JPH10180428A - Method for cutting off cast slab in continuous casting of steel - Google Patents

Method for cutting off cast slab in continuous casting of steel

Info

Publication number
JPH10180428A
JPH10180428A JP35965896A JP35965896A JPH10180428A JP H10180428 A JPH10180428 A JP H10180428A JP 35965896 A JP35965896 A JP 35965896A JP 35965896 A JP35965896 A JP 35965896A JP H10180428 A JPH10180428 A JP H10180428A
Authority
JP
Japan
Prior art keywords
slab
cutting
cast slab
steel
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35965896A
Other languages
Japanese (ja)
Other versions
JP3684731B2 (en
Inventor
Katsuhiko Yamada
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35965896A priority Critical patent/JP3684731B2/en
Publication of JPH10180428A publication Critical patent/JPH10180428A/en
Application granted granted Critical
Publication of JP3684731B2 publication Critical patent/JP3684731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the casting capacity by executing rolling reduction only to a cutting-off scheduled position of a cast slab until the center part of the cast slab finishes solidification, mutually press-sticking the inner surface of the solidified shell of the cast slab, enclosing molten core at the downstream side and quickly cutting off. SOLUTION: Molten steel Me supplied into a mold 3 from a ladle 1 through a tundish 2 is cooled with the mold 3 and made to the cast slab 5 while forming the solidified shell inner surface 8. The cast slab 5 is drawn out through a secondary cooling zone 4 while straight extending with pinch rolls 6 in the condition of remaining the molten core in the inner part of the cast slab 5. When the cutting-off scheduled position P of the cast slab 5 reaches a press 7, the rolling reduction is locally executed to the cast slab 5 in the vertical direction with the press 7 and the solidified shell inner surfaces 8 are mutually press-stuck and the molten core 9 at the downstream side is enclosed. When the scheduled position P reaches a shearing machine 10, the cast slab 5 is cut off at the scheduled position P to make the cast slab 11 enclosing the molten core. The cast slab 5 can cut off without waiting till completing the solidification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は鋼の連続鋳造方法に関
し、鋳造能率を向上させる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel, and more particularly to a method for improving casting efficiency.

【0002】[0002]

【従来の技術】連続鋳造法によって鋼片を造る場合、通
常鋳片が中心まで凝固した後所定の長さに切断され鋼片
とされている。鋳造能率はよく知られているように正方
形断面の場合(1)式で示される。 Pc=4ρksL ・・・・・・・・・・・(1) Pc; 鋳造能率 (Kg/min) ρ ; 鋼の密度 (Kg/m) k; 凝固定数 (m/min0.6) s; 形状係数 (正方形の場合、約1.3) L; 機長(鋳込み面から凝固完了位置までの長さ、
m) 鋳造能率Pcは機長Lに制約され、且つ冷却の強さに関
わる凝固係数kに依存する。ちなみに鋳片断面寸法は無
関係である。最大鋳造能率は適正な冷却条件内で中心部
の凝固が切断直前に完了する引き抜き速度の時に得られ
る。従って、それ以上の能率を必要とする場合、機長L
を増大させる改造を行うかストランド数を増加させて対
応するという大きな問題があった。
2. Description of the Related Art When a steel slab is manufactured by a continuous casting method, the slab is usually solidified to a center and then cut into a predetermined length to obtain a slab. As is well known, the casting efficiency is expressed by equation (1) for a square cross section. Pc = 4ρk 2 sL (1) Pc; Casting efficiency (Kg / min) ρ; Density of steel (Kg / m 3 ) k; Solidification constant (m / min 0.6) ) S; Shape factor (approximately 1.3 for a square) L; Machine length (length from casting surface to solidification completion position,
m) The casting efficiency Pc is limited by the machine length L and depends on the solidification coefficient k related to the cooling strength. Incidentally, the cross-sectional dimension of the slab is irrelevant. The maximum casting efficiency is obtained at a drawing speed at which the solidification of the central part is completed just before cutting within a proper cooling condition. Therefore, if more efficiency is required, the captain L
There has been a major problem in that remodeling to increase the number of strands or increase in the number of strands is required.

【0003】特開平5−321096にある特殊な連続
鋳造法では、鋳造能率は従来方法と比較して飛躍的に大
きくなり、(2)式で示される。 Pn=4ρkL(2/α−1) ・・・・・・・(2) α; 凝固殻厚比(凝固殻厚/表面から中心までの長
さ)
[0003] In the special continuous casting method disclosed in Japanese Patent Application Laid-Open No. 5-321096, the casting efficiency is dramatically increased as compared with the conventional method, and is expressed by equation (2). Pn = 4ρk 2 L (2 / α-1) (2) α; solidified shell thickness ratio (solidified shell thickness / length from surface to center)

【0004】この鋳造方法ではほぼ垂直に鋳込まれた鋳
片を中心部が凝固するまでに円弧状に且つ半円を越えさ
らに鋳込み面から大気圧相当静鉄圧高さ(約1.4m)
を越えて上方に引き抜くことによって真空芯の中空鋳片
が得られる。所定寸法の鋼片とするには切断に先行して
中実への圧接圧延のほか成形圧延を要する。従って設備
が大変高価になるという問題があった。
In this casting method, a nearly vertically cast slab is formed into an arc shape and a semicircle before the center portion solidifies, and furthermore, a static iron pressure height corresponding to atmospheric pressure (about 1.4 m) from the casting surface.
By pulling upward beyond the above, a hollow slab of a vacuum core is obtained. In order to obtain a steel slab having a predetermined size, prior to cutting, press rolling to a solid and forming rolling are required. Therefore, there is a problem that the equipment becomes very expensive.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような従
来の問題点を解消しようとするものであり、連続鋳造の
最終工程である鋳片の切断工程の工夫により、鋳造能率
の向上を容易に得る方法を提供するものである。
SUMMARY OF THE INVENTION The present invention is intended to solve such a conventional problem, and it is easy to improve casting efficiency by devising a slab cutting step which is a final step of continuous casting. To provide a way to obtain

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の第1は、鋼の連続鋳造法において鋳片を切断し
て鋼片とするに際して、鋳片中心部が凝固を終えるまで
に鋳片の切断予定位置の近傍のみ鋳片を圧下して凝固殻
内面を互いに圧接もしくは接近溶接せしめ下流側の溶融
芯を閉じこめた後すみやかに切断することによって溶融
芯封入鋼片とすることを特徴とする連続鋳造鋳片の切断
方法である。
Means for Solving the Problems In order to achieve the above object, a first aspect of the present invention is to cut a slab into a steel slab in a continuous casting method of steel until the center of the slab is solidified. The slab is rolled down only near the scheduled cutting position of the slab, the inner surfaces of the solidified shells are pressed or welded together, the molten core on the downstream side is closed, and then the molten core is cut immediately. Is a method of cutting a continuous cast slab.

【0007】第2の発明は、ほぼ垂直に鋳込まれた鋳片
を中心部が凝固するまでに円弧状に且つ半円を越えさら
に鋳込面から大気圧相当静鉄圧高さ(約1.4m)を越
えて上方に引き抜くことによって中空鋳片を形成する鋼
の連続鋳造法において、鋳片を切断して鋼片とするに際
して、鋳片の切断予定位置の近傍のみ鋳片を圧下して凝
固殻内面を互いに圧接もしくは接近溶接せしめ下流側の
真空芯を閉じこめた後切断することによって真空芯封入
鋼片とすることを特徴とする連続鋳造鋳片の切断方法で
ある。
According to a second aspect of the present invention, a nearly vertically cast slab is formed into an arc and a semicircle before the center solidifies, and furthermore, a static iron pressure height (about 1) corresponding to atmospheric pressure from the casting surface. In a continuous casting method of steel in which a hollow slab is formed by drawing upward beyond 0.4 m), when the slab is cut into a slab, the slab is reduced only in the vicinity of the expected cutting position of the slab. This is a method for cutting a continuous cast slab, wherein the inner surfaces of the solidified shell are pressed or welded to each other to form a vacuum core-enclosed steel piece by closing the vacuum core on the downstream side and then cutting.

【0008】 第3の発明は第1の発明、第2の発明を
それぞれ実施するに際して、凝固殻内面を互いに圧接も
しくは接近溶接せしめる工程と鋳片を切断する工程を圧
接と切断の両機能を持つ一つのせん断機でほぼ同時に処
理することを特徴とする連続鋳造鋳片の切断方法であ
る。
In the third aspect of the present invention, when the first and second aspects of the invention are implemented, the step of pressing or closely welding the inner surfaces of the solidified shell and the step of cutting the slab have both the functions of pressing and cutting. This is a method for cutting a continuous cast slab, wherein the slab is processed almost simultaneously by one shearing machine.

【0009】[0009]

【作用】以下、本発明を図面に従って説明する。図1は
第1の発明を、図2は第2の発明をそれぞれ実施する連
続鋳造機を例示する概略側面図、図3および図4は第3
の発明を実施する鋳片切断機を例示する概略側面図であ
る。
The present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view illustrating a continuous casting machine embodying the first invention, and FIG. 2 is a schematic side view illustrating a continuous casting machine embodying the second invention.
It is a schematic side view which illustrates the slab cutting machine which implements the invention of FIG.

【0010】 図1において、レードル1からタンディ
シュ2を経て鋳型3に供給された溶鋼Meは該鋳型3で
冷却され、凝固殻を形成しながら鋳片5となる。該鋳片
5は2次冷却帯4を経て鋳片5の内部に溶融芯を残した
ままピンチ・ロール6により伸直されつつ引き抜かれ
る。鋳片5上の切断予定位置Pがピンチ・ロール6の下
流に設置されたプレス7の部位に達するとプレス7が作
動して鋳片5を上下方向に且つP点を前後に挟んで局所
的に圧下し凝固殻内面8を互いに圧接させ下流側の溶融
芯9を閉じこめる。P点がプレス7のすぐ下流に設置さ
れたせん断機10の部位に達すると鋳片5はP点で切断
され、溶融芯封入鋼片11となる。溶融芯封入鋼片11
は直ちに直接もしくは保持炉を通して次工程の熱間圧延
に供給される。
In FIG. 1, molten steel Me supplied from a ladle 1 to a mold 3 via a tundish 2 is cooled by the mold 3 to form a slab 5 while forming a solidified shell. The slab 5 is drawn through the secondary cooling zone 4 while being stretched by a pinch roll 6 while leaving the molten core inside the slab 5. When the scheduled cutting position P on the slab 5 reaches the part of the press 7 installed downstream of the pinch roll 6, the press 7 operates to locally place the slab 5 vertically and sandwich the point P back and forth. And the inner surfaces 8 of the solidified shell are pressed against each other to close the molten core 9 on the downstream side. When the point P reaches the part of the shearing machine 10 installed immediately downstream of the press 7, the slab 5 is cut at the point P to become a molten core-enclosed steel slab 11. Fused core enclosed steel slab 11
Is supplied directly to the next step of hot rolling directly or through a holding furnace.

【0011】以上の構成において鋳造能率は当然(1)
式に従うが従来方式と比較して機長の意味が異なってく
る。即ち本発明では凝固完了点は切断装置の設置位置に
制限されることなく、引き抜き速度にほぼ比例して下流
に移行し、従って実効機長も同等に増加する。鋳造能率
Pmは(3)式で求めるのが簡単である。 Pm=ρDV ・・・・・・・・・・(3) ρ; 鋼の密度(Kg/m) D; 鋳片辺寸法(m) V; 引き抜き速度(m/min) 鋳造能率は引き抜き速度Vに比例し、従来方法と比較し
てV/Vcmax倍になる。ここでVcmaxは設計機
長(鋳込み面から切断装置までの長さ)によって制限さ
れた従来方法の最大引き抜き速度である。能率向上には
当然作業上、品質上の問題などを充分に勘案すべきだが
速いほど有利である。
In the above configuration, the casting efficiency is naturally (1)
According to the formula, the meaning of the captain differs from that of the conventional system. That is, in the present invention, the solidification completion point shifts downstream substantially in proportion to the drawing speed without being limited by the installation position of the cutting device, and accordingly, the effective machine length also increases. The casting efficiency Pm can be easily obtained by equation (3). Pm = ρD 2 V (3) ρ; steel density (Kg / m 3 ) D; slab side dimension (m) V; drawing speed (m / min) It is proportional to the drawing speed V and becomes V / Vcmax times as compared with the conventional method. Here, Vcmax is the maximum drawing speed of the conventional method limited by the design machine length (the length from the casting surface to the cutting device). To improve the efficiency, it is necessary to give due consideration to the problems of work and quality, but the faster the speed, the better.

【0012】凝固殻内面を互いに圧接させる装置に関し
ては、例示したプレスの他、鍛造機、ロール開閉式の圧
延機、圧下機能付きピンチ・ロールなど種々の機構が考
えられる。圧接に際して内部ワレの発生防止、鋳片引き
抜きへの追随性などへの考慮は当然である。
With respect to the apparatus for bringing the inner surfaces of the solidified shell into pressure contact with each other, various mechanisms such as a forging machine, a roll-opening-type rolling mill, and a pinch roll having a rolling-down function can be considered in addition to the illustrated press. Of course, consideration should be given to preventing the occurrence of internal cracks and the ability to follow the slab pull-out during pressure welding.

【0013】溶融芯を封入する方法に関して、例示した
ように溶融芯を持つ鋳片の凝固殻内面を圧下によって互
いに圧接せしめても良いが、圧下を鋳片の凝固殻内面が
互いに圧接する直前に止め、封入は以後の凝固進行によ
る溶接にまかせるという方法もある。この場合、圧下
力、圧下量とも小さくなり圧下に伴う問題は軽減され
る。
Regarding the method of enclosing the molten core, as illustrated, the solidified shell inner surfaces of the slab having the molten core may be pressed against each other by pressing, but the pressing is performed immediately before the solidified shell inner surfaces of the slab are pressed against each other. There is also a method of stopping and enclosing the welding by the subsequent solidification progress. In this case, both the reduction force and the reduction amount are reduced, and the problem associated with the reduction is reduced.

【0014】鋳片を切断する装置、方法に関して、例示
したせん断機の他にガス溶断機も使用できる。前者は鋳
片のくびれた部分をせん断するので刃型に工夫を要する
が圧接が更に進行するので封入性は極めて良い。切断装
置の設置位置については、溶融芯の封入方法で圧接方式
を採るか接近溶接方式を採るかで最適位置は異なる。後
者の場合圧下部位から切断部位まで相応の間隔を要す
る。
With respect to the apparatus and method for cutting a slab, a gas fusing machine can be used in addition to the shearing machine illustrated. In the former case, the constricted portion of the slab is sheared, so that the blade mold needs to be devised. However, since the pressing is further advanced, the encapsulation is extremely good. Regarding the installation position of the cutting device, the optimum position is different depending on whether a welding method is employed or a close welding method is employed depending on the method of sealing the molten core. In the latter case, a certain interval is required from the pressing part to the cutting part.

【0015】図2に従って第2の発明を説明する。第1
の発明と同様、鋳片5は2次冷却帯4を経て鋳片5の内
部に溶融芯を残したままピンチ・ロール6、ガイド・ロ
ール12によって円弧状に且つ半円を越えさらに鋳込み
面から大気圧相当静鉄圧高さ(約1.4m)を越えて上
方に引き抜かれる。そうすることにより凝固殻内部が真
空の中空鋳片14が得られる。鋳片は3/4円まで引き
上げられた後伸直ロール15により伸直される。鋳片引
き抜き軌跡上の空洞を保有する部位に配置せれたプレス
7により鋳片5上の切断予定位置Pで鋳片5を上下方向
に且つP点を前後に挟んで局所的に圧下し凝固殻内面8
を互いに圧接させ下流側の真空芯13を閉じこめる。P
点がプレス7の下流に設置されたせん断機10の部位に
達すると鋳片5はP点で切断され、真空芯封入鋼片16
となる。
The second invention will be described with reference to FIG. First
In the same manner as in the invention, the slab 5 passes through the secondary cooling zone 4 and remains in a molten core inside the slab 5 while being pinched by a pinch roll 6 and a guide roll 12 to form an arc and exceeds a semicircle and further from the casting surface. It is pulled upward beyond the static iron pressure height (about 1.4 m) equivalent to the atmospheric pressure. By doing so, a hollow cast piece 14 in which the inside of the solidified shell is vacuum is obtained. The slab is stretched by a straightening roll 15 after being raised to 3 yen. A press 7 arranged at a position holding a cavity on the slab withdrawal trajectory locally lowers the slab 5 vertically at the scheduled cutting position P on the slab 5 and sandwiches the point P back and forth to solidify the shell. Inner surface 8
Are pressed against each other to close the vacuum core 13 on the downstream side. P
When the point reaches the part of the shearing machine 10 installed downstream of the press 7, the slab 5 is cut at the point P, and the vacuum core enclosed steel slab 16
Becomes

【0016】以上の構成において、鋳造能率は特開平5
−321096に提示された既述の(2)式と全く同等
となって極めて高い値が得られる。
In the above configuration, the casting efficiency is as described in
In this case, an extremely high value is obtained, which is completely equivalent to the above-described expression (2) presented in -321096.

【0017】他方、特開平5−321096においては
中空鋳片14を引き抜き軌跡の過程で中実鋳片とするた
め圧接圧延機が、さらに所定寸法の鋼片とするため成形
圧延機も必要となる。本発明ではこれらの高価な設備を
必要としない。
On the other hand, in Japanese Unexamined Patent Publication No. Hei 5-321096, a pressure rolling mill is required to make the hollow slab 14 into a solid slab in the course of drawing locus, and a forming and rolling mill is also required to make a steel slab of a predetermined size. . The present invention does not require these expensive equipment.

【0018】凝固殻内面を互いに圧接させる装置に関し
ては、第1の発明と同様であるから説明は省略する。
The device for bringing the inner surfaces of the solidified shells into pressure contact with each other is the same as that of the first invention, and therefore the description is omitted.

【0019】真空芯の封入方法に関して、例示したよう
に真空芯を持つ鋳片の凝固殻内面を圧下によって互いに
圧接せしめても良いが、他に溶融芯を保持している部
位、例えば図2のQ点において圧下し且つその量を凝固
殻内面が互いに圧接する直前に止め、封入は以後の凝固
進行による溶接にまかせるという方法もある。
With respect to the method of enclosing the vacuum core, the inner surfaces of the solidified shells of the slab having the vacuum core may be pressed against each other by pressing as shown in the example, but other portions holding the molten core, for example, as shown in FIG. There is also a method of reducing the pressure at the point Q and stopping the amount immediately before the inner surfaces of the solidified shell are pressed against each other, and enclosing the encapsulation for subsequent welding by the progress of solidification.

【0020】鋳片の切断装置・方法に関しては、第1の
発明と同様である。
The apparatus and method for cutting a slab are the same as in the first invention.

【0021】次に第3の発明を説明する。溶融芯の直径
が鋳片外径に比べて充分小さい場合、あえて事前の圧接
処理が無くても通常のせん断機による切断によって、凝
固殻内面は切断面の直前直後の部分で簡単且つ確実に圧
接、溶接され、溶融芯が封入される。一方溶融芯が大き
くなると通常のせん断ではせん断の進行とともに、凝固
殻は押しつぶされるように変形し、圧接、溶接とも進む
が切断面での全面封鎖には至らない。鋳片の分離ととも
に大きな静鉄圧によって溶鋼流出となる。従って事前の
圧接処理は欠かせない。
Next, the third invention will be described. If the diameter of the molten core is sufficiently smaller than the outside diameter of the slab, the inner surface of the solidified shell can be simply and reliably pressed at the part immediately before and after the cut surface by cutting with a normal shearing machine even if there is no prior pressure welding treatment. , Is welded and the molten core is enclosed. On the other hand, when the molten core becomes large, the solidified shell is deformed so as to be crushed with normal shearing with the progress of shearing, and proceeds in both pressure welding and welding, but does not completely block the cut surface. As the slab is separated, the molten steel flows out due to the large static iron pressure. Therefore, prior pressure welding is indispensable.

【0022】図3は圧接と切断を一つのせん断機によっ
て処理する例を示す。圧下せん断機21は鋳片5を貫通
させるように配置され、台車機構22により作動時には
鋳片引き抜き駆動に追随するようになっている。圧接・
切断の同時処理の要所は鋳片軸方向に対して直角に前後
進する4個の金型23、24、25、26と、それらを
個別に且つ所定量を作動させて圧接および切断の機能を
果たす油圧シリンダー23C,24C,25C,26C
からなる。切断信号が入力されると、金型23、24、
25、26は所定距離前進し鋳片5を上下より圧下する
のでくびれが生ずると共に凝固殻内面8が圧接する。次
に金型23、25はそのままとし金型24、26は鋳片
を挟んだまま下降させると鋳片5は刃27、28によっ
て円滑に切断される。このようにして一つのせん断機で
溶融芯封入鋼片を造ることができる。真空芯封入鋼片の
場合も同様のせん断機で処理できる。鋳片端部形状を砲
弾状に絞ると圧延でのカミコミ性が改善され、端末部の
圧延歩留まりも向上する。端部形状の最適化や圧接、切
断工程の円滑化のため鋳片断面形状に応じて金型形状や
摺動方向などを工夫するのは当然であり、当業者にとっ
ては容易であるので説明は省略する。
FIG. 3 shows an example in which pressing and cutting are processed by one shearing machine. The reduction shearing machine 21 is arranged so as to penetrate the slab 5, and follows the slab pulling-out drive when operated by the bogie mechanism 22. Crimping
The point of the simultaneous processing of cutting is four dies 23, 24, 25, and 26 which move forward and backward at right angles to the slab axial direction, and operate them individually and by a predetermined amount to perform pressing and cutting functions. Hydraulic cylinders 23C, 24C, 25C, 26C
Consists of When the cutting signal is input, the dies 23, 24,
25 and 26 move forward by a predetermined distance and press down the slab 5 from above and below, so that constriction occurs and the inner surface 8 of the solidified shell comes into pressure contact. Next, when the dies 23 and 25 are kept as they are and the dies 24 and 26 are lowered with the slab interposed therebetween, the slab 5 is smoothly cut by the blades 27 and 28. In this way, a molten core-enclosed steel slab can be produced by one shearing machine. In the case of a vacuum core enclosed steel slab, the same shearing machine can be used. When the end of the slab is squeezed into a shell shape, the crushing property during rolling is improved, and the rolling yield at the end is also improved. It is natural to devise the mold shape and sliding direction according to the slab cross-sectional shape in order to optimize the end shape and press-contact, and to facilitate the cutting process, and it is easy for those skilled in the art to explain. Omitted.

【0023】溶融芯の大きさが相対的に中程度の場合の
第3の発明の実施例を図4に示す。圧下せん断機21は
それぞれ刃27、28を取り付けた固定金型29と摺動
金型30よりなるが、両金型にはアンビル部31、32
が設けてあって、摺動金型30が前進すると両金型の刃
27、28によって鋳片5のせん断が進行すると共に、
アンビル部31、32では鋳片切断部の近傍のみ鋳片5
を挟みつつ軽い圧下が進行する。このようにして圧接・
切断の同時処理がなされる。
FIG. 4 shows an embodiment of the third invention in which the size of the molten core is relatively medium. The reduction shearing machine 21 includes a fixed mold 29 having blades 27 and 28 attached thereto and a sliding mold 30, respectively.
Is provided, and when the sliding die 30 moves forward, shearing of the slab 5 proceeds by the blades 27 and 28 of both the dies,
In the anvil parts 31 and 32, only the slab 5
Light reduction progresses while sandwiching. In this way,
Simultaneous processing of cutting is performed.

【0024】[0024]

【実施例】鋼種SS41の棒鋼を既存のビレット用湾曲
式連続鋳造機によって試作する。その条件は、湾曲半径
5m、機長12m、鋳型断面寸法140mm角、引き抜
き速度2.6m/min切断方法はダイアゴナル・シ
ヤーを使用し、刃取り付け両金型上に切断面前後各約5
0mmのアンビル部を仮設し、切断時に約15mm圧下
する。切断後2分および5分で圧延する。比較条件とし
て、従来経験的に知られている最大引き抜き速度2.0
m/minを採る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A steel bar of the steel type SS41 is trial-produced by an existing curved continuous casting machine for billets. The conditions, curvature radius 5 m, PIC 12m, mold cross-sectional dimension 140mm square, the drawing speed 2.6 m / min o cutting method using the diagonal shear, about the cut surface before and after the upper blade mounting dies 5
A 0 mm anvil part is temporarily provided, and it is reduced by about 15 mm when cutting. Roll 2 minutes and 5 minutes after cutting. As a comparison condition, a maximum drawing speed of 2.0, which is conventionally known empirically, is used.
Take m / min.

【0025】試験結果を以下に述べる。従来条件では切
断面の周辺部は平滑、中央部はむしれ状であるが、試験
の高速鋳込みでは中央部は白熱状でむしれが大きく且つ
ひどい。しかし溶鋼の流出は無い。切断後約2分の圧延
においてビレット後端部の端面より半溶融地金が流出
し、5分後の圧延では何ら問題は無かった。以上の試験
により溶融芯が封入されたこと、溶融芯封入鋼片を適切
に保持、均熱をすることにより正常な圧延が可能である
ことが証明された。
The test results are described below. Under the conventional conditions, the peripheral portion of the cut surface is smooth and the central portion has a wavy shape. However, in the high-speed casting of the test, the central portion is incandescent and has a large and severe waving. However, there is no outflow of molten steel. In the rolling for about 2 minutes after cutting, the semi-solid metal flowed out from the end face of the billet rear end, and there was no problem in the rolling after 5 minutes. The above test proved that the molten core was encapsulated, and that normal rolling was possible by properly holding and equalizing the molten core-enclosed steel slab.

【0026】[0026]

【発明の効果】本発明によれば第1の発明では通常の連
続鋳造において引き抜き速度は機長の制限を越えて過大
に設定されるが鋳片の切断予定部を事前に圧下して凝固
殻内面を互いに圧接させているので切断時に内部の溶鋼
が流出することがない。従って鋳造能率は引き抜き速度
に比例して増加する。付加効果として鋼片は溶融芯を保
持したまま次の圧延工程に送られるので、鋼片の再加熱
・均熱、圧延動力双方で省エネルギーが図られる。
According to the present invention, in the first invention, in ordinary continuous casting, the drawing speed is set excessively beyond the limit of the machine length. Are pressed against each other, so that the molten steel does not flow out during cutting. Therefore, the casting efficiency increases in proportion to the drawing speed. As an additional effect, the slab is sent to the next rolling step while maintaining the molten core, so that energy can be saved by both reheating and soaking of the slab and rolling power.

【0027】第2の発明では先行技術がの3/4円の鋳
片引き抜き軌跡によって一旦中空鋳片を形成した後中実
への圧接圧延、所定断面寸法への成形圧延を経て切断し
鋼片とするのに対して、本発明では鋳片の切断予定部の
みを事前に圧下して真空芯を封入した後切断するので、
高価な圧接圧延設備、成形圧延設備が不要となる。先行
技術が持つ鋳造能率の飛躍的向上という効果はそのまま
発揮される。
In the second invention, the prior art forms a hollow slab once by a slab drawing trajectory of 3/4 yen, then press-rolls to a solid, forms and rolls to a predetermined cross-sectional dimension, and cuts the steel slab. On the other hand, in the present invention, since only the portion to be cut of the slab is cut down in advance and the vacuum core is sealed after cutting,
Expensive pressure rolling equipment and forming rolling equipment are not required. The effect of the dramatic improvement in the casting efficiency of the prior art is exhibited as it is.

【0028】第3の発明では、凝固殻内面の圧接による
溶融芯、もしくは真空芯の封入と鋳片の切断が一つの圧
下せん断機によって同時に処理出来るので第1の発明、
第2の発明を比較的簡単且つ低廉な設備で実施できる。
せん断機の刃型および金型の形状の工夫により鋳片両端
部の形状を絞ると圧延でのカミコミ性の向上、圧延歩留
まりの向上も得られる。
In the third invention, the sealing of the molten core or the vacuum core by pressing the inner surface of the solidified shell and the cutting of the slab can be simultaneously processed by one reduction shearing machine.
The second invention can be implemented with relatively simple and inexpensive equipment.
By narrowing the shape of both ends of the slab by devising the shapes of the blade and the die of the shearing machine, it is possible to improve the humidification in rolling and the rolling yield.

【0022】[0022]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明を実施する連続鋳造設備を例示する
概略側面図。
FIG. 1 is a schematic side view illustrating a continuous casting facility for carrying out a first invention.

【図2】第2の発明を実施する連続鋳造設備を例示する
概略側面図。
FIG. 2 is a schematic side view illustrating a continuous casting facility for implementing the second invention.

【図3】第3の発明を実施する鋳片切断機を例示する概
略側面図。
FIG. 3 is a schematic side view illustrating a slab cutter for implementing the third invention;

【図4】同様に第3の発明を実施する鋳片切断機を例示
する概略側面図。
FIG. 4 is a schematic side view illustrating a slab cutter similarly embodying the third invention.

【符号の説明】[Explanation of symbols]

1:レードル 2:タンディシュ 3:鋳型 4:2次冷却帯 5:鋳片 6:ピンチ・ロール
7:プレス 8:凝固殻内面 9:溶融芯 10:せん断機
11:溶融芯封入鋼片 12:ガイド・ロール 13:真空芯 14中空鋳
片 15:伸直ロール 16:真空芯封入鋼片 21:圧下せん断機 2
2:台車機構 23、24、25、26:金型 23C、24C、25C、26C:油圧シリンダー
27、28:刃 29:固定金型 30:摺動金型 31、32:ア
ンビル部 Me:溶鋼 P:鋳片上の切断予定位置 Q:プレ
ス設置部位の例
1: Ladle 2: Tundish 3: Mold 4: Secondary cooling zone 5: Slab 6: Pinch roll
7: Press 8: Inner surface of solidified shell 9: Melt core 10: Shearing machine
11: molten core enclosed steel slab 12: guide roll 13: vacuum core 14 hollow cast slab 15: straightening roll 16: vacuum core encapsulated steel slab 21: reduction shearing machine 2
2: Bogie mechanism 23, 24, 25, 26: Mold 23C, 24C, 25C, 26C: Hydraulic cylinder
27, 28: Blade 29: Fixed die 30: Sliding die 31, 32: Anvil part Me: Molten steel P: Scheduled cutting position on slab Q: Example of press installation site

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年4月10日[Submission date] April 10, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】特平5−321096にある特殊な連続
鋳造法では、鋳造能率は従来方法と比較して飛躍的に大
きくなり、(2)式で示される。 Pn=4ρkL(2/α−1) ・・・・・・・ (2) α; 凝固殻厚比(凝固殻厚/表面から中心までの長
さ)
[0003] In a special continuous casting in Japanese Application flat 5-321096, casting efficiency is drastically increased and as compared with the conventional method, as shown in equation (2). Pn = 4ρk 2 L (2 / α-1) (2) α; solidified shell thickness ratio (solidified shell thickness / length from surface to center)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】他方、特平5−321096においては
中空鋳片14を引き抜き軌跡の過程で中実鋳片とするた
め圧接圧延機が、さらに所定寸法の鋼片とするため成形
圧延機も必要となる。本発明ではこれらの高価な設備を
必要としない。
[0017] On the other hand, pressure rolling mill for a solid cast piece in the course of the trajectory pulling the hollow slab 14 in Japanese Application flat 5-321096 further molding mill for a steel slab of predetermined dimensions required Become. The present invention does not require these expensive equipment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造法において鋳片を切断して
鋼片とするに際して、鋳片中心部が凝固を終えるまでに
鋳片の切断予定位置の近傍のみ鋳片を圧下して凝固殻内
面を互いに圧接もしくは接近溶接せしめ下流側の溶融芯
を閉じこめた後すみやかに切断することによって溶融芯
封入鋼片とすることを特徴とする連続鋳造鋳片の切断方
法。
When a slab is cut into a slab in a continuous casting method of steel, the slab is reduced only in the vicinity of a cutting position of the slab until the center of the slab is solidified by solidifying the solidified shell. A method of cutting a continuous cast slab, wherein inner surfaces are pressed or welded to each other, a molten core on the downstream side is confined, and the molten core is cut immediately to form a molten core-enclosed steel slab.
【請求項2】 ほぼ垂直に鋳込まれた鋳片を中心部が凝
固するまでに円弧状に且つ半円を越えさらに鋳込面から
大気圧相当静鉄圧高さ(約1.4m)を越えて上方に引
き抜くことによって中空鋳片を形成する鋼の連続鋳造法
において、鋳片を切断して鋼片とするに際して、鋳片の
切断予定位置の近傍のみ鋳片を圧下して凝固殻内面を互
いに圧接もしくは接近溶接せしめ下流側の真空芯を閉じ
こめた後切断することによって真空芯封入鋼片とするこ
とを特徴とする連続鋳造鋳片の切断方法。
2. A substantially vertically cast slab is formed into an arc and a semi-circle before the center portion solidifies, and a static iron pressure height (approximately 1.4 m) corresponding to atmospheric pressure is further increased from the casting surface. In continuous casting of steel that forms a hollow slab by pulling it over and over, when cutting the slab to make a slab, the slab is pressed down only in the vicinity of the expected cutting position of the slab and the inner surface of the solidified shell A method of cutting a continuous cast slab, comprising pressing and near-welding each other to form a vacuum core-enclosed steel piece by closing a vacuum core on the downstream side and then cutting.
【請求項3】 凝固殻内面を互いに圧接もしくは接近溶
接せしめる工程と鋳片を切断する工程を圧接と切断の両
機能を持つ一つのせん断機によってほぼ同時に処理する
ことを特徴とする請求項1および請求項2に記載の方
法。
3. The method according to claim 1, wherein the step of pressing or closely welding the inner surfaces of the solidified shell to each other and the step of cutting the slab are performed almost simultaneously by one shearing machine having both functions of pressing and cutting. The method according to claim 2.
JP35965896A 1996-12-18 1996-12-18 Slab cutting method in continuous casting of steel Expired - Fee Related JP3684731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35965896A JP3684731B2 (en) 1996-12-18 1996-12-18 Slab cutting method in continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35965896A JP3684731B2 (en) 1996-12-18 1996-12-18 Slab cutting method in continuous casting of steel

Publications (2)

Publication Number Publication Date
JPH10180428A true JPH10180428A (en) 1998-07-07
JP3684731B2 JP3684731B2 (en) 2005-08-17

Family

ID=18465630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35965896A Expired - Fee Related JP3684731B2 (en) 1996-12-18 1996-12-18 Slab cutting method in continuous casting of steel

Country Status (1)

Country Link
JP (1) JP3684731B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254149A (en) * 2001-03-01 2002-09-10 Katsuhiko Yamada Continuous casting method
JP2002346710A (en) * 2001-05-29 2002-12-04 Katsuhiko Yamada Continuous casting and rolling method
WO2003009958A1 (en) * 2001-07-23 2003-02-06 Honda Giken Kogyo Kabushiki Kaisha Blank feeding method
KR100467440B1 (en) * 2002-07-30 2005-01-24 한국수력원자력 주식회사 Cutting apparatus of uranium rod
JP4544544B1 (en) * 2009-08-11 2010-09-15 山田 榮子 Forming method from continuous cast slab to steel slab
JP2013215742A (en) * 2012-04-05 2013-10-24 Eiko Yamada Method of manufacturing slab for solvent cored welding wire
JP2014065045A (en) * 2012-09-25 2014-04-17 Eiko Yamada Casting piece cutter in continuous casting of steel
JP5723051B1 (en) * 2014-10-23 2015-05-27 榮子 山田 Steel continuous casting slab cutting equipment
WO2019081142A1 (en) 2017-10-27 2019-05-02 Sms Group Gmbh Method for cutting a cast strand or intermediate strip using shears

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254149A (en) * 2001-03-01 2002-09-10 Katsuhiko Yamada Continuous casting method
JP2002346710A (en) * 2001-05-29 2002-12-04 Katsuhiko Yamada Continuous casting and rolling method
WO2003009958A1 (en) * 2001-07-23 2003-02-06 Honda Giken Kogyo Kabushiki Kaisha Blank feeding method
US6981303B2 (en) 2001-07-23 2006-01-03 Honda Giken Kogyo Kabushiki Kaisha Blank feeding method
KR100467440B1 (en) * 2002-07-30 2005-01-24 한국수력원자력 주식회사 Cutting apparatus of uranium rod
JP2011036882A (en) * 2009-08-11 2011-02-24 Eiko Yamada Method for forming continuously cast slab into steel billet
JP4544544B1 (en) * 2009-08-11 2010-09-15 山田 榮子 Forming method from continuous cast slab to steel slab
JP2013215742A (en) * 2012-04-05 2013-10-24 Eiko Yamada Method of manufacturing slab for solvent cored welding wire
JP2014065045A (en) * 2012-09-25 2014-04-17 Eiko Yamada Casting piece cutter in continuous casting of steel
JP5723051B1 (en) * 2014-10-23 2015-05-27 榮子 山田 Steel continuous casting slab cutting equipment
WO2019081142A1 (en) 2017-10-27 2019-05-02 Sms Group Gmbh Method for cutting a cast strand or intermediate strip using shears
DE102017219289A1 (en) 2017-10-27 2019-05-02 Sms Group Gmbh Method for separating a cast strand or intermediate strip by means of a pair of scissors
CN111278586A (en) * 2017-10-27 2020-06-12 Sms集团有限公司 Method for dividing a cast strand or an intermediate strip by means of a shearing machine
CN111278586B (en) * 2017-10-27 2021-11-19 Sms集团有限公司 Method for dividing a cast strand or an intermediate strip by means of a shearing machine
US11529670B2 (en) 2017-10-27 2022-12-20 Sms Group Gmbh Method for cutting a cast strand or intermediate strip using shears

Also Published As

Publication number Publication date
JP3684731B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
EP0655288B1 (en) Continuous casting process and continuous casting/rolling process for steel
JPH10180428A (en) Method for cutting off cast slab in continuous casting of steel
JP3139402B2 (en) Unsolidified rolling method of slab
US3606785A (en) Apparatus and method for eliminating or reducing the internal flaws of semifinished products,especially at cast ingots,blocks,blooms,slabs,billets or the like
JP5477269B2 (en) Continuous casting method for slabs
US5348075A (en) The manufacture of thin metal slab
JP3218361B2 (en) Continuous casting of steel and continuous casting and rolling
JP4544544B1 (en) Forming method from continuous cast slab to steel slab
JPH08164460A (en) Production of continuously cast slab having good internal quality
RU2013184C1 (en) METHOD OF CONTINUOUS CASTING OF METAL STRIP WITH THE THICKNESS OF LESS THAN 10 mm
JP3214379B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe
JPH06126406A (en) Method for improving internal quality of continuously cast slab
JP2945060B2 (en) Manufacturing method of continuous cast slab without center porosity
JP4186661B2 (en) Internal oxidation prevention device for slabs
WO2013175536A1 (en) Continuous casting method for slab
JPH09276993A (en) Light rolling reduction method at end stage of solidification in rotary continuous casting
JP2001150104A5 (en)
JPS5819373B2 (en) Forging method for metal materials
JPH0899156A (en) Method for continuously squeezing cast slab strand in continuous casting
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JP2987009B2 (en) Large reduction method of slab strand in continuous casting.
JPH10328711A (en) Method for continuously casting steel
JP3317260B2 (en) Manufacturing method of round billet slab by continuous casting
JPH07227657A (en) Method for improving inner quality of continuously cast slab by large rolling reduction under unsolidified condition
JP3221784B2 (en) Gas cutting method for continuous casting slab

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees