JPH10182688A - Hydroxylalkylpyridine derivative - Google Patents

Hydroxylalkylpyridine derivative

Info

Publication number
JPH10182688A
JPH10182688A JP35790396A JP35790396A JPH10182688A JP H10182688 A JPH10182688 A JP H10182688A JP 35790396 A JP35790396 A JP 35790396A JP 35790396 A JP35790396 A JP 35790396A JP H10182688 A JPH10182688 A JP H10182688A
Authority
JP
Japan
Prior art keywords
derivative
nag
activity
acetyl
hydroxyalkylpyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35790396A
Other languages
Japanese (ja)
Other versions
JP3994461B2 (en
Inventor
Mutsuhiro Date
睦廣 伊達
Takumi Tanaka
巧 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP35790396A priority Critical patent/JP3994461B2/en
Publication of JPH10182688A publication Critical patent/JPH10182688A/en
Application granted granted Critical
Publication of JP3994461B2 publication Critical patent/JP3994461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new compound consisting of a specific hydroxyalkylpyridine derivative, useful as a substrate for the measurement of an N-acetylglucosaminidase (NAG) activity excellent in sensitivity and stability, and used for an early diagnostic rea gent of a renal disease. SOLUTION: This new hydroxyalkylpyridine derivative is expressed by formula I (G is a reductive terminal bonding at a β-position and a hexosamine residue having an amino group boded with an acyl group) (e.g.; 3-hydroxymethyl-2- pyridyl-N-acetyl-1-thio-β-D-glucosaminide), and used as a substrate for the measurement of glucosaminidase activity for an early diagnostic reagent of a renal disease. The compound is obtained by reacting a hydroxyalkylpridinethiol derivative expressed by formula II with 2-acetamide-3,4,6-tri-0-acetyl-2-deoxy-α-D- glucopyranosyl chloride, etc., and then performing a deacylation reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、N−アセチル−β
−D−グルコサミニダーゼ(以下NAGと略記す
る。)、N−アセチル−β−D−ガラクトサミニダー
ゼ、N−アセチル−β−D−ヘキソサミニダーゼ等の活
性測定用基質として有用な新規なヒドロキシアルキルピ
リジン誘導体及びそれを用いたNAG活性測定方法に関
する。
[0001] The present invention relates to N-acetyl-β
Novel hydroxyalkyl useful as a substrate for activity measurement of -D-glucosaminidase (hereinafter abbreviated as NAG), N-acetyl-β-D-galactosaminidase, N-acetyl-β-D-hexosaminidase and the like. The present invention relates to a pyridine derivative and a method for measuring NAG activity using the same.

【0002】[0002]

【従来の技術】NAGは、種々の細胞のリソソーム内に
存在する糖質分解酵素の1つであり、特に腎の近位尿細
管上皮細胞に多く含まれ、腎尿細管の障害により尿中へ
放出される事から、尿中のその活性は腎疾患の重要な指
標となっている。尿中NAG活性は、急性腎不全、慢性
腎不全、ネフローゼ症候群、糸球体腎炎、更に糖尿病性
腎症や薬剤による腎障害により上昇する事が知られてお
り、これら腎疾患の早期診断指標となる。また、腎移植
後の拒絶反応の早期診断の指標としても、尿中NAG活
性は重要な役割を果たしている。即ち、NAG活性を測
定することには、臨床的見地から極めて重要な意義があ
る。
2. Description of the Related Art NAG is one of glycolytic enzymes present in lysosomes of various cells, and is particularly contained in a large amount in the proximal tubule epithelial cells of the kidney, and enters into the urine due to damage to the renal tubule. Due to its release, its activity in urine is an important indicator of kidney disease. Urinary NAG activity is known to increase due to acute renal failure, chronic renal failure, nephrotic syndrome, glomerulonephritis, diabetic nephropathy and renal damage caused by drugs, and is an early diagnostic index for these renal diseases . Urinary NAG activity also plays an important role as an index for early diagnosis of rejection after kidney transplantation. That is, measuring NAG activity has a very important significance from a clinical point of view.

【0003】従来、NAG活性測定法として様々な方法
が開発されているが、基本的にはNAGの作用により遊
離する化合物を蛍光検出計、或いは紫外−可視吸光度計
を用いて検出し、これに基づいてNAG活性を求める方
法が一般に採用されている。現在の臨床検査分野に於け
る測定法は、合成基質を用いた初速度測定法が主流とな
っている。
[0003] Conventionally, various methods have been developed as a method for measuring NAG activity. Basically, compounds released by the action of NAG are detected using a fluorescence detector or an ultraviolet-visible absorbance meter. A method for determining NAG activity based on the method is generally employed. As the measuring method in the field of clinical examination at present, an initial velocity measuring method using a synthetic substrate is mainly used.

【0004】以下に、従来のNAG活性測定方法の代表
的な例を挙げる。 4−メチルウンベリフェリル−N−アセチル−β−D
−グルコサミニドを基質として、NAGによる酵素反応
によって遊離した4−メチルウンベリフェロンの蛍光強
度を測定する方法〔特開平1−265897号公報〕。 p−ニトロフェニル−N−アセチル−β−D−グルコ
サミニドを基質として、NAGによる酵素反応によって
遊離したp−ニトロフェノールをアルカリ性にすること
で発色させ、それを比色定量する方法〔Clin.Ch
em.,27,1180(1981)〕。 ソジオ−m−クレゾールスルホフタレイニル−N−ア
セチル−β−D−グルコサミニドを基質として、NAG
による酵素反応によって遊離したm−クレゾールスルホ
フタレインをアルカリ性にすることで発色させ、それを
比色定量する方法〔Clin.Chem.,29,17
13(1983)、特公昭63−7196号公報〕。 ソジオ−3,3’−ジクロロフェノールスルホフタレ
イニル−N−アセチル−β−D−グルコサミニドを基質
として、NAGによる酵素反応によって遊離したクロロ
フェノールレッドを直接比色定量する方法〔特開昭63
−309199号公報〕。 2−クロロ−4−ニトロフェニル−N−アセチル−β
−D−グルコサミニドを基質として、NAGによる酵素
反応によって遊離した2−クロロ−4−ニトロフェノー
ルを直接比色定量する方法〔特開昭62−48399号
公報等〕。 2−フルオロ−4−ニトロフェニル−N−アセチル−
β−D−グルコサミニドを基質として、NAGによる酵
素反応によって遊離した2−フルオロ−4−ニトロフェ
ノールを直接比色定量する方法〔特公平5−73398
号公報、特公平5−55517号公報等〕。 p−ニトロフェニル−N−アセチル−β−D−グルコ
サミニドを基質として、NAGによる酵素反応によって
遊離したN−アセチルグルコサミンに、酸化酵素(N−
アセチルグルコサミンオキシダーゼ:NAGOD)を作
用させ、発生する過酸化水素をパーオキシダーゼ(PO
D)存在下で発色剤と反応させ比色定量する方法〔機器
・試薬,13,887(1990)〕。 6−メチル−2−ピリジル−N−アセチル−1−チオ
−β−D−グルコサミニド(6−MPT−NAGS)を
基質として、NAGによる酵素反応によって遊離する6
−メチル−2−ピリジンチオールを特定波長に於けるそ
の吸光度を求めることにより定量する方法〔特開平5−
59083号公報〕
The following is a typical example of a conventional method for measuring NAG activity. 4-methylumbelliferyl-N-acetyl-β-D
A method of measuring the fluorescence intensity of 4-methylumbelliferone released by an enzymatic reaction with NAG using glucosaminide as a substrate [Japanese Patent Laid-Open No. 1-265897]. Using p-nitrophenyl-N-acetyl-β-D-glucosaminide as a substrate, p-nitrophenol released by an enzymatic reaction with NAG is made alkaline to develop a color, which is then colorimetrically determined [Clin. Ch
em. , 27, 1180 (1981)]. Using sodio-m-cresol sulfophthalenyl-N-acetyl-β-D-glucosaminide as a substrate, NAG
M-cresolsulfophthalein released by the enzymatic reaction according to the above method is made alkaline by colorimetric determination [Clin. Chem. , 29,17
13 (1983), JP-B-63-7196]. A method for directly colorimetrically determining chlorophenol red released by an enzyme reaction with NAG using sodio-3,3'-dichlorophenolsulfophthalenyl-N-acetyl-β-D-glucosaminide as a substrate [Japanese Patent Laid-Open No. Sho 63]
-309199]. 2-chloro-4-nitrophenyl-N-acetyl-β
A method of directly colorimetrically determining 2-chloro-4-nitrophenol released by an enzymatic reaction with NAG using -D-glucosaminide as a substrate [Japanese Patent Application Laid-Open No. Sho 62-48399]. 2-fluoro-4-nitrophenyl-N-acetyl-
Using β-D-glucosaminide as a substrate, a method for directly colorimetrically determining 2-fluoro-4-nitrophenol released by an enzyme reaction with NAG [Japanese Patent Publication No. 5-73398]
And Japanese Patent Publication No. 5-55517]. Using p-nitrophenyl-N-acetyl-β-D-glucosaminide as a substrate, oxidase (N-acetylglucosamine) is added to N-acetylglucosamine released by an enzyme reaction with NAG.
Acetyl glucosamine oxidase (NAGOD) is acted on, and the generated hydrogen peroxide is converted to peroxidase (PO
D) A method of performing colorimetric determination by reacting with a color developing agent in the presence [instrument / reagent, 13, 887 (1990)]. 6-Methyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide (6-MPT-NAGS) is used as a substrate to be released by an enzyme reaction with NAG.
Method for quantifying -methyl-2-pyridinethiol by determining its absorbance at a specific wavelength [
No. 59083]

【0005】しかしながら、これらの方法は各々に基質
の水溶性、測定感度、溶液の安定性等の面で多くの問題
を抱えている。即ち、例えば上述した測定方法のうち、
の測定法では蛍光強度計の様な特殊な測定装置を必要
とするという問題点を有している。及びの測定法
は、酵素反応により遊離する色原体のpKaが高く、N
AGの至適pHでは比色定量を行うに足る測定感度が得
られないため、反応停止後アルカリ性として比色定量を
行わなければならず、現在主流を占めているレートアッ
セイには使用できない。即ち、迅速な多数検体処理には
不向きな測定法である。
[0005] However, each of these methods has many problems in terms of the water solubility of the substrate, the measurement sensitivity, the stability of the solution, and the like. That is, for example, among the measurement methods described above,
The measurement method of (1) has a problem that a special measuring device such as a fluorescence intensity meter is required. And, the chromogen released by the enzymatic reaction has a high pKa,
At the optimal pH of AG, measurement sensitivity sufficient to perform colorimetric quantification cannot be obtained, so that colorimetric quantification must be performed as alkaline after the reaction is stopped, and it cannot be used in the rate assay that is currently dominant. That is, this measurement method is not suitable for rapid multiple sample processing.

【0006】そこでレートアッセイに適用可能な測定法
として、色原体部分のpKaを低下させた基質を用いた
、及びの測定法も開発されているが、これらは、
NAGの至適pHである4.5〜5.0において、酵素反
応により生成した色原体の解離(即ち、発色)が不十分
であるため、溶液中の僅かなpH変動によっても吸光度
が変動し、測定誤差を生じやすく、しかも基質溶解後の
液状での長期安定性が悪いという問題点を有している。
Therefore, as a measuring method applicable to a rate assay, a method using a substrate having a reduced pKa of a chromogen moiety and a measuring method using a substrate have been developed.
At the optimum pH of NAG of 4.5 to 5.0, the dissociation (that is, color development) of the chromogen generated by the enzymatic reaction is insufficient, so that the absorbance fluctuates even with slight pH fluctuation in the solution. However, there is a problem that a measurement error easily occurs and the long-term stability of the liquid after dissolving the substrate is poor.

【0007】また、、及びの測定法では、遊離す
る色原体の極大吸収波長が400nm前後であるため、
ビリルビン等生体成分の影響を受けやすいという問題点
も有している。 に示される測定法はレートアッセイ
に適用可能であるが、酸化酵素を使用して過酸化水素を
発生させる測定系であるため、生体成分に含まれるビリ
ルビン等の還元性物質やその他の共存物質の影響を受け
やすく、また、上記、及びの基質と同様、基質の
溶解後の安定性が悪いという問題点を有している。
[0007] In the above methods, the maximum absorption wavelength of the released chromogen is around 400 nm.
There is also a problem that it is easily affected by biological components such as bilirubin. Is applicable to rate assays, but since it is a measurement system that generates hydrogen peroxide using an oxidase, it can be used for reducing substances such as bilirubin and other coexisting substances contained in biological components. It has a problem that it is easily affected and, like the above-mentioned substrates, the stability after dissolution of the substrate is poor.

【0008】一方、これらの問題点を解決すべくの測
定法が開発されたが、この方法で用いられる基質の安定
性は、短期的には向上しているもの、基質溶解後の長期
安定性を考慮した場合、酸性からアルカリ性の領域で分
解する傾向がみられるため、必ずしも満足できるもので
はなかった。
[0008] On the other hand, a measuring method has been developed to solve these problems, but the stability of the substrate used in this method has been improved in the short term, but the long-term stability after dissolving the substrate. In consideration of the above, the tendency to decompose in an acidic to alkaline region was observed, and thus was not always satisfactory.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記した如
き状況に鑑みなされたもので、感度及び安定性に優れた
NAG活性測定用基質として有用なヒドロキシアルキル
ピリジン誘導体とこれを基質として用いたNAG活性測
定方法及びそのための試薬を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above situation, and uses a hydroxyalkylpyridine derivative which is excellent in sensitivity and stability and is useful as a substrate for measuring NAG activity, and using the same as a substrate. An object of the present invention is to provide a method for measuring NAG activity and a reagent therefor.

【0010】[0010]

【課題を解決するための手段】本発明は、一般式[1]The present invention provides a compound represented by the general formula [1]:

【0011】[0011]

【化2】 Embedded image

【0012】(式中、Gは還元性末端でβ結合してい
る、アミノ基にアシル基が結合しているヘキソサミン残
基を表し、Rはヒドロキシアルキル基を表す。)で示さ
れるヒドロキシアルキルピリジン誘導体、及びこの誘導
体を基質として用いることを特徴とするNAG活性測定
方法、の発明である。即ち本発明者等は、NAG活性測
定に於いて有効に使用し得る合成基質について鋭意研究
を重ねた結果、一般式[1]で示されるヒドロキシアル
キルピリジン誘導体を基質として用いれば、上記した如
き問題点を解決できることを見出し、本発明を完成する
に到った。
(Wherein G represents a hexosamine residue having a β-bond at the reducing end and an acyl group bonded to an amino group, and R represents a hydroxyalkyl group). It is an invention of a derivative and a method for measuring NAG activity, wherein the derivative is used as a substrate. That is, the present inventors have conducted intensive studies on synthetic substrates that can be effectively used in the measurement of NAG activity. As a result, if the hydroxyalkylpyridine derivative represented by the general formula [1] is used as a substrate, the problems described above will occur. The inventors have found that the points can be solved, and have completed the present invention.

【0013】一般式[1]に於いて、Gで示される、ア
ミノ基にアシル基が結合しているヘキソサミン残基に於
けるアシル基としては、脂肪族カルボン酸由来、脂肪族
ヒドロキシカルボン酸由来、脂肪族アミノカルボン酸由
来、芳香族カルボン酸由来等のアシル基が挙げられる。
ここで脂肪族カルボン酸としては、例えば炭素数が2〜
8、好ましくは炭素数2〜4のものが挙げられ、具体的
には例えば酢酸,プロピオン酸,酪酸,イソ酪酸等が挙
げられる。脂肪族ヒドロキシカルボン酸としては、水酸
基を有しているカルボン酸であれば何れのものでも良い
が、好ましくは例えば炭素数1〜7、より好ましくは炭
素数1〜4のヒドロキシアルキル基を有するカルボン酸
が挙げられ、具体的には例えばヒドロキシメチル基,ヒ
ドロキシエチル基,ヒドロキシプロピル基,ヒドロキシ
ブチル基等を有するカルボン酸が挙げられる。また、脂
肪族アミノカルボン酸としては、アミノ基を有している
カルボン酸であれば如何なるものでも良いが、好ましく
は所謂アミノ酸が挙げられ、より好ましくは例えばメチ
オニン,ロイシン,グリシン,アラニン等の必須アミノ
酸が挙げられる。更に、芳香族カルボン酸としては、例
えば安息香酸等が挙げられる。
In the general formula [1], the acyl group represented by G in the hexosamine residue having an acyl group bonded to an amino group is derived from an aliphatic carboxylic acid or an aliphatic hydroxycarboxylic acid. And acyl groups derived from aliphatic aminocarboxylic acids and aromatic carboxylic acids.
Here, as the aliphatic carboxylic acid, for example, having 2 to 2 carbon atoms
8, preferably those having 2 to 4 carbon atoms, specifically, for example, acetic acid, propionic acid, butyric acid, isobutyric acid and the like. The aliphatic hydroxycarboxylic acid may be any carboxylic acid having a hydroxyl group, but is preferably, for example, a carboxylic acid having 1 to 7 carbon atoms, more preferably a carboxylic acid having a hydroxyalkyl group having 1 to 4 carbon atoms. Examples include acids, specifically, carboxylic acids having a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, and the like. The aliphatic amino carboxylic acid may be any carboxylic acid having an amino group, preferably a so-called amino acid, and more preferably an essential amino acid such as methionine, leucine, glycine, and alanine. Amino acids. Further, examples of the aromatic carboxylic acid include benzoic acid.

【0014】Gで示される、アミノ基にアシル基が結合
しているヘキソサミン残基に於けるヘキソサミン残基と
しては、例えばグルコサミン残基,ガラクトサミン残基
等が挙げられる。アミノ基にアシル基が結合しているヘ
キソサミン残基の好ましい具体例としては、例えばN−
アセチルグルコサミン,N−アセチルガラクトサミン,
N−プロピオニルグルコサミン,N−プロピオニルガラ
クトサミン,N−ベンゾイルグルコサミン,N−ベンゾ
イルガラクトサミン等のN−アシルヘキソサミンの1位
の水酸基が脱離したしたもの(残基)が挙げられる。
The hexosamine residue in the hexosamine residue represented by G in which an acyl group is bonded to an amino group includes, for example, a glucosamine residue and a galactosamine residue. Preferred specific examples of the hexosamine residue having an acyl group bonded to an amino group include, for example, N-
Acetylglucosamine, N-acetylgalactosamine,
N-acylhexosamines such as N-propionylglucosamine, N-propionylgalactosamine, N-benzoylglucosamine, N-benzoylgalactosamine, etc., from which the hydroxyl group at the 1-position has been eliminated (residues).

【0015】Rで示されるヒドロキシアルキル基として
は、直鎖状でも分枝状でも何れにても良く、好ましくは
炭素数1〜7、より好ましくは1〜3のヒドロキシアル
キル基が挙げられ、具体的には例えばヒドロキシメチル
基,1−ヒドロキシエチル基,2−ヒドロキシエチル
基,1−ヒドロキシプロピル基,2−ヒドロキシプロピ
ル基,3−ヒドロキシプロピル基,1−メチル−1−ヒ
ドロキシエチル基,1−メチル−2−ヒドロキシエチル
基等が挙げられる。
The hydroxyalkyl group represented by R may be linear or branched, and is preferably a hydroxyalkyl group having 1 to 7 carbon atoms, more preferably 1 to 3 carbon atoms. Specifically, for example, a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, a 3-hydroxypropyl group, a 1-methyl-1-hydroxyethyl group, And a methyl-2-hydroxyethyl group.

【0016】一般式[1]に於けるピリジン環は更に置
換基を有していても良く、好ましい置換基としては、例
えばハロゲン原子、アルキル基、アルコキシ基等が挙げ
られる。ここでハロゲン原子としては、例えば塩素,臭
素,ヨウ素等が挙げられる。アルキル基としては直鎖状
でも分枝状でも良く例えば炭素数1〜3のものが好まし
く挙げられ、具体的には例えばメチル基,エチル基,n
−プロピル基,イソプロピル基等が挙げられる。アルコ
キシ基としては直鎖状でも分枝状でも良く例えば炭素数
1〜3のものが挙げられ、具体的には、メトキシ基,エ
トキシ基,n−プロポキシ基,イソプロポキシ基等が挙
げられる。
The pyridine ring in the general formula [1] may further have a substituent, and preferred substituents include, for example, a halogen atom, an alkyl group and an alkoxy group. Here, examples of the halogen atom include chlorine, bromine, iodine and the like. The alkyl group may be straight-chain or branched, and preferably has 1 to 3 carbon atoms. Specifically, for example, a methyl group, an ethyl group, n
-Propyl group, isopropyl group and the like. The alkoxy group may be linear or branched and includes, for example, those having 1 to 3 carbon atoms. Specific examples include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.

【0017】本発明のヒドロキシアルキルピリジン誘導
体の好ましい具体例としては、例えば以下の化合物等が
挙げられる。3−ヒドロキシメチル−2−ピリジル−N
−アセチル−1−チオ−β−D−グルコサミニド,4−
ヒドロキシメチル−2−ピリジル−N−アセチル−1−
チオ−β−D−グルコサミニド,5−ヒドロキシメチル
−2−ピリジル−N−アセチル−1−チオ−β−D−グ
ルコサミニド,6−ヒドロキシメチル−2−ピリジル−
N−アセチル−1−チオ−β−D−グルコサミニド,5
−(1−ヒドロキシエチル)−2−ピリジル−N−アセ
チル−1−チオ−β−D−グルコサミニド,5−ヒドロ
キシメチル−4−メチル−2−ピリジル−N−アセチル
−1−チオ−β−D−グルコサミニド,5−ヒドロキシ
メチル−3−メチル−2−ピリジル−N−アセチル−1
−チオ−β−D−グルコサミニド及び、上記化合物のグ
ルコサミニドをガラクトサミニドに置き換えた化合物又
は/及びアミノ基に結合しているアセチル基を例えばプ
ロピオニル基,ブチリル基,ベンゾイル基,メチオニン
残基,ロイシン残基,アラニン残基,グリシン残基等に
置き換えた化合物等が挙げられる。
Preferred specific examples of the hydroxyalkylpyridine derivative of the present invention include the following compounds. 3-hydroxymethyl-2-pyridyl-N
-Acetyl-1-thio-β-D-glucosaminide, 4-
Hydroxymethyl-2-pyridyl-N-acetyl-1-
Thio-β-D-glucosaminide, 5-hydroxymethyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide, 6-hydroxymethyl-2-pyridyl-
N-acetyl-1-thio-β-D-glucosaminide, 5
-(1-hydroxyethyl) -2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide, 5-hydroxymethyl-4-methyl-2-pyridyl-N-acetyl-1-thio-β-D -Glucosaminide, 5-hydroxymethyl-3-methyl-2-pyridyl-N-acetyl-1
Thio-β-D-glucosaminide, a compound in which glucosaminide of the above compound is replaced with galactosaminide, and / or an acetyl group bonded to an amino group is, for example, a propionyl group, a butyryl group, a benzoyl group, a methionine residue, a leucine residue. , An alanine residue, a glycine residue and the like.

【0018】本発明のヒドロキシアルキルピリジン誘導
体は、水に200mM以上溶解する為、NAG活性測定
用基質として十分な水溶性を有している。また、水溶液
とした場合、広いpH範囲、例えばpH4.5〜pH1
0の範囲で長期間安定であり、特にpH7〜pH10の
範囲では長期間極めて安定に存在し得る。更にこの誘導
体は、320nm以上に吸収波長が無いため、この誘導
体から遊離するヒドロキシアルキルピリジンチオール誘
導体(極大吸収波長:320〜360nm)に由来する
吸光度変化測定に影響を与えないという特性を有してい
る。尚、上記一般式[1]で示される化合物のうち、N
AG活性測定のための基質として好適なものは、NAG
に対してのKm値が、好ましくは0.5〜5.0mM、よ
り好ましくは1.0〜3.5mM、更に好ましくは1.5
〜1.7mM程度のものが良い。
The hydroxyalkylpyridine derivative of the present invention is sufficiently soluble in water as a substrate for measuring NAG activity, since it is dissolved in water in an amount of 200 mM or more. When the aqueous solution is used, a wide pH range, for example, pH 4.5 to pH 1
When it is in the range of 0, it is stable for a long time, and particularly in the range of pH 7 to pH 10, it can be extremely stable for a long time. Furthermore, since this derivative does not have an absorption wavelength of 320 nm or more, it has a property of not affecting the absorbance change measurement derived from the hydroxyalkylpyridine thiol derivative (maximum absorption wavelength: 320 to 360 nm) released from this derivative. I have. In addition, among the compounds represented by the general formula [1], N
A suitable substrate for measuring AG activity is NAG
Is preferably 0.5 to 5.0 mM, more preferably 1.0 to 3.5 mM, and still more preferably 1.5.
It is preferably about 1.7 mM.

【0019】本発明のヒドロキシアルキルピリジン誘導
体は、一般式[2]
The hydroxyalkylpyridine derivative of the present invention has the general formula [2]

【0020】[0020]

【化3】 Embedded image

【0021】(式中、Rはヒドロキシアルキル基を表
す。)で示されるヒドロキシアルキルピリジンチオール
誘導体より容易に合成することができる。即ち、一般式
[2]で示される化合物と、1位にSH基と反応し得る
基(例えば−Cl,−Br,−I等のハロゲンなど)を
有し、アミノ基が目的物に対応するアシル基で修飾され
たものであって且つ水酸基が必要に応じて保護されてい
ても良いヘキソサミン残基、例えば2−アセタミド−
3,4,6−トリ−O−アセチル−2−デオキシ−α−
D−グルコピラノシル クロリド(例えば、Org.S
ynth.46,1(1966)に記載の方法により合成
したもの等)等とを、例えば臭化テトラ−n−ブチルア
ンモニウム等の相間移動触媒の存在下、アルカリ水溶液
と適当な有機溶剤(例えばクロロホルム,ジクロロメタ
ン等)との混合溶媒中でグリコシル化反応させ、得られ
たS−グリコシル化体を例えばナトリウムメトキシド等
の金属アルコキシドで水酸基の脱アシル化をすることに
より、本発明化合物を得ることができる。又、上記のグ
リコシル化反応の代わりに、直接的或いは間接的な通常
のグリコシド結合形成反応により本発明化合物を合成し
ても良い。
(In the formula, R represents a hydroxyalkyl group.) The compound can be easily synthesized from a hydroxyalkylpyridinethiol derivative represented by the formula: That is, the compound represented by the general formula [2] has a group capable of reacting with an SH group at the 1-position (eg, a halogen such as -Cl, -Br, -I, etc.), and the amino group corresponds to the target compound. A hexosamine residue modified with an acyl group and the hydroxyl group of which may be optionally protected, for example, 2-acetamide-
3,4,6-tri-O-acetyl-2-deoxy-α-
D-glucopyranosyl chloride (for example, Org. S
ynth. 46 , 1 (1966)) and an alkaline aqueous solution in the presence of a phase transfer catalyst such as tetra-n-butylammonium bromide. And the like, and the resulting S-glycosylated form is subjected to deacylation of the hydroxyl group with a metal alkoxide such as sodium methoxide to give the compound of the present invention. Further, instead of the above glycosylation reaction, the compound of the present invention may be synthesized by a direct or indirect ordinary glycosidic bond formation reaction.

【0022】本発明のヒドロキシアルキルピリジン誘導
体の合成原料である一般式[2]で示されるヒドロキシ
アルキルピリジンチオール誘導体は、例えば以下の方法
により合成できる。即ち、先ず、一般式[3]
The hydroxyalkylpyridinethiol derivative represented by the general formula [2], which is a raw material for synthesizing the hydroxyalkylpyridine derivative of the present invention, can be synthesized, for example, by the following method. That is, first, the general formula [3]

【0023】[0023]

【化4】 Embedded image

【0024】(式中、R1はカルボニル基を有する置換
基を表し、XはCl,Br,Iなどのハロゲン原子を表
す。)で示される化合物を、例えばLiAlH4又はN
aBH4等の還元剤を用いる常法により還元し、2−ハ
ロゲノ−ヒドロキシアルキルピリジン誘導体とする。
(Wherein, R 1 represents a substituent having a carbonyl group, and X represents a halogen atom such as Cl, Br, I), for example, LiAlH 4 or N 2
reduction by a conventional method using a reducing agent ABH 4 such as 2-halogeno - a hydroxyalkyl pyridine derivatives.

【0025】次に、得られた2−ハロゲノ−ヒドロキシ
アルキルピリジン誘導体を例えばNaSH等の一般的な
チオール化剤を用いる常法により、チオール化すること
で一般式[2]で表されるヒドロキシアルキルピリジン
チオール誘導体が得られる。一般式[1]で示される化
合物を基質として、活性を測定できる酵素としては、例
えばNAG,N−アセチル−β−D−ガラクトサミニダ
ーゼ,N−アセチル−β−D−ヘキソサミニダーゼ等が
挙げられるが、好ましくはNAG,N−アセチル−β−
D−ヘキソサミニダーゼ、更に好ましくはNAGであ
る。
Next, the obtained 2-halogeno-hydroxyalkylpyridine derivative is thiolated by a conventional method using a general thiolating agent such as NaSH to give a hydroxyalkyl represented by the general formula [2]. A pyridinethiol derivative is obtained. Examples of the enzyme whose activity can be measured using the compound represented by the general formula [1] as a substrate include NAG, N-acetyl-β-D-galactosaminidase, N-acetyl-β-D-hexosaminidase and the like. And preferably NAG, N-acetyl-β-
D-hexosaminidase, more preferably NAG.

【0026】NAGと一般式[1]で示されるヒドロキ
シアルキルピリジン誘導体とを反応させることで、下記
一般式[2]で示されるヒドロキシアルキルピリジンチ
オール誘導体が遊離する。 一般式[2]
By reacting NAG with a hydroxyalkylpyridine derivative represented by the general formula [1], a hydroxyalkylpyridinethiol derivative represented by the following general formula [2] is released. General formula [2]

【0027】[0027]

【化5】 Embedded image

【0028】(式中、Rは前記に同じ。) NAGなどの酵素反応によって本発明のヒドロキシアル
キルピリジン誘導体から遊離するヒドロキシアルキルピ
リジンチオール誘導体は、320nm〜360nmに極
大吸収を示すため、生体成分中の例えばビリルビンやヘ
モグロビン等の影響を受けない紫外領域(320nm〜
380nm)での測定が可能である。特にピリジン環の
3位或いは4位にヒドロキシアルキル基が置換した例え
ば3−ヒドロキシメチル−2−ピリジンチオール(極大
吸収波長341nm)や4−ヒドロキメチル−2−ピリ
ジンチオール(極大吸収波長339nm)等は、極大吸
収波長が現在臨床検査分野で主流となっている自動分析
機の設定波長(340nm)とほぼ同じであるため測定
波長を極大吸収波長のピークに設定できる。即ち本発明
のヒドロキシアルキル誘導体をNAG等の活性測定用基
質として用いれば、NAG等の活性の測定に於ける分析
機種間や測定条件により生じる測定値の誤差やばらつき
を極力押さえることができる。
(In the formula, R is the same as described above.) The hydroxyalkylpyridinethiol derivative released from the hydroxyalkylpyridine derivative of the present invention by an enzyme reaction such as NAG exhibits a maximum absorption in the range of 320 nm to 360 nm. For example, an ultraviolet region (320 nm or more) not affected by bilirubin, hemoglobin, or the like.
380 nm). In particular, for example, 3-hydroxymethyl-2-pyridinethiol (maximum absorption wavelength 341 nm) and 4-hydroxymethyl-2-pyridinethiol (maximum absorption wavelength 339 nm) in which a hydroxyalkyl group is substituted at the 3- or 4-position of the pyridine ring are exemplified. Since the maximum absorption wavelength is almost the same as the set wavelength (340 nm) of an automatic analyzer that is currently mainstream in the clinical examination field, the measurement wavelength can be set to the peak of the maximum absorption wavelength. That is, when the hydroxyalkyl derivative of the present invention is used as a substrate for measuring the activity of NAG or the like, errors and variations in measured values caused by analytical models and measurement conditions in the activity of NAG or the like can be minimized.

【0029】本発明の化合物であるヒドロキシアルキル
ピリジン誘導体は、全pH領域に於いて試薬ブランク上
昇が低く、特にpH7以上の溶液中で保存すれば少なく
とも3カ月以上の長期に渡って試薬ブランクの上昇が抑
えられることから、NAG活性測定用基質として非常に
有用である。又、二液法によるNAG活性測定用試薬に
本発明のヒドロキシアルキルピリジン誘導体を基質とし
て用いれば、特にその溶液状態での保存性が増すので望
ましい。
The hydroxyalkylpyridine derivative, which is the compound of the present invention, has a low reagent blank rise over the entire pH range, and particularly when stored in a solution having a pH of 7 or more, raises the reagent blank over a long term of at least 3 months or more. Is very useful as a substrate for measuring NAG activity. It is also desirable to use the hydroxyalkylpyridine derivative of the present invention as a substrate for a reagent for measuring NAG activity by a two-part method, particularly because the storage stability in a solution state increases.

【0030】一般式[1]で示されるヒドロキシアルキ
ルピリジン誘導体を用いた本発明のNAG活性測定法
は、基質として一般式[1]で示されるヒドロキシアル
キルピリジン誘導体を用いる以外、自体公知の初速度法
に準じて測定を行えば足りる。具体的には、例えば以下
の方法が挙げられる。
The method for measuring NAG activity of the present invention using a hydroxyalkylpyridine derivative represented by the general formula [1] has a known initial rate except that the hydroxyalkylpyridine derivative represented by the general formula [1] is used as a substrate. It suffices to measure according to the law. Specifically, for example, the following method is included.

【0031】(i)方法1 例えば、血清、血液、尿等の生体由来試料と、予め20
〜50℃、好ましくは30〜40℃でインキュベートし
た、一般式[1]で示されるヒドロキシアルキルピリジ
ン誘導体と適当な緩衝剤とを含有した試薬溶液(pHは
通常3.0〜7.0、好ましくは4.0〜6.5)とを20
〜50℃、好ましくは30〜40℃で反応させる。NA
Gの作用により生成するヒドロキシアルキルピリジンチ
オール誘導体の増加量を、例えば分光光度計等の適当な
測定装置を用いて320〜380nmに於ける単位時間
当たりの吸光度変化量として測定する。得られた吸光度
変化量をヒドロキシアルキルピリジンチオール誘導体の
分子吸光係数を用いて単位換算することで、試料中のN
AG活性を求めることができる。尚、ここで用いられる
試料溶液は一般式[1]で示されるヒドロキシアルキル
ピリジン誘導体と適当な緩衝剤とを含有するpH7〜1
1好ましくはpH7〜9の試薬溶液と適当な緩衝剤を含
有した試薬溶液(pHは通常3.0〜7.0、好ましくは
4.0〜6.5程度)とを混合して調製されたものでも良
い。
(I) Method 1 For example, a biological sample such as serum, blood, urine, etc.
A reagent solution containing a hydroxyalkylpyridine derivative represented by the general formula [1] and an appropriate buffer, which has been incubated at -50 ° C, preferably 30-40 ° C (pH is usually 3.0-7.0, preferably Is 4.0 to 6.5) and 20
The reaction is carried out at 5050 ° C., preferably 30-40 ° C. NA
The amount of increase in the hydroxyalkylpyridine thiol derivative produced by the action of G is measured as an amount of change in absorbance per unit time at 320 to 380 nm using an appropriate measuring device such as a spectrophotometer. By converting the obtained change in absorbance into units using the molecular extinction coefficient of the hydroxyalkylpyridine thiol derivative, the N
AG activity can be determined. The sample solution used here is a pH solution containing a hydroxyalkylpyridine derivative represented by the general formula [1] and an appropriate buffer.
1 It is preferably prepared by mixing a reagent solution having a pH of 7 to 9 with a reagent solution containing a suitable buffer (the pH is usually about 3.0 to 7.0, preferably about 4.0 to 6.5). It may be something.

【0032】(ii)方法2 生体由来試料と、適当な緩衝剤を含有する第一試薬溶液
(pHは通常3.0〜7.0、好ましくは4.0〜6.5程
度)とを混合し、20〜50℃、好ましくは30〜40
℃で適当な時間インキュベートした後、これと予め20
〜50℃好ましくは30〜40℃でインキュベートし
た、一般式[1]で示されるヒドロキシアルキルピリジ
ン誘導体と適当な緩衝剤を含有する第2試薬溶液とを混
合し、20〜50℃、好ましくは30〜40℃で反応さ
せる。NAGの作用により生成するヒドロキシアルキル
ピリジンチオール誘導体の増加量を、例えば分光光度計
等の適当な測定装置を用いて320〜380nmにおけ
る単位時間当たりの吸光度変化量として測定する。得ら
れた吸光度変化量をヒドロキシアルキルピリジンチオー
ル誘導体の分子吸光係数を用いて単位換算することで試
料中のNAG活性を求めることができる。
(Ii) Method 2 A sample derived from a living body is mixed with a first reagent solution containing an appropriate buffer (pH is usually 3.0 to 7.0, preferably about 4.0 to 6.5). 20 to 50 ° C., preferably 30 to 40 ° C.
After incubation for an appropriate time at
A hydroxyalkylpyridine derivative represented by the general formula [1], which has been incubated at -50 ° C, preferably 30-40 ° C, is mixed with a second reagent solution containing an appropriate buffer, and the mixture is mixed at 20-50 ° C, preferably 30 ° C. React at 4040 ° C. The increase in the amount of the hydroxyalkylpyridine thiol derivative generated by the action of NAG is measured as an amount of change in absorbance per unit time at 320 to 380 nm using a suitable measuring device such as a spectrophotometer. The NAG activity in the sample can be determined by converting the obtained change in absorbance into a unit using the molecular absorption coefficient of the hydroxyalkylpyridine thiol derivative.

【0033】尚、上記の方法に於いて、第2試薬溶液の
pH及び緩衝剤の濃度は、第1試薬溶液と混合した場合
のpHが3.0〜7.0好ましくは4.0〜6.5となるよ
うに設定されていれば良く、特に限定されないが、本発
明のヒドロキシアルキルピリジン誘導体の水溶液中の安
定性を考慮すれば、そのpHは7〜11、好ましくは7
〜9の範囲で設定しておくことが望ましい。
In the above method, the pH of the second reagent solution and the concentration of the buffering agent are adjusted to be 3.0 to 7.0, preferably 4.0 to 6, when mixed with the first reagent solution. The pH of the hydroxyalkylpyridine derivative of the present invention is from 7 to 11, preferably from 7 to 11, considering the stability of the hydroxyalkylpyridine derivative of the present invention in an aqueous solution.
It is desirable to set it in the range of -9.

【0034】又、上記(i)及び(ii)の方法に於いて、
基質として用いられる本発明のヒドロキシアルキルピリ
ジン誘導体の使用濃度としては、NAGの活性測定を実
施し得る濃度であれば良く、特に限定されないが、NA
Gとの反応時の濃度として0.1〜500mM、好まし
くは1〜50mMの範囲から適宜選択すれば良い。
In the above methods (i) and (ii),
The concentration of the hydroxyalkylpyridine derivative of the present invention used as a substrate may be any concentration at which the activity of NAG can be measured, and is not particularly limited.
The concentration at the time of reaction with G may be appropriately selected from the range of 0.1 to 500 mM, preferably 1 to 50 mM.

【0035】上記(i)及び(ii)の方法における試薬溶
液に用いられる緩衝剤としては、通常この分野で用いら
れるものであれば特に限定されないが、例えばグッド
(Good’s)緩衝剤、クエン酸塩、ほう酸塩、リン
酸塩が好ましく挙げられる。また、これら緩衝剤の使用
濃度としては、NAGの活性測定を実施し得る濃度であ
れば良く特に限定されないが、NAG活性測定時の濃度
として1〜1000mM、好ましくは10〜500mM
の範囲から適宜選択すれば良い。また、上記(i)及び
(ii)で用いた試薬溶液中には、必要に応じて、通常こ
の分野で用いられる溶解補助剤、防腐剤、安定化剤、界
面活性剤等を適宜選択して含有させても良く、これらの
使用量は通常この分野で用いられる範囲から適宜選択す
れば良い。
The buffer used in the reagent solution in the above methods (i) and (ii) is not particularly limited as long as it is usually used in this field. For example, Good's buffer, citric acid Acid salts, borates and phosphates are preferred. The concentration of the buffer used is not particularly limited as long as it is a concentration at which the activity of NAG can be measured, but the concentration at the time of measuring the NAG activity is 1 to 1000 mM, preferably 10 to 500 mM.
May be appropriately selected from the range. In addition, the above (i) and
In the reagent solution used in (ii), if necessary, a solubilizer, a preservative, a stabilizer, a surfactant and the like usually used in this field may be appropriately selected and contained. May be appropriately selected from the range usually used in this field.

【0036】本発明のNAG活性測定用試薬は、本発明
のヒドロキシアルキルピリジン誘導体を基質として含ん
で成るものである。より具体的には、ヒドロキシアル
キルピリジン誘導体と緩衝剤とを含んで成る一液法用試
薬、緩衝剤を含んで成る第一試薬と、ヒドロキシアル
キルピリジン誘導体と緩衝剤とを含んで成る第二試薬と
を含んで成る、二液法用試薬等が挙げられる。また、こ
れら本発明試薬の構成要素の好ましい態様と具体例は上
で述べた通りである。以下に実施例を挙げて本発明を更
に詳細に説明するが、本発明はこれら実施例により何ら
限定されるものではない。
The reagent for measuring NAG activity of the present invention comprises the hydroxyalkylpyridine derivative of the present invention as a substrate. More specifically, a one-pack method reagent comprising a hydroxyalkylpyridine derivative and a buffer, a first reagent comprising a buffer, and a second reagent comprising a hydroxyalkylpyridine derivative and a buffer And a reagent for a two-pack method, and the like. The preferred embodiments and specific examples of the components of the reagent of the present invention are as described above. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0037】[0037]

【実施例】【Example】

実施例1 3−ヒドロキシメチル−2−ピリジル−N−アセチル−
1−チオ−β−D−グルコサミニド〔IUPAC名:3
−ヒドロキシメチル−2−ピリジニル 2−(アセチル
アミノ)−2−デオキシ−1−チオ−β−D−グルコピ
ラノシド 以下化合物[1]と略記する。〕の合成
Example 1 3-hydroxymethyl-2-pyridyl-N-acetyl-
1-thio-β-D-glucosaminide [IUPAC name: 3
-Hydroxymethyl-2-pyridinyl 2- (acetylamino) -2-deoxy-1-thio-β-D-glucopyranoside Abbreviated as compound [1]. ]

【0038】(1)2−クロロニコチン酸(和光純薬工業
(株)品)15.76g(100mmol)とトリエチル
アミン15.32ml(110mmol)を溶解したト
ルエン溶液(1L)にクロロ炭酸エチル10.52ml
を加え、室温で1時間攪拌反応させた。析出した結晶を
濾去し、トルエンを減圧留去して得られた褐色オイルを
テトラヒドロフランに溶解し、これを予めテトラヒドロ
フランに水素化リチウムアルミニウム4.17g(11
0mmol)を加え窒素置換し−78℃に冷却しておい
た溶液に滴下した。滴下後同温度で2時間攪拌反応さ
せ、水(30ml)で反応を停止させた後室温とし、1
N−NaOH(200ml)を加え、ジエチルエーテル
で抽出処理を行った。抽出液から溶媒を減圧留去し得ら
れた褐色オイルをヘキサンから結晶化することにより、
2−クロロ−3−ヒドロキシメチルピリジン11.91
g(収率75%)を得た。 融点:58〜59℃。 元素分析値 C66ClNO 実測値(%); C:50.24,H:4.11,N:9.74。 計算値(%); C:50.19,H:4.21,N:9.76。
(1) 2-chloronicotinic acid (Wako Pure Chemical Industries, Ltd.)
10.52 ml of ethyl chlorocarbonate was added to a toluene solution (1 L) in which 15.76 g (100 mmol) of triethylamine and 15.32 ml (110 mmol) of triethylamine were dissolved.
Was added and the mixture was stirred and reacted at room temperature for 1 hour. The precipitated crystals were removed by filtration, and the brown oil obtained by distilling off toluene under reduced pressure was dissolved in tetrahydrofuran. This was previously dissolved in tetrahydrofuran in 4.17 g of lithium aluminum hydride (11.
0 mmol) was added dropwise to the solution which had been purged with nitrogen and cooled to -78 ° C. After the dropwise addition, the mixture was stirred and reacted at the same temperature for 2 hours. The reaction was stopped with water (30 ml), and the temperature was adjusted to room temperature.
N-NaOH (200 ml) was added, and the mixture was extracted with diethyl ether. By evaporating the solvent from the extract under reduced pressure and crystallizing the obtained brown oil from hexane,
2-chloro-3-hydroxymethylpyridine 11.91
g (75% yield). Melting point: 58-59 [deg.] C. Elemental analysis: C 6 H 6 ClNO, observed (%); C: 50.24, H: 4.11, N: 9.74. Calculated value (%); C: 50.19, H: 4.21, N: 9.76.

【0039】(2)(1)で得られた2−クロロ−3−ヒドロ
キシメチルピリジン8.61g(60mmol)と硫化
水素ナトリウム3.36g(60mmol)とを1−メ
チル−2−ピロリドン中に加え140℃で2時間攪拌反
応させた。攪拌後溶媒を減圧留去し、水(200ml)
を加え、酢酸でpH4.0とした後、クロロホルムによ
り抽出処理を行った。抽出液から溶媒を減圧留去後、残
渣をエタノールで再結晶し、黄色針状晶の3−ヒドロキ
シメチル−2−ピリジンチオール6.4g(収率67
%)を得た。 融点:174〜175℃。 元素分析値 C67NOS 実測値(%); C:51.14,H:4.97,N:9.98。 計算値(%); C:51.04,H:5.00,N:9.92。
(2) 8.61 g (60 mmol) of 2-chloro-3-hydroxymethylpyridine obtained in (1) and 3.36 g (60 mmol) of sodium hydrogen sulfide were added to 1-methyl-2-pyrrolidone. The reaction was stirred at 140 ° C. for 2 hours. After stirring, the solvent was distilled off under reduced pressure, and water (200 ml) was added.
Was added, and the pH was adjusted to 4.0 with acetic acid, followed by extraction with chloroform. After evaporating the solvent from the extract under reduced pressure, the residue was recrystallized from ethanol to obtain 6.4 g (yield: 67) of 3-hydroxymethyl-2-pyridinethiol as yellow needles.
%). Melting point: 174-175 [deg.] C. Elemental analysis C 6 H 7 NOS Found (%); C: 51.14, H: 4.97, N: 9.98. Calculated value (%); C: 51.04, H: 5.00, N: 9.92.

【0040】(3)(2)で得られた3−ヒドロキシメチル−
2−ピリジンチオール4.24g(30mmol)、1
−クロロ−1−デオキシ−2,3,4,6−テトラアセ
チル−α−D−グルコサミン10.97g(30mmo
l)及びテトラ−n−ブチルアンモニウムブロミド9.
67g(30mmol)を1N−NaOH50mlとジ
クロロメタン50mlとの混合溶媒中、室温で1時間攪
拌反応させた。反応終了後反応液に水100mlとジク
ロロメタン100mlを加えて攪拌分液し、有機層を無
水硫酸マグネシウムで乾燥後溶媒を減圧留去した。得ら
れた淡黄色の結晶をエタノールで再結晶することにより
白色綿状結晶の3−ヒドロキシメチル−2−ピリジル−
2,3,4,6−テトラアセチル−1−チオ−β−D−
グルコサミニド5.14g(収率36.4%)を得た。 融点:172〜173℃。 元素分析値 C202629S 実測値(%); C:51.14,H:5.44,N:5.98。 計算値(%); C:51.01,H:5.56,N:5.95。
(3) 3-hydroxymethyl obtained in (2)
4.24 g (30 mmol) of 2-pyridinethiol, 1
-Chloro-1-deoxy-2,3,4,6-tetraacetyl-α-D-glucosamine 10.97 g (30 mmol
l) and tetra-n-butylammonium bromide 9.
67 g (30 mmol) was reacted by stirring at room temperature for 1 hour in a mixed solvent of 50 ml of 1N-NaOH and 50 ml of dichloromethane. After completion of the reaction, 100 ml of water and 100 ml of dichloromethane were added to the reaction solution, and the mixture was separated by stirring. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained pale yellow crystals were recrystallized with ethanol to give white flocculent crystals of 3-hydroxymethyl-2-pyridyl-.
2,3,4,6-tetraacetyl-1-thio-β-D-
5.14 g of glucosaminide (36.4% yield) was obtained. Melting point: 172-173C. Elemental analysis C 20 H 26 N 2 O 9 S Found (%); C: 51.14, H: 5.44, N: 5.98. Calculated value (%); C: 51.01, H: 5.56, N: 5.95.

【0041】(4)(3)で得られた3−ヒドロキシメチル−
2−ピリジル−2,3,4,6−テトラアセチル−1−
チオ−β−D−グルコサミニド5.14g(11mmo
l)にメタノール100mlを加え、同溶液にナトリウ
ムメトキシドの28%メタノール溶液を10滴添加した
後、室温で1時間撹拌反応させた。反応終了後、反応液
を酢酸で中和し、溶媒を減圧留去した。得られた残渣
を、エタノールで再結晶することにより、白色針状結晶
の3−ヒドロキシメチル−2−ピリジル−N−アセチル
−1−チオ−β−D−グルコサミニド3.50g(収率
93%)を得た(通算収率17%)。 融点:190〜193℃。 元素分析値 C142026S 実測値(%); C:48.81,H:5.97,N:8.20。 計算値(%); C:48.83,H:5.85,N:8.13。 IR:1643cm-1(C=O)
(4) 3-Hydroxymethyl obtained in (3)
2-pyridyl-2,3,4,6-tetraacetyl-1-
5.14 g of thio-β-D-glucosaminide (11 mmol
100 ml of methanol was added to 1), and 10 drops of a 28% methanol solution of sodium methoxide were added to the solution, and the mixture was stirred and reacted at room temperature for 1 hour. After completion of the reaction, the reaction solution was neutralized with acetic acid, and the solvent was distilled off under reduced pressure. The obtained residue was recrystallized from ethanol to give 3.50 g of 3-hydroxymethyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide as white needle crystals (93% yield). (Total yield 17%). Melting point: 190-193C. Elemental analysis C 14 H 20 N 2 O 6 S Found (%); C: 48.81, H: 5.97, N: 8.20. Calculated value (%); C: 48.83, H: 5.85, N: 8.13. IR: 1643 cm -1 (C = O)

【0042】実施例2 4−ヒドロキシメチル−2−ピリジル−N−アセチル−
1−チオ−β−D−グルコサミニド〔IUPAC名:4
−ヒドロキシメチル−2−ピリジニル 2−(アセチル
アミノ)−2−デオキシ−1−チオ−β−D−グルコピ
ラノシド 以下化合物[2]と略記する。〕の合成
Example 2 4-Hydroxymethyl-2-pyridyl-N-acetyl-
1-thio-β-D-glucosaminide [IUPAC name: 4
-Hydroxymethyl-2-pyridinyl 2- (acetylamino) -2-deoxy-1-thio-β-D-glucopyranoside Abbreviated as compound [2]. ]

【0043】2−クロロニコチン酸150mmolの代
わりに2−クロロイソニコチン酸(東京化成(株)品)2
3.63g(150mmol)を用いた以外は、実施例
1と同じ試薬を用い、実施例1と同様にして反応及び後
処理を行って、4−ヒドロキシメチル−2−ピリジル−
N−アセチル−1−チオ−β−D−グルコサミニド1.
65gを得た(通算収率8%)。 融点:198〜199℃。 元素分析値 C142026S 実測値(%); C:48.77,H:5.67,N:8.24。 計算値(%); C:48.83,H:5.85,N:8.13。 IR:1641cm-1
Instead of 150 mmol of 2-chloronicotinic acid, 2-chloroisonicotinic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2
Using the same reagents as in Example 1 except that 3.63 g (150 mmol) was used, the reaction and post-treatment were carried out in the same manner as in Example 1 to give 4-hydroxymethyl-2-pyridyl-
N-acetyl-1-thio-β-D-glucosaminide 1.
65 g were obtained (total yield 8%). Melting point: 198-199 [deg.] C. Elemental analysis C 14 H 20 N 2 O 6 S Found (%); C: 48.77, H: 5.67, N: 8.24. Calculated value (%); C: 48.83, H: 5.85, N: 8.13. IR: 1641 cm -1 .

【0044】実施例3 5−ヒドロキシメチル−2−ピリジル−N−アセチル−
1−チオ−β−D−グルコサミニド〔IUPAC名:5
−ヒドロキシメチル−2−ピリジニル 2−(アセチル
アミノ)−2−デオキシ−1−チオ−β−D−グルコピ
ラノシド以下化合物[3]と略記する。〕の合成
Example 3 5-Hydroxymethyl-2-pyridyl-N-acetyl-
1-thio-β-D-glucosaminide [IUPAC name: 5
-Hydroxymethyl-2-pyridinyl 2- (acetylamino) -2-deoxy-1-thio-β-D-glucopyranoside Abbreviated as compound [3]. ]

【0045】2−クロロニコチン酸150mmolの代
わりに6−クロロニコチン酸(和光純薬工業(株)品)2
3.63g(150mmol)を用いた以外は、実施例
1と同じ試薬を用い、実施例1と同様にして反応及び後
処理行って、5−ヒドロキシメチル−2−ピリジル−N
−アセチル−1−チオ−β−D−グルコサミニド5.1
5gを得た(通算収率25%)。 融点:213〜214℃。 元素分析値 C142026S 実測値(%); C:48.80,H:5.78,N:8.17。 計算値(%); C:48.83,H:5.85,N:8.13。 IR:1643cm-1
6-chloronicotinic acid (a product of Wako Pure Chemical Industries, Ltd.) instead of 2-chloronicotinic acid 150 mmol
Except that 3.63 g (150 mmol) was used, the same reagent as in Example 1 was used, and the reaction and post-treatment were carried out in the same manner as in Example 1 to give 5-hydroxymethyl-2-pyridyl-N
-Acetyl-1-thio-β-D-glucosaminide 5.1
5 g were obtained (total yield 25%). Melting point: 213-214C. Elemental analysis C 14 H 20 N 2 O 6 S Found (%); C: 48.80, H: 5.78, N: 8.17. Calculated value (%); C: 48.83, H: 5.85, N: 8.13. IR: 1643 cm -1 .

【0046】実施例4 6−ヒドロキシメチル−2−ピリジル−N−アセチル−
1−チオ−β−D−グルコサミニド〔IUPAC名:6
−ヒドロキシメチル−2−ピリジニル 2−(アセチル
アミノ)−2−デオキシ−1−チオ−β−D−グルコピ
ラノシド 以下化合物[4]と略記する。〕の合成
Example 4 6-Hydroxymethyl-2-pyridyl-N-acetyl-
1-thio-β-D-glucosaminide [IUPAC name: 6
-Hydroxymethyl-2-pyridinyl 2- (acetylamino) -2-deoxy-1-thio-β-D-glucopyranoside Abbreviated as compound [4]. ]

【0047】2−クロロニコチン酸150mmolの代
わりに6−クロロピコリン酸(和光純薬工業(株)品)2
3.63g(150mmol)を用いた以外は、実施例
1と同じ試薬を用い、実施例1と同様にして反応及び後
処理を行って、6−ヒドロキシメチル−2−ピリジル−
N−アセチル−1−チオ−β−D−グルコサミニド2.
68gを得た(通算収率13%)。 融点:164〜165℃。 元素分析値 C142026S 実測値(%); C:48.65,H:5.83,N:8.24。 計算値(%); C:48.83,H:5.85,N:8.13。 IR:1644cm-1(C=O)
6-chloropicolinic acid (manufactured by Wako Pure Chemical Industries, Ltd.) instead of 150 mmol of 2-chloronicotinic acid
Except that 3.63 g (150 mmol) was used, the same reagent as in Example 1 was used, and the reaction and post-treatment were carried out in the same manner as in Example 1 to give 6-hydroxymethyl-2-pyridyl-
N-acetyl-1-thio-β-D-glucosaminide 2.
68 g was obtained (total yield 13%). Melting point: 164-165C. Elemental analysis C 14 H 20 N 2 O 6 S Found (%); C: 48.65, H: 5.83, N: 8.24. Calculated value (%); C: 48.83, H: 5.85, N: 8.13. IR: 1644 cm -1 (C = O)

【0048】実施例5 5−(1−ヒドロキシエチル)−2−ピリジル−N−ア
セチル−1−チオ−β−D−グルコサミニド〔IUPA
C名:5−(1−ヒドロキシエチル)−2−ピリジニル
2−(アセチルアミノ)−2−デオキシ−1−チオ−
β−D−グルコピラノシド 以下化合物[5]と略記す
る。〕の合成
Example 5 5- (1-hydroxyethyl) -2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide [IUPA
C name: 5- (1-hydroxyethyl) -2-pyridinyl 2- (acetylamino) -2-deoxy-1-thio-
β-D-glucopyranoside Abbreviated as compound [5]. ]

【0049】6−クロロニコチン酸(和光純薬工業(株)
品)39.39g(250mmol)をトルエン(0.5
L)に懸濁し塩化チオニル(36ml)とN,N−ジメ
チルホルムアミド(1ml)とを加え、室温で18時間
撹拌反応させた。次に反応溶媒を減圧留去し、残渣をク
ロロホルム(1.5L)に溶解後、ジエチルアミン(2
5.8ml)のクロロホルム溶液(100ml)とトリ
エチルアミン(70ml)のクロロホルム溶液(150
ml)を添加した。添加終了後室温で2時間撹拌し、反
応終了後精製水(1L)を加え有機層を分液洗浄した。
有機層を、無水硫酸マグネシウムで乾燥し、溶媒を減圧
留去した。得られた粗N,N−ジエチル−6−クロロニ
コチンアミド(49.16g)をテトラヒドロフラン
(2L)に溶解し、窒素置換後、−78℃でメチルリチ
ウム(165ml:1.4Mジエチルエーテル溶液)を
滴下した。滴下終了後同温度で1時間撹拌反応させ、飽
和塩化アンモニウム溶液で反応を停止後室温とし、溶媒
を留去した。得られた残渣に精製水(0.5L)とクロ
ロホルム(0.5L)を加えて分液し、有機層を無水硫
酸マグネシウムで乾燥後溶媒を留去した。得られた残渣
をエタノールで再結晶することにより精製し、3−アセ
チル−6−クロロピリジン24.57gを得た(収率6
3%)。 融点:98〜99℃。 元素分析値 C76ClNO 実測値(%); C:55.15,H:3.83,N:8.24。 計算値(%); C:54.91,H:3.81,N:8.83。
6-chloronicotinic acid (Wako Pure Chemical Industries, Ltd.)
39.39 g (250 mmol) of toluene (0.5
L), thionyl chloride (36 ml) and N, N-dimethylformamide (1 ml) were added, and the mixture was stirred and reacted at room temperature for 18 hours. Next, the reaction solvent was distilled off under reduced pressure, and the residue was dissolved in chloroform (1.5 L).
5.8 ml) in chloroform (100 ml) and triethylamine (70 ml) in chloroform (150 ml).
ml) was added. After completion of the addition, the mixture was stirred at room temperature for 2 hours. After completion of the reaction, purified water (1 L) was added, and the organic layer was separated and washed.
The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained crude N, N-diethyl-6-chloronicotinamide (49.16 g) was dissolved in tetrahydrofuran (2 L), and after purging with nitrogen, methyllithium (165 ml: 1.4 M diethyl ether solution) was added at -78 ° C. It was dropped. After completion of the dropwise addition, the mixture was stirred and reacted at the same temperature for 1 hour. After stopping the reaction with a saturated ammonium chloride solution, the mixture was cooled to room temperature, and the solvent was distilled off. Purified water (0.5 L) and chloroform (0.5 L) were added to the obtained residue, and the mixture was separated. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off. The obtained residue was purified by recrystallization from ethanol to obtain 24.57 g of 3-acetyl-6-chloropyridine (yield 6).
3%). Melting point: 98-99C. Elemental analysis C 7 H 6 ClNO Found (%); C: 55.15, H: 3.83, N: 8.24. Calculated value (%); C: 54.91, H: 3.81, N: 8.83.

【0050】得られた3−アセチル−6−クロロピリジ
ン23.79g(150mmol)を、テトラヒドロフ
ランに溶解し、これを予めテトラヒドロフランに水素化
リチウムアルミニウム6.25g(165mmol)を
加え窒素置換し−78℃に冷却しておいた溶液に滴下し
た。滴下後同温度で2時間攪拌反応させ、水(30m
l)で反応を停止した後室温とし、1N−NaOH(2
00ml)を加え、ジエチルエーテルで抽出処理を行っ
た。抽出液から溶媒を減圧留去し得られた褐色オイルを
ヘキサンから結晶化することにより、3−(1−ヒドロ
キシエチル)−6−クロロピリジン20.48g(収率
85%)を得た。次に2−クロロ−3−ヒドロキシメチ
ルピリジン8.61g(60mmol)の代わりに、上
で得られた3−(1−ヒドロキシエチル)−6−クロロ
ピリジン20.48g(127.5mmol)を用いた以
外は実施例1の(2)〜(3)と同じ試薬を用い、実施例1の
(2)〜(3)と同様にして反応及び後処理を行って、5−
(1−ヒドロキシエチル)−2−ピリジル−N−アセチ
ル−1−チオ−β−D−グルコサミニド5.93gを得
た(全収率13%)。 融点:201〜202℃。 元素分析値 C152226S 実測値(%); C:50.55,H:6.08,N:7.69。 計算値(%); C:50.27,H:6.19,N:7.82。 IR:1651cm-1(C=O)
23.79 g (150 mmol) of the obtained 3-acetyl-6-chloropyridine was dissolved in tetrahydrofuran, and 6.25 g (165 mmol) of lithium aluminum hydride was added to tetrahydrofuran in advance, and the mixture was purged with nitrogen at −78 ° C. Was added dropwise to the cooled solution. After the dropwise addition, the mixture was stirred and reacted at the same temperature for 2 hours, and water (30 m
After stopping the reaction with 1), the mixture was brought to room temperature, and 1N-NaOH (2
00 ml) and extracted with diethyl ether. The solvent was distilled off from the extract under reduced pressure, and the resulting brown oil was crystallized from hexane to obtain 20.48 g (yield: 85%) of 3- (1-hydroxyethyl) -6-chloropyridine. Then, instead of 8.61 g (60 mmol) of 2-chloro-3-hydroxymethylpyridine, 20.48 g (127.5 mmol) of 3- (1-hydroxyethyl) -6-chloropyridine obtained above was used. Except for using the same reagents as in (2) to (3) of Example 1,
The reaction and post-treatment were carried out in the same manner as in (2) to (3) to give 5-
5.93 g of (1-hydroxyethyl) -2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide was obtained (13% overall yield). Melting point: 201-202 ° C. Elemental analysis: C 15 H 22 N 2 O 6 S Found (%); C: 50.55, H: 6.08, N: 7.69. Calculated value (%); C: 50.27, H: 6.19, N: 7.82. IR: 1651 cm -1 (C = O)

【0051】実験例1 本発明のヒドロキシアルキルピ
リジン誘導体のpH安定性の検討 従来品中、水溶液状態で最も長期間安定な6−メチル−
2−ピリジル−N−アセチル−1−チオ−β−D−グル
コサミニド〔N−アッセイNAGニットーボー(ニット
ーボーメディカル(株)商品名)で用いられている基
質〕(以下6−MPT−NAGSと略記する。)と、本
発明のヒドロキシアルキルピリジン誘導体のうち従来品
と同じ位置に置換基を持つ6−ヒドロキシメチル−2−
ピリジル−N−アセチル−1−チオ−β−D−グルコサ
ミニド(化合物[4])との水溶液状態での安定性をp
H4.5〜10の範囲で比較した。
Experimental Example 1 Examination of pH Stability of Hydroxyalkylpyridine Derivative of the Present Invention Among the conventional products, 6-methyl-stable for the longest time in aqueous solution state
2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide [substrate used in N-assay NAG Nitto Bo (Nitto Bo Medical Co., Ltd.)] (hereinafter abbreviated as 6-MPT-NAGS). ) And 6-hydroxymethyl-2- having a substituent at the same position as the conventional product among the hydroxyalkylpyridine derivatives of the present invention.
The stability in an aqueous solution state with pyridyl-N-acetyl-1-thio-β-D-glucosaminide (compound [4]) is expressed as p
H was compared in the range of 4.5 to 10.

【0052】(操作法)6−MPT−NAGSと化合物
[4]を夫々精製水に溶解し、20mMの基質原液を調
製した。同原液と、50mMクエン酸緩衝液(pH4.
5,5.0,5.5,6.0)、50mM N,N−ビス
(2−ヒドロキシエチル)−2−アミノエタンスルホン
酸緩衝液(pH7.0)又は50mMホウ酸緩衝液(p
H8.0,9.0,10.0)とを各々1:1で混合し
て、各pHの基質溶液を調製し、10℃で16日間保存
した。同基質溶液について、調製直後と16日目の34
0nmのOD値(吸光度)を測定した。 (結果)各基質溶液の調製直後のOD値、16日目のO
D値、及び16日目のOD値から調製直後のOD値を差
し引いたOD値変化量(ΔOD値)を表1に併せて示
す。
(Operation Procedure) 6-MPT-NAGS and Compound [4] were each dissolved in purified water to prepare a 20 mM substrate stock solution. The same stock solution and 50 mM citrate buffer (pH 4.
5,5.0,5.5,6.0), 50 mM N, N-bis (2-hydroxyethyl) -2-aminoethanesulfonic acid buffer (pH 7.0) or 50 mM borate buffer (p
H8.0, 9.0, 10.0) were mixed at 1: 1 to prepare substrate solutions at each pH, and stored at 10 ° C. for 16 days. For the same substrate solution, 34
The OD value (absorbance) at 0 nm was measured. (Results) OD value immediately after preparation of each substrate solution, O on day 16
Table 1 also shows the D value and the OD value change (ΔOD value) obtained by subtracting the OD value immediately after preparation from the OD value on the 16th day.

【0053】[0053]

【表1】 [Table 1]

【0054】表1の結果に基づいて作成したpHとΔO
D値の関係を表すグラフを図1に示す。尚、図中、−●
−は、従来品の6−MPT−NAGSについて得られた
グラフを、また、−◆−は化合物[4]について得られ
たグラフをそれぞれ示す。表1及び図1の結果から、本
発明のヒドロキシアルキルピリジン誘導体は、従来のN
AGの基質である6−MPT−NAGSに比べて、水溶
液中で良好な安定性を有していることが判る。特に、N
AGの至適pH付近での安定性は、従来品に比べて著し
く向上しているので、本発明のヒドロキシアルキルピリ
ジン誘導体がNAGの基質として好ましいものであるこ
とが判る。 実験例2 本発明化合物の水溶液状態での長期保存安定
性の検討 従来品中、水溶液状態で最も長期間安定な6−MPT−
NAGSと、本発明の化合物[1]〜[4]とのpH
8.0の溶液中で安定性を比較した。実験例1と同様に
して調製した、従来品と化合物[1]〜[4]の基質溶
液(25mM ホウ酸緩衝液、pH8.0)を10℃で保
存し、各々の調製直後、保存後8日目、保存後16日
目、保存後60日目、保存後90日目の340nmのO
D値を測定した。
The pH and ΔO prepared based on the results in Table 1
FIG. 1 is a graph showing the relationship between the D values. In the figure,-●
-Indicates the graph obtained for the conventional product 6-MPT-NAGS, and-◆-indicates the graph obtained for the compound [4]. From the results shown in Table 1 and FIG. 1, the hydroxyalkylpyridine derivative of the present invention was
It can be seen that it has better stability in an aqueous solution than 6-MPT-NAGS which is a substrate of AG. In particular, N
Since the stability of AG near the optimum pH is remarkably improved as compared with the conventional product, it is understood that the hydroxyalkylpyridine derivative of the present invention is preferable as a substrate for NAG. Experimental Example 2 Study on long-term storage stability of the compound of the present invention in an aqueous solution state
PH of NAGS and compounds [1] to [4] of the present invention
The stability was compared in the 8.0 solution. A conventional product and a substrate solution (25 mM borate buffer, pH 8.0) of the compounds [1] to [4] prepared in the same manner as in Experimental Example 1 were stored at 10 ° C., immediately after each preparation and after storage. Day, 16 days after storage, 60 days after storage, 90 days after storage at 340 nm
The D value was measured.

【0055】(結果)結果を表2に示す。(Results) The results are shown in Table 2.

【0056】[0056]

【表2】 [Table 2]

【0057】また、表2の結果に基づいて作成した、保
存日数とOD値の関係を表すグラフを図2に示す。尚、
図2に於いて、−○−は従来品について得られた結果
を、−◆−は化合物[1]について得られた結果を、−
●−は化合物[2]について得られた結果を、−△−は
化合物[3]について得られた結果を、−×−は化合物
[4]について得られた結果をそれぞれ示す。表2及び
図2の結果から明らかな如く、本発明のヒドロキシアル
キルピリジン誘導体は、従来品の6−MPT−NAGS
に比較して水溶液中での長期保存安定性が著しく向上し
ていることが判る。言い換えれば、本発明のヒドロキシ
アルキルピリジン誘導体は、所謂液状試薬用のNAG活
性測定用基質として好適なものであることが判る。
FIG. 2 is a graph showing the relationship between the number of storage days and the OD value, which was created based on the results shown in Table 2. still,
In FIG. 2,-○-indicates the results obtained for the conventional product,-◆-indicates the results obtained for compound [1],-
●-shows the result obtained for compound [2],-△-shows the result obtained for compound [3], and-×-shows the result obtained for compound [4]. As is clear from the results shown in Table 2 and FIG. 2, the hydroxyalkylpyridine derivative of the present invention is different from the conventional 6-MPT-NAGS.
It can be seen that the long-term storage stability in an aqueous solution is remarkably improved as compared to In other words, it can be seen that the hydroxyalkylpyridine derivative of the present invention is suitable as a substrate for measuring a NAG activity for a so-called liquid reagent.

【0058】実施例6 3−ヒドロキシメチル−2−ピ
リジル−N−アセチル−1−チオ−β−D−グルコサミ
ニド(化合物[1])を基質として用いたN−アセチル
グルコサミニダーゼ活性の測定 (検体)ヒト胎盤由来NAG(シグマ社品)を生理食塩
水で適宜希釈して調製したもの34検体を用いた。 (試薬) 第1試薬溶液 100mMクエン酸緩衝液(pH4.40、at25
℃)。 第2試薬溶液 化合物[1]を41.7mM含有するホウ酸緩衝液(p
H8.0)。
Example 6 Measurement of N-acetylglucosaminidase activity using 3-hydroxymethyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide (compound [1]) as a substrate (sample) 34 samples prepared by appropriately diluting placenta-derived NAG (manufactured by Sigma) with physiological saline were used. (Reagent) First reagent solution 100 mM citrate buffer (pH 4.40, at25
° C). Second reagent solution A borate buffer containing 41.7 mM of compound [1] (p
H8.0).

【0059】(操作法)第1試薬溶液1.8mlと検体
0.1mlとを混合し、37℃で5分間インキュベート
した後、これに第2試薬溶液0.6mlを加えると同時
に340nmにおける吸光度の測定を開始し、吸光度を
1分毎に5分間測定した。得られた測定値から1分間当
たりの吸光度変化量(ΔA)を求めた。又、試薬ブラン
ク(ΔB)は、検体の代わりに生理食塩水を用いた以
外、同じ試薬を用い、同様の操作を行って測定した。得
られたΔA及びΔBを下記の式に代入し、N−アセチル
グルコサミニダーゼ活性値を算出した。 検体のN−アセチルグルコサミニダーゼ活性(u/L)
=(ΔA−ΔB)×反応時の総液量×106/分子吸光
係数×検体液量 ΔA :検体の340nmの1分間当たりの吸光度変化
量 ΔB :試薬ブランクの340nmの1分間当たりの吸
光度変化量 反応時の総液量 :2.5(ml) 分子吸光係数 :8354 検体液量 :0.1(ml)
(Procedure) 1.8 ml of the first reagent solution and 0.1 ml of the sample were mixed, incubated at 37 ° C. for 5 minutes, and 0.6 ml of the second reagent solution was added thereto, and at the same time, the absorbance at 340 nm was measured. The measurement was started and the absorbance was measured every minute for 5 minutes. The amount of change in absorbance per minute (ΔA) was determined from the obtained measured values. The reagent blank (ΔB) was measured by using the same reagent and performing the same operation except that physiological saline was used instead of the sample. The obtained ΔA and ΔB were substituted into the following equation to calculate an N-acetylglucosaminidase activity value. N-acetylglucosaminidase activity of sample (u / L)
= (ΔA−ΔB) × total liquid volume during reaction × 10 6 / molecular extinction coefficient × sample liquid volume ΔA: change in absorbance of sample at 340 nm per minute ΔB: change in absorbance of reagent blank at 340 nm per minute Volume Total liquid volume during reaction: 2.5 (ml) Molecular extinction coefficient: 8354 Sample liquid volume: 0.1 (ml)

【0060】実施例7 4−ヒドロキシメチル−2−ピ
リジル−N−アセチル−1−チオ−β−D−グルコサミ
ニド(化合物[2])を基質として用いたN−アセチル
グルコサミニダーゼ活性の測定 (検体)実施例6と同じ (試薬) 第1試薬溶液 実施例6と同じ 第2試薬溶液 化合物[2]を41.7mM含有するホウ酸緩衝液(p
H8.0)
Example 7 Measurement of N-acetylglucosaminidase activity using 4-hydroxymethyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide (compound [2]) as a substrate (sample) Same as in Example 6 (Reagent) First reagent solution Same as in Example 6 Second reagent solution Borate buffer (p) containing 41.7 mM of compound [2]
H8.0)

【0061】(操作法)上記の試薬を用いた以外は実施
例6の測定方法と同じ操作方法により測定を行い、得ら
れたΔAとΔBとを下記の式に代入し、N−アセチルグ
ルコサミニダーゼ活性値を算出した。 検体のN−アセチルグルコサミニダーゼ活性(u/L)
=(ΔA−ΔB)×反応時の総液量×106/分子吸光
係数×検体液量 ΔA :検体の340nmの1分間当たりの吸光度変化
量 ΔB :試薬ブランクの340nmの1分間当たりの吸
光度変化量 反応時の総液量 :2.5(ml) 分子吸光係数 :8397 検体液量 :0.1(ml)
(Operating method) Measurement was performed by the same operating method as in Example 6 except that the above reagent was used, and the obtained ΔA and ΔB were substituted into the following formula to obtain N-acetylglucosaminidase activity. Values were calculated. N-acetylglucosaminidase activity of sample (u / L)
= (ΔA−ΔB) × total liquid volume during reaction × 10 6 / molecular extinction coefficient × sample liquid volume ΔA: change in absorbance of sample at 340 nm per minute ΔB: change in absorbance of reagent blank at 340 nm per minute Volume Total liquid volume during reaction: 2.5 (ml) Molecular extinction coefficient: 8397 Sample liquid volume: 0.1 (ml)

【0062】実施例8 5−ヒドロキシメチル−2−ピ
リジル−N−アセチル−1−チオ−β−D−グルコサミ
ニド(化合物[3])を用いたN−アセチルグルコサミ
ニダーゼ活性の測定 (検体)実施例6と同じ (試薬) 第1試薬溶液 実施例6と同じ 第2試薬溶液 化合物[3]を41.7mM含有するホウ酸緩衝液(p
H8.0)
Example 8 Measurement of N-acetylglucosaminidase activity using 5-hydroxymethyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide (compound [3]) (Specimen) Example 6 (Reagent) 1st reagent solution Same as in Example 6 2nd reagent solution Borate buffer containing 41.7 mM of compound [3] (p
H8.0)

【0063】(操作法)上記の試薬を用いた以外は実施
例6の測定方法と同じ操作方法により測定を行い、得ら
れたΔAとΔBとを下記の式に代入し、N−アセチルグ
ルコサミニダーゼ活性値を算出した。 検体のN−アセチルグルコサミニダーゼ活性(u/L)
=(ΔA−ΔB)×反応時の総液量×106/分子吸光
係数×検体液量 ΔA :検体の340nmの1分間当たりの吸光度変化
量 ΔB :試薬ブランクの340nmの1分間当たりの吸
光度変化量 反応時の総液量 :2.5(ml) 分子吸光係数 :8049 検体液量 :0.1(ml)
(Operating method) Measurement was carried out by the same operating method as in Example 6 except that the above reagent was used, and the obtained ΔA and ΔB were substituted into the following formula to obtain N-acetylglucosaminidase activity. Values were calculated. N-acetylglucosaminidase activity of sample (u / L)
= (ΔA−ΔB) × total liquid volume during reaction × 10 6 / molecular extinction coefficient × sample liquid volume ΔA: change in absorbance of sample at 340 nm per minute ΔB: change in absorbance of reagent blank at 340 nm per minute Volume Total solution volume during reaction: 2.5 (ml) Molecular extinction coefficient: 8049 Sample solution volume: 0.1 (ml)

【0064】参考例1 市販品によるN−アセチルグル
コサミニダーぜ活性の測定 市販のN−アセチルグルコサミニダーゼ活性測定試薬
(N−アッセイNAGニットーボー:ニットーボーメデ
ィカル(株)商品名)を用いて実施例6、7、8でN−ア
セチルグルコサミニダーゼ活性測定を行った34検体に
ついてN−アセチルグルコサミニダーゼ活性の測定を行
った。尚、測定操作は、商品に添付の現品説明書に記載
の標準操作法に従って行った。
Reference Example 1 Measurement of N-acetylglucosaminidase activity using a commercially available product Examples 6 and 7 were carried out using a commercially available reagent for measuring N-acetylglucosaminidase activity (N-assay NAG Nitto Bo: Nitto Bo Medical Co., Ltd.). The N-acetylglucosaminidase activity was measured for 34 specimens for which the N-acetylglucosaminidase activity was measured in 8. The measurement operation was performed in accordance with the standard operation method described in the instruction manual attached to the product.

【0065】又、実施例6、7及び8で得られた各検体
の活性測定値と参考例1で得られた活性測定値との相関
図を図3〜5に夫々示す。また、これら測定値を統計的
処理して得られた回帰直線及び相関係数(r)は以下の
如くであった。 1.X:参考例1で得られたNAG活性値、Y:実施例
6で得られたNAG活性値。 回帰直線式:Y=0.93X−0.24 相関係数(r):0.993 2.X:参考例1で得られたNAG活性値、Y:実施例
7で得られたNAG活性値。 回帰直線式:Y=0.90X+0.47 相関係数(r):0.993 3.X:参考例1で得られたNAG活性値、Y:実施例
8で得られたNAG活性値。 回帰直線式:Y=0.84X+0.81 相関係数(r):0.993 以上の結果並びに図3〜5の結果から、本発明のヒドロ
キシアルキルピリジン誘導体を基質として用いるNAG
活性測定法により、市販品と良好な相関関係を有するN
AG活性値が得られることが判る。
FIGS. 3 to 5 show correlation diagrams between the measured activity values of the samples obtained in Examples 6, 7 and 8 and the measured activity values obtained in Reference Example 1, respectively. The regression line and correlation coefficient (r) obtained by statistically processing these measured values were as follows. 1. X: NAG activity value obtained in Reference Example 1, Y: NAG activity value obtained in Example 6. Regression linear equation: Y = 0.93X−0.24 Correlation coefficient (r): 0.993 2. X: NAG activity value obtained in Reference Example 1, Y: NAG activity value obtained in Example 7. 2. Regression linear equation: Y = 0.90X + 0.47 Correlation coefficient (r): 0.993 X: NAG activity value obtained in Reference Example 1, Y: NAG activity value obtained in Example 8. Regression linear equation: Y = 0.84X + 0.81 Correlation coefficient (r): 0.993 From the above results and the results of FIGS. 3 to 5, NAG using the hydroxyalkylpyridine derivative of the present invention as a substrate
According to the activity measurement method, N having a good correlation with a commercial product
It turns out that an AG activity value is obtained.

【0066】実施例9、直線性の検討 ヒト胎盤由来NAG(シグマ社品)を生理食塩水で10
段階に希釈したもの(希釈率1/10〜1)を検体とし、実
施例6〜8の試薬を夫々用い、同様の操作を行って、本
発明のNAG活性測定方法の検量線の直線性の検討を行
った。実施例6の試薬を用いて得られた結果を図6に、
実施例7の試薬を用いて得られた結果を図7に、また、
実施例8の試薬を用いて得られた結果を図8に夫々示
す。図6〜図8の結果から明らかな如く、本発明のNA
G活性測定方法の検量線は原点を通る良好な直線性を示
していることが判る。
Example 9: Examination of linearity NAG (Sigma product) derived from human placenta was treated with physiological saline for 10 minutes.
The serial dilution (dilution ratio 1/10 to 1) was used as a sample, and the reagents of Examples 6 to 8 were used, and the same operation was performed to obtain linearity of the calibration curve of the NAG activity measurement method of the present invention. Study was carried out. FIG. 6 shows the results obtained using the reagent of Example 6.
The results obtained using the reagent of Example 7 are shown in FIG.
The results obtained using the reagents of Example 8 are shown in FIG. As is clear from the results shown in FIGS.
It can be seen that the calibration curve of the G activity measurement method shows good linearity passing through the origin.

【0067】[0067]

【発明の効果】以上述べた如く、本発明は、新規ヒドロ
キシアルキルピリジン誘導体、この誘導体を基質として
用いるNAG活性測定方法及びNAG活性測定試薬を提
供するものである。本発明のヒドロキシアルキルピリジ
ン誘導体は、水溶性に優れていると共に、非酵素的分解
が少ないため、酸性からアルカリ性の広い領域に渡っ
て、水溶液中に於ける安定性が極めて高く、特に本発明
のヒドロキシアルキルピリジン誘導体を含む溶液のpH
を7以上に設定すれば(好ましくはpH7〜10)、水
溶液状態で少なくとも3ヶ月以上の長期に渡って安定で
あるというNAG活性測定用基質として極めて優れた性
質を有している。また、本発明のヒドロキシアルキルピ
リジン誘導体は、NAG等の作用によりヒドロキシアル
キルピリジンチオール誘導体を遊離するが、この誘導体
はビリルビン等の生体成分による影響を回避できる紫外
領域波長での測定が可能であると共に、極大吸収波長が
自動分析機の設定波長と殆ど同じであるため、これを基
質として用いるNAG活性測定法及び試薬は、用手法の
みならず汎用の自動分析機へも容易に応用できるという
効果を奏する。従って、本発明は斯業に貢献するところ
極めて大なる発明である。
As described above, the present invention provides a novel hydroxyalkylpyridine derivative, a method for measuring NAG activity using this derivative as a substrate, and a reagent for measuring NAG activity. The hydroxyalkylpyridine derivative of the present invention is excellent in water solubility and less non-enzymatically degraded, and therefore has a very high stability in an aqueous solution over a wide range from acidic to alkaline. PH of solution containing hydroxyalkylpyridine derivative
Is set to 7 or more (preferably pH 7 to 10), which is an extremely excellent property as a substrate for measuring NAG activity, which is stable for at least 3 months or more in an aqueous solution state. In addition, the hydroxyalkylpyridine derivative of the present invention releases a hydroxyalkylpyridinethiol derivative by the action of NAG or the like, and this derivative can be measured at an ultraviolet region wavelength that can avoid the influence of biological components such as bilirubin. Since the maximum absorption wavelength is almost the same as the set wavelength of the automatic analyzer, the NAG activity measurement method and the reagent using the same as a substrate have the effect that they can be easily applied not only to the method used but also to general-purpose automatic analyzers. Play. Therefore, the present invention is a very large invention that contributes to the industry.

【0068】[0068]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験例1で得られた、pHとOD値変化量(Δ
OD値)との関係を表すグラフである。
FIG. 1 shows the change in pH and OD value (Δ) obtained in Experimental Example 1.
6 is a graph showing the relationship with the OD value.

【図2】実験例2で得られた保存日数とOD値との関係
を表すグラフである。
FIG. 2 is a graph showing the relationship between the number of storage days and the OD value obtained in Experimental Example 2.

【図3】 実施例6で得られた
N−アセチル−β−D−グルコサミニダーゼ(以下、N
AGと略記する。)活性測定値と、参考例1で得られた
NAG活性測定値との相関図である。
FIG. 3 shows the N-acetyl-β-D-glucosaminidase (hereinafter referred to as N-acetyl-β-D-glucosaminidase) obtained in Example 6.
Abbreviated as AG. 4) Correlation diagram between the measured activity value and the measured NAG activity value obtained in Reference Example 1. FIG.

【図4】実施例7で得られたNAG活性測定値と、参考
例1で得られたNAG活性測定値との相関図である。
FIG. 4 is a correlation diagram between a measured value of NAG activity obtained in Example 7 and a measured value of NAG activity obtained in Reference Example 1.

【図5】実施例8で得られたNAG活性測定値と、参考
例1で得られたNAG活性測定値との相関図である。
FIG. 5 is a correlation diagram between the measured value of NAG activity obtained in Example 8 and the measured value of NAG activity obtained in Reference Example 1.

【図6】実施例9で得られた、本発明のNAG活性測定
法の検量線の直線性を示す図である。
FIG. 6 is a diagram showing the linearity of a calibration curve obtained in Example 9 by the NAG activity measurement method of the present invention.

【図7】実施例9で得られた、本発明のNAG活性測定
法の検量線の直線性を示す図である。
FIG. 7 is a view showing the linearity of a calibration curve obtained in Example 9 by the NAG activity measurement method of the present invention.

【図8】実施例9で得られた、本発明のNAG活性測定
法の検量線の直線性を示す図である。
FIG. 8 is a diagram showing the linearity of a calibration curve obtained in Example 9 by the NAG activity measurement method of the present invention.

【0069】[0069]

【符号の簡単な説明】[Brief description of reference numerals]

図1に於いて、−●−は従来品の6−メチル−2−ピリ
ジル−N−アセチル−1−チオ−β−D−グルコサミニ
ド(以下6−MPT−NAGSと略記する。)を用いて
得られた結果を、−◆−は化合物[4]を用いて得られ
た結果を夫々示す。図2に於いて、−○−は従来品の6
−MPT−NAGSを用いて得られた結果を、−◆−は
化合物[1]を用いて得られた結果を、−●−は化合物
[2]を用いて得られた結果を、−△−は化合物[3]
を用いて得られた結果を、−×−は化合物[4]を用い
て得られた結果を夫々示す。
In FIG. 1,-●-is obtained using a conventional product, 6-methyl-2-pyridyl-N-acetyl-1-thio-β-D-glucosaminide (hereinafter abbreviated as 6-MPT-NAGS). -◆-shows the results obtained using Compound [4], respectively. In FIG. 2, -−- is 6 of the conventional product.
The results obtained using -MPT-NAGS,-◆-indicates the results obtained using compound [1],-●-indicates the results obtained using compound [2],-△- Is the compound [3]
, And-×-indicate the results obtained using compound [4], respectively.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式[1] 【化1】 (式中、Gは還元性末端でβ結合している、アミノ基に
アシル基が結合しているヘキソサミン残基を表し、Rは
ヒドロキシアルキル基を表す。)で示されるヒドロキシ
アルキルピリジン誘導体。
1. A compound of the general formula [1] (Wherein, G represents a hexosamine residue having a β-bond at the reducing end and an acyl group bonded to an amino group, and R represents a hydroxyalkyl group).
【請求項2】GがN−アセチルグルコサミン残基である
請求項1のヒドロキシアルキルピリジン誘導体。
2. The hydroxyalkylpyridine derivative according to claim 1, wherein G is an N-acetylglucosamine residue.
【請求項3】請求項1に記載のヒドロキシアルキルピリ
ジン誘導体を基質として用いることを特徴とする、N−
アセチル−β−D−グルコサミニダーゼの活性測定方
法。
3. The method of claim 1, wherein the hydroxyalkylpyridine derivative according to claim 1 is used as a substrate.
A method for measuring the activity of acetyl-β-D-glucosaminidase.
【請求項4】請求項1に記載のヒドロキシアルキルピリ
ジン誘導体を含んでなる、N−アセチル−β−D−グル
コサミニダーゼの活性測定用試薬。
4. A reagent for measuring the activity of N-acetyl-β-D-glucosaminidase, comprising the hydroxyalkylpyridine derivative according to claim 1.
JP35790396A 1996-12-27 1996-12-27 Hydroxyalkylpyridine derivatives Expired - Fee Related JP3994461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35790396A JP3994461B2 (en) 1996-12-27 1996-12-27 Hydroxyalkylpyridine derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35790396A JP3994461B2 (en) 1996-12-27 1996-12-27 Hydroxyalkylpyridine derivatives

Publications (2)

Publication Number Publication Date
JPH10182688A true JPH10182688A (en) 1998-07-07
JP3994461B2 JP3994461B2 (en) 2007-10-17

Family

ID=18456531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35790396A Expired - Fee Related JP3994461B2 (en) 1996-12-27 1996-12-27 Hydroxyalkylpyridine derivatives

Country Status (1)

Country Link
JP (1) JP3994461B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055167A1 (en) * 1999-03-17 2000-09-21 Shionogi & Co., Ltd. 2-pyridinethiol derivatives and reagents for activity measurement of nag containing the same
WO2003000712A1 (en) * 2001-06-20 2003-01-03 Kissei Pharmaceutical Co., Ltd. Nitrogenous heterocyclic derivative, medicinal composition containing the same, medicinal use thereof, and intermediate therefor
CN103694292A (en) * 2013-12-20 2014-04-02 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-amino glucoside compound and hydrolyzates and preparation method of hydrolyzates
CN103739641A (en) * 2013-12-20 2014-04-23 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminide compound, and hydrolysate and preparation methods thereof
CN103755755A (en) * 2013-12-20 2014-04-30 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminidase compound and hydrolyzate thereof and preparation methods of compound and hydrolyzate
CN103755754A (en) * 2013-12-20 2014-04-30 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminidase compound and hydrolyzate thereof and preparation methods of compound and hydrolyzate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055167A1 (en) * 1999-03-17 2000-09-21 Shionogi & Co., Ltd. 2-pyridinethiol derivatives and reagents for activity measurement of nag containing the same
WO2003000712A1 (en) * 2001-06-20 2003-01-03 Kissei Pharmaceutical Co., Ltd. Nitrogenous heterocyclic derivative, medicinal composition containing the same, medicinal use thereof, and intermediate therefor
US7271153B2 (en) 2001-06-20 2007-09-18 Kissei Pharmaceutical Co., Ltd. Nitrogenous heterocyclic derivatives, medicinal compositions containing the same, medicinal uses thereof, and intermediates therefor
CN103694292A (en) * 2013-12-20 2014-04-02 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-amino glucoside compound and hydrolyzates and preparation method of hydrolyzates
CN103739641A (en) * 2013-12-20 2014-04-23 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminide compound, and hydrolysate and preparation methods thereof
CN103755755A (en) * 2013-12-20 2014-04-30 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminidase compound and hydrolyzate thereof and preparation methods of compound and hydrolyzate
CN103755754A (en) * 2013-12-20 2014-04-30 宁波大学 N-acetyl-3,4,6-triacetyl-beta-D-glucosaminidase compound and hydrolyzate thereof and preparation methods of compound and hydrolyzate

Also Published As

Publication number Publication date
JP3994461B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
IE57745B1 (en) Composition and test device for determining the presence of leukocytes,containing a zwitterion coupling agent
US5030721A (en) Novel N-acetyl-β-D-glucosamine derivatives and a process for production thereof as well as application to reagents for assaying N-acetyl-β-D-glucosaminidase activity
JPH027589B2 (en)
DK162231B (en) PHENOLSULPHONPHTHALEINYL-BETA-D-GALACTOSIDES, PROCEDURES FOR THEIR PREPARATION, USE THEREOF FOR THE DETERMINATION OF BETA-D-GALACTOSIDASE, AND A DIAGNOSTIC AGENT CONTAINING THESE
JPH10182688A (en) Hydroxylalkylpyridine derivative
EP0180961B1 (en) Glucosamine derivatives and reagent for assaying n-acetyl-beta-d-glucosaminidase using the same as substrate
JP2722874B2 (en) Novel N-acetyl-β-D-glucosamine derivative and method for measuring N-acetyl-β-D-glucosaminidase activity using the same as substrate
JPS58994A (en) Novel n-acetyl-beta-d-glucosamine derivative and method of determining the activity of n-acetyl-beta-d-glucosaminidase using the same
WO2000055167A1 (en) 2-pyridinethiol derivatives and reagents for activity measurement of nag containing the same
JPH0631294B2 (en) Novel glucosamine derivative, enzyme activity measuring reagent and enzyme activity measuring method using the same
US4822891A (en) 4-amino-2,3-di-substituted-1-(mono- or trichlorophenyl)-3-pyrazolin-5-ones
JPS63279800A (en) Method for improving sensitivity and accuracy of analysis
JPH03206896A (en) Determination of very small amount component in body fluid
JPH07247292A (en) Color-developing compound
JPH0272899A (en) Method for detecting a substance having a hydrolase activity and a bicyclic compound
US5274086A (en) N-acetyl-β-d-glucosamine derivatives and reagents for determining n-acetyl-β-d-glucosaminidase activity containing the same as effective ingredients
JP2889476B2 (en) Stilbene diboronic acid compound
JPH0650997B2 (en) New method for measuring cholinesterase activity
JPH0631292B2 (en) N-acetyl-β-D-hexosamine derivative and N-acetyl-β-D-hexosaminidase activity measuring reagent using the derivative as a substrate
JPH0881491A (en) N-acetyl-beta-d-glucosamine derivative, reagent for measuring activity of n-acetyl-beta-d-glucosaminidase and method for measuring activity of n-acetyl-beta-d-glucosaminidase
JPH09289899A (en) Substrate for measuring alpha-amylase activity, measuring reagent and measurement
JP2001352999A (en) Oxidative chromogenic agent
JPS62261063A (en) Hydroxy-substituted cyanoformazan and analytic composition thereof and usage in method
JP2002535342A (en) Compositions and devices for assaying leukocytes in urine
JPH0542273B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees