JPH10180453A - High-speed non-grinding welding method for tin-free steel plate - Google Patents

High-speed non-grinding welding method for tin-free steel plate

Info

Publication number
JPH10180453A
JPH10180453A JP35633396A JP35633396A JPH10180453A JP H10180453 A JPH10180453 A JP H10180453A JP 35633396 A JP35633396 A JP 35633396A JP 35633396 A JP35633396 A JP 35633396A JP H10180453 A JPH10180453 A JP H10180453A
Authority
JP
Japan
Prior art keywords
wire
welding
tin
steel sheet
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35633396A
Other languages
Japanese (ja)
Other versions
JP3281562B2 (en
Inventor
Mikiyuki Ichiba
幹之 市場
Yoshinori Yomura
吉則 余村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35633396A priority Critical patent/JP3281562B2/en
Priority to SG1997004510A priority patent/SG53136A1/en
Priority to TW086119738A priority patent/TW363003B/en
Publication of JPH10180453A publication Critical patent/JPH10180453A/en
Application granted granted Critical
Publication of JP3281562B2 publication Critical patent/JP3281562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform the appropriate and stable high-speed welding of a non- ground tin-free steel plate without generating any problems such as generation of dust in manufacturing a can body by the wire seam welding. SOLUTION: In a method to manufacture a can body by performing the wire seam welding of a non-ground tin-free steel plate having a film consisting of a metallic chromium layer of the prescribed chromium adhesion and a chromium hydroxide layer thereon on a surface of the steel plate at the wire feeding speed of >=15 m/min, wires 1, 2 of each electrode to be used on the outer and inner surface side of the can body is 0.5-3.0 mm<2> in sectional area, a straight part 3 whose contour in the width direction of a weld part of a part to be in contact with the steel plate is of the length 1.0-4.0 times the thickness of the steel plate is provided, the inequalities of L<=W<L+1.5 are satisfied where W is the lap width of the steel plates at weld parts, and L is the length of the straight part 3 of the wires of each electrode, the pressure between the electrodes is 30-150 kgf, and the nugget pitch of the weld part is 0.6-1.8 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、ティンフリー鋼
板をワイヤシーム溶接することにより金属容器の缶胴を
製造する際の高速無研磨溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed non-polishing welding method for manufacturing a can body of a metal container by wire seam welding a tin-free steel sheet.

【0002】[0002]

【従来の技術】金属容器の缶胴を製造する際に板厚0.
13〜0.5mm程度の薄めっき鋼板をワイヤシーム溶
接する方法として、鋼板のラップ幅(重ね幅)を溶接ビ
ード幅(ワイヤ幅)より広くとる方法が知られている。
この方法は、主として初期のワイヤシーム溶接で用いら
れていた方法であり、溶接ビード位置と鋼板のラップ幅
の制御技術が十分に確立されていなかったため、ラップ
幅を小さくすることができなかったものである。しか
し、この方法ではラップ幅が溶接ビード幅より大き過ぎ
ると、薄板両縁部の溶接されないエッジ部分が溶接部を
中心として反り曲がり、溶接部の補修不良や缶胴の耐食
性劣化の原因となる。
2. Description of the Related Art When manufacturing a can body of a metal container, the thickness of the can is reduced to 0.
As a method of performing wire seam welding on a thin-plated steel sheet having a thickness of about 13 to 0.5 mm, a method is known in which a lap width (lap width) of the steel sheet is set wider than a weld bead width (wire width).
This method was mainly used in the early wire seam welding, and it was not possible to reduce the lap width because the control technology of the weld bead position and the lap width of the steel sheet was not sufficiently established. is there. However, in this method, if the lap width is too large than the weld bead width, the non-welded edges of both edges of the thin plate bend around the welded portion, causing poor repair of the welded portion and deterioration of the corrosion resistance of the can body.

【0003】また、溶接条件を安定化させることができ
なかったため、使用できる鋼板は表層に金属錫を有し、
電気抵抗(接触抵抗)が小さく溶接電流の変動に有利な
ぶりきが主であった。また、接触抵抗の高いティンフリ
ー鋼板(TFS)を5m/分以上のワイヤ送り速度で溶
接する場合は、溶接部の絶縁性皮膜(金属クロム層およ
びクロム水和酸化物層)を溶接前に研磨などの方法で除
去し、接触抵抗を小さくすることが必要であった。ま
た、このように溶接電流の変動に有利な接触抵抗の小さ
い材料を溶接対象とするため、ワイヤと鋼板の接触面積
が大きいと適正発熱に必要な溶接電流が大きくなり過ぎ
るという問題が生じる。このような問題を回避するた
め、ワイヤと鋼板との接触面積を安定して比較的小さく
とれるように、鋼板と接触すべき部分の溶接部幅方向に
おける外形が弧状のワイヤが使用されていた。
[0003] Further, since the welding conditions could not be stabilized, usable steel sheets have metallic tin on the surface layer,
Tinplate, which had small electric resistance (contact resistance) and was advantageous for fluctuation of welding current, was mainly used. When a tin-free steel sheet (TFS) with high contact resistance is welded at a wire feed speed of 5 m / min or more, the insulating film (the chromium metal layer and the chromium hydrate oxide layer) of the welded portion is polished before welding. It was necessary to reduce the contact resistance by removing by such a method. Further, since a material having a small contact resistance, which is advantageous for the fluctuation of the welding current, is to be welded, if the contact area between the wire and the steel plate is large, a problem arises that the welding current required for proper heat generation becomes too large. In order to avoid such a problem, a wire having an arcuate outer shape in a weld width direction of a portion to be contacted with the steel plate has been used so that the contact area between the wire and the steel plate can be stably and relatively small.

【0004】このような旧来のワイヤシーム溶接法(広
幅ラップ溶接)に対して、現在主流となっている缶胴の
ワイヤシーム溶接法は、特公昭54−26213号に示
されるような狭幅ラップ溶接である。これは鋼板のラッ
プ幅を溶接ビード幅の1/2以下に狭くして溶接する方
法であり、ラップ管理技術の進歩がこのような溶接方法
を可能にした。このワイヤシーム溶接法の利点は、鋼板
のラップ幅が溶接ビード幅より小さいために薄板両縁部
のエッジ部分も含めて溶接され、このため溶接部の補修
不良や缶胴の耐食性劣化の心配がないという点である。
また、電流が板/板界面に効果的に集中するため、接触
抵抗の小さい材料であっても小さな電流で適正発熱を得
ることができる。
[0004] In contrast to such a conventional wire seam welding method (wide lap welding), a wire seam welding method for a can body, which is currently the mainstream, is a narrow width lap welding as shown in Japanese Patent Publication No. 54-213213. is there. This is a welding method in which the lap width of a steel sheet is reduced to less than half of the welding bead width, and the progress of lap management technology has made such a welding method possible. The advantage of this wire seam welding method is that since the lap width of the steel sheet is smaller than the weld bead width, it is welded including the edges of both edges of the thin plate, so there is no fear of poor repair of the welded part and deterioration of the corrosion resistance of the can body That is the point.
In addition, since the current is effectively concentrated on the plate / plate interface, appropriate heat generation can be obtained with a small current even with a material having a small contact resistance.

【0005】ところで、近年容器に対する異物混入への
規制が厳しくなり、溶接環境のクリーン化が求められる
ようになってきた。このため、従来では溶接直前に溶接
部を研磨して溶接されてきたTFSを無研磨で、しかも
作業性の面から高速で溶接したいというニーズが高まり
つつある。
[0005] In recent years, regulations on contamination of containers with foreign substances have become strict, and it has become necessary to clean the welding environment. For this reason, there is a growing need to perform high-speed welding of TFS which has been conventionally polished and welded to a welded portion immediately before welding without polishing and in terms of workability.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のような
狭幅ラップ溶接により接触抵抗の高いTFSを無研磨で
高速溶接した場合、直ぐに板/板界面でチリとよばれる
溶接欠陥が発生するという問題がある。すなわち、この
溶接法は鋼板のラップ幅が小さいために鋼板のエッジ部
分を含めたラップ部全体が溶接され、しかも高加圧で溶
接部をマッシュするため、過剰発熱した際に直ぐにチリ
が発生してしまう。このため従来の狭幅ラップ溶接は、
TFSのような接触抵抗の高い材料の無研磨高速溶接に
は不向きであった。
However, when TFS having a high contact resistance is welded at high speed without polishing by narrow lap welding as described above, a welding defect called dust is immediately generated at the plate / plate interface. There's a problem. In other words, in this welding method, the entire lap portion including the edge portion of the steel plate is welded because the wrap width of the steel plate is small, and since the welded portion is mashed with high pressure, dust is generated immediately when excessive heat is generated. Would. For this reason, conventional narrow lap welding
It is not suitable for non-polishing high-speed welding of a material having a high contact resistance such as TFS.

【0007】一方、上述したような旧来の広幅ラップ溶
接によりTFSを無研磨で高速溶接した場合には、板/
板界面での適正発熱を確保できる電流条件ではワイヤ/
板界面でチリが発生するという問題がある。これは狭幅
ラップ溶接では、ワイヤ/板界面に比較して板/板界面
の通電面積が狭いためワイヤ/板界面の電流密度を小さ
くし発熱を抑制できるが、広幅ラップ溶接ではワイヤ/
板界面に比較して板/板界面の通電面積が大きいためワ
イヤ/板界面の電流密度が大きくなり、過剰発熱してし
まうためである。
On the other hand, when TFS is welded at high speed without polishing by the conventional wide lap welding as described above,
Under current conditions that can ensure proper heat generation at the board interface, the wire /
There is a problem that dust is generated at the plate interface. This is because, in narrow lap welding, the current density at the wire / plate interface is smaller than that at the wire / plate interface, so that the current density at the wire / plate interface can be reduced and heat generation can be suppressed.
This is because the current density at the wire / plate interface is increased due to a larger current-carrying area at the plate / plate interface than at the plate interface, resulting in excessive heat generation.

【0008】また、ワイヤシーム溶接法は、溶接機の構
造上の制約から缶胴内面側のワイヤ/板界面の冷却能力
を向上させることが難しいため、高速溶接を行うと特に
缶胴内面側でチリを生じ易く、このようなチリの発生に
よって缶内への異物混入や溶接可能電流範囲が確保でき
ないといった問題を生じていた。このように従来のワイ
ヤシーム溶接法では、ティンフリー鋼板を無研磨高速溶
接して缶胴を製造することは事実上困難であった。した
がって本発明の目的は、ワイヤシーム溶接により金属容
器の缶胴を製造する際に、無研磨のティンフリー鋼板を
チリ発生等の問題を生じることなく適切且つ安定的に高
速溶接することができるワイヤシーム溶接法を提供する
ことにある。
Further, in the wire seam welding method, it is difficult to improve the cooling capacity of the wire / plate interface on the inner surface of the can body due to structural restrictions of the welding machine. Therefore, there is a problem that foreign matter is mixed into the can and a weldable current range cannot be secured due to the generation of dust. As described above, in the conventional wire seam welding method, it is practically difficult to manufacture a can body by performing non-polishing high-speed welding of a tin-free steel plate. Therefore, an object of the present invention is to provide wire seam welding that can appropriately and stably perform high-speed welding of an unpolished tin-free steel sheet without causing problems such as dust generation when manufacturing a can body of a metal container by wire seam welding. Is to provide a law.

【0009】[0009]

【課題を解決するための手段】このような課題を解決す
るため、本発明のワイヤシーム溶接法は以下のような特
徴を有する。 (1) 鋼板の表面に金属クロム層とその上層のクロム水和
酸化物層とからなる皮膜を有し、該皮膜の金属クロム換
算での総付着量が鋼板片面当たり30〜250mg/m
2、クロム水和酸化物層の金属クロム換算での付着量が
鋼板片面当たり0.5〜15mg/m2であるティンフ
リー鋼板を、研磨することなく15m/分以上のワイヤ
送り速度でワイヤシーム溶接することにより缶胴を製造
する方法において、缶胴内面側および缶胴外面側で用い
る各電極のワイヤが、その長手方向と直角な断面での断
面積が0.5〜3.0mm2であって、被溶接ティンフ
リー鋼板と接触すべき部分の溶接部幅方向における外形
が被溶接ティンフリー鋼板の板厚の1.0〜4.0倍の
長さの直線状部を有し、溶接部における被溶接ティンフ
リー鋼板の重ね幅W(mm)が、缶胴内面側および缶胴
外面側で用いる各電極のワイヤの前記直線状部の長さL
(mm)との関係で、 L≦W<L+1.5 を満足し、缶胴内面側と缶胴外面側の電極間の加圧力が
30〜150kgf、溶接部のナゲットピッチが0.6
〜1.8mmであることを特徴とするティンフリー鋼板
の高速無研磨溶接方法。
In order to solve such problems, the wire seam welding method of the present invention has the following features. (1) The steel sheet has a coating composed of a metal chromium layer and a chromium hydrated oxide layer thereover on the surface of the steel sheet, and the total coating amount of the coating in terms of metal chromium is 30 to 250 mg / m3 per one side of the steel sheet.
2, Waiyashimu welding adhesion amount reckoned as metal chromium of hydrated chromium oxide layer has a tin-free steel sheet is steel sheet per side 0.5-15 / m 2, at 15 m / min or more wire feed speed without polishing In the method of manufacturing the can body by performing the above, the wires of the electrodes used on the inner surface side of the can body and the outer surface side of the can body have a cross-sectional area in a cross section perpendicular to the longitudinal direction of 0.5 to 3.0 mm 2. The outer shape of the portion to be in contact with the welded tin-free steel plate in the width direction of the welded portion has a linear portion having a length of 1.0 to 4.0 times the thickness of the welded tin-free steel plate. The overlap width W (mm) of the tin-free steel plate to be welded is the length L of the linear portion of the wire of each electrode used on the inner side of the can body and the outer side of the can body.
(Mm), L ≦ W <L + 1.5 is satisfied, the pressure between the electrodes on the inner surface side of the can body and the outer surface side of the can body is 30 to 150 kgf, and the nugget pitch of the welded portion is 0.6.
A high-speed non-polishing welding method for a tin-free steel sheet, which has a thickness of about 1.8 mm.

【0010】(2) 上記(1)の溶接方法において、缶胴内
面側および缶胴外面側で用いる各電極のワイヤが、被溶
接ティンフリー鋼板と接触すべき部分の溶接部幅方向に
おける直線状部の両端部に、曲率半径Rが0.1mm以
上の弧状部を有することを特徴とするティンフリー鋼板
の高速無研磨溶接方法。
(2) In the welding method of the above (1), the wires of the respective electrodes used on the inner surface of the can body and the outer surface of the can body are formed in a straight line in the widthwise direction of the welded portion of the portion to be brought into contact with the tin-free steel plate to be welded. A high-speed non-polishing welding method for a tin-free steel sheet, comprising a curved portion having a radius of curvature R of 0.1 mm or more at both ends of the portion.

【0011】[0011]

【発明の実施の形態】本発明では、ティンフリー鋼板
(以下、TFSという)を無研磨高速溶接する際の板/
板界面でのチリ発生の抑制に最適な鋼板の重ね幅(ラッ
プ幅)について検討を行い、その結果、板/板界面のマ
ッシュを避けてチリの発生を抑制するために、鋼板の重
ね幅を溶接部幅方向におけるワイヤ/板界面の接触幅と
同等かまたはそれ以上とすることにした。但し、鋼板の
重ね幅がワイヤ/板界面の接触幅よりも1.5mm以上
広くなると、鋼板エッジ部分の反りの問題を生じるため
溶接部の補修が難しくなる。このため鋼板の重ね幅をワ
イヤ/板界面の接触幅よりも1.5mm以上広くするこ
とは好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a tin-free steel plate (hereinafter, referred to as TFS) is used for a non-polishing high-speed welding.
A study was conducted on the optimal width of lapping of steel sheets (lap width) to suppress the generation of dust at the plate interface. As a result, the overlapping width of the steel sheets was reduced in order to avoid the mash at the plate / plate interface and to suppress the generation of dust. The contact width at the wire / plate interface in the weld width direction is set to be equal to or larger than the contact width. However, if the overlap width of the steel sheet is 1.5 mm or more wider than the contact width of the wire / plate interface, a problem of warpage of the steel sheet edge portion occurs, so that repair of the welded portion becomes difficult. For this reason, it is not preferable to make the overlapping width of the steel sheets 1.5 mm or more larger than the contact width of the wire / plate interface.

【0012】ここで、上記のように鋼板の重ね幅を溶接
部幅方向におけるワイヤ/板界面の接触幅と同等かまた
はそれ以上とした場合、ワイヤ/板界面の通電量を低減
することが難しく、ワイヤ/板界面の過剰発熱が問題と
なる。そこで、ワイヤ/板界面の電流密度を下げるため
の検討を行った結果、ワイヤ/板界面の電流密度を下げ
て過剰発熱を抑制するには、鋼板と接触すべき部分の溶
接部幅方向における外形が直線状部を有するワイヤ、つ
まり溶接部幅方向での鋼板との接触部が直線状になるよ
うなワイヤを使用することが効果的であることが判っ
た。
Here, when the overlap width of the steel sheet is equal to or larger than the contact width of the wire / plate interface in the weld width direction as described above, it is difficult to reduce the amount of electricity at the wire / plate interface. In addition, excessive heat generation at the wire / plate interface becomes a problem. Therefore, as a result of studying to reduce the current density at the wire / plate interface, in order to reduce the current density at the wire / plate interface and suppress excessive heat generation, the outer shape of the portion that should be in contact with the steel plate in the width direction of the welded portion is considered. It has been found that it is effective to use a wire having a linear portion, that is, a wire having a linear contact portion with the steel plate in the weld width direction.

【0013】低接触抵抗のぶりきやTFSの研磨材を溶
接する際に上記のような鋼板との接触部が直線状となる
ワイヤを使用すると、通電経路が広くなるため過大な電
流が必要になり、溶接機の電源容量をオーバーしたり、
溶接焼け部が不必要に拡大して外観を損なう等の問題を
生じてしまう。これに対して、無研磨のTFSのような
高接触抵抗の材料を溶接する場合は、上記のような鋼板
との接触部が直線状となるワイヤを使用しても、板の表
面抵抗により板/板界面の通電経路の過剰な拡大は起ら
ない。また、ワイヤと鋼板との接触が平面的な接触とな
ることで加圧が均等にかかるため、弧状ワイヤに比較し
て通電面積が拡大し、ワイヤ/板界面のチリ発生も抑制
される。
When a wire having a straight contact portion with a steel plate as described above is used when welding a tinplate having low contact resistance or an abrasive of TFS, an excessively large current is required because the energization path is widened. Or exceed the power capacity of the welding machine,
Problems such as an unnecessarily widening of the weld burnt portion and impairing the appearance are caused. On the other hand, when welding a material having a high contact resistance such as unpolished TFS, even if a wire having a straight contact portion with the steel plate as described above is used, the plate resistance is increased due to the surface resistance of the plate. Excessive expansion of the current-carrying path at the / plate interface does not occur. In addition, since the contact between the wire and the steel plate is planar, pressure is evenly applied, so that the energized area is increased as compared with the arc-shaped wire, and generation of dust at the wire / plate interface is suppressed.

【0014】TFSのような高接触抵抗の材料をワイヤ
シーム溶接する場合、形成されるナゲットの幅はぶりき
などの低接触抵抗の材料に比較して狭い。このためワイ
ヤの溶接部幅方向における上記直線状部の長さLが鋼板
の板厚の1.0倍未満では、形成されるナゲットの幅が
狭く、実缶として必要な溶接強度が十分に得られない。
直線状部の長さLが大きくなるとナゲットの幅が広くな
り、溶接時における条件変動時でも安定した溶接強度が
得られる。特に、高接触抵抗の材料は通電幅が狭くなる
ためナゲットの幅を広くすることは重要である。一方、
上記直線状部の長さLが鋼板の板厚の4.0倍を超える
とナゲット幅の拡大効果が飽和するだけでなく、溶接に
必要な加圧力および電流が不必要に大きくなるため好ま
しくない。
When a material having a high contact resistance such as TFS is subjected to wire seam welding, the width of a formed nugget is smaller than that of a material having a low contact resistance such as a tinplate. Therefore, when the length L of the linear portion in the width direction of the welded portion of the wire is less than 1.0 times the thickness of the steel plate, the width of the formed nugget is narrow, and sufficient welding strength required as an actual can is obtained. I can't.
As the length L of the linear portion increases, the width of the nugget increases, and stable welding strength can be obtained even when the conditions during welding change. In particular, it is important to increase the width of the nugget because a material having a high contact resistance has a narrow conduction width. on the other hand,
If the length L of the linear portion exceeds 4.0 times the thickness of the steel sheet, not only the effect of expanding the nugget width is saturated, but also the pressing force and current required for welding become unnecessarily large, which is not preferable. .

【0015】したがって本発明の溶接法では、缶胴内面
側および缶胴外面側で用いる各電極のワイヤについて、
被溶接TFSと接触すべき部分の溶接部幅方向における
外形が被溶接TFSの板厚の1.0〜4.0倍の長さの
直線状部を有することを条件とし、さらに、溶接部にお
ける被溶接TFSの重ね幅W(mm)は、ワイヤの前記
直線状部の長さL(mm)との関係で、 L≦W<L+1.5 を満足することを条件とする。
Therefore, in the welding method of the present invention, the wires of each electrode used on the inner surface side of the can body and the outer surface side of the can body are
Provided that the outer shape of the portion to be in contact with the TFS to be welded in the weld width direction has a linear portion having a length of 1.0 to 4.0 times the plate thickness of the TFS to be welded. The overlap width W (mm) of the TFS to be welded satisfies L ≦ W <L + 1.5 in relation to the length L (mm) of the linear portion of the wire.

【0016】図1は、このような本発明法による溶接状
況の一例を、溶接部を断面した状態で示したもので、1
が缶胴内面側の電極(上電極輪)のワイヤ、2が缶胴外
面側の電極(下電極輪)のワイヤであり、前記ワイヤ1
およびワイヤ2の鋼板に接触すべき部分の溶接部幅方向
における外形は直線状部3を有している。なお、比較の
ために従来法による溶接状況(溶接部の断面)を図3に
示す。図3において、5が缶胴内面側の電極(上電極
輪)のワイヤ、6が缶胴外面側の電極(下電極輪)のワ
イヤであり、これらワイヤ5,6の鋼板に接触すべき部
分の溶接部幅方向における外形はいずれも弧状である。
FIG. 1 shows an example of a welding situation according to the method of the present invention in a state where a welded portion is cross-sectionally shown.
Is a wire of an electrode (upper electrode wheel) on the inner surface side of the can body, and 2 is a wire of an electrode (lower electrode wheel) on the outer surface side of the can body.
In addition, the outer shape of the portion of the wire 2 that should come into contact with the steel plate in the width direction of the welded portion has a linear portion 3. For comparison, FIG. 3 shows a welding situation (cross section of a welded portion) according to the conventional method. In FIG. 3, 5 is a wire of an electrode (upper electrode wheel) on the inner surface side of the can body, and 6 is a wire of an electrode (lower electrode wheel) on the outer surface side of the can body. Are all arcuate in the weld width direction.

【0017】また、ワイヤの溶接部幅方向における上記
直線状部の両端部には円弧状等の弧状部(凸弧状部)を
形成することが好ましい。図2はこのような弧状部を有
するワイヤを用いた本発明法による溶接状況の一例を、
溶接部を断面した状態で示したもので、4がワイヤ1お
よびワイヤ2の直線状部3の両端部に形成された弧状部
である。ワイヤ1にこのような弧状部4がないと、上下
電極輪の垂直軸がずれているような場合に溶接ビードの
端部に疵をつけてしまい、溶接後のフランジ成形等の際
に上記疵部分から割れを生じるおそれがある。特に、T
FSが板厚0.5mm以下の薄物材の場合にはそのよう
な割れを生じ易いので、直線状部3の両端部には弧状部
4を形成することが好ましい。また、この弧状部の曲率
半径Rは、上記の効果を得るために0.1mm以上とす
ることが好ましい。
It is preferable that arc-shaped portions (convex portions) such as arcs are formed at both ends of the linear portion in the width direction of the welded portion of the wire. FIG. 2 shows an example of a welding situation according to the method of the present invention using a wire having such an arc portion,
The cross section of the welded portion is shown, and 4 is an arc-shaped portion formed at both ends of the linear portion 3 of the wire 1 and the wire 2. If such an arc-shaped portion 4 is not provided in the wire 1, if the vertical axes of the upper and lower electrode rings are displaced, the end of the weld bead is flawed, and the flaw is formed when the flange is formed after welding. There is a risk of cracking from the part. In particular, T
When the FS is a thin material having a plate thickness of 0.5 mm or less, such cracks are easily generated. Therefore, it is preferable to form the arc-shaped portions 4 at both ends of the linear portion 3. Further, it is preferable that the radius of curvature R of the arc-shaped portion is 0.1 mm or more in order to obtain the above-described effect.

【0018】TFSは鋼板面に金属クロム層とその上層
のクロム水和酸化物層とからなる皮膜を有するが、この
ようなTFSの素材としての高速無研磨溶接性は、主と
して表層のクロム水和酸化物量および総クロム量に依存
する。溶接において鋼板が電極間に噛込まれ、表層の絶
縁皮膜が破壊されて通電が開始するまでには、絶縁性皮
膜の付着量に依存した時間が必要と考えられる。また、
クロムは高融点金属であるため、その量は溶接性に若干
の影響を与える。このため15m/分以上での高速溶接
では溶接可能な皮膜付着量の上限が存在する。
TFS has a coating composed of a metal chromium layer and a chromium hydrated oxide layer thereover on the steel sheet surface. The high-speed non-polishing weldability of such a TFS material mainly depends on the surface chromium hydration oxide. Depends on the amount of oxide and total chromium. It is considered that a time depending on the adhesion amount of the insulating film is required until the steel sheet is caught between the electrodes during welding and the surface of the insulating film is destroyed to start energization. Also,
Since chromium is a refractory metal, its amount has some effect on weldability. For this reason, in high-speed welding at 15 m / min or more, there is an upper limit of the amount of coating film that can be welded.

【0019】具体的には、皮膜の金属クロム換算での総
付着量(総クロム量)が鋼板片面当り250mg/m2
以下、クロム水和酸化物層の金属クロム換算での付着量
が鋼板片面当り15mg/m2以下であることが高速無
研磨溶接にとって必要である。付着量がこれらの上限を
上回ると、溶接条件に拘りなく溶接可能電流範囲が存在
しなくなる。また、皮膜の金属クロム換算での総付着量
(総クロム量)が鋼板片面当り30mg/m2未満、ク
ロム水和酸化物層の金属クロム換算での付着量が鋼板片
面当り0.5mg/m2未満では、溶接補修部の耐食性
が維持できなくなる。したがって、本発明で用いるTF
Sは、皮膜の金属クロム換算での総付着量(総クロム
量)が鋼板片面当たり30〜250mg/m2、クロム
水和酸化物層の金属クロム換算での付着量が鋼板片面当
たり0.5〜15mg/m2であることを条件とする。
Specifically, the total coating amount (total chromium amount) of the coating in terms of metallic chromium is 250 mg / m 2 per one side of the steel sheet.
Hereinafter, it is necessary for the high-speed non-polishing welding that the amount of the chromium hydrated oxide layer to be deposited in terms of metal chromium is 15 mg / m 2 or less per one side of the steel sheet. When the adhesion amount exceeds these upper limits, there is no weldable current range regardless of welding conditions. Further, the total coating amount (total chromium amount) in terms of metal chromium of the coating was less than 30 mg / m 2 per one side of the steel sheet, and the coating amount in terms of metal chromium of the chromium hydrated oxide layer was 0.5 mg / m 2 per one side of the steel sheet. If it is less than 2 , the corrosion resistance of the weld repaired part cannot be maintained. Therefore, the TF used in the present invention
S is 30 to 250 mg / m 2 of the total amount of the coating in terms of metal chromium (total chromium amount) per one side of the steel sheet, and 0.5 to 0.5 in each case of the chromium hydrated oxide layer in terms of metal chromium. 1515 mg / m 2 .

【0020】缶胴内面側および缶胴外面側で使用される
ワイヤの断面積(ワイヤ長手方向と直角な断面での断面
積)は0.5〜3.0mm2とする。このワイヤの断面
積が0.5mm2未満では熱容量が小さく、ワイヤ/板
界面の冷却を十分に行うことができない。一方、ワイヤ
の断面積が3.0mm2を超えると熱伝導の面からの冷
却効果が飽和するだけでなく、高価な銅ワイヤを不必要
に使用することになるため経済性を損なう。なお、ワイ
ヤは熱伝導の面から銅を主成分とするものが望ましい。
The cross-sectional area of the wire used on the inner side of the can body and the outer side of the can body (cross-sectional area in a cross section perpendicular to the longitudinal direction of the wire) is 0.5 to 3.0 mm 2 . If the cross-sectional area of the wire is less than 0.5 mm 2 , the heat capacity is small and the wire / plate interface cannot be sufficiently cooled. On the other hand, if the cross-sectional area of the wire exceeds 3.0 mm 2 , not only does the cooling effect from the viewpoint of heat conduction saturate, but expensive copper wires are unnecessarily used, which impairs economic efficiency. The wire is preferably composed mainly of copper from the viewpoint of heat conduction.

【0021】なお、本発明において缶胴内面側および缶
胴外面側の各電極に使用するワイヤの断面形状は、上記
の条件を満足する限りにおいて任意であり、例えば、図
4に示すような断面形状(ワイヤ長手方向に対して直角
な断面での断面形状)とすることもできる。これらのう
ち(a)と(b)が上記図1に示すワイヤ断面形状の変形
例、(c)と(d)が上記図2に示すワイヤ断面形状の変形
例である。また、ナゲットピッチは容器の気密性を左右
する重要な因子となる。ぶりきやTFSの研磨材のよう
に接触抵抗が低く圧接性の良い材料では、低い加圧力で
通電が開始するため通電発熱領域が広く、溶接可能なナ
ゲットピッチを例えば2mm以上の広い範囲にとること
ができる。また、鋼板が電極に噛み込まれてから通電開
始までの時間が短いため、ナゲットピッチを小さくする
ことも可能である。
In the present invention, the cross-sectional shape of the wire used for each electrode on the inner surface of the can body and the outer surface of the can body is arbitrary as long as the above conditions are satisfied. A shape (a cross-sectional shape in a cross section perpendicular to the longitudinal direction of the wire) can also be used. Among these, (a) and (b) are modified examples of the wire cross-sectional shape shown in FIG. 1, and (c) and (d) are modified examples of the wire cross-sectional shape shown in FIG. Also, the nugget pitch is an important factor that affects the airtightness of the container. In the case of a material having a low contact resistance and a good pressure contact property, such as a tinplate or TFS abrasive, the energization and heat generation region is wide because the energization is started with a low pressing force, and the weldable nugget pitch is set to a wide range of, for example, 2 mm or more. be able to. Further, since the time from when the steel sheet is caught in the electrode until the start of energization is short, the nugget pitch can be reduced.

【0022】これに対してTFSのような高接触抵抗の
材料を無研磨溶接した場合、高い加圧力でしか通電が開
始ないために通電発熱領域が狭く、ナゲットピッチを
1.8mm超にすると未入熱の部分が生じるため適切な
気密性が得られなくなる。また、鋼板が電極に噛み込ま
れてから通電が開始するまでの時間が長いため、ナゲッ
トピッチを0.6mm未満すると溶接可能電流範囲が小
さくなり、ワイヤ形状や皮膜付着量を最適化しても溶接
適正条件が得られない。
On the other hand, when a material having a high contact resistance such as TFS is welded by non-polishing, energization is started only at a high pressing force, so that the energization heat generation area is narrow. If the nugget pitch exceeds 1.8 mm, it is not possible. Since a heat input portion is generated, appropriate airtightness cannot be obtained. In addition, since the time from when the steel sheet bites into the electrode to when energization starts is long, if the nugget pitch is less than 0.6 mm, the range of current that can be welded will be small, and even if the wire shape and coating amount are optimized, welding Appropriate conditions cannot be obtained.

【0023】TFSのように高接触抵抗の材料では、上
下電極にかかる加圧力を高くすることにより皮膜の破壊
および圧接が促進され、通電経路の安定確保と溶接強度
の向上が可能になる。ワイヤ形状や皮膜付着量を最適化
しても上下電極間にかかる加圧力が30kgf未満の場
合には圧接が不十分となるため、ACRが適切に得られ
ず、また十分な溶接強度も得られない。一方、上下電極
間にかかる加圧力が150kgfを超えると、鋼板が電
極間にスムーズに噛み込まれなくなり、溶接の始端部で
溶接速度変動に伴う過剰発熱を生じてしまう。以上の理
由から本発明では、ナゲットピッチが0.6〜1.8m
m、缶胴内面側と缶胴外面側の電極間の加圧力が30〜
150kgfであることを条件とする。
In the case of a material having a high contact resistance such as TFS, by increasing the pressure applied to the upper and lower electrodes, the destruction and press-contact of the film are promoted, and it is possible to secure a stable current path and improve the welding strength. Even if the wire shape and the coating amount are optimized, if the pressure applied between the upper and lower electrodes is less than 30 kgf, the pressure contact will be insufficient, so that the ACR cannot be obtained properly and the sufficient welding strength cannot be obtained. . On the other hand, if the pressing force applied between the upper and lower electrodes exceeds 150 kgf, the steel sheet will not be smoothly bitten between the electrodes, and excessive heat will be generated at the start end of welding due to a change in welding speed. For the above reasons, in the present invention, the nugget pitch is 0.6 to 1.8 m.
m, the pressure between the electrodes on the inner surface of the can body and the outer surface of the can body is 30 to
The condition is 150 kgf.

【0024】ぶりきやTFSの研磨材のような低接触抵
抗の材料を本発明の溶接条件で溶接した場合、ナゲット
幅が広くなり過ぎて外観を損ねたり、過剰な電流が必要
となるため溶接機電源への負荷が大きくなり過ぎて溶接
が困難となる。したがって、本発明のワイヤシーム溶接
法を既存の溶接機を用いて実施するに当っては、操業性
の観点からぶりきの溶接やTFSの研磨材も同じ溶接機
を用いて行われることを考慮し、缶胴内面側電極と缶胴
外面側電極の直前に、それぞれ複数の別々のワイヤフォ
ーミングロールを配置し、適宜ワイヤの切換えが行える
ようにしたり、或いは複数の溝を有するフォーミングロ
ールを缶胴内面側電極と缶胴外面側電極の直前にそれぞ
れ配置することが望ましい。
When a low contact resistance material such as a tinplate or TFS abrasive is welded under the welding conditions of the present invention, the nugget width becomes too wide to impair the appearance or an excessive current is required. The load on the machine power becomes too large and welding becomes difficult. Therefore, when implementing the wire seam welding method of the present invention using an existing welding machine, it is considered that tinplate welding and TFS abrasives are also performed using the same welding machine from the viewpoint of operability. Immediately before the can body inner surface side electrode and the can body outer surface side electrode, a plurality of separate wire forming rolls are respectively arranged so that the wires can be switched appropriately, or a forming roll having a plurality of grooves can be formed on the inner surface of the can body. It is desirable to arrange them immediately before the side electrode and the electrode on the outer surface of the can body, respectively.

【0025】[0025]

【実施例】無研磨のTFSまたはぶりきを素材とし、溶
接ワイヤ幅に比較して鋼板の重ね幅の大きい富士ウェル
ダー型溶接機を用いて缶胴のワイヤシーム溶接を行っ
た。本実施例では溶接速度10〜30m/分で4〜10
0缶の連続製缶を実施し、溶接可能電流範囲(ACR)
の有無と得られた缶胴の耐食性を評価した。なお、缶の
評価において電流の安定しない始終缶(缶胴を連続製缶
した際に最初と最後に製缶された缶胴)は評価の対象外
とした。
EXAMPLE A can body was subjected to wire seam welding using an unpolished TFS or tinplate as a raw material, and using a Fuji welder type welding machine in which a steel sheet overlap width was larger than a welding wire width. In this embodiment, the welding speed is 4 to 10 at a welding speed of 10 to 30 m / min.
Conducted continuous can-making of 0 cans, weldable current range (ACR)
Was evaluated and the corrosion resistance of the obtained can body was evaluated. In the evaluation of the cans, the cans whose current was not stable (can bodies made first and last when the can bodies were continuously made) were excluded from the evaluation.

【0026】各電極のワイヤは、電極にワイヤが供給さ
れる直前のワイヤフォーミングロールに複数の溝を設
け、所望の断面形状になるようにした。本実施例で用い
たワイヤの断面形状(ワイヤ長手方向に対して直角な断
面での断面形状)を図5に示す。これらのうち、Aは従
来法で使用されている断面形状のワイヤ、また、B,C
は本発明法で使用される断面形状のワイヤである。本発
明例では、これらワイヤA〜Cを図1および図2に示す
ような組み合わせで使用した。
The wire of each electrode was provided with a plurality of grooves on a wire forming roll immediately before the wire was supplied to the electrode, so that the wire had a desired cross-sectional shape. FIG. 5 shows a cross-sectional shape (a cross-sectional shape at a cross-section perpendicular to the longitudinal direction of the wire) of the wire used in this example. Of these, A is a wire having a sectional shape used in the conventional method, and B and C are
Is a wire having a sectional shape used in the method of the present invention. In the example of the present invention, these wires A to C were used in a combination as shown in FIGS.

【0027】ACRは、適正溶接強度が得られなくなる
電流下限設定と過剰発熱を生じる電流上限設定の間の電
流範囲とし、テア試験による下限電流評価とスプラッシ
ュやチリ発生の有無による上限電流評価を実施し、下記
により評価した。 ○:十分な溶接可能電流範囲あり △:溶接可能電流範囲はあるが狭い ×:溶接可能電流範囲なし
The ACR is a current range between the lower limit of the current at which a proper welding strength cannot be obtained and the upper limit of the current at which excessive heat is generated. The lower limit current is evaluated by a tear test and the upper limit current is evaluated based on the presence or absence of splash or dust. And evaluated according to the following. ○: Sufficient weldable current range is available △: Weldable current range is available but narrow ×: No weldable current range

【0028】また、耐食性は、始終缶を除く各缶胴をも
とに製造された容器に水溶性内容物を充填して室温で3
ヵ月貯蔵した後の溶接補修部の発錆状況を、下記により
評価した。 ○:発錆なし ×:発錆あり なお、溶接可能電流範囲が存在しなかった実施例につい
ては、実質的な製缶を行うことができなかったため、耐
食性の評価を行うことができなかった。また、溶接部の
外観については溶接部を目視で観察し、下記により評価
した。 ○:溶接部の色ムラなし ×:溶接部の色ムラあり
The corrosion resistance can be measured at room temperature by filling a water-soluble content into a container manufactured based on each can body except for the can at all times.
The rusting state of the weld repaired part after storage for months was evaluated by the following. :: no rusting ×: rusting occurred Note that in Examples where there was no weldable current range, the corrosion resistance could not be evaluated because substantial canning could not be performed. The appearance of the weld was visually observed and evaluated as follows. ○: No color unevenness of welded part ×: Color unevenness of welded part

【0029】ACRと耐食性を評価した結果を、素材鋼
板の種類および溶接条件とともに表1〜表8に示す。表
1〜表8において、本発明例はいずれも十分な溶接可能
電流範囲があり、また製造された缶胴は耐食性にも優れ
ている。これに対して、鋼板に接触すべき部分の溶接部
幅方向における外形が弧状であるワイヤ(ワイヤA)を
缶胴内面側と缶胴外面側の両電極に使用した比較例9、
比較例10は、ワイヤ/板界面で過剰発熱を生じるた
め、ACRが適切に得られていない。
The results of the evaluation of the ACR and the corrosion resistance are shown in Tables 1 to 8 together with the types of the steel sheets and the welding conditions. In Tables 1 to 8, all of the examples of the present invention have a sufficient weldable current range, and the manufactured can bodies have excellent corrosion resistance. On the other hand, Comparative Example 9 in which a wire (wire A) having an arcuate outer shape in a welded portion width direction of a portion to be in contact with a steel plate was used for both electrodes on the inner side of the can body and the outer side of the can body,
In Comparative Example 10, excessive heat was generated at the wire / plate interface, and thus ACR was not properly obtained.

【0030】また、比較例1〜比較例8、比較例11〜
比較例15は、缶胴内面側および缶胴外面側の電極のワ
イヤとして、鋼板と接触すべき部分の溶接部幅方向にお
ける外形が直線状部を有するワイヤを用いているが、他
の条件が本発明範囲を満足していないため本発明の効果
が十分に得られていない。このうち比較例2は、ワイヤ
の直線状部の長さL(mm)と鋼板の重ね幅W(mm)
の関係がW>L+1.5であるため溶接部の鋼板エッジ
部分が浮き上がり、溶接部のシール性に問題を生じるた
め耐食性が劣っている。
Comparative Examples 1 to 8 and Comparative Examples 11 to
Comparative Example 15 uses a wire having a linear shape in the width direction of the welded portion of a portion to be brought into contact with the steel plate as a wire of the electrode on the inner surface side of the can body and the outer surface side of the can body. Since the present invention does not satisfy the scope of the present invention, the effects of the present invention have not been sufficiently obtained. In Comparative Example 2, the length L (mm) of the linear portion of the wire and the overlap width W (mm) of the steel plate were used.
Is W> L + 1.5, the edge of the steel plate at the welded portion rises up, causing a problem in the sealability of the welded portion, resulting in poor corrosion resistance.

【0031】比較例1と比較例3は、ワイヤの断面積が
0.5mm2未満であるためワイヤ/板界面の冷却能力
が不足し、チリを生じてしまう。このため適正なACR
が得られていない。また、比較例3はワイヤの直線状部
の長さLが鋼板の板厚の1.0倍未満であるため、実缶
として必要な溶接強度が十分に得られない。さらに、比
較例3はワイヤの直線状部の長さL(mm)と鋼板の重
ね幅W(mm)の関係がW>L+1.5であり、本発明
範囲から外れている。比較例4は両電極間の加圧力が3
0kgf未満であるため、加圧不足によりACRが適切
に得られず、また溶接強度も不十分となる。比較例7と
比較例8は両電極間の加圧力が150kgfを超えてい
るため、両電極間への板噛み込み不良に伴う溶接速度の
変動により溶接始端部の過剰発熱を生じ、このため溶接
部の外観性が劣る。
In Comparative Examples 1 and 3, since the cross-sectional area of the wire is less than 0.5 mm 2 , the cooling capacity of the wire / plate interface is insufficient, and dust is generated. Therefore, proper ACR
Is not obtained. Further, in Comparative Example 3, since the length L of the linear portion of the wire is less than 1.0 times the thickness of the steel plate, sufficient welding strength required as an actual can cannot be obtained. Furthermore, in Comparative Example 3, the relationship between the length L (mm) of the linear portion of the wire and the overlap width W (mm) of the steel plate is W> L + 1.5, which is outside the scope of the present invention. In Comparative Example 4, the pressure between both electrodes was 3
Since it is less than 0 kgf, ACR cannot be appropriately obtained due to insufficient pressurization, and welding strength becomes insufficient. In Comparative Example 7 and Comparative Example 8, since the pressing force between the two electrodes exceeded 150 kgf, excessive heat generation occurred at the welding start end due to a change in the welding speed due to poor plate biting between the two electrodes. The appearance of the part is inferior.

【0032】比較例5はナゲットピッチが1.8mmを
超えているためナゲットピッチ間に未溶接部を生じてお
り、このため適切な溶接強度が得られない。また、外観
についても変色ムラを生じている。比較例6はナゲット
ピッチが0.6mm未満であるため、発熱が不均一にな
ってチリを生じ易い。また、外観についても変色ムラを
生じている。
In Comparative Example 5, since the nugget pitch exceeded 1.8 mm, an unwelded portion was formed between the nugget pitches, so that an appropriate welding strength could not be obtained. In addition, discoloration unevenness occurs in the appearance. In Comparative Example 6, since the nugget pitch is less than 0.6 mm, the heat generation becomes uneven and dust tends to occur. In addition, discoloration unevenness occurs in the appearance.

【0033】比較例11と比較例12は、TFSのクロ
ム水和酸化物量と金属クロム量(総クロム量)がそれぞ
れ本発明の規定する上限値を超えているため、適正なA
CRが得られていない。一方、比較例13と比較例15
は、TFSのクロム水和酸化物量と金属クロム量(総ク
ロム量)がそれぞれ本発明の規定する下限値未満である
ため、耐食性が劣っている。また、比較例14は本発明
の規定する溶接条件でぶりきを溶接した例であるが、無
研磨TFSを対象とする本発明例と違って適正なACR
が得られていない。なお、従来例は15m/分以下の遅
い溶接速度でワイヤシーム溶接を行った例であり、この
ように溶接速度が遅い場合には、従来技術でも外観の変
色ムラは生じるもののTFSの無研磨溶接が可能である
ことを示している。
In Comparative Examples 11 and 12, since the amount of hydrated chromium oxide of TFS and the amount of chromium metal (total chromium amount) each exceeded the upper limit specified by the present invention, the appropriate A
CR has not been obtained. On the other hand, Comparative Examples 13 and 15
Is poor in corrosion resistance because the amount of hydrated chromium oxide of TFS and the amount of chromium metal (total chromium amount) are each less than the lower limit specified by the present invention. Comparative Example 14 is an example in which a tin plate was welded under the welding conditions specified by the present invention.
Is not obtained. Note that the conventional example is an example in which wire seam welding is performed at a low welding speed of 15 m / min or less. When the welding speed is low as described above, the non-polishing welding of TFS is performed with the conventional technology, although the discoloration unevenness of the appearance occurs even in the conventional technology. Indicates that it is possible.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【表7】 [Table 7]

【0041】[0041]

【表8】 [Table 8]

【0042】[0042]

【発明の効果】以上述べたように本発明によれば、TF
Sを素材としてワイヤシーム溶接により金属容器の缶胴
を製造する際に、チリ発生等の問題を生じることなく無
研磨のTFSを適切且つ安定的に高速溶接することがで
きる。
As described above, according to the present invention, TF
When manufacturing a can body of a metal container by wire seam welding using S as a raw material, non-polished TFS can be appropriately and stably welded at high speed without causing problems such as generation of dust.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法による溶接状況の一例を、溶接部を断
面した状態で示す説明図
FIG. 1 is an explanatory view showing an example of a welding situation according to the method of the present invention in a state where a welded portion is cross-sectionally shown.

【図2】本発明法による溶接状況の他の例を、溶接部を
断面した状態で示す説明図
FIG. 2 is an explanatory view showing another example of a welding situation according to the method of the present invention in a state in which a welded portion is sectioned.

【図3】従来法による溶接状況を、溶接部を断面した状
態で示す説明図
FIG. 3 is an explanatory view showing a welding state according to a conventional method in a state where a welded portion is sectioned.

【図4】本発明法において缶胴内面側に用いるワイヤの
断面形状例を示す説明図
FIG. 4 is an explanatory view showing an example of a cross-sectional shape of a wire used on the inner surface side of a can body in the method of the present invention.

【図5】実施例で用いたワイヤの断面形状を示す説明図FIG. 5 is an explanatory diagram showing a cross-sectional shape of a wire used in an example.

【符号の説明】[Explanation of symbols]

1,2…ワイヤ、3…直線状部、4…弧状部 1, 2, wire, 3 linear part, 4 arc part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の表面に金属クロム層とその上層の
クロム水和酸化物層とからなる皮膜を有し、該皮膜の金
属クロム換算での総付着量が鋼板片面当たり30〜25
0mg/m2、クロム水和酸化物層の金属クロム換算で
の付着量が鋼板片面当たり0.5〜15mg/m2であ
るティンフリー鋼板を、研磨することなく15m/分以
上のワイヤ送り速度でワイヤシーム溶接することにより
缶胴を製造する方法において、 缶胴内面側および缶胴外面側で用いる各電極のワイヤ
が、その長手方向と直角な断面での断面積が0.5〜
3.0mm2であって、被溶接ティンフリー鋼板と接触
すべき部分の溶接部幅方向における外形が被溶接ティン
フリー鋼板の板厚の1.0〜4.0倍の長さの直線状部
を有し、 溶接部における被溶接ティンフリー鋼板の重ね幅W(m
m)が、缶胴内面側および缶胴外面側で用いる各電極の
ワイヤの前記直線状部の長さL(mm)との関係で、 L≦W<L+1.5 を満足し、缶胴内面側と缶胴外面側の電極間の加圧力が
30〜150kgf、溶接部のナゲットピッチが0.6
〜1.8mmであることを特徴とするティンフリー鋼板
の高速無研磨溶接方法。
1. A steel sheet having a coating comprising a chromium metal layer and an overlying chromium hydrate oxide layer on the surface of the steel sheet, wherein the total amount of the coating in terms of metal chromium is 30 to 25 per one side of the steel sheet.
A wire feed speed of 15 m / min or more without polishing a tin-free steel sheet having a chromium hydrated oxide layer of 0.5 mg / m 2 per one side of 0 mg / m 2 and a chromium hydrated oxide layer of 0.5 to 15 mg / m 2 per one side of the steel sheet. In the method of manufacturing a can body by wire seam welding, the wire of each electrode used on the inner surface side of the can body and the outer surface side of the can body has a cross-sectional area of 0.5 to 0.5 in a cross section perpendicular to the longitudinal direction.
A 3.0 mm 2, linear portion of 1.0 to 4.0 times the length of the plate thickness of the welded tin-free steel sheet and outer shape to be welded tin-free steel plate in the welded portion width direction of the portion to be contacted And the overlap width W (m) of the tin-free steel plate to be welded at the welded portion.
m) satisfies L ≦ W <L + 1.5 in relation to the length L (mm) of the linear portion of each electrode wire used on the inner side of the can body and the outer side of the can body. Pressure between the electrode on the outer side and the outer surface of the can body is 30 to 150 kgf, and the nugget pitch of the weld is 0.6
A high-speed non-polishing welding method for a tin-free steel sheet, which has a thickness of about 1.8 mm.
【請求項2】 缶胴内面側および缶胴外面側で用いる各
電極のワイヤが、被溶接ティンフリー鋼板と接触すべき
部分の溶接部幅方向における直線状部の両端部に、曲率
半径Rが0.1mm以上の弧状部を有することを特徴と
する請求項1に記載のティンフリー鋼板の高速無研磨溶
接方法。
2. The curvature radius R is set at both ends of a linear portion in a width direction of a welded portion of a portion to be brought into contact with a tin-free steel plate to be welded, the wires being used on the inner surface side of the can body and the outer surface side of the can body. The high-speed non-polishing welding method for a tin-free steel sheet according to claim 1, having an arc-shaped portion of 0.1 mm or more.
JP35633396A 1996-12-25 1996-12-25 High-speed non-polishing welding method for tin-free steel sheet Expired - Fee Related JP3281562B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35633396A JP3281562B2 (en) 1996-12-25 1996-12-25 High-speed non-polishing welding method for tin-free steel sheet
SG1997004510A SG53136A1 (en) 1996-12-25 1997-12-17 Wire-seam-welding method and apparatus therefor
TW086119738A TW363003B (en) 1996-12-25 1997-12-23 Wire-seam-welding method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35633396A JP3281562B2 (en) 1996-12-25 1996-12-25 High-speed non-polishing welding method for tin-free steel sheet

Publications (2)

Publication Number Publication Date
JPH10180453A true JPH10180453A (en) 1998-07-07
JP3281562B2 JP3281562B2 (en) 2002-05-13

Family

ID=18448515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35633396A Expired - Fee Related JP3281562B2 (en) 1996-12-25 1996-12-25 High-speed non-polishing welding method for tin-free steel sheet

Country Status (1)

Country Link
JP (1) JP3281562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192972A (en) * 2021-12-07 2022-03-18 潍坊新松机器人自动化有限公司 Pretreatment device for surface welding of section bar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192972A (en) * 2021-12-07 2022-03-18 潍坊新松机器人自动化有限公司 Pretreatment device for surface welding of section bar
CN114192972B (en) * 2021-12-07 2023-09-19 潍坊新松机器人自动化有限公司 Profile surface welding pretreatment device

Also Published As

Publication number Publication date
JP3281562B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
EP0865860B1 (en) Method of lap joining two kinds of metallic members having different melting points
JP4728926B2 (en) Lap resistance spot welding method
EP0194608B1 (en) Method of lap welding can blank consisting of metal sheet or the like
JP2007268604A (en) Resistance spot welding method
JP2009241112A (en) Resistance spot welding method
JP2008161877A (en) Lap resistance spot welding method
EP1149654B1 (en) Method of resistance spot welding with optimized welding electrodes for aluminium
US6545244B1 (en) Conductive heat seam welding
CN112139645B (en) Narrow lap rolling seam welding method for high-silicon thin-specification oriented silicon steel
JP3281562B2 (en) High-speed non-polishing welding method for tin-free steel sheet
JP3254156B2 (en) High-speed non-polishing welding method of electrolytic chromated steel sheet
JPH10180452A (en) High-speed non-grinding welding method for tin-free steel plate
JP3637815B2 (en) Metal tin coating equipment and seam welding machine for copper wire for seam welding
JPH10180451A (en) High-speed non-grinding welding method for electrolytic chromate treated steel plate
US4886953A (en) Electrode wire for a roller seam welding machine
JPH11188485A (en) Manufacture of welding can body
JP3616716B2 (en) High-speed non-abrasive welding method for can body
JP3680737B2 (en) Seam welding method for thin chrome plated steel sheet
JP4598626B2 (en) Seam welding method for sink
JP7479757B2 (en) Spot welding method
JPH0243588B2 (en)
JP3695682B2 (en) Spot welding equipment
JP2003251470A (en) Resistance spot welding method for steel plates
JPH061349A (en) Can with welded body
JPS6324795B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees