JPH10180120A - Honeycomb structure - Google Patents

Honeycomb structure

Info

Publication number
JPH10180120A
JPH10180120A JP9048747A JP4874797A JPH10180120A JP H10180120 A JPH10180120 A JP H10180120A JP 9048747 A JP9048747 A JP 9048747A JP 4874797 A JP4874797 A JP 4874797A JP H10180120 A JPH10180120 A JP H10180120A
Authority
JP
Japan
Prior art keywords
honeycomb structure
corrugated
corrugated sheet
sheet
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9048747A
Other languages
Japanese (ja)
Inventor
Masayuki Takei
正幸 竹井
Akio Iwamoto
皓夫 岩本
Hideji Kobayashi
秀次 小林
Takanobu Watanabe
高延 渡辺
Daisuke Fujita
大祐 藤田
Masayoshi Ichiki
正義 市来
Masaki Akiyama
正樹 秋山
Kazuhiro Kondo
一博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP9048747A priority Critical patent/JPH10180120A/en
Publication of JPH10180120A publication Critical patent/JPH10180120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb structure which can make a catalyst material demonstrate its intrinsic properties sufficiently when used as a catalyst. SOLUTION: A honeycomb structure is formed by laminating two kinds of corrugated sheets 2, 3 alternately. The direction of the corrugating axis 2a of one sheet 2 is shifted clockwise and that of the corrugation axis 3a of the other sheet 3 are shifted counterclockwise respectively from the longitudinal direction (c) of the structure. The angles θ1 , θ2 formed by the corrugation axes 2a, 3a of the corrugated sheet 2, 3 and the longitudinal direction (c) of the structure are arranged to be less than 45 deg., preferably 5-15 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トンネルに設置
されるNOx除去装置の吸着剤として利用されたり、排
ガス脱硝装置に充填される脱硝触媒として利用された
り、高温のガスあるいは液を通じることにより顕熱とし
て熱を蓄積するとともに、蓄積された熱により低温のガ
スあるいは液の温度を高める蓄熱材として利用されたり
するハニカム構造体に関する。
BACKGROUND OF THE INVENTION The present invention relates to the use of a NOx removal device installed in a tunnel as an adsorbent, as a denitration catalyst filled in an exhaust gas denitration device, or through the passage of high-temperature gas or liquid. The present invention relates to a honeycomb structure that stores heat as sensible heat and is used as a heat storage material that raises the temperature of a low-temperature gas or liquid by the stored heat.

【0002】[0002]

【従来の技術】一般に触媒は、粒状物と一体構造物とに
大別される。粒状の触媒では、粒径が大きいと粒子内部
が有効に機能しないという問題があり、粒径を小さくす
ると、圧力損失の増大やダストの目詰りという問題が生
じる。そこで、近年ハニカム型などの一体構造の触媒が
開発され、排煙脱硝触媒で実用化され、その他各種反応
系で適用性が検討されている。
2. Description of the Related Art In general, catalysts are roughly classified into granular materials and integral structures. In the case of a granular catalyst, if the particle size is large, there is a problem that the inside of the particle does not function effectively. If the particle size is small, problems such as an increase in pressure loss and clogging of dust occur. Therefore, in recent years, a catalyst having a monolithic structure such as a honeycomb type has been developed, put into practical use as a flue gas denitration catalyst, and its applicability in various other reaction systems is being studied.

【0003】従来、ハニカム構造体としては、例えば、
押出成形により製作される格子型のものが知られてい
る。しかし、格子型のハニカム構造体は、このように押
出成形品であるため、壁厚さ0.4〜0.5mm以下の
ものは製作が困難である上に、壁厚さが厚いことによる
次のような問題点が生じる。
Conventionally, as a honeycomb structure, for example,
A lattice type manufactured by extrusion is known. However, since the lattice-type honeycomb structure is an extruded product as described above, it is difficult to manufacture a honeycomb structure having a wall thickness of 0.4 to 0.5 mm or less. The following problems occur.

【0004】(ア)単位体積当たりの幾何表面積が大き
くとれないこと、(イ)空間率が小さくなり、通過流体
の圧力損失が大きくなること、(ウ)吸着剤や触媒とし
て有効に機能する部分は、一般に固体表面であり、固体
内部はほとんど機能しないため、内部に担持された活性
金属が無駄となること。
(A) The geometric surface area per unit volume cannot be increased, (A) The porosity is reduced, the pressure loss of the passing fluid is increased, and (C) The part which effectively functions as an adsorbent or a catalyst. Is generally a solid surface, and the inside of the solid hardly functions, so that the active metal carried inside is wasted.

【0005】そこで、格子型よりも上記問題点が改良さ
れたハニカム構造体として、図6(a)に示すように、
断面が正弦波状である波板(11)と平板(13)とが交互に積
層された波板−平板積層型のハニカム構造体、図6
(b)に示すように、1つの波の断面形状が台形である
波板(12)と平板(13)とが交互に積層された波板−平板積
層型のハニカム構造体、図7(a)に示すように、断面
が正弦波状である波板(11)のみを積層した波板−波板積
層型のハニカム構造体、図7(b)に示すように、1つ
の波の断面形状が台形である波板(12)のみを積層した波
板−波板積層型のハニカム構造体などが考えられてい
る。
[0005] In view of the above, as a honeycomb structure in which the above problems are improved as compared with the lattice type, as shown in FIG.
Corrugated plate-plate laminated honeycomb structure in which corrugated plates (11) and plates (13) each having a sinusoidal cross section are alternately laminated, FIG.
As shown in FIG. 7 (b), a corrugated plate-plate laminated honeycomb structure in which corrugated plates (12) and flat plates (13) each having a trapezoidal cross section are alternately laminated, FIG. ), A corrugated sheet-corrugated sheet type honeycomb structure in which only a corrugated sheet (11) having a sinusoidal cross section is laminated, and as shown in FIG. A corrugated sheet-corrugated layered honeycomb structure in which only a trapezoidal corrugated sheet (12) is laminated has been considered.

【0006】ハニカム構造体では、1つのチャンネルで
考えると、チャンネルの断面積が同じであれば、三角、
四角、六角、円の順に相当直径(面積が同じになる円の
直径)が大きくなり、通過流体の圧力損失が小さくなる
から、図6の(a)に対する図7の(a)および図6の
(b)に対する図7の(b)のように、波板−波板積層
型のものは、波板−平板積層型に比べて通過流体の圧力
損失が小さいという利点を有している。
In a honeycomb structure, considering one channel, if the cross-sectional area of the channel is the same, a triangle,
Since the equivalent diameter (diameter of a circle having the same area) increases in the order of a square, a hexagon, and a circle, and the pressure loss of the passing fluid decreases, (a) of FIG. 7 and (a) of FIG. As shown in FIG. 7B with respect to FIG. 7B, the corrugated sheet-corrugated type has an advantage that the pressure loss of the passing fluid is smaller than that of the corrugated sheet-flat type.

【0007】なお、圧力損失(ΔP)は、流体の粘性係
数(μ)、流体の通過長さ(L)および流体がハニカム
のチャンネルを通過する速度(V)に比例し、通過断面
の相当直径(De )の2乗に反比例する。すなわち、 ΔP=C1・μ・V・L/De 2 (C1は定数) また、相当直径(De )と空間率(ε)および単位体積
当たりの幾何表面積(a)との間には、 De =4ε/a の関係があり、ハニカムのチャンネルを通過する速度
(V)と空塔速度(LV)との間には、 LV=V・ε の関係がある。したがって、 ΔP=C2・μ・a2 ・LV・L/ε3 (C2は定数) となり、圧力損失(ΔP)は、流体の粘性係数(μ)、
流体の通過長さ(L)、空塔速度(LV)および単位体積
当たりの幾何表面積(a)の2乗に比例し、空間率
(ε)の3乗に反比例することになる。
The pressure loss (ΔP) is proportional to the viscosity coefficient (μ) of the fluid, the length of passage of the fluid (L), and the speed (V) of the fluid passing through the channel of the honeycomb. It is inversely proportional to the square of (De). That is, ΔP = C1 · μ · V · L / De 2 (C1 is a constant) Further, between the equivalent diameter (De) and the porosity (ε) and the geometric surface area per unit volume (a), De = There is a relationship of 4ε / a, and there is a relationship of LV = V · ε between the velocity (V) passing through the honeycomb channel and the superficial velocity (LV). Thus, ΔP = C2 · μ · a 2 · LV · L / ε 3 (C2 is a constant), and the pressure loss ([Delta] P) is the viscosity coefficient of fluid (mu),
It is proportional to the square of the fluid passage length (L), superficial velocity (LV), and geometric surface area per unit volume (a), and inversely proportional to the cube of the porosity (ε).

【0008】[0008]

【発明が解決しようとする課題】上記従来の波板−波板
積層型のハニカム構造体では、下段の波板の山に上段の
波板の谷を重ね合わせて波板を積層していくことになる
が、単位体積当たりの幾何表面積を大きくするために、
ピッチ(波の山と山との間隔あるいは波の谷と谷との間
隔)および高さを小さくすると、下段の波板の谷に上段
の波板の谷が落ち込むという現象が起きやすくなり、こ
のため、このようなハニカム構造体をガス流路に配設す
ると、ハニカムの目が詰まって空間率が小さくなり、通
過流体の圧力損失が大きくなるという問題があった。
In the above-mentioned conventional honeycomb structure of a corrugated sheet-corrugated sheet laminate type, the corrugated sheets are laminated by overlapping the valleys of the upper corrugated sheet with the valleys of the lower corrugated sheet. However, in order to increase the geometric surface area per unit volume,
When the pitch (the interval between wave peaks or the interval between wave troughs and valleys) and the height are reduced, the phenomenon that the valley of the upper corrugated sheet falls into the valley of the lower corrugated sheet tends to occur. Therefore, when such a honeycomb structure is provided in the gas flow path, there is a problem that the honeycomb becomes clogged and the porosity decreases, and the pressure loss of the passing fluid increases.

【0009】また、上記従来の波板−波板積層型のハニ
カム構造体を例えば脱硝触媒として使用した場合、次の
ような問題がある。ハニカム構造体の流路中のガス流は
層流と考えられ、触媒表面には層流境膜が形成されてい
る。被処理ガス(バルクガス)に含まれるNOxは、拡
散により層流境膜中を触媒表面に向かって移動する。こ
の境膜中の反応物質の拡散移動速度が反応速度と比べ著
しく高くない限り、触媒性能はこの移動速度の影響を受
けて低下する。したがって、従来のハニカム構造体から
なる触媒では、触媒物質本来の性能と比べかなり低い状
態で使用せざるを得ないという問題があった。また、触
媒性能を向上するためには、境膜中の反応物質の拡散移
動速度を高めることが必要であり、そのためには、流路
中のガス線速度を高めればよいが、拡散移動速度を2倍
とするには、ガス線速度を8倍程度にする必要があり、
一方触媒の圧力損失はガス線速度の約3乗に比例するの
で、圧力損失が500倍程度となって実用的でなくなる
という問題が生じる。
Further, when the above-mentioned conventional corrugated sheet-corrugated layered honeycomb structure is used as, for example, a denitration catalyst, the following problem arises. The gas flow in the flow channel of the honeycomb structure is considered to be laminar, and a laminar film is formed on the catalyst surface. NOx contained in the gas to be treated (bulk gas) moves toward the catalyst surface in the laminar flow film by diffusion. As long as the diffusion transfer rate of the reactants in the film is not significantly higher than the reaction rate, the catalyst performance will be affected by this transfer rate and will decrease. Therefore, the conventional catalyst having a honeycomb structure has a problem that it has to be used in a state considerably lower than the original performance of the catalyst substance. Further, in order to improve the catalytic performance, it is necessary to increase the diffusion and transfer speed of the reactant in the membrane. To this end, the gas linear velocity in the flow channel may be increased, but the diffusion and transfer speed is increased. In order to double, the gas linear velocity needs to be about 8 times,
On the other hand, since the pressure loss of the catalyst is proportional to about the third power of the gas linear velocity, there is a problem that the pressure loss becomes about 500 times and becomes impractical.

【0010】この発明の目的は、複数の波板の積層構成
を変更することにより、従来のハニカム構造体と比べ
て、単位体積当たりの幾何表面積をさらに大きくでき、
しかも流体の混合を良くすることが可能で、かつ製造も
容易にできるハニカム構造体を提供することにある。
[0010] An object of the present invention is to change the laminated structure of a plurality of corrugated sheets to further increase the geometric surface area per unit volume as compared with a conventional honeycomb structure.
Moreover, it is an object of the present invention to provide a honeycomb structure which can improve the mixing of fluids and can be easily manufactured.

【0011】この発明の他の目的は、触媒として用いた
場合に、触媒物質本来の性能を十分発揮させることがで
きるハニカム構造体を提供することにある。
Another object of the present invention is to provide a honeycomb structure that can sufficiently exhibit the original performance of a catalyst material when used as a catalyst.

【0012】また、この発明の他の目的は、上記ハニカ
ム構造体を得るのに好ましいハニカム構造体の製造方法
を提供することにある。
Another object of the present invention is to provide a method for manufacturing a honeycomb structure which is preferable for obtaining the above-mentioned honeycomb structure.

【0013】[0013]

【課題を解決するための手段】請求項1の発明によるハ
ニカム構造体は、複数の波板が積層されることによって
形成されているハニカム構造体において、隣り合う波板
同士でその波付け軸同士が交差するようになされるとと
もに、各波板の波付け軸の方向とハニカム構造体の長手
方向とのなす角度が45°未満とされていることを特徴
とするものである。
According to a first aspect of the present invention, there is provided a honeycomb structure formed by laminating a plurality of corrugated sheets. Are crossed, and the angle between the direction of the corrugated axis of each corrugated sheet and the longitudinal direction of the honeycomb structure is less than 45 °.

【0014】この明細書において、波付け軸とは、波板
の山(または谷)の長手方向を示す軸をいうものとす
る。
In this specification, the corrugating axis is an axis indicating the longitudinal direction of the peak (or valley) of the corrugated sheet.

【0015】請求項2の発明によるハニカム構造体は、
2種類の波板が交互に積層されることによって形成され
ているハニカム構造体において、ハニカム構造体の長手
方向に対して、一方の波板の波付け軸の方向が時計方向
に、他方の波板の波付け軸の方向が反時計方向にそれぞ
れずらされており、各波板の波付け軸の方向とハニカム
構造体の長手方向とのなす角度が45°未満とされてい
ることを特徴とするものである。
The honeycomb structure according to the second aspect of the present invention comprises:
In a honeycomb structure formed by alternately laminating two types of corrugated sheets, the direction of the corrugation axis of one corrugated sheet is clockwise with respect to the longitudinal direction of the honeycomb structure, and the other is corrugated. The direction of the corrugated axes of the plates is shifted in the counterclockwise direction, and the angle between the direction of the corrugated axis of each corrugated plate and the longitudinal direction of the honeycomb structure is less than 45 °. Is what you do.

【0016】上記角度は、5〜15°とされていること
が好ましい。
Preferably, the angle is 5 to 15 degrees.

【0017】波板は、ペーパー、マット、クロスなどの
セラミックス繊維プレフォーム体の繊維間マトリックス
に触媒粒子を担持させたものであることが好ましい。
The corrugated sheet is preferably made of a ceramic fiber preform such as paper, mat, cloth or the like in which catalyst particles are supported on an inter-fiber matrix.

【0018】触媒粒子は、バナジウム酸化物を担持させ
たアナターゼチタニアであることが好ましい。
The catalyst particles are preferably anatase titania carrying vanadium oxide.

【0019】請求項6の発明によるハニカム構造体の製
造方法は、所望の形状を得るべく成形された型板に、チ
タニアコロイド水溶液を含浸させた湿潤状態のセラミッ
クスペーパーを押し付け、セラミックスペーパーをこの
状態で乾燥して固化させた後型板から外すことにより波
板を製作し、これらの波板を積層してハニカム構造体を
得ることを特徴とするものである。
According to a sixth aspect of the present invention, there is provided a method for manufacturing a honeycomb structure, wherein a wet state ceramic paper impregnated with a titania colloid aqueous solution is pressed against a template formed to obtain a desired shape. After drying and solidifying in the above, a corrugated sheet is manufactured by removing the corrugated sheet from the template, and the corrugated sheets are laminated to obtain a honeycomb structure.

【0020】[0020]

【発明の実施の形態】この発明の実施の形態を、以下図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】この発明のハニカム構造体の第1実施形態
は、図1に示す波板(1)(2)複数枚が交互に重ね合わせら
れて形成される波板−波板積層型のハニカム構造体であ
って、一方(図1の下段)の波板(1) の波付け軸(1a)の
方向は、ハニカム構造体の長手方向(C) と同一であり、
他方(図1の上段)の波板(2) の波付け軸(2a)の方向
は、ハニカム構造体の長手方向(C) に対して、θ1 =約
20°時計方向にずらされている。各波板(1)(2)の1つ
の波の断面形状は、台形とされている。波板(2)の波付
け軸(2a)の方向がハニカム構造体の長手方向(C) に対し
て時計方向にずらされる角度θ1 は、圧力損失と幾何表
面積とのバランスの点から45度未満が好ましい。な
お、各波板の断面は正弦波状であってもよい。
The first embodiment of the honeycomb structure of the present invention is a corrugated sheet-corrugated sheet type honeycomb structure formed by alternately overlapping a plurality of corrugated sheets (1) and (2) shown in FIG. The direction of the corrugation axis (1a) of one corrugated sheet (1) (lower part in FIG. 1) is the same as the longitudinal direction (C) of the honeycomb structure,
The direction of the corrugation axis (2a) of the corrugated sheet (2) on the other side (upper part of FIG. 1) is shifted clockwise by θ 1 = about 20 ° with respect to the longitudinal direction (C) of the honeycomb structure. . The cross-sectional shape of one wave of each corrugated plate (1) (2) is trapezoidal. The angle θ 1 at which the direction of the corrugating axis (2a) of the corrugated plate (2) is shifted clockwise with respect to the longitudinal direction (C) of the honeycomb structure is 45 ° from the point of balance between the pressure loss and the geometric surface area. Less than is preferred. Note that the cross section of each corrugated plate may be sinusoidal.

【0022】この発明のハニカム構造体の第2実施形態
は、図2に示す波板(2)(3)複数枚が交互に重ね合わせら
れて形成される波板−波板積層型のハニカム構造体であ
って、一方(図2の下段)の波板(3) の波付け軸(3a)の
方向は、ハニカム構造体の長手方向(C) に対して、θ2
=約20°反時計方向にずらされており、他方(図2の
上段)の波板(2) の波付け軸(2a)の方向は、ハニカム構
造体の長手方向(C) に対して、θ1 =約20°時計方向
にずらされている。各波板(2)(3)の1つの波の断面形状
は、台形とされている。各波板(2)(3)の波付け軸(2a)(3
a)の方向がハニカム構造体の長手方向(C) に対して時計
方向または反時計方向にずらされる角度は、圧力損失と
幾何表面積とのバランスの点から45度未満が好まし
い。この場合、両波板(2)(3)の波付け軸(2a)(3a)同士が
なす交差角度(θ1 +θ2 )は、0度超90度未満の範
囲となる。なお、各波板の断面は正弦波状であってもよ
い。
A second embodiment of the honeycomb structure of the present invention is a corrugated sheet-corrugated sheet type honeycomb structure in which a plurality of corrugated sheets (2) and (3) shown in FIG. The direction of the corrugation axis (3a) of one corrugated sheet (3) (lower part in FIG. 2) is θ 2 with respect to the longitudinal direction (C) of the honeycomb structure.
= Approximately 20 ° counterclockwise, the direction of the corrugated axis (2a) of the other corrugated sheet (2) (upper part of FIG. 2) is relative to the longitudinal direction (C) of the honeycomb structure. θ 1 = displaced approximately 20 ° clockwise. The cross-sectional shape of one wave of each corrugated plate (2) (3) is trapezoidal. Corrugation axes (2a) (3
The angle at which the direction of a) is shifted clockwise or counterclockwise with respect to the longitudinal direction (C) of the honeycomb structure is preferably less than 45 degrees from the viewpoint of the balance between the pressure loss and the geometric surface area. In this case, the intersection angle (θ 1 + θ 2 ) formed by the corrugated axes (2a) and (3a) of both corrugated plates (2) and (3) is in a range of more than 0 degrees and less than 90 degrees. Note that the cross section of each corrugated plate may be sinusoidal.

【0023】従来の波板−波板積層型のハニカム構造体
は、図1の下段に配置されている波板(1) と同一の波板
(12)が積層されたものである(図7(b)参照)。この
従来の波板−波板積層型のハニカム構造体では、図7
(b)に示すように、下段の波板(12)の山(12a) と上段
の波板(12)の谷(12b) とが重なり、ハニカム構造体の長
さが1mあると、山(12a) および谷(12b) の幅が1mm
であっても、0.001m2 の面積が有効表面積から減
じられる。これに対して、図1および図2に示したこの
発明によるハニカム構造体では、波板同士(図1では
(1) と(2) で示す波板、図2では(2) と(3) で示す波
板)の波付け軸同士(図1では(1a)と(2a)で示す波付け
軸、図2では(2a)と(3a)で示す波付け軸)がなす角度
(図1ではθ1 で示す角度、図2ではθ1 +θ2 で示す
角度)が大きくなるほど、波板(1)(2)(3)同士の重なり
面積が小さくなる。したがって、単位体積当たりの有効
幾何表面積が大きくなる。また、従来の波板−波板積層
型のハニカム構造体では、あるチャンネルに入ったガス
は、隣のチャンネルに移ることなく、そのチャンネル内
だけを通過することになり、ガスが十分混合されない
が、上記ハニカム構造体では、あるチャンネルに入った
ガスは、隣のチャンネルに自由に移ることが可能とな
り、その結果、ガスの混合が十分に行われるという利点
も有している。
The conventional corrugated sheet-corrugated sheet type honeycomb structure has the same corrugated sheet as the corrugated sheet (1) arranged in the lower part of FIG.
(12) are stacked (see FIG. 7B). In this conventional corrugated sheet-corrugated sheet honeycomb structure, FIG.
As shown in (b), when the peak (12a) of the lower corrugated sheet (12) and the valley (12b) of the upper corrugated sheet (12) overlap and the length of the honeycomb structure is 1 m, the peak ( 12a) and valley (12b) width 1mm
Even so, an area of 0.001 m 2 is reduced from the effective surface area. On the other hand, in the honeycomb structure according to the present invention shown in FIG. 1 and FIG.
The corrugated axes of the corrugated sheets indicated by (1) and (2), and the corrugated sheets indicated by (2) and (3) in FIG. 2 (corrugated axes indicated by (1a) and (2a) in FIG. 1). In FIG. 2, the larger the angle (the angle indicated by θ 1 in FIG. 1 and the angle indicated by θ 1 + θ 2 in FIG. 2) formed by the corrugated axes indicated by (2a) and (3a), the larger the corrugated sheet (1) (2 (3) The overlapping area between the parts is reduced. Therefore, the effective geometric surface area per unit volume increases. Further, in the conventional honeycomb structure of a corrugated sheet-corrugated sheet type, gas entering a certain channel passes through only the channel without moving to an adjacent channel, and the gas is not sufficiently mixed. In addition, the above-mentioned honeycomb structure has an advantage that the gas entering a certain channel can be freely transferred to an adjacent channel, and as a result, the gas is sufficiently mixed.

【0024】なお、図1および図2に示した波付け軸(1
a)がハニカム構造体の長手方向(C)と同一の波板(1)
(以下波板1とする)、波付け軸(2a)が時計方向にずら
された波板(2) (以下波板2とする)および波付け軸(3
a)が反時計方向にずらされた波板(3) (以下波板3とす
る)は種々組み合わせて使用することが可能である。そ
の例を図3および図4に示す。
The corrugated shaft (1) shown in FIGS.
a) is the same corrugated plate (1) as the longitudinal direction (C) of the honeycomb structure
(Hereinafter referred to as a corrugated sheet 1), a corrugated sheet (2) whose corrugated axis (2a) is shifted clockwise (hereinafter referred to as a corrugated sheet 2), and a corrugated axis (3).
The corrugated sheet (3) whose a) is shifted in the counterclockwise direction (hereinafter referred to as corrugated sheet 3) can be used in various combinations. The example is shown in FIG. 3 and FIG.

【0025】図3に示すハニカム構造体は、図1と同じ
組み合わせのものであり、波板1と波板2とが上から順
に交互に重ねられた組み合わせ(すなわち波板1−2−
1−2)である。図3のハニカム構造体を基にして、波
板2をすべて波板3に置き換えることにより、波板1と
波板3とを交互に重ね合わせる組み合わせ(すなわち波
板1−3−1−3)が可能であり、また、波板2を1つ
置きに波板3に置き換えて、波板1、波板2、波板1お
よび波板3をこの順で繰り返す組み合わせ(すなわち波
板1−2−1−3)も可能である。
The honeycomb structure shown in FIG. 3 is of the same combination as that of FIG. 1, and is a combination in which corrugated plates 1 and 2 are alternately stacked from the top (that is, corrugated plate 1-2).
1-2). Based on the honeycomb structure of FIG. 3, the corrugated sheet 1 and the corrugated sheet 3 are alternately overlapped by replacing the corrugated sheet 2 entirely with the corrugated sheet 3 (that is, the corrugated sheet 1-3-3-1-3). A combination in which every other corrugated sheet 2 is replaced with corrugated sheet 3 and corrugated sheet 1, corrugated sheet 2, corrugated sheet 1 and corrugated sheet 3 are repeated in this order (that is, corrugated sheet 1-2) -1-3) is also possible.

【0026】図4に示すハニカム構造体は、波板2、波
板3および波板1が上から順に重ね合わせられた組み合
わせ(すなわち波板2−3−1−2−3−1)である。
図4のハニカム構造体を基にして、波板2と波板3とが
逆になった組み合わせ(すなわち波板3−2−1−3−
2−1)ももちろん可能である。
The honeycomb structure shown in FIG. 4 is a combination in which the corrugated plate 2, corrugated plate 3, and corrugated plate 1 are superimposed in order from the top (that is, corrugated plate 2-3-1-2-3-1). .
Based on the honeycomb structure of FIG. 4, a combination in which the corrugated sheet 2 and the corrugated sheet 3 are reversed (that is, the corrugated sheet 3-2-1-3-3).
2-1) is of course also possible.

【0027】上記ハニカム構造体を触媒として用いる
と、次のようになる。すなわち、図2において、波板2
の溝に沿って流れるガス流は、波板3の溝に沿って流れ
るガス流から絶えず旋回力が与えられ、波板2の溝の中
で旋回しながら流れることになる。同様に、波板3の溝
に沿って流れるガス流も旋回しながら流れる。したがっ
て、両方の溝が交差する部分では、複雑な渦が生じ層流
境膜は極めて薄いものとなる。ハニカム構造体の側壁に
おいては、波板2の溝から波板3の溝へまたは波板3の
溝から波板2の溝へガスが流れ、流路の一部が機能しな
くなることはない。こうして、図2に示した波板2およ
び波板3を順次積層してなるハニカム構造体によると、
比較的低速のガス流速で高い境膜移動速度が得られ、同
時に、波板同士の接合部の面積、すなわち触媒として有
効に機能しない部分の面積が角度がついていない従来の
もの(図6および図7参照)に比べて小さくなり、これ
ら両方の効果により、触媒の有効性能が向上する。
When the above honeycomb structure is used as a catalyst, the following is achieved. That is, in FIG.
The gas flow flowing along the groove of the corrugated plate 3 is constantly given a turning force from the gas flow flowing along the groove of the corrugated plate 3, and flows while rotating in the groove of the corrugated plate 2. Similarly, the gas flow flowing along the groove of the corrugated plate 3 also flows while turning. Therefore, at the intersection of both grooves, a complicated vortex is generated and the laminar flow film becomes extremely thin. On the side wall of the honeycomb structure, the gas flows from the groove of the corrugated sheet 2 to the groove of the corrugated sheet 3 or from the groove of the corrugated sheet 3 to the groove of the corrugated sheet 2, so that a part of the flow path does not fail. Thus, according to the honeycomb structure in which the corrugated sheet 2 and the corrugated sheet 3 shown in FIG.
A conventional film having a relatively low gas flow velocity and a high film moving speed can be obtained, and at the same time, the area of the joint between the corrugated sheets, that is, the area of the portion that does not function effectively as a catalyst has no angle (FIGS. 6 and 7). 7), and both of these effects improve the effective performance of the catalyst.

【0028】図5は、上記の波板2および波板3を成形
するための型板(4) を示している。型板(4) は、アルミ
ニウム製で、同図(a)(b)(c)に示すように、全
体として長方形でありかつその長手方向に対して所定角
度(θ)をなす波形の凹凸が設けられている。波板3
は、セラミックペーパーをチタニアコロイド水溶液に浸
漬し、湿潤状態で上記型板(4) にゴムローラーを用いて
貼り付け、この状態で乾燥・固化させ、固化後、型板
(4) から外すことにより得られる。この波板3を裏返し
たものが波板2となる。波板2および波板3を積層する
ことにより、ハニカム構造体が得られる。
FIG. 5 shows a template (4) for forming the corrugated sheets 2 and 3 described above. The template (4) is made of aluminum and has a rectangular shape as a whole and has a corrugated irregularity at a predetermined angle (θ) with respect to its longitudinal direction as shown in FIGS. Is provided. Corrugated sheet 3
The ceramic paper is immersed in a titania colloid aqueous solution, affixed to the template (4) in a wet state using a rubber roller, dried and solidified in this state, and solidified.
It is obtained by removing from (4). The corrugated sheet 3 is turned upside down to become the corrugated sheet 2. By laminating the corrugated sheet 2 and the corrugated sheet 3, a honeycomb structure is obtained.

【0029】次いで、波板の波付け軸(2a)(3a)の方向と
ハニカム構造体の長手方向(C) とのなす角度θ1 および
θ2 の適値についてのテスト結果について説明する。
Next, a description will be given of a test result of an appropriate value of the angles θ 1 and θ 2 between the directions of the corrugated axes (2a) and (3a) of the corrugated plate and the longitudinal direction (C) of the honeycomb structure.

【0030】まず、上記の方法により、流路断面100
mm×98mmで長さが300mmのハニカム構造体を得た。
セラミックペーパーは、日本無機製のHMS−25を用
い、チタニアコロイド水溶液は、石原産業製で固形分3
1wt% のものを用いた。これを450℃で3時間焼成
し、冷却後定法によりバナジウム、タングステン酸化物
を担持・焼成してハニカム構造体とした。角度θ1 およ
びθ2 は、共に0°(従来のもの)、5°、15°、3
0°、45°および60°とした。得られたハニカム構
造体の諸元を表1に示す。
First, the flow path cross section 100
A honeycomb structure having a size of mm × 98 mm and a length of 300 mm was obtained.
The ceramic paper used was HMS-25 manufactured by Nippon Inorganic. The aqueous titania colloid solution was manufactured by Ishihara Sangyo and had a solid content of 3%.
1 wt% was used. This was fired at 450 ° C. for 3 hours, and after cooling, vanadium and tungsten oxide were supported and fired by a conventional method to obtain a honeycomb structure. The angles θ 1 and θ 2 are both 0 ° (conventional), 5 °, 15 °, 3 °
0 °, 45 ° and 60 °. Table 1 shows the specifications of the obtained honeycomb structure.

【0031】[0031]

【表1】 表1から、角度が5〜60°のものは、角度が0°のも
のに比べて比幾何表面積(単位体積当たりの幾何表面
積)が増大していることがわかる。
[Table 1] From Table 1, it can be seen that the specific geometric surface area (geometric surface area per unit volume) of the one with an angle of 5 to 60 ° is larger than that of the one with an angle of 0 °.

【0032】次いで、表1に示した各種形状のハニカム
構造体を反応器に充填し、それぞれについて、300
℃、50〜200Nm3 /hの空気にNO、NH3 を各々1
00ppm となるように注入したガスを流通させ、脱硝性
能と圧力損失とを計測した。この結果を用いて、ガス線
速度が3Nm/sでの境膜物質移動係数を求めた。これを番
号S(角度が0°のもの)と比較した結果を表2に示
す。
Next, the honeycomb structures of various shapes shown in Table 1 were filled in a reactor, and each of them was filled with a honeycomb structure.
℃, 50-200Nm 3 / h NO and NH 3 each in air
The gas injected so as to be 00 ppm was circulated, and the denitration performance and pressure loss were measured. Using these results, a film mass transfer coefficient at a gas linear velocity of 3 Nm / s was determined. Table 2 shows the result of comparing this with the number S (when the angle is 0 °).

【0033】ここで、境膜物質移動係数とは、以下の関
係を満たす係数として定義されているものである。触媒
の各位置において、触媒単位面積および単位時間当たり
を考えて、 反応NOx量=NOx移動量=kf ×(CB −CS ) ただし、kf :境膜物質移動係数、CB :バルクガス流
中のNOx濃度、CS:触媒表面上のNOx濃度。
Here, the film mass transfer coefficient is defined as a coefficient satisfying the following relationship. In each position of the catalyst, given the catalyst per unit area and unit time, the reaction amount of NOx = NOx amount of movement = k f × (C B -C S) However, k f: film mass transfer coefficient, C B: bulk gas NOx concentration in the stream, C S: NOx concentration on the catalyst surface.

【0034】したがって、触媒性能向上すなわち反応N
Ox量を大きくするには、上記式におけるkf :境膜物
質移動係数が大きいことがポイントとなる。
Therefore, the catalyst performance is improved, that is, the reaction N
In order to increase the amount of Ox, the key point is that k f in the above equation is large.

【0035】[0035]

【表2】 表2には、圧力損失(ΔP)に関しての同様な比較も示
している。表2において、境膜物質移動係数(kf )の
増加率が圧力損失(ΔP)の増加率を上回る角度が実用
上好ましい。すなわち、角度が大きくなるにしたがっ
て、境膜物質移動係数および圧力損失共に増加するが、
両者のバランスの点から、角度θ1 およびθ2 が共に0
°より大きくて45°未満が好ましく、角度θ1 および
θ2 が共に5〜15°であることがより好ましい。
[Table 2] Table 2 also shows a similar comparison for pressure drop (ΔP). In Table 2, an angle at which the rate of increase of the film mass transfer coefficient (k f ) exceeds the rate of increase of the pressure loss (ΔP) is practically preferable. That is, as the angle increases, both the film mass transfer coefficient and the pressure loss increase,
From the point of balance between both, the angles θ 1 and θ 2 are both 0.
It is preferably greater than 45 ° and less than 45 °, and more preferably both angles θ 1 and θ 2 are 5 to 15 °.

【0036】したがって、層流境膜における反応物質の
物質移動速度が触媒性能に及ぼす影響が顕著な高速反応
系において、上記ハニカム構造体を脱硝触媒として用い
ると、触媒性能が向上することがわかる。上記ハニカム
構造体は、脱硝反応のほか、各種酸化反応(燃焼反応も
含む)の触媒として用いることもできる。
Therefore, it can be seen that in a high-speed reaction system in which the mass transfer rate of the reactant in the laminar flow film significantly affects the catalyst performance, the use of the honeycomb structure as a denitration catalyst improves the catalyst performance. The honeycomb structure can be used as a catalyst for various oxidation reactions (including combustion reactions) in addition to the denitration reaction.

【0037】なお、セラミックペーパーに代えて、マッ
ト、クロスなどのセラミックス繊維プレフォーム体を用
いてもよく、これらのセラミックス繊維プレフォーム体
の繊維間マトリックスに、バナジウム酸化物を担持させ
たアナターゼチタニアを担持させることにより、同様の
性能を有するハニカム構造体が得られる。
Instead of ceramic paper, ceramic fiber preforms such as mats and cloths may be used. Anatase titania having vanadium oxide supported on the inter-fiber matrix of these ceramic fiber preforms may be used. By supporting the honeycomb structure, a honeycomb structure having the same performance can be obtained.

【0038】[0038]

【発明の効果】請求項1の発明のハニカム構造体による
と、隣り合う波板同士でその波付け軸同士が交差するよ
うになされるとともに、各波板の波付け軸の方向とハニ
カム構造体の長手方向とのなす角度が45°未満とされ
ているので、すべての波板の波付け軸の方向とハニカム
構造体の長手方向とが同一である従来のハニカム構造体
に比べて、単位体積当たりの幾何表面積が大きくなり、
しかも、流体の混合が十分に行われる。また、下段の波
板の谷が上段の波板の谷に落ち込むことがないため、容
易に製造できる。これにより、固気反応あるいは固液反
応を効率的に行えるハニカム構造体の吸着剤あるいは触
媒を安価に提供できる。また、圧力損失が小さく効率的
に熱交換が行えるハニカム構造体の蓄熱材を安価に供給
できる。
According to the honeycomb structure of the first aspect of the present invention, the corrugated axes of the adjacent corrugated sheets intersect with each other, and the direction of the corrugated axis of each corrugated sheet and the honeycomb structure. Is less than 45 °, so that the direction of the corrugation axis of all the corrugated sheets and the longitudinal direction of the honeycomb structure are the same as those of the conventional honeycomb structure in which the unit volume is The geometric surface area per hit increases,
In addition, the mixing of the fluid is sufficiently performed. Further, since the valley of the lower corrugated sheet does not fall into the valley of the upper corrugated sheet, it can be easily manufactured. Thus, an adsorbent or a catalyst having a honeycomb structure capable of efficiently performing a solid-gas reaction or a solid-liquid reaction can be provided at low cost. Further, the heat storage material of the honeycomb structure, which has a small pressure loss and can efficiently exchange heat, can be supplied at low cost.

【0039】請求項2の発明のハニカム構造体による
と、波付け軸の方向が時計方向の波板を裏返すことによ
り、波付け軸の方向が反時計方向の波板が得られ、2種
類の波板を実質的に1種類の波板で得ることができるの
で、ハニカム構造体が製造しやすいものとなる。
According to the honeycomb structure of the second aspect of the present invention, a corrugated sheet whose corrugating axis is counterclockwise is obtained by turning over the corrugated sheet whose clockwise axis is clockwise. Since the corrugated sheet can be obtained by substantially one type of corrugated sheet, the honeycomb structure can be easily manufactured.

【0040】各波板の波付け軸の方向とハニカム構造体
の長手方向とのなす角度を5〜15°にすることによ
り、角度が0°であるものを基準として、境膜物質移動
係数の増加率が圧力損失の増加率を上回るので、触媒性
能を向上させることができる。
By making the angle between the direction of the corrugated axis of each corrugated plate and the longitudinal direction of the honeycomb structure 5 to 15 °, the film mass transfer coefficient of the film is calculated based on the angle of 0 °. Since the rate of increase exceeds the rate of increase in pressure loss, catalyst performance can be improved.

【0041】請求項6の発明のハニカム構造体の製造方
法によると、裁断によって各波板の波付け軸の方向とハ
ニカム構造体の長手方向とのなす角度を所定角度とする
のではなく、型板から取り外した波板をそのまま積層す
るだけでハニカム構造体が得られるので、ハニカム構造
体の製造がしやすい。
According to the method for manufacturing a honeycomb structure according to the sixth aspect of the present invention, the angle formed between the direction of the corrugated axis of each corrugated sheet and the longitudinal direction of the honeycomb structure by cutting is not a predetermined angle, but the mold. Since the honeycomb structure can be obtained by simply laminating the corrugated sheet removed from the plate, it is easy to manufacture the honeycomb structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明によるハニカム構造体の第1の実施形
態の要部を示す斜視図である。
FIG. 1 is a perspective view showing a main part of a first embodiment of a honeycomb structure according to the present invention.

【図2】この発明によるハニカム構造体の第2の実施形
態の要部を示す斜視図である。
FIG. 2 is a perspective view showing a main part of a second embodiment of the honeycomb structure according to the present invention.

【図3】この発明によるハニカム構造体の波板の組み合
わせの1例を示す分解斜視図である。
FIG. 3 is an exploded perspective view showing one example of a combination of corrugated sheets of a honeycomb structure according to the present invention.

【図4】この発明によるハニカム構造体の波板の組み合
わせの他の例を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing another example of the combination of the corrugated sheets of the honeycomb structure according to the present invention.

【図5】この発明によるハニカム構造体の製造方法に用
いられる型板を示す図であり、(a)は平面図、(b)
は断面図、(c)は拡大断面図である。
5A and 5B are diagrams showing a template used in the method for manufacturing a honeycomb structure according to the present invention, wherein FIG. 5A is a plan view and FIG.
Is a sectional view, and (c) is an enlarged sectional view.

【図6】従来のハニカム構造体の1例の要部を示す横断
面図である。
FIG. 6 is a cross-sectional view showing a main part of an example of a conventional honeycomb structure.

【図7】従来のハニカム構造体の他の例の要部を示す横
断面図である。
FIG. 7 is a cross-sectional view showing a main part of another example of the conventional honeycomb structure.

【符号の説明】[Explanation of symbols]

(1) 波付け軸の方向がハニカム構造体の長手方向と
同一の波板 (1a) 波付け軸 (2) 時計方向にずらされた波板 (2a) 波付け軸 (3) 反時計方向にずらされた波板 (3a) 波付け軸 (4) 型板
(1) Corrugated plate with the same direction as the longitudinal direction of the honeycomb structure (1a) Corrugated shaft (2) Corrugated plate shifted clockwise (2a) Corrugated shaft (3) Counterclockwise Offset corrugated plate (3a) Corrugated shaft (4) Template

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 秀次 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 渡辺 高延 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 藤田 大祐 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 市来 正義 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 秋山 正樹 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 近藤 一博 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuji Kobayashi 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Within Hitachi Zosen Corporation (72) Inventor Takanobu Watanabe 5-28, Nishikujo, Konohana-ku, Osaka-shi No. Hitachi Zosen Corporation (72) Inventor Daisuke Fujita 5-28 Nishikujo, Konohana-ku, Osaka City Inside Hitachi Zosen Corporation (72) Inventor Masayoshi Ichiki 5-28 Nishikujo, Konohana-ku, Osaka City Hitachi Zosen Corporation (72) Inventor Masaki Akiyama 5-3-28 Nishikujo, Konohana-ku, Osaka-shi Hitachi Zosen Corporation (72) Inventor Kazuhiro Kondo 5-28 Nishikujo, Konohana-ku, Osaka Hitachi Shipbuilding Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の波板(1)(2)(3) が積層されること
によって形成されているハニカム構造体において、隣り
合う波板(1)(2)(3) 同士でその波付け軸(1a)(2a)(3a)同
士が交差するようになされるとともに、各波板(1)(2)
(3) の波付け軸(1a)(2a)(3a)の方向とハニカム構造体の
長手方向(C) とのなす角度が45°未満とされているこ
とを特徴とするハニカム構造体。
In a honeycomb structure formed by laminating a plurality of corrugated sheets (1), (2) and (3), adjacent corrugated sheets (1), (2) and (3) have the same wave shape. The attachment axes (1a) (2a) (3a) are made to intersect with each other, and each corrugated sheet (1) (2)
(3) An angle between the direction of the corrugated axes (1a), (2a), and (3a) and the longitudinal direction (C) of the honeycomb structure is less than 45 °.
【請求項2】 2種類の波板(2)(3)が交互に積層される
ことによって形成されているハニカム構造体において、
ハニカム構造体の長手方向(C) に対して、一方の波板
(2) の波付け軸(2a)の方向が時計方向に、他方の波板
(3) の波付け軸(3a)の方向が反時計方向にそれぞれずら
されており、各波板(2)(3)の波付け軸(2a)(3a)の方向と
ハニカム構造体の長手方向(C) とのなす角度が45°未
満とされていることを特徴とするハニカム構造体。
2. A honeycomb structure formed by alternately stacking two types of corrugated sheets (2) and (3),
One corrugated plate in the longitudinal direction (C) of the honeycomb structure
The direction of the corrugation axis (2a) in (2) is clockwise and the other corrugated plate
The direction of the corrugated axis (3a) of (3) is shifted in the counterclockwise direction, and the direction of the corrugated axis (2a) (3a) of each corrugated sheet (2) (3) and the length of the honeycomb structure are A honeycomb structure, wherein an angle between the honeycomb structure and the direction (C) is less than 45 °.
【請求項3】 上記角度が、5〜15°とされている請
求項1または2記載のハニカム構造体。
3. The honeycomb structure according to claim 1, wherein the angle is 5 to 15 °.
【請求項4】 波板(2)(3)が、ペーパー、マット、クロ
スなどのセラミックス繊維プレフォーム体の繊維間マト
リックスに触媒粒子を担持させたものである請求項1、
2または3記載のハニカム構造体。
4. The corrugated sheet (2), (3), wherein catalyst particles are carried on an inter-fiber matrix of a ceramic fiber preform such as paper, mat, cloth and the like.
4. The honeycomb structure according to 2 or 3.
【請求項5】 触媒粒子が、バナジウム酸化物を担持さ
せたアナターゼチタニアである請求項4記載のハニカム
構造体。
5. The honeycomb structure according to claim 4, wherein the catalyst particles are anatase titania supporting vanadium oxide.
【請求項6】 所望の形状を得るべく成形された型板
に、チタニアコロイド水溶液を含浸させた湿潤状態のセ
ラミックスペーパーを押し付け、セラミックスペーパー
をこの状態で乾燥して固化させた後型板から外すことに
より波板を製作し、これらの波板を積層してハニカム構
造体を得ることを特徴とするハニカム構造体の製造方
法。
6. A wet ceramic paper impregnated with a titania colloid aqueous solution is pressed against a template formed to obtain a desired shape, and the ceramic paper is dried and solidified in this state, and then removed from the template. A method for manufacturing a honeycomb structure, characterized in that a corrugated sheet is manufactured by the above method, and the corrugated sheets are laminated to obtain a honeycomb structure.
JP9048747A 1996-11-08 1997-03-04 Honeycomb structure Pending JPH10180120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9048747A JPH10180120A (en) 1996-11-08 1997-03-04 Honeycomb structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29608096 1996-11-08
JP8-296080 1996-11-08
JP9048747A JPH10180120A (en) 1996-11-08 1997-03-04 Honeycomb structure

Publications (1)

Publication Number Publication Date
JPH10180120A true JPH10180120A (en) 1998-07-07

Family

ID=26389053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9048747A Pending JPH10180120A (en) 1996-11-08 1997-03-04 Honeycomb structure

Country Status (1)

Country Link
JP (1) JPH10180120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205091A (en) * 2005-01-28 2006-08-10 Takuma Co Ltd Denitration catalyst and exhaust gas treating method
WO2021153539A1 (en) * 2020-01-28 2021-08-05 三菱パワー株式会社 Denitration catalyst structure
CN114534713A (en) * 2021-04-19 2022-05-27 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205091A (en) * 2005-01-28 2006-08-10 Takuma Co Ltd Denitration catalyst and exhaust gas treating method
WO2021153539A1 (en) * 2020-01-28 2021-08-05 三菱パワー株式会社 Denitration catalyst structure
JP2021115538A (en) * 2020-01-28 2021-08-10 三菱パワー株式会社 Denitration catalyst structure
TWI803818B (en) * 2020-01-28 2023-06-01 日商三菱動力股份有限公司 Denitration catalyst sytucture
AT524990B1 (en) * 2020-01-28 2024-10-15 Mitsubishi Heavy Ind Ltd denitration catalyst structure
AT524990A5 (en) * 2020-01-28 2024-10-15 Mitsubishi Heavy Ind Ltd denitration catalyst structure
CN114534713A (en) * 2021-04-19 2022-05-27 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore
CN114534713B (en) * 2021-04-19 2024-02-13 中冶长天国际工程有限责任公司 Method for preparing activated carbon by adding vanadium-containing ore

Similar Documents

Publication Publication Date Title
JP4544465B2 (en) Catalyst structure and gas purification device
US6409378B1 (en) Filler body with a cross channel structure
US4668443A (en) Contact bodies
EP0807462B1 (en) Structured packing element with bi-directional surface texture and a mass and heat transfer process using such packing element
US5124087A (en) Gas and liquid contact body
RU2153933C2 (en) Metal member with cellular structural
US4042738A (en) Honeycomb structure with high thermal shock resistance
AU761031B2 (en) Exhaust emission control catalyst structure and device
JPH08501503A (en) Corrugated sheet assembly
US20030232172A1 (en) Ceramic packing element
US9724683B2 (en) Catalyst structure
JP4309046B2 (en) Exhaust gas purification catalyst element, catalyst structure, manufacturing method thereof, exhaust gas purification device, and exhaust gas purification method using the same
EP2948246A1 (en) Honeycomb monolith structure with cells having elongated cross-section
JPH10180120A (en) Honeycomb structure
US5384178A (en) Tube settler assembly
KR20060128941A (en) Ceramic packing element for mass transfer applications
JPH03154639A (en) Catalyst support made of metal
JPH07189674A (en) Exhaust emission control device
JPS6238155Y2 (en)
JP2002361344A (en) Honeycombed structure and honeycomb functional material
JPH0351147Y2 (en)
JPH0910599A (en) Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus
JPH0478464B2 (en)
WO2023099580A1 (en) A method and system for manufacturing a three-dimensional porous structure
JP2000225341A (en) Production of active carbon catalyst of honeycomb structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130