by the coil, and the impedance Research and development have been conducted as being advantageous as a means for reproducing magnetic recording on which high-density recording has been performed, for example, because noise can be reduced. There are various types and structures of the magnetoresistive head. For example, a shield type magnetoresistive head having a film configuration shown in FIG. 1 is known. In the figure, a is a wear-resistant and low-thermal-expansion substrate such as AlTiC, b is a lower shield layer such as FeSiAl, c is a lower gap layer such as Al 2 O 3 , d is a Co-based alloy or Fe 3 O 4. E is a SAL (Soft Adjacent Layer) layer of a ferromagnetic material such as NiFe alloy or Co amorphous, and f is T
a, a magnetic separation layer of Cu or the like, g is an MR stripe (ferromagnetic thin film) of NiFe or the like, h is an electrode of Cu, Au, W or the like, i is an upper gap layer of Al 2 O 3 or the like, and j is NiFe
And the upper shield layer. The MR stripe layer g converts a signal magnetic field from a recording medium into a voltage by a magnetoresistive effect, the magnetic separation layer f magnetically separates the MR stripe layer g from the SAL layer e, and the SAL layer e becomes the MR stripe layer g. A lateral bias is applied, and the hard bias layer d becomes the SAL layer e
Is used to magnetize.

【0003】また、記録媒体には超高密度で磁気記録す
ることが好ましく、これに記録された例えば1〜20G
bit/in2或いはそれ以上の超高密度の磁気記録を良好に
再生するために、MRストライプ層gを構成する強磁性
薄膜を磁区が1つの単磁区構造とし、これにCuなどの
非磁性の磁気分離層、Coの磁性層、FeMnなどの反
強磁性層を2〜3層重層してスピンバルブ磁気抵抗膜と
したものや、単磁区構造のMRストライプ層gに、Cu
の磁気分離層とFeの磁性層及びNiの反強磁性層のセ
ットから成る層を交互に例えば8回積層してジャイアン
ト磁気抵抗膜などの磁性多層膜とすることが提案されて
いる。
[0003] It is preferable that the recording medium is magnetically recorded at an ultra-high density.
In order to favorably reproduce an ultra-high-density magnetic recording of bit / in 2 or more, the ferromagnetic thin film constituting the MR stripe layer g has a single magnetic domain structure with one magnetic domain, and a nonmagnetic material such as Cu. A magnetic separation layer, a magnetic layer of Co, an antiferromagnetic layer of FeMn or the like, two or three layers are laminated to form a spin-valve magnetoresistive film, or a single domain MR stripe layer g
It has been proposed to alternately laminate, for example, eight times a layer comprising a set of a magnetic separation layer and a magnetic layer of Fe and an antiferromagnetic layer of Ni to form a magnetic multilayer film such as a giant magnetoresistive film.

【0004】こうした多層膜の成膜にはイオンビームス
パッタ装置が使用されているが、生産性が悪い。一方、
出願人は、図2に示したようなプレーナマグネトロンカ
ソードkの上方にRF誘導放電用コイルlを設けた構成
の超高真空にてスパッタを行える誘導結合RFプラズマ
支援マグネトロンスパッタ装置(ヘリコンスパッタ装
置)を開発しており、この装置を使用しても磁気抵抗ヘ
ッドの多層膜を形成できることが実験で判明した。
Although an ion beam sputtering apparatus is used for forming such a multilayer film, productivity is poor. on the other hand,
The applicant has proposed an inductively coupled RF plasma assisted magnetron sputtering apparatus (helicon sputtering apparatus) capable of performing sputtering in an ultra-high vacuum having a configuration in which an RF induction discharge coil 1 is provided above a planar magnetron cathode k as shown in FIG. Experiments have shown that a multilayer film of a magnetoresistive head can be formed using this device.

【0005】[0005]

【発明が解決しようとする課題】上記したような磁性多
層膜の磁気抵抗ヘッドを製作するには、膜の界面がクリ
ーンで0.4〜11nm程度の極めて薄く平坦な磁性膜や磁
気分離層を多層に形成する必要がある。例えば、シリコ
ン基板上に5.0nmの厚さでFe膜を形成し、その上に
或厚さのCuの磁気分離層と1nmの厚さのNiFeの
層を交互に20回積層して磁性多層膜(ジャイアント磁
気抵抗膜)を形成した場合、この膜の磁気抵抗値(MR
比:Magnetoresistance Retio)は、図3に示すよう
に、10Å程度のCuの磁気分離層の厚さの変化で大幅
に変化してしまう。磁気分離層を1nmの均一な厚さで
形成することは容易でない。図3の2.1nm付近の第
2次ピークはMR値は低いが、磁界の変化に対する感度
が良いため実用向きとされている。能率良く平坦で界面
のクリーンな2.1nmのCu膜や10nm程度の磁性
膜を多層に形成するには、精密な膜厚制御と極めてクリ
ーンな雰囲気が必要になり、従来のイオンビームスパッ
タリング装置では生産性が悪く、また、誘導結合RFプ
ラズマ支援マグネトロンスパッタ装置(ヘリコンスパッ
タ装置)を使用しての具体的なこの種の多層膜の量産装
置はまだ開発されていない。
In order to manufacture the above-described magnetic multi-layered magnetoresistive head, an extremely thin flat magnetic film or magnetic separation layer having a clean film interface of about 0.4 to 11 nm is used. Need to be formed. For example, an Fe film having a thickness of 5.0 nm is formed on a silicon substrate, and a magnetic separation layer of Cu having a certain thickness and a NiFe layer having a thickness of 1 nm are alternately laminated thereon 20 times to form a magnetic multilayer film. (Giant magnetoresistive film), the magnetoresistance value (MR
As shown in FIG. 3, the ratio (Magnetoresistance Retio) greatly changes due to a change in the thickness of the Cu magnetic separation layer of about 10 °. It is not easy to form the magnetic separation layer with a uniform thickness of 1 nm. Although the MR value of the secondary peak near 2.1 nm in FIG. 3 is low, it is suitable for practical use because of its good sensitivity to changes in the magnetic field. In order to efficiently form a multilayered 2.1 nm Cu film or a magnetic film of about 10 nm with a flat interface and a clean interface, precise film thickness control and an extremely clean atmosphere are required. The productivity is poor, and a specific mass production apparatus for such a multilayer film using an inductively coupled RF plasma assisted magnetron sputtering apparatus (helicon sputtering apparatus) has not yet been developed.

【0006】また、磁気抵抗ヘッドは、直径5インチ程
度の基板に必要な磁性層を形成したのち、該基板を所定
の寸法にカットすることにより多数個製作されるが、磁
性層の磁化の向きが各基板に於いて略一定方向でないと
MRストライプ層の電気抵抗値が一定せず、均質な磁気
抵抗ヘッドが得られない。
A large number of magnetoresistive heads are manufactured by forming a necessary magnetic layer on a substrate having a diameter of about 5 inches and then cutting the substrate to a predetermined size. However, if the directions are not substantially constant in each substrate, the electric resistance value of the MR stripe layer is not constant, and a uniform magnetoresistive head cannot be obtained.

【0007】本発明は、平坦で十数nm以下の極めて薄
い膜を多層に形成し且つ膜の界面がクリーンな磁気抵抗
ヘッド用の多層膜を誘導結合RFプラズマ支援マグネト
ロンスパッタ装置を使用して能率良く形成する装置を提
供することを目的とするものである。
According to the present invention, an inductively coupled RF plasma-assisted magnetron sputtering apparatus is used to form a multilayer film for a magnetoresistive head in which a flat, extremely thin film having a thickness of not more than ten nm or less is formed and a film interface is clean. It is an object of the present invention to provide a well-formed device.

【0008】[0008]

【課題を解決するための手段】本発明では、磁気抵抗ヘ
ッド用基板を大気中との間で出し入れする大気圧と10
-6Pa台以下の高真空に変更自在のロードロック室と、
該ロードロック室に気密の基板搬送路を介して接続され
且つ搬入された該基板にクリーニングを施すエッチング
装置を備えた10-6Pa台以下の高真空に排気される前
処理室と、該前処理室及びロードロック室に気密の基板
搬送路を介して接続され且つ内部に搬入された該基板に
多層の成膜を施す複数台のスパッタ装置を備えた10-7
Pa台以下の超高真空に排気される真空成膜室とを有
し、各スパッタ装置を、ターゲットの背面に設けた磁石
と該ターゲット上にRF誘導放電用コイルを備えた誘導
結合RFプラズマ支援マグネトロンスパッタ装置とし、
各スパッタ装置の前方にシャッターを設け、該真空成膜
室内に、該基板の表面に一様な一定方向の磁場を与える
永久磁石と、該基板を各ターゲットと対向する位置へ順
次に移動させるターンテーブルを設けることにより、上
記の目的を達成するようにした。
According to the present invention, the atmospheric pressure at which the substrate for the magnetoresistive head is taken in and out of the atmosphere is set to 10 atmospheres.
A load lock chamber that can be changed to a high vacuum of -6 Pa or less,
A pretreatment chamber connected to the load lock chamber through an airtight substrate transfer path and provided with an etching device for cleaning the loaded substrate and evacuated to a high vacuum of the order of 10 −6 Pa or less; 10 -7 provided with a plurality of sputtering apparatuses connected to the processing chamber and the load lock chamber via an airtight substrate transfer path and performing multilayer film formation on the substrate carried therein.
It has a vacuum film forming chamber evacuated to an ultra-high vacuum of Pa or less, and each sputtering device is provided with an inductively coupled RF plasma assisted with a magnet provided on the back of the target and an RF induction discharge coil on the target. Magnetron sputtering equipment,
A shutter is provided in front of each sputtering apparatus, a permanent magnet that applies a uniform magnetic field on the surface of the substrate to the surface of the substrate in the vacuum film forming chamber, and a turn that sequentially moves the substrate to a position facing each target. By providing a table, the above object is achieved.

【0009】上記の目的は、該エッチング装置を電子サ
イクロトロン共鳴型イオン源を備えたイオンビームエッ
チング装置とし、該誘導結合RFプラズマ支援マグネト
ロンスパッタ装置に、該ターゲットのスパッタ面と対向
する位置に透孔を有し、該ターゲットの側面及び該RF
誘導放電用コイルの外側面を覆う金属製カバーを設け、
該真空成膜室の下方に間隔を存して誘導結合RFプラズ
マ支援マグネトロンスパッタ装置を配置し、該真空成膜
室の上方に該ターンテーブルを設け、該間隔に仕切壁を
設け、更には該真空成膜室の真空排気系に極低温のトラ
ップを介してターボ分子ポンプを設けることにより、一
層適切に達成できる。
An object of the present invention is to provide an ion beam etching apparatus provided with an electron cyclotron resonance type ion source, wherein the inductively coupled RF plasma-assisted magnetron sputtering apparatus has a through hole at a position facing the sputtering surface of the target. A side of the target and the RF
Provide a metal cover that covers the outer surface of the induction discharge coil,
An inductively coupled RF plasma-assisted magnetron sputtering device is arranged below the vacuum film forming chamber at intervals, the turntable is provided above the vacuum film forming chamber, a partition wall is provided at the space, and This can be achieved more appropriately by providing a turbo molecular pump in a vacuum evacuation system of a vacuum film forming chamber via a cryogenic trap.

【0010】[0010]

【発明の実施の形態】図面に基づき本発明の実施の形態
を説明すると、図4及び図5に於いて、符号1は多数枚
の熱酸化膜付シリコンウエハやAlTiC等の基板2を
外部の大気中との間で出し入れする気密のロードロック
室、3は該基板2にクリーニングを施すエッチング装置
4を備えた前処理室、5は複数台のスパッタ装置6を備
えて該基板2に多層の成膜を施す10-7Pa台以下の超
高真空に排気される真空成膜室を示し、同図の例では該
真空成膜室5を4室設けるようにした。これらの室は、
高真空に排気される搬送室7の周囲に配置され、ゲート
バルブ20を備えた基板搬送路及び該搬送室7を介して
該基板を搬送すべく互いに連通される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In FIGS. 4 and 5, reference numeral 1 denotes a large number of substrates 2 made of a thermally oxidized silicon wafer or AlTiC. An airtight load lock chamber for taking in and out of the atmosphere, a pretreatment chamber 3 having an etching device 4 for cleaning the substrate 2, and a multi-layer sputtering device 6 having a plurality of sputtering devices 6 A vacuum film forming chamber evacuated to an ultra-high vacuum of the order of 10 −7 Pa or less for forming a film is shown, and four vacuum film forming chambers 5 are provided in the example of FIG. These rooms are
It is arranged around the transfer chamber 7 that is evacuated to a high vacuum, and communicates with each other to transfer the substrate via the transfer path provided with the gate valve 20 and the transfer chamber 7.

【0011】該ロードロック室1はクライオポンプ又は
ターボ分子ポンプ8を備えた排気系9により10-6Pa
台以下の高真空に排気され、これに続く搬送室7はチタ
ンゲッタとイオンポンプの組合せからなる排気系若しく
はターボ分子ポンプ10を備えた排気系11により10
-7Pa台以下の超高真空に排気される。また、前処理室
3はターボ分子ポンプ12とクライオポンプ13を備え
た排気系14により10-6Pa台以下の高真空に排気さ
れ、各真空成膜室5は液体ヘリウムで極低温に冷却され
たトラップ15を介してターボ分子ポンプ16で排気す
る排気系17により10-7Pa台以下の超高真空に迅速
に排気されるようにした。
The load lock chamber 1 is controlled to 10 -6 Pa by an exhaust system 9 provided with a cryopump or a turbo molecular pump 8.
The transfer chamber 7 is evacuated to a high vacuum equal to or lower than the table, and the transfer chamber 7 is evacuated by an exhaust system comprising a combination of a titanium getter and an ion pump or an exhaust system 11 having a turbo molecular pump 10.
It is evacuated to ultra-high vacuum below -7 Pa. The pretreatment chamber 3 is evacuated to a high vacuum of the order of 10 −6 Pa or less by an exhaust system 14 equipped with a turbo molecular pump 12 and a cryopump 13, and each vacuum deposition chamber 5 is cooled to a very low temperature with liquid helium. The gas was quickly evacuated to an ultra-high vacuum of the order of 10 −7 Pa or less by an exhaust system 17 evacuated by a turbo molecular pump 16 through a trap 15.

【0012】該ロードロック室1には、基板2が載置さ
れる多段のトレイを備えたカセットケース18が昇降テ
ーブル22により昇降自在に設けられ、基板2は、該カ
セットケース18のトレイ間に搬送室7から延び込む伸
縮昇降及び旋回自在の搬送腕19に載せられて前処理室
3へ或いは真空成膜室5へ搬送される。真空成膜室5に
於いて成膜の完了した基板2は、該搬送腕19によりロ
ードロック室1のカセットケース18に戻される。図示
の搬送腕19には、フロッグレッグタイプのものを使用
したが、磁気浮上型等のロボット搬送装置を使用するこ
とも可能である。
In the load lock chamber 1, a cassette case 18 having a multi-stage tray on which the substrate 2 is placed is provided so as to be able to move up and down by an elevating table 22, and the substrate 2 is placed between the trays of the cassette case 18. The transfer arm 19 is mounted on a transfer arm 19 that can be extended, lowered, and swung freely and extends from the transfer chamber 7 and is transferred to the pretreatment chamber 3 or the vacuum film formation chamber 5. The substrate 2 on which film formation has been completed in the vacuum film formation chamber 5 is returned to the cassette case 18 in the load lock chamber 1 by the transfer arm 19. Although a frog-leg type is used as the illustrated transfer arm 19, a robot transfer device such as a magnetic levitation type can also be used.

【0013】該前処理室3には、図6に示すような8イ
ンチ程度の比較的大口径の電子サイクロトロン共鳴型イ
オン源21或いはカウフマン型イオン源等のイオンビー
ムの直進性の比較的良好なイオン源を備えたイオンビー
ムエッチング装置4を設け、該搬送室7から搬入されて
該エッチング装置4と対向する位置に適当な保持装置
(図示してない)により保持された基板2に該イオンビ
ームを照射し、成膜面のクリーニングを行う。該電子サ
イクロトロン共鳴型イオン源21は図6のような公知の
構造のもので、周囲の電磁石23により電子サイクロト
ロン共鳴磁場が形成された放電室24へマイクロ波導入
管25を介してマイクロ波を導入し、該放電室24へガ
ス導入管26から導入した例えばArとO2の混合ガス
を放電させ、これにより生じるイオンを引出電極27に
より引き出し、対向位置の基板2にイオンエッチングに
よるクリーニングと必要な微細加工とを施す。
The pretreatment chamber 3 has a relatively good ion beam straightness such as an electron cyclotron resonance type ion source 21 or a Kauffman type ion source having a relatively large diameter of about 8 inches as shown in FIG. An ion beam etching apparatus 4 equipped with an ion source is provided. The ion beam is loaded onto the substrate 2 carried from the transfer chamber 7 and held at a position facing the etching apparatus 4 by a suitable holding device (not shown). To clean the film-forming surface. The electron cyclotron resonance type ion source 21 has a known structure as shown in FIG. 6, and introduces a microwave through a microwave introduction tube 25 into a discharge chamber 24 in which an electron cyclotron resonance magnetic field is formed by a surrounding electromagnet 23. Then, a mixed gas of, for example, Ar and O 2 introduced from the gas introduction tube 26 into the discharge chamber 24 is discharged, ions generated by the discharge are extracted by the extraction electrode 27, and the substrate 2 at the opposing position is cleaned by ion etching. Perform fine processing.

【0014】各真空成膜室5の構成の詳細は図7乃至図
10に示す如くであり、下方が仕切壁62で4つに区画
された略円形の真空成膜室5の側面にArのスパッタガ
スを導入するガス導入口60と排気口61を設け、該排
気口61に15K程度の極低温のトラップ15を備えた
排気系17を接続し、該室5の仕切壁62の区画部の下
面に等間隔を存してスパッタ面を上向きとした4基の誘
導結合RFプラズマ支援マグネトロンスパッタ装置28
をベローズ35を備えた上下動装置29により昇降自在
に設け、各スパッタ装置28のスパッタ面の上方に回転
軸30により旋回されて開閉するシャッター31を介し
て4枚の基板2を載せて上下動と旋回自在の円盤状のタ
ーンテーブル32が設けられる。また、幾つかのスパッ
タ装置28の上方に、そこに位置する基板2へ成膜中に
一定方向の磁場を与えるための永久磁石45、46を昇
降装置47により昇降自在に設けるようにした。該シャ
ッター31も該上下動装置29により昇降される回転軸
30により昇降される。
The details of the structure of each vacuum film forming chamber 5 are as shown in FIGS. 7 to 10. The lower side of the substantially circular vacuum film forming chamber 5 divided into four by a partition wall 62 is formed of Ar. A gas introduction port 60 for introducing a sputtering gas and an exhaust port 61 are provided, and an exhaust system 17 equipped with a cryogenic trap 15 of about 15 K is connected to the exhaust port 61 to form a partition wall 62 of the chamber 5. Four inductively-coupled RF plasma-assisted magnetron sputtering devices 28 with the sputter surface facing upward at equal intervals on the lower surface
Are vertically movable by a vertical moving device 29 provided with a bellows 35, and four substrates 2 are placed above a sputter surface of each sputtering device 28 via a shutter 31 which is opened and closed by being rotated by a rotating shaft 30 to vertically move. And a turntable 32 in the form of a disk that is pivotable. In addition, permanent magnets 45 and 46 for applying a magnetic field in a certain direction to the substrate 2 located thereon during film formation are provided above and below some of the sputtering devices 28 so as to be vertically movable by a lifting and lowering device 47. The shutter 31 is also moved up and down by the rotating shaft 30 which is moved up and down by the vertical movement device 29.

【0015】該誘導結合RFプラズマ支援マグネトロン
スパッタ装置28は、図11及び図12に示したよう
に、フランジ40から延びる筒状のケース41の上端部
内に、バッキングプレート33の前面に取り付けた磁性
体或いは非磁性体のターゲット34と、該バッキングプ
レート33の背面に設けた磁石36と、該ターゲット3
4の周囲を囲むアースシールド37を備えたカソード電
極38の上方に、RF誘導コイル39を設けて構成し
た。該カソード電極38の周囲から前面にかけて、円形
開口43を有する内面処理した円筒形の金属製カバー4
4を取り付けてスパッタ粒子の拡散を防ぎ、該カソード
電極38を冷却水パイプ63に循環させた冷却水により
冷却するようにした。該カソード電極38に電極ロッド
42を介して直流或いは高周波電流を投入し、RF誘導
コイル39にRF電流を投入すると、該ターゲット34
の前面に磁石36の磁界により拘束されたプラズマが発
生し、該プラズマ中のイオンがターゲット34をスパッ
タし、そのスパッタされた粒子がRF誘導コイル39の
電界によりイオン化されて対向位置のターンテーブル3
2の基板2に向けて飛翔し、基板2の表面に薄膜を形成
する。隣り合うカソード電極38のターゲット34の種
類を異ならせておくことで、1つの基板2が各カソード
電極38上を巡回したとき、該基板2上に異なる材料の
4層の膜を形成できる。尚、ターゲット34の直径は、
基板2のそれよりも小さなものが使用される。
As shown in FIGS. 11 and 12, the inductively coupled RF plasma-assisted magnetron sputtering apparatus 28 includes a magnetic material attached to the front of a backing plate 33 in the upper end of a cylindrical case 41 extending from a flange 40. Alternatively, a nonmagnetic target 34, a magnet 36 provided on the back of the backing plate 33,
An RF induction coil 39 is provided above a cathode electrode 38 provided with an earth shield 37 surrounding the periphery of No. 4. From the periphery of the cathode electrode 38 to the front surface, a cylindrical metal cover 4 having an inner surface treatment and having a circular opening 43.
4 was attached to prevent diffusion of sputter particles, and the cathode electrode 38 was cooled by cooling water circulated through a cooling water pipe 63. When a DC or high-frequency current is applied to the cathode electrode 38 via the electrode rod 42 and an RF current is applied to the RF induction coil 39, the target 34
A plasma confined by the magnetic field of the magnet 36 is generated on the front of the target, ions in the plasma sputter the target 34, and the sputtered particles are ionized by the electric field of the RF induction coil 39, so that the turntable 3 at the opposing position is turned on.
2 to form a thin film on the surface of the substrate 2. By making the types of the targets 34 of the adjacent cathode electrodes 38 different, when one substrate 2 circulates over each cathode electrode 38, four layers of different materials can be formed on the substrates 2. The diameter of the target 34 is
A smaller substrate 2 is used.

【0016】該ターンテーブル32は、図9、図13に
示したように、例えば4枚の基板2を載置するための周
縁から切り込んだ略円形の透孔48を4個備えたテーブ
ルにて構成され、該透孔48の周囲には基板2を安定に
載置するための段部49を形成し、該真空成膜室5を介
して外部へ導出した該テーブル32の昇降回転軸50を
外部の昇降装置51と回転装置52により上下動と旋回
するようにした。この上下動は搬送室7の搬送腕19と
の間で基板2を受け渡すために行われ、該搬送腕19か
ら基板2を受け取るときには、該テーブル32は予め下
降位置に待機したのち上昇して基板2を受け取り、搬送
腕19が退去する。この逆作動で該テーブル32上の基
板2が搬送腕19に渡される。
The turntable 32 is, as shown in FIGS. 9 and 13, a table having four substantially circular through holes 48 cut from the periphery for mounting four substrates 2, for example. A step 49 for stably mounting the substrate 2 is formed around the through-hole 48, and a vertically rotating shaft 50 of the table 32 led out to the outside through the vacuum film forming chamber 5 is provided. An external elevating device 51 and a rotating device 52 are used to vertically move and turn. This vertical movement is performed to transfer the substrate 2 to and from the transfer arm 19 of the transfer chamber 7. When receiving the substrate 2 from the transfer arm 19, the table 32 waits in advance at the lowered position, and then moves up. Receiving the substrate 2, the transfer arm 19 retreats. The substrate 2 on the table 32 is transferred to the transfer arm 19 by this reverse operation.

【0017】該ターンテーブル32上の基板2に磁性体
のターゲット34により磁性膜を成膜するとき、その成
膜中に基板2の成膜面とは反対側に1対の長手の永久磁
石45、46を位置させ、該成膜面に例えば100エル
ステッドの一様な強さの一定方向の磁界を与え、成膜さ
れた磁性膜に磁気抵抗ヘッドとしての磁気抵抗効果を得
るための一定の磁化の向きを与えるようにした。該永久
磁石45、46は板状のホルダ53に取り付けられ、こ
れを外部の昇降装置47により昇降される昇降軸55で
ターンテーブル32の昇降を妨げないように昇降させ
た。磁気抵抗ヘッドの基板2に複数の磁性層を形成する
場合、磁性層を成膜する各カソード電極38に対向させ
て該永久磁石45、46を設けたホルダ53を設け、各
磁性層の磁化の向きを一定にするため基板2に対して一
定の位置関係で永久磁石45、46が位置するようにし
た。尚、基板2の周縁の一部には、図15に見られるよ
うに直線にカットされたオリエンテーションフラット5
6が形成されており、ターンテーブル32の透孔48に
対して基板2を一定方向に載置するため、図14のよう
に、搬送腕19の先端部に、該オリエンテーションフラ
ット56面に沿う直線状の係止縁19aと、該基板2の
最短径に相当する長さのヘラ状の平坦面19bと、該搬
送腕19の根部側に基板の円弧に沿った円弧状の係止縁
19cを形成し、該係止縁19aの頂部から該平坦面1
9bに続く下り斜面19dを形成した。これにより、該
基板2を該搬送腕19に載せるとき、図15、図16に
示すように、該基板2の端縁が斜面19dを滑ってオリ
エンテーションフラット56が係止縁19aに沿い、該
基板2の角度方向が該搬送腕19上で一定方向に設定さ
れる。従って、該ターンテーブル32上には一定方向に
セットして基板2を該搬送腕19から載置することがで
き、磁性層を形成するときの該永久磁石45、46の位
置さえ一定にすれば、多数枚の基板2に磁化の向きが揃
った磁性層を形成できるから、成膜を終えて基板2を一
様にカットすることで磁化の向きが揃った均質な磁気抵
抗ヘッドを多数製作できる。
When a magnetic film is formed on the substrate 2 on the turntable 32 by using the magnetic target 34, a pair of long permanent magnets 45 are provided on the opposite side of the film formation surface of the substrate 2 during the film formation. , 46 are applied, and a uniform magnetic field having a uniform strength of, for example, 100 Oe is applied to the film forming surface, and a constant magnetization for obtaining a magnetoresistive effect as a magnetoresistive head on the formed magnetic film. To give the direction. The permanent magnets 45 and 46 were attached to a plate-shaped holder 53, and were moved up and down by an elevating shaft 55 which is moved up and down by an external elevating device 47 so as not to hinder the elevating of the turntable 32. When a plurality of magnetic layers are formed on the substrate 2 of the magnetoresistive head, a holder 53 provided with the permanent magnets 45 and 46 is provided so as to face each of the cathode electrodes 38 on which the magnetic layers are formed. The permanent magnets 45 and 46 are arranged in a fixed positional relationship with respect to the substrate 2 in order to make the orientation constant. It should be noted that an orientation flat 5 cut linearly as shown in FIG.
14, the substrate 2 is placed in a fixed direction with respect to the through hole 48 of the turntable 32. Therefore, as shown in FIG. A locking edge 19a, a spatula-shaped flat surface 19b having a length corresponding to the shortest diameter of the substrate 2, and an arc-shaped locking edge 19c along the arc of the substrate on the root side of the transfer arm 19. The flat surface 1 is formed from the top of the locking edge 19a.
A downward slope 19d following 9b was formed. Accordingly, when the substrate 2 is placed on the transfer arm 19, as shown in FIGS. 15 and 16, the edge of the substrate 2 slides on the slope 19d, and the orientation flat 56 is along the locking edge 19a. 2 are set in a fixed direction on the transfer arm 19. Therefore, the substrate 2 can be set on the turntable 32 in a fixed direction and placed on the transfer arm 19, and if the positions of the permanent magnets 45 and 46 when forming the magnetic layer are kept constant, Since a magnetic layer with a uniform magnetization direction can be formed on a large number of substrates 2, a large number of uniform magnetoresistive heads with a uniform magnetization direction can be manufactured by uniformly cutting the substrate 2 after film formation. .

【0018】以上の構成の装置により例えば直径6イン
チの熱酸化膜付シリコンウエハの基板2に磁気抵抗ヘッ
ド用の図17の膜構成の成膜を行う場合の作動を説明す
ると次の通りである。この膜の上部構成は厚さ20.9
ÅのCuと18ÅのNiFe(パーマロイ)のセットを
8回積層したものである。
The operation in the case of forming a film having the film configuration shown in FIG. 17 for a magnetoresistive head on the substrate 2 of a silicon wafer with a thermal oxide film having a diameter of, for example, 6 inches by the apparatus having the above-described configuration will be described below. . The top configuration of this film has a thickness of 20.9
A set of ÅCu and 18ÅNiFe (permalloy) is laminated eight times.

【0019】16枚の基板2を収容したカセットケース
をロードロック室1に収め、該室1内を排気系9により
10-6Pa台以下の高真空にまで排気し、同時に搬送室
7を排気系11により10-7Pa台の超高真空に排気
し、前処理室3を排気系14により10-6Pa台以下の
高真空に排気する。これにより基板2に付着した水分や
ガス成分が排除される。続いてロードロック室1の仕切
バルブを開き、搬送室7内の搬送装置の搬送腕19を該
ロードロック室1に進入させてこれでカセットケースか
ら1枚の基板2を取り出し、前処理室3の仕切バルブを
開いてその内部の図示してない保持装置上に置く。そし
て、該前処理室3を密閉し、3%の酸素ガスを混入した
Arガスを導入して圧力を例えば10-2Pa台程度に調
整したのち300Vの加速電圧を与えてイオンビームエ
ッチング装置22を作動させ、該基板2の下面の成膜面
をエッチングしてクリーニングし、必要な場合、導電部
等を0.3μm程度の幅でエッチングする。この例での
エッチング時間は30分で、エッチングレートは100
Å/min、一様性は±5%である。この前処理により
基板2の成膜面が完全にクリーニングされる。尚、導入
ガスはArガスのみ或いは他の希ガスでもよい。
A cassette case accommodating 16 substrates 2 is housed in a load lock chamber 1, and the inside of the chamber 1 is evacuated to a high vacuum of 10 −6 Pa or less by an exhaust system 9, and the transfer chamber 7 is simultaneously exhausted. The system 11 is evacuated to an ultra-high vacuum of the order of 10 -7 Pa, and the pretreatment chamber 3 is evacuated to a high vacuum of the order of 10 -6 Pa or less by the exhaust system 14. Thereby, moisture and gas components adhering to the substrate 2 are eliminated. Subsequently, the partition valve of the load lock chamber 1 is opened, and the transfer arm 19 of the transfer device in the transfer chamber 7 is caused to enter the load lock chamber 1, whereby one substrate 2 is taken out from the cassette case, and the pretreatment chamber 3 is removed. Open and place it on a holding device (not shown) inside it. Then, the pretreatment chamber 3 is sealed, an Ar gas mixed with 3% oxygen gas is introduced to adjust the pressure to, for example, about 10 −2 Pa, and then an acceleration voltage of 300 V is applied to the ion beam etching apparatus 22. Is operated to etch and clean the film-forming surface on the lower surface of the substrate 2, and, if necessary, to etch the conductive parts and the like with a width of about 0.3 μm. The etching time in this example is 30 minutes and the etching rate is 100
Å / min, uniformity is ± 5%. By this pretreatment, the film formation surface of the substrate 2 is completely cleaned. The introduced gas may be only Ar gas or another rare gas.

【0020】前処理が終わると、10-7Pa台まで再排
気し、仕切バルブが開かれ、搬送腕19が基板2を取り
出し、排気系17により予め10-7Pa台以下の超高真
空に排気しておいた1つの真空成膜室5aに仕切バルブ
を開いて高真空の搬送室7を介して基板2を汚さぬよう
に搬入する。該前処理済みの基板2は、下降位置にある
ターンテーブル32の上方に搬入され、ターンテーブル
32の上昇で基板2を搬送腕19から受け取る。
When the pretreatment is completed, the air is re-evacuated to the order of 10 −7 Pa, the partition valve is opened, the transfer arm 19 takes out the substrate 2, and the exhaust system 17 preliminarily evacuates to an ultra-high vacuum of the order of 10 −7 Pa or less. The gate valve is opened in one of the evacuated vacuum film forming chambers 5a, and the substrate 2 is carried in through the high vacuum transfer chamber 7 without contamination. The preprocessed substrate 2 is carried in above the turntable 32 at the lowered position, and receives the substrate 2 from the transfer arm 19 when the turntable 32 is raised.

【0021】以上の作動を合計2回繰り返し、ターンテ
ーブル32上の180°旋回した位置に2枚の前処理済
み基板2が載ると、真空成膜室5aの仕切バルブが閉じ
られ、誘導結合RFプラズマ支援マグネトロンスパッタ
装置28のターゲット34と基板2の間隔を調整すべく
ターンテーブル32が昇降する。該真空成膜室5aには
4基の該スパッタ装置28に例えばファイブナインのF
eのターゲット34とNi81Fe19(wt%)のターゲッ
ト34とを交互の配置で用意しておき、Arガスを導入
して10-2Pa台に圧力を調整し、各スパッタ装置を作
動させ、各基板2がFeターゲットのスパッタ装置28
のターゲットから例えば150mm上方に位置し且つ各
基板2の背後に永久磁石45、46が所定の配置につい
たら、各シャッター31を開いて膜厚モニターにより監
視しながらFe膜を成膜する。スパッタレートは0.2
〜0.8Å/secと極めて小さく、所定の100Åの
膜厚になったとき各シャッターを閉じ、ターンテーブル
32を90°旋回して次のNiFeターゲットのスパッ
タ装置の上方に各基板を位置させ、その背後に別の永久
磁石45、46を配置させ所定の100Åの厚さにNi
Fe膜の成膜を行う。この場合、該スパッタ装置28の
カソード電極38に例えばDC60Wを投入すると共に
RF誘導コイル39に70WのRF電力を投入すること
により、10-2Pa台でも各ターゲット34の前面でマ
グネトロン放電が可能な高密度プラズマが形成され、極
めて小さいスパッタレートでスパッタされたスパッタ粒
子の多くが該RF誘導コイル39によりイオン化されて
基板2へ入射し、薄く平坦な膜若しくは層が形成され
る。
The above operation is repeated twice in total, and when the two pre-processed substrates 2 are placed on the turntable 32 at a position rotated by 180 °, the partition valve of the vacuum film forming chamber 5a is closed, and the induction coupling RF is performed. The turntable 32 is moved up and down to adjust the distance between the target 34 and the substrate 2 of the plasma assisted magnetron sputtering apparatus 28. In the vacuum film forming chamber 5a, for example, the five Nine F
e target 34 and Ni 81 Fe 19 (wt%) target 34 are prepared alternately, and Ar gas is introduced to adjust the pressure to the order of 10 −2 Pa, and each sputtering apparatus is operated. , Each substrate 2 is a sputtering device 28 of an Fe target
When the permanent magnets 45 and 46 are located at a predetermined position, for example, 150 mm above the target and behind each substrate 2, an Fe film is formed while opening each shutter 31 and monitoring with a film thickness monitor. Sputter rate is 0.2
When the film thickness reaches a predetermined value of 100 °, the shutters are closed, the turntable 32 is turned by 90 °, and each substrate is positioned above the next NiFe target sputtering apparatus. Behind them, another permanent magnets 45 and 46 are arranged and Ni is formed to a predetermined thickness of 100 mm.
An Fe film is formed. In this case, magnetron discharge can be performed on the front surface of each target 34 even in the order of 10 −2 Pa by applying, for example, DC 60 W to the cathode electrode 38 of the sputtering device 28 and applying 70 W of RF power to the RF induction coil 39. A high-density plasma is formed, and many of the sputtered particles sputtered at an extremely low sputter rate are ionized by the RF induction coil 39 and enter the substrate 2 to form a thin and flat film or layer.

【0022】こうして磁化の向きが揃った下層の2膜が
形成されると、これらの基板2を予め10-7Pa台以下
の超高真空に排気しておいた次の真空成膜室5bに搬送
腕19で搬入し、前記真空成膜室5aの場合と同様の受
け渡しを行ってターンテーブル32の180°離れた位
置に基板2を載せる。この真空成膜室5bの4基のスパ
ッタ装置にはCuとFeのターゲットが交互に用意さ
れ、まずCuターゲットの各スパッタ装置上に各基板2
を夫々位置させ、各基板2に上記スパッタレートで2
0.9Åの厚さにCu膜をシャッター31の開閉制御し
て成膜する。一つの成膜室内に4基のスパッタ装置28
を配置することで膜の成膜する際の時間差を極力少なく
することができる。膜の表面状態がアクティブのままス
パッタを行うために、同一成膜室内に4基以上のカソー
ドを配置することが有効である。続いて各基板2をター
ンテーブル32の90°の旋回でNiFeターゲットの
スパッタ装置上に位置させると共に各基板2の背後に前
記下層の2膜と同方向の磁化の向きを与えるように永久
磁石45、46を位置させ、膜厚を監視しながらシャッ
ター制御して上記スパッタレートで18ÅのNiFe膜
を該Cu膜に重層形成する。ターンテーブルを旋回させ
てこのCuとNiFeの成膜を8回繰り返すことによ
り、磁気抵抗ヘッド用の磁化の向きが揃った磁気多層膜
を有する基板が得られ、これをロードロック室1のカセ
ットケースに該搬送腕19で戻し、必要ならば、該基板
2を更に他の真空成膜室5dに搬送腕19で運び込んで
保護膜を形成したのち該ロードロック室1へ戻すことも
できる。各高真空成膜室5の排気系17には15K程度
の極低温のトラップ15が設けられており、わずかな水
分子も確実に該成膜室5から排除してクリーンな超高真
空が得られ、界面のきれいな膜若しくは層を形成でき
る。また、ジャイアント磁気抵抗(GMR)素子を作製
するにあたりクリーンなガスを超高真空の各室に供給す
ることが重要である。本装置では、ガスの純化及び、フ
ィルターはもとよりガス配管やバルブ等の部品に至るま
で公知の不動態処理やNiメッキ処理などの内面処理を
施し、配管を極力丸曲げして角部を作らないようにし、
ベントアンドランにてスパッタリング時以外でもスパッ
タガスを流し続けることを行うようにした。
When the lower two films having the same magnetization directions are formed in this manner, these substrates 2 are transferred to the next vacuum film forming chamber 5b which has been evacuated to an ultra-high vacuum of the order of 10 −7 Pa or less. The substrate 2 is carried in by the transfer arm 19, and the same transfer as in the case of the vacuum film forming chamber 5a is performed, and the substrate 2 is placed at a position 180 ° away from the turntable 32. Cu and Fe targets are alternately prepared in the four sputtering apparatuses in the vacuum film forming chamber 5b.
Are positioned on each of the substrates 2 at the above-mentioned sputtering rate.
A Cu film is formed to a thickness of 0.9 mm by controlling the opening and closing of the shutter 31. Four sputtering devices 28 in one film forming chamber
The time difference in forming a film can be reduced as much as possible. In order to perform sputtering while the surface state of the film is active, it is effective to arrange four or more cathodes in the same film forming chamber. Subsequently, each substrate 2 is positioned on a NiFe target sputtering apparatus by turning the turntable 32 at 90 °, and a permanent magnet 45 is provided behind each substrate 2 so as to give the same magnetization direction as the two lower films. , 46 are positioned and the shutter is controlled while monitoring the film thickness to form an 18 ° NiFe film on the Cu film at the sputtering rate. By turning the turntable and repeating the film formation of Cu and NiFe eight times, a substrate having a magnetic multilayer film with a uniform magnetization direction for a magnetoresistive head is obtained. Then, if necessary, the substrate 2 can be transferred to another vacuum film forming chamber 5d by the transfer arm 19 to form a protective film, and then returned to the load lock chamber 1. The exhaust system 17 of each high-vacuum film forming chamber 5 is provided with a trap 15 at an extremely low temperature of about 15 K, and even a small amount of water molecules is reliably eliminated from the film forming chamber 5 to obtain a clean ultra-high vacuum. As a result, a film or layer with a clean interface can be formed. Further, in manufacturing a giant magnetoresistive (GMR) element, it is important to supply a clean gas to each of the ultra-high vacuum chambers. In this device, gas purification and internal processing such as Ni plating treatment are applied to parts such as gas pipes and valves as well as filters, and pipes are rounded as much as possible to avoid corners. So that
The flow of the sputter gas is continuously performed in the bent and run except at the time of sputtering.

【0023】以上は、説明の簡単化のために2枚単位で
基板に成膜する作動を説明したが、真空成膜室5bに於
ける成膜中に前処理室3でロードロック室1から取り出
した次の基板に前処理を施し、真空成膜室5aに運び込
み、そこでの成膜後に他の真空成膜室5cでCuとNi
Feのセットを8回成膜すれば、ロードロック室1に運
び込まれた基板2に迅速に磁性多層膜を備えたスピンバ
ルブMRの磁気抵抗ヘッド用の成膜を行え、該セットを
30回成膜してジャイアントMRの磁気抵抗ヘッド用の
成膜も行える。
The operation for forming a film on the substrate in units of two has been described above for the sake of simplicity. However, during the film formation in the vacuum film forming chamber 5b, the pre-processing chamber 3 transfers the load from the load lock chamber 1 to the substrate. The next substrate taken out is subjected to a pretreatment, carried into the vacuum film forming chamber 5a, and after film formation there, Cu and Ni are deposited in another vacuum film forming chamber 5c.
If the set of Fe is formed eight times, the substrate 2 carried into the load lock chamber 1 can be quickly formed into a film for the magnetoresistive head of the spin valve MR having the magnetic multilayer film, and the set is formed 30 times. Film formation for a giant MR magnetoresistive head is also possible.

【0024】該ターンテーブル32上に於ける基板の位
置は、搬送腕19に設けた係止縁19aと下り斜面19
cにより搬送腕19に載ったとき正確に基板の方向が定
まるから、ターンテーブル32上での基板の方向も一定
し、各基板に一定の磁化の方向の磁性層を形成できる。
尚、磁性多層膜及び保護膜の形成を終えた基板は磁化の
向きを揃えてダイス状にMR素子としてカットされ、シ
ールド型或いはヨーク型の磁気抵抗ヘッドに組み立てら
れる。
The position of the substrate on the turntable 32 is determined by the engagement edge 19 a provided on the transfer arm 19 and the downward slope 19.
Since the direction of the substrate is accurately determined when it is placed on the transfer arm 19 by c, the direction of the substrate on the turntable 32 is also fixed, and a magnetic layer having a fixed magnetization direction can be formed on each substrate.
The substrate on which the magnetic multilayer film and the protective film have been formed is cut into a dice-like MR element with the magnetization directions aligned, and assembled into a shield type or yoke type magnetoresistive head.

【0025】[0025]

【実施例】直径6インチの16枚の熱酸化膜付シリコン
ウエハの磁気抵抗ヘッド基板2をカセットケースに載せ
てロードロック室1に収め、該ロードロック室1、搬送
室7、前処理室3及び真空成膜室5を夫々10-6Pa
台、10-7Pa台、10-6Pa台及び10-7Pa台に排
気し、搬送腕19によりまず1枚の基板を真空の搬送室
を介して前処理室3に搬入した。該前処理室3に3%の
酸素ガスを混入したArガスを導入して1.3×10-2
Paに圧力を調整し、ECRエッチング装置22に30
0Vの加速電圧を与え50Å/minのエッチングレー
トで±5%の一様性のエッチングを施した。続いて該基
板2を10-7Pa台に排気した真空成膜室5aに搬入し
た。これを繰り返して該真空成膜室5aのターンテーブ
ルに2枚の基板が載ると、該室5aにArガスを導入し
て7×10-2Paに調整した。そしてFeターゲットと
NiFeターゲットを設けた2基のカソード電極38に
夫々DC60W、RF誘導コイル39に70Wの高周波
電力を投入し、永久磁石45、46で基板2の成膜面に
100エルステッドの磁界を与えながら0.1〜0.8
Å/secのスパッタレートで順次に100ÅのFe膜
及びNiFe膜を成膜した。これはシャッター開閉速度
が機械的に数百ミリ秒〜1秒であるので、スパッタリン
グレートが0.1Å/secのときは1秒で0.1Åの
膜厚が制御できるからである。例えばSi原子1層の膜
厚は3Åであるので、この例では0.1モノレーヤ
(0.1層)以下の制御を行えることを可能にしている
のである。これら2枚の基板を更にCuとNiFeのタ
ーゲットを2基ずつ設けた上記の真空成膜室5bへ搬入
し、Cuターゲット上のターンテーブル上に載せ、真空
成膜室5aと圧力等を同条件としてターンテーブルを間
欠的に旋回させて20.9ÅのCu膜と18Åのセット
層を8層形成し、図17の膜構成の磁気抵抗ヘッド用基
板を2枚作製した。これらの基板2を3mm幅にカット
してMR素子とし、各素子を端子間5mmの4端子プロ
ーブを用いて直流端子法によりMR特性を評価したとこ
ろ、各素子はいずれもMRストライプの抵抗率の変化量
/MRストライプの抵抗率で表されるMR比が5.83
%を示し、均質で十分に磁気抵抗ヘッドに使用できるも
のであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetoresistive head substrate 2 of 16 silicon oxide-coated silicon wafers having a diameter of 6 inches is placed in a cassette case and housed in a load lock chamber 1, the load lock chamber 1, a transfer chamber 7, and a pretreatment chamber 3. And the vacuum film forming chamber 5 is set to 10 −6 Pa, respectively.
The air was evacuated to the order of 10 -7 Pa, the order of 10 -6 Pa and the order of 10 -7 Pa, and one substrate was first loaded into the pretreatment chamber 3 by the transfer arm 19 via the vacuum transfer chamber. Ar gas mixed with 3% oxygen gas was introduced into the pretreatment chamber 3 so that 1.3 × 10 -2.
The pressure was adjusted to Pa, and 30
An accelerating voltage of 0 V was applied to perform etching of uniformity of ± 5% at an etching rate of 50 ° / min. Subsequently, the substrate 2 was carried into the vacuum film forming chamber 5a evacuated to the order of 10 −7 Pa. By repeating this, when two substrates were placed on the turntable of the vacuum film forming chamber 5a, Ar gas was introduced into the chamber 5a to adjust the pressure to 7 × 10 −2 Pa. Then, high-frequency power of DC 60 W is applied to the two cathode electrodes 38 provided with the Fe target and the NiFe target, and 70 W is applied to the RF induction coil 39, and a permanent magnet 45, 46 applies a magnetic field of 100 Oe to the film formation surface of the substrate 2. 0.1-0.8 while giving
A 100 ° Fe film and a NiFe film were sequentially formed at a sputter rate of Å / sec. This is because the shutter opening / closing speed is mechanically several hundred milliseconds to one second, so that when the sputtering rate is 0.1 ° / sec, the film thickness of 0.1 ° can be controlled in one second. For example, since the thickness of one Si atom layer is 3 mm, this example enables control of 0.1 monolayer (0.1 layer) or less. These two substrates are further carried into the above-described vacuum film forming chamber 5b provided with two Cu and NiFe targets, and mounted on a turntable on the Cu target, and under the same conditions as the vacuum film forming chamber 5a under the same pressure and the like. Then, the turntable was intermittently rotated to form 8 layers of a 20.9 ° Cu film and an 18 ° set layer, and two magnetoresistive head substrates having the film configuration of FIG. 17 were produced. The substrate 2 was cut into a width of 3 mm to form an MR element. The MR characteristics of each element were evaluated by a DC terminal method using a four-terminal probe having a terminal distance of 5 mm. The MR ratio expressed by the amount of change / the resistivity of the MR stripe is 5.83.
%, Which was uniform and sufficiently usable for a magnetoresistive head.

【0026】[0026]

【発明の効果】以上のように本発明によるときは、磁気
抵抗ヘッド用基板を大気圧と10-6Pa台以下の高真空
に変更自在のロードロック室と、これに気密の基板搬送
路を介して接続されるエッチング装置を備えた10-6
a台以下の高真空の前処理室と、該前処理室及びロード
ロック室に気密の基板搬送路を介して接続され且つ基板
に多層の成膜を施す複数台のスパッタ装置を備えた10
-7Pa台以下の超高真空に排気される真空成膜室とを設
け、各スパッタ装置を、誘導結合RFプラズマ支援マグ
ネトロンスパッタ装置とし、各スパッタ装置による成膜
をシャッターにより制御し永久磁石により一定方向の磁
場を与えながら行うようにしたので、界面がきれいで極
めて薄く平坦な多層膜を成膜でき、多層膜中の磁性膜に
一定の磁化の向きを与えて磁気抵抗ヘッドに適したMR
比を持つ基板を能率良く製作できる効果がある。
As described above, according to the present invention, a load lock chamber capable of changing the substrate for the magnetoresistive head to the atmospheric pressure and a high vacuum of the order of 10 −6 Pa or less, and an airtight substrate transfer path in the load lock chamber. -6 P with an etching device connected via
a high-vacuum pre-processing chamber of a number or less, and a plurality of sputtering apparatuses connected to the pre-processing chamber and the load lock chamber via an air-tight substrate transfer path and performing multi-layer film formation on the substrate.
A vacuum deposition chamber that is evacuated to an ultra-high vacuum of -7 Pa or less is provided, and each sputtering device is an inductively-coupled RF plasma-assisted magnetron sputtering device. Since it is performed while applying a magnetic field in a fixed direction, an extremely thin and flat multilayer film with a clean interface can be formed, and a fixed magnetization direction is given to the magnetic film in the multilayer film, so that an MR suitable for a magnetoresistive head can be formed.
There is an effect that a substrate having a ratio can be efficiently manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の磁気抵抗ヘッドの膜構成の説明図FIG. 1 is an explanatory diagram of a film configuration of a conventional magnetoresistive head.

【図2】誘導結合RFプラズマ支援マグネトロンスパッ
タ装置の要部の断面図
FIG. 2 is a sectional view of a main part of an inductively coupled RF plasma assisted magnetron sputtering apparatus.

【図3】磁性多層膜の磁気抵抗値の線図FIG. 3 is a diagram of a magnetoresistance value of a magnetic multilayer film.

【図4】本発明の実施の形態を示す概略斜視図FIG. 4 is a schematic perspective view showing an embodiment of the present invention.

【図5】図4の平面図FIG. 5 is a plan view of FIG. 4;

【図6】本発明で使用した電子サイクロトロン共鳴型イ
オン源の要部の拡大断面図
FIG. 6 is an enlarged sectional view of a main part of the electron cyclotron resonance type ion source used in the present invention.

【図7】図4の真空成膜室の切断側面図FIG. 7 is a cut side view of the vacuum film forming chamber of FIG. 4;

【図8】図7の8−8線に沿った断面図8 is a sectional view taken along line 8-8 in FIG. 7;

【図9】図7の9−9線に沿った断面図9 is a sectional view taken along line 9-9 in FIG. 7;

【図10】図7の10−10線に沿った断面図FIG. 10 is a sectional view taken along lines 10-10 in FIG. 7;

【図11】図7の誘導結合RFプラズマ支援マグネトロ
ンスパッタ装置の拡大断面図
FIG. 11 is an enlarged sectional view of the inductively coupled RF plasma assisted magnetron sputtering apparatus of FIG. 7;

【図12】図11の12−12線に沿った平面図FIG. 12 is a plan view taken along line 12-12 of FIG. 11;

【図13】図7の13−13線部分の拡大図FIG. 13 is an enlarged view of a portion taken along line 13-13 of FIG. 7;

【図14】搬送腕の要部の拡大斜視図FIG. 14 is an enlarged perspective view of a main part of a transfer arm.

【図15】搬送腕に基板が位置ずれして載置された状態
の説明図
FIG. 15 is an explanatory diagram of a state where a substrate is placed on a transfer arm with a positional shift;

【図16】搬送腕上で基板の位置ずれが修正された状態
の説明図
FIG. 16 is an explanatory diagram of a state in which a displacement of a substrate on a transfer arm has been corrected;

【図17】本発明の装置により製作された磁気抵抗ヘッ
ドの多層膜の構造図
FIG. 17 is a structural diagram of a multilayer film of a magnetoresistive head manufactured by the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 ロードロック室、2 基板、3 前処理室、4 エ
ッチング装置、5・5a・5b・5c・5d 真空成膜
室、6 スパッタ装置、7 搬送室、15 トラップ、
16 ターボ分子ポンプ、17 排気系、19 搬送
腕、21 電子サイクロトロン共鳴型イオン源、28
誘導結合RFプラズマ支援マグネトロンスパッタ装置、
31 シャッター、32 ターンテーブル、38 カソ
ード電極、39 RF誘導コイル、44 金属製カバ
ー、45・46 永久磁石、62 仕切壁、
1 load lock chamber, 2 substrates, 3 pretreatment chamber, 4 etching equipment, 5.5a / 5b / 5c / 5d vacuum film formation chamber, 6 sputtering equipment, 7 transfer chamber, 15 trap,
16 turbo molecular pump, 17 exhaust system, 19 transfer arm, 21 electron cyclotron resonance type ion source, 28
Inductively coupled RF plasma assisted magnetron sputtering apparatus,
31 shutter, 32 turntable, 38 cathode electrode, 39 RF induction coil, 44 metal cover, 45/46 permanent magnet, 62 partition wall,

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年4月24日[Submission date] April 24, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】こうして磁化の向きが揃った下層の2膜が
形成されると、これらの基板2を予め10-7Pa台以下
の超高真空に排気しておいた次の真空成膜室5bに搬送
腕19で搬入し、前記真空成膜室5aの場合と同様の受
け渡しを行ってターンテーブル32の180°離れた位
置に基板2を載せる。この真空成膜室5bの4基のスパ
ッタ装置にはCuとFeのターゲットが交互に用意さ
れ、まずCuターゲットの各スパッタ装置上に各基板2
を夫々位置させ、各基板2に上記スパッタレートで2
0.9 の厚さにCu膜をシャッター31の開閉制御し
て成膜する。一つの成膜室内に4基のスパッタ装置28
を配置することで膜の成膜する際の時間差を極力少なく
することができる。膜の表面状態がアクティブのままス
パッタを行うために、同一成膜室内に4基以上のカソー
ドを配置することが有効である。続いて各基板2をター
ンテーブル32の90°の旋回でNiFeターゲットの
スパッタ装置上に位置させると共に各基板2の背後に前
記下層の2膜と同方向の磁化の向きを与えるように永久
磁石45、46を位置させ、膜厚を監視しながらシャッ
ター制御して上記スパッタレートで18 のNiFe膜
を該Cu膜に重層形成する。ターンテーブルを旋回させ
てこのCuとNiFeの成膜を8回繰り返すことによ
り、磁気抵抗ヘッド用の磁化の向きが揃った磁気多層膜
を有する基板が得られ、これをロードロック室1のカセ
ットケースに該搬送腕19で戻し、必要ならば、該基板
2を更に他の真空成膜室5dに搬送腕19で運び込んで
保護膜を形成したのち該ロードロック室1へ戻すことも
できる。各高真空成膜室5の排気系17には15K程度
の極低温のトラップ15が設けられており、わずかな水
分子も確実に該成膜室5から排除してクリーンな超高真
空が得られ、界面のきれいな膜若しくは層を形成でき
る。また、ジャイアント磁気抵抗(GMR)素子を作製
するにあたりクリーンなガスを超高真空の各室に供給す
ることが重要である。本装置では、ガスの純化及び、フ
ィルターはもとよりガス配管やバルブ等の部品に至るま
で公知の不動態処理やNiメッキ処理などの内面処理を
施し、配管を極力丸曲げして角部を作らないようにし、
ベントアンドランにてスパッタリング時以外でもスパッ
タガスを捨てラインに流し続けることを行うようにし
た。
When the lower two films having the same magnetization directions are formed in this manner, these substrates 2 are transferred to the next vacuum film forming chamber 5b which has been evacuated to an ultra-high vacuum of the order of 10 −7 Pa or less. The substrate 2 is carried in by the transfer arm 19, and the same transfer as in the case of the vacuum film forming chamber 5a is performed, and the substrate 2 is placed at a position 180 ° away from the turntable 32. Cu and Fe targets are alternately prepared in the four sputtering apparatuses in the vacuum film forming chamber 5b.
Are positioned on each of the substrates 2 at the above-mentioned sputtering rate.
A Cu film is formed to a thickness of 0.9 by controlling the opening and closing of the shutter 31. Four sputtering devices 28 in one film forming chamber
The time difference in forming a film can be reduced as much as possible. In order to perform sputtering while the surface state of the film is active, it is effective to arrange four or more cathodes in the same film forming chamber. Subsequently, each substrate 2 is positioned on a NiFe target sputtering apparatus by turning the turntable 32 at 90 °, and a permanent magnet 45 is provided behind each substrate 2 so as to give the same magnetization direction as the two lower films. , 46 are positioned, and the shutter is controlled while monitoring the film thickness to form 18 NiFe films on the Cu film at the sputtering rate. By turning the turntable and repeating the film formation of Cu and NiFe eight times, a substrate having a magnetic multilayer film with a uniform magnetization direction for a magnetoresistive head is obtained. Then, if necessary, the substrate 2 can be transferred to another vacuum film forming chamber 5d by the transfer arm 19 to form a protective film, and then returned to the load lock chamber 1. The exhaust system 17 of each high-vacuum film forming chamber 5 is provided with a trap 15 at an extremely low temperature of about 15 K, and even a small amount of water molecules is reliably eliminated from the film forming chamber 5 to obtain a clean ultra-high vacuum. As a result, a film or layer with a clean interface can be formed. Further, in manufacturing a giant magnetoresistive (GMR) element, it is important to supply a clean gas to each of the ultra-high vacuum chambers. In this device, gas purification and internal processing such as passivation processing and Ni plating processing are applied to parts such as gas pipes and valves as well as filters, and pipes are rounded as much as possible to avoid corners. So that
The sputter gas is kept flowing through the discard line by vent-and-run except at the time of sputtering.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板を大気中との間で出し入れする大気圧
と10-6Pa台以下の高真空に変更自在のロードロック
室と、該ロードロック室に気密の基板搬送路を介して接
続され且つ搬入された該基板にクリーニングを施すエッ
チング装置を備えた10-6Pa台以下の高真空に排気さ
れる前処理室と、該前処理室及びロードロック室に気密
の基板搬送路を介して接続され且つ内部に搬入された該
基板に多層の成膜を施す複数台のスパッタ装置を備えた
10-7Pa台以下の超高真空に排気される真空成膜室と
を有し、各スパッタ装置を、ターゲットの背面に設けた
磁石と該ターゲット上にRF誘導放電用コイルを備えた
誘導結合RFプラズマ支援マグネトロンスパッタ装置と
し、各スパッタ装置の前方にシャッターを設け、該真空
成膜室内に、該基板の表面に一様な一定方向の磁場を与
える永久磁石と、該基板を各ターゲットと対向する位置
へ順次に移動させるターンテーブルを設けたことを特徴
とする成膜装置。
1. A load lock chamber capable of changing a substrate into and out of the atmosphere with atmospheric pressure and a high vacuum of 10 -6 Pa or less, and connected to the load lock chamber via an airtight substrate transfer path. A preprocessing chamber evacuated to a high vacuum of the order of 10 −6 Pa or less, provided with an etching apparatus for cleaning the loaded and carried substrate, and an airtight substrate transport path to the preprocessing chamber and the load lock chamber. A vacuum film forming chamber evacuated to an ultra-high vacuum of 10 −7 Pa or less equipped with a plurality of sputtering devices for forming a multi-layer film on the substrate loaded and connected therein, The sputtering apparatus is an inductively coupled RF plasma assisted magnetron sputtering apparatus having a magnet provided on the back of the target and a coil for RF induction discharge on the target, a shutter is provided in front of each sputtering apparatus, and the inside of the vacuum film forming chamber is provided. , Deposition apparatus characterized a permanent magnet providing a magnetic field of uniform fixed direction to the surface of the plate, that the substrate provided with a turntable to move sequentially to the position opposite to the respective targets.
【請求項2】上記エッチング装置は電子サイクロトロン
共鳴型イオン源を備えたイオンビームエッチング装置で
あることを特徴とする請求項1に記載の磁気抵抗ヘッド
用成膜装置。
2. A film forming apparatus for a magnetoresistive head according to claim 1, wherein said etching apparatus is an ion beam etching apparatus provided with an electron cyclotron resonance type ion source.
【請求項3】上記誘導結合RFプラズマ支援マグネトロ
ンスパッタ装置に、上記ターゲットのスパッタ面と対向
する位置に透孔を有し、該ターゲットの側面及び上記R
F誘導放電用コイルの外側面を覆う金属製カバーを設け
たことを特徴とする請求項1に記載の磁気抵抗ヘッド用
成膜装置。
3. The inductively coupled RF plasma-assisted magnetron sputtering apparatus has a through hole at a position facing a sputtering surface of the target, and a side surface of the target and the R
2. The film forming apparatus for a magnetoresistive head according to claim 1, further comprising a metal cover that covers an outer surface of the F induction discharge coil.
【請求項4】上記真空成膜室の下方に間隔を存して誘導
結合RFプラズマ支援マグネトロンスパッタ装置を配置
し、該真空成膜室の上方に上記ターンテーブルを設け、
該間隔に仕切壁を設けたことを特徴とする請求項1に記
載の磁気抵抗ヘッド用成膜装置。
4. An inductively coupled RF plasma-assisted magnetron sputtering apparatus is disposed below the vacuum film forming chamber at intervals, and the turntable is provided above the vacuum film forming chamber.
2. A film forming apparatus for a magnetoresistive head according to claim 1, wherein partition walls are provided at said intervals.
【請求項5】上記真空成膜室の真空排気系に極低温のト
ラップを介してターボ分子ポンプを設けたことを特徴と
する請求項1に記載の磁気抵抗ヘッド用成膜装置。
5. A film forming apparatus for a magnetoresistive head according to claim 1, wherein a turbo molecular pump is provided in a vacuum exhaust system of said vacuum film forming chamber via a cryogenic trap.
【請求項6】上記基板を上記前処理室から上記真空成膜
室に搬送する前に、該前処理室を10-7〜10-8Paま
で再排気してガスが該前処理室から寸空成膜室まで流出
しないようにして該基板を搬送することを特徴とする成
膜装置。
6. Before the substrate is transferred from the pre-processing chamber to the vacuum film forming chamber, the pre-processing chamber is re-evacuated to 10 -7 to 10 -8 Pa to allow gas to flow from the pre-processing chamber. A film forming apparatus, wherein the substrate is transported so as not to flow out to an empty film forming chamber.
JP34621896A 1996-12-25 1996-12-25 Film forming apparatus for magneto-resistive head Pending JPH10183347A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34621896A JPH10183347A (en) 1996-12-25 1996-12-25 Film forming apparatus for magneto-resistive head
US08/988,071 US6254747B1 (en) 1996-12-25 1997-12-10 Magnetron sputtering source enclosed by a mirror-finished metallic cover
KR1019970071961A KR100486330B1 (en) 1996-12-25 1997-12-22 Sputtering apparatus, sputtering film forming apparatus, and magnetoresistive head element manufacturing method
TW086119586A TW350074B (en) 1996-12-25 1997-12-23 Sputtering apparatus, sputtering film deposition apparatus, and method of manufacturing element for magnetoresistance head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34621896A JPH10183347A (en) 1996-12-25 1996-12-25 Film forming apparatus for magneto-resistive head

Publications (1)

Publication Number Publication Date
JPH10183347A true JPH10183347A (en) 1998-07-14

Family

ID=18381918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34621896A Pending JPH10183347A (en) 1996-12-25 1996-12-25 Film forming apparatus for magneto-resistive head

Country Status (1)

Country Link
JP (1) JPH10183347A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167661A (en) * 2000-11-30 2002-06-11 Anelva Corp Magnetic multilayered film deposition system
WO2002031216A3 (en) * 2000-10-11 2002-06-20 Ct Luxembourgeois Rech Verre Apparatus for continuous sputter-deposition
JP2006124792A (en) * 2004-10-29 2006-05-18 Ulvac Japan Ltd Vacuum treatment system and method for producing tunnel junction magneto-resistive effect element
US7312958B2 (en) * 2002-12-05 2007-12-25 Matsushita Electric Industrial Co., Ltd Method for manufacturing magnetic disk apparatus
JP2009147351A (en) * 2009-01-14 2009-07-02 Canon Anelva Corp Method and apparatus for manufacturing magnetoresistance device
JP2011106000A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Inline-type vacuum film-forming apparatus and method for producing magnetic recording medium
JP2011199271A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor element, and film forming device
KR101290543B1 (en) * 2011-04-14 2013-07-31 스미도모쥬기가이고교 가부시키가이샤 Cryo-pump and vacuum exhaust method
CN105369211A (en) * 2014-08-19 2016-03-02 西尔科特克公司 Chemical vapor deposition system, arrangement of chemical vapor deposition systems, and chemical vapor deposition method
JP2020517832A (en) * 2017-04-27 2020-06-18 エヴァテック・アーゲー Soft magnetic multilayer deposition apparatus, method of manufacture, and magnetic multilayer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031216A3 (en) * 2000-10-11 2002-06-20 Ct Luxembourgeois Rech Verre Apparatus for continuous sputter-deposition
KR100441789B1 (en) * 2000-11-30 2004-07-27 아넬바 가부시기가이샤 Magnetic multi-layer film manufacturing apparatus
JP2002167661A (en) * 2000-11-30 2002-06-11 Anelva Corp Magnetic multilayered film deposition system
US7733613B2 (en) 2002-12-05 2010-06-08 Panasonic Corporation Method for manufacturing a magnetoresistive-effect device
US7312958B2 (en) * 2002-12-05 2007-12-25 Matsushita Electric Industrial Co., Ltd Method for manufacturing magnetic disk apparatus
US7463458B2 (en) 2002-12-05 2008-12-09 Panasonic Corporation Magnetoresistive-effect device with a multi-layer magnetoresistive-effect film
US7542247B2 (en) 2002-12-05 2009-06-02 Panasonic Corporation Magnetic disk apparatus
JP2006124792A (en) * 2004-10-29 2006-05-18 Ulvac Japan Ltd Vacuum treatment system and method for producing tunnel junction magneto-resistive effect element
JP2009147351A (en) * 2009-01-14 2009-07-02 Canon Anelva Corp Method and apparatus for manufacturing magnetoresistance device
JP2011106000A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Inline-type vacuum film-forming apparatus and method for producing magnetic recording medium
JP2011199271A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor element, and film forming device
KR101290543B1 (en) * 2011-04-14 2013-07-31 스미도모쥬기가이고교 가부시키가이샤 Cryo-pump and vacuum exhaust method
CN105369211A (en) * 2014-08-19 2016-03-02 西尔科特克公司 Chemical vapor deposition system, arrangement of chemical vapor deposition systems, and chemical vapor deposition method
JP2020517832A (en) * 2017-04-27 2020-06-18 エヴァテック・アーゲー Soft magnetic multilayer deposition apparatus, method of manufacture, and magnetic multilayer

Similar Documents

Publication Publication Date Title
US6063244A (en) Dual chamber ion beam sputter deposition system
KR101229473B1 (en) High-frequency sputtering device
KR100486330B1 (en) Sputtering apparatus, sputtering film forming apparatus, and magnetoresistive head element manufacturing method
TWI528489B (en) Manufacturing device
JP4619450B2 (en) Vacuum thin film forming equipment
JP2002167661A (en) Magnetic multilayered film deposition system
US9196284B2 (en) In-line type film forming apparatus and method for manufacturing magnetic recording medium
JPH10183347A (en) Film forming apparatus for magneto-resistive head
EP0971380A1 (en) Method for manufacturing magnetoresistance element
US20180094346A1 (en) Methods of forming mgo barrier layer
JP2010077452A (en) High-frequency sputtering device
US6610373B2 (en) Magnetic film-forming device and method
JPH10188234A (en) Production of magneto-resistive head element
JP2001345493A (en) Tunnel magnetoresistance effect element and magnetic head thereof
JP2002043159A (en) Magnetic film forming system, and manufacturing method of gmr or tmr head
JP2006086468A (en) Method and apparatus for manufacturing magnetoresistive film
WO2010038593A1 (en) Device and method for depositing hard bias stack, and device and method for manufacturing magnetic sensor stack
JP3920955B2 (en) Sputtering equipment
JPH11200041A (en) Multiple magnetron sputtering device and cathode used for the same
JP2001207257A (en) Method and system for manufacturing gmr film
JP2001006963A (en) Device and method for forming film
CN114752893B (en) Preparation method of anisotropic magnetic resistance film with high magnetic resistance change rate
JP5238333B2 (en) Magnetic layer forming method, film forming apparatus, and magnetic recording / reproducing apparatus
JP2002171011A (en) Magnetoresistance effect device and its manufacturing method and magnetoresistance effect sensor
JPH0281409A (en) Thin magnetic film, manufacture thereof and magnetron sputtering device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A02 Decision of refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A02