JPH10178292A - Boiling cooler and housing cooler employing it - Google Patents

Boiling cooler and housing cooler employing it

Info

Publication number
JPH10178292A
JPH10178292A JP8340108A JP34010896A JPH10178292A JP H10178292 A JPH10178292 A JP H10178292A JP 8340108 A JP8340108 A JP 8340108A JP 34010896 A JP34010896 A JP 34010896A JP H10178292 A JPH10178292 A JP H10178292A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
temperature
low
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8340108A
Other languages
Japanese (ja)
Other versions
JP3893651B2 (en
Inventor
Shigeru Kadota
茂 門田
Seiji Kawaguchi
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34010896A priority Critical patent/JP3893651B2/en
Publication of JPH10178292A publication Critical patent/JPH10178292A/en
Application granted granted Critical
Publication of JP3893651B2 publication Critical patent/JP3893651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a boiling cooler in which the body size can be reduced through a novel structure while preventing the level of coolant from lowering. SOLUTION: The boiling cooler comprises a fluid separator 2 for separating a high temperature fluid from a low temperature fluid, a coolant tank 3a disposed on the high temperature fluid side while encapsulating a coolant, connecting tubes 34a, 34b one of which is connected with the coolant tank 3a, and a radiator 3b disposed on the low temperature fluid side while being connected with the other connecting tubes 34a, 34b. The coolant tank 3a comprises a plurality of tubular members, i.e., heat absorbing tubes 31a, arranged substantially in parallel with each other, wherein the tubular member is a flat tube having oval cross-section sectioned into a plurality of small passages vertically. Diameter (maximum) of each small passage is set at 0.5-1mm. Since the heat absorbing tubes 31a is flat, bubbles are combined easily in the way of ascent through boiling and since a large combined bubble ascends through the flat heat absorbing tube while spreading, the liquid coolant is entrained together. Consequently, a lowered liquid level can be raised and the coolant liquid level can be prevented from lowering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温媒体の熱で冷
媒を沸騰させ、その後凝縮させることで高温媒体の熱を
放熱させる沸騰冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device that causes a refrigerant to boil with the heat of a high-temperature medium and then condenses to release the heat of the high-temperature medium.

【0002】[0002]

【従来の技術】従来より、電子部品等の発熱体を密閉化
されたハウジングに収容して使用する場合がある。この
場合、発熱体を冷却する方法として、ハウジング内部に
直接外気を取り入れて換気することができないため、ハ
ウジング内部の空気とハウジング外部の空気との間で熱
交換を行なう方法が行われている。そして、構成部品が
少なく、熱移動量が大きいものとして、特公平2−33
20号公報に示す様な、ハウジングを貫通して配置され
たヒートパイプ(内部に冷媒が封入されている)を使用
する方法が知られている。
2. Description of the Related Art Heretofore, there has been a case where a heating element such as an electronic component is housed in a sealed housing and used. In this case, as a method of cooling the heating element, a method of exchanging heat between the air inside the housing and the air outside the housing has been performed because it is not possible to directly take in outside air into the inside of the housing for ventilation. Assuming that the number of components is small and the amount of heat transfer is large,
There is known a method using a heat pipe (a refrigerant is sealed inside) disposed through a housing as shown in Japanese Patent Application Publication No. 20-200.

【0003】特公平2−3320号公報に示す様なヒー
トパイプ200は、ハウジング内部の高温空気で内部の
冷媒を沸騰させ、ハウジング外部に配置される放熱部で
その冷媒を凝縮させることで放熱し、その凝縮冷媒を再
びハウジング内部に位置する吸熱部に滴下させる。しか
しながら、特公平2−3320号公報のようにヒートパ
イプは、沸騰して上昇する蒸気冷媒と、凝縮されて降下
する凝縮冷媒が同じ管内を移動するため、両者が対抗し
あって冷媒全体の循環が効率良く行われないという問題
がある。
In a heat pipe 200 as disclosed in Japanese Patent Publication No. 2-3320, the refrigerant inside the housing is boiled by the high-temperature air inside the housing, and the heat is radiated by condensing the refrigerant in a heat radiating portion arranged outside the housing. Then, the condensed refrigerant is dropped again on the heat absorbing portion located inside the housing. However, as described in Japanese Patent Publication No. 2-3320, the heat pipe has a structure in which the vapor refrigerant that rises by boiling and the condensed refrigerant that condenses and moves in the same pipe. Is not performed efficiently.

【0004】そこで、実開昭62−162847号公報
のように、冷媒を循環させることで効率良く放熱させる
ことができる沸騰冷却装置が知られている。実開昭62
−162847号公報に示された沸騰冷却装置は、冷媒
槽に発熱体を固定し、発熱体の発する熱を冷媒槽内に封
入された冷媒で吸熱し、吸熱により沸騰気化した冷媒
を、冷媒槽の上に配設された放熱器で凝縮液化させ、凝
縮液化した冷媒を、冷媒槽内に挿入された冷媒戻り管を
介して冷媒槽に戻すものである。
[0004] Therefore, as disclosed in Japanese Utility Model Application Laid-Open No. 62-162847, a boiling cooling device capable of efficiently radiating heat by circulating a refrigerant is known. Shokai 62
In the boiling cooling device disclosed in Japanese Patent No. 162847, a heating element is fixed to a refrigerant tank, heat generated by the heating element is absorbed by the refrigerant sealed in the refrigerant tank, and the refrigerant vaporized by the heat absorption is cooled by the refrigerant tank. Is condensed and liquefied by a radiator disposed above, and the condensed and liquefied refrigerant is returned to the refrigerant tank via a refrigerant return pipe inserted into the refrigerant tank.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実開昭
62−162847に示された沸騰冷却装置は、製作時
に冷媒槽の受熱面をカバーするように冷媒を封入して
も、実際に受熱すると沸騰冷却装置内の温度が上昇し、
内圧も上昇する。これによる冷媒の気相割合が増える。
さらに、冷媒槽で沸騰し放熱器で凝縮して冷媒槽に戻る
までの経路にある冷媒量が増えていく。これらの原因に
より、受熱量が増えれば増えるほど、冷媒槽の冷媒液面
は低下し、沸騰による熱の移動を行える領域が減り、性
能が低下してしまう。
However, in the boiling cooling device disclosed in Japanese Utility Model Application Laid-Open No. 62-162847, even if the refrigerant is sealed so as to cover the heat receiving surface of the refrigerant tank at the time of manufacture, the boiling will occur when the heat is actually received. The temperature inside the cooling device rises,
The internal pressure also increases. This increases the gas phase ratio of the refrigerant.
Further, the amount of refrigerant in the path from boiling in the refrigerant tank to condensing in the radiator and returning to the refrigerant tank increases. For these reasons, as the amount of heat received increases, the liquid level of the refrigerant in the refrigerant tank decreases, the area where heat can be transferred by boiling decreases, and performance deteriorates.

【0006】これを避けるために、製作時に冷媒を多め
に入れると、受熱量が多くない時に、冷媒液面が高くな
りすぎ、放熱器で本来凝縮に使われるべき領域を減らし
てしまう。また不要に冷媒液量が多いと、沸騰蒸気の循
環経路をせばめ、冷媒の循環を妨げてしまう。この結
果、放熱性能が低下するという問題が発生する。また、
放熱特性が低下することにより、体格の大型化を招いて
いる。
To avoid this, if a large amount of refrigerant is added at the time of production, when the amount of heat received is not large, the liquid level of the refrigerant becomes too high, and the area that should be used for condensation in the radiator is reduced. If the amount of the refrigerant liquid is unnecessarily large, the circulation path of the boiling steam is restricted and the circulation of the refrigerant is hindered. As a result, there is a problem that heat radiation performance is reduced. Also,
The deterioration of the heat radiation characteristics leads to an increase in physique.

【0007】本発明は、上記事情に基づいて成されたも
ので、その第1の目的は、新規な構成にて体格の小型化
を図ることにある。また、第2の目的は、冷媒液面の低
下を防止できる沸騰冷却装置を得ることである。
The present invention has been made based on the above circumstances, and a first object of the present invention is to reduce the size of a physique with a novel configuration. A second object is to obtain a boiling cooling device that can prevent a decrease in the liquid level of the refrigerant.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明によ
れば、冷媒槽内に封入される冷媒は、冷媒槽を構成する
管状部材の中で高温部分の熱を受熱して沸騰気化する。
沸騰気化した冷媒は、気泡となって冷媒槽を構成する管
状部材を上昇し、冷媒液面を越えた後、気相冷媒として
冷媒槽の上部に配置された放熱器に送出される。放熱器
では、冷媒の持つ熱を低温部分に放出させ、冷媒を凝縮
液化させる。凝縮液化された冷媒は、重力により冷媒槽
に戻り再び熱を受熱する。
According to the first aspect of the present invention, the refrigerant sealed in the refrigerant tank receives heat of a high-temperature portion in the tubular member constituting the refrigerant tank and evaporates. .
The boiling vaporized refrigerant is bubbled, rises up the tubular member constituting the refrigerant tank, crosses the liquid surface of the refrigerant, and is then sent out as a gas-phase refrigerant to a radiator arranged above the refrigerant tank. In the radiator, the heat of the refrigerant is released to a low-temperature portion, and the refrigerant is condensed and liquefied. The condensed and liquefied refrigerant returns to the refrigerant tank by gravity and receives heat again.

【0009】本発明では、少なくとも冷媒槽が管状部材
からなり、その管状部材が内部に複数の小通路を有する
多孔管であるため、気泡の発生と気泡の上昇により液冷
媒が各小通路多孔管内を上昇し、見かけの冷媒液面を押
し上げる。これにより冷媒液面が下がって冷媒槽の受熱
面が露出し放熱性能が低下することを防止できる。ま
た、冷媒液面の低下を防ぐために冷媒を必要以上に封入
し、蒸気冷媒の循環を妨げたり、放熱器にまで液面が上
昇して放熱器の放熱性能が低下することを防止できる。
この結果、効率良く受放熱が行えるため、小型化が可能
となる。
In the present invention, at least the refrigerant tank is formed of a tubular member, and the tubular member is a porous tube having a plurality of small passages therein. Rises and pushes up the apparent coolant level. Thus, it is possible to prevent the refrigerant liquid level from lowering and exposing the heat receiving surface of the refrigerant tank to lower the heat radiation performance. Further, the refrigerant is sealed more than necessary in order to prevent the liquid level of the refrigerant from lowering, thereby preventing the circulation of the vapor refrigerant and preventing the liquid level from rising to the radiator and lowering the heat radiation performance of the radiator.
As a result, since heat can be efficiently received and radiated, the size can be reduced.

【0010】請求項2記載の発明によれば、冷媒槽は、
略平行に配列された複数の吸熱管からなり各吸熱管が多
孔管であるであるため、冷媒全体を各吸熱管の小通路内
に分配でき、小通路1つ当たりの液面の低下を更に低減
することができる。これにより、気泡の発生と気泡の上
昇により、液冷媒が各小通路内を上昇し、更に、見かけ
の冷媒液面を押し上げることができる。
According to the second aspect of the present invention, the refrigerant tank is
Since a plurality of heat absorbing tubes arranged substantially in parallel and each heat absorbing tube is a perforated tube, the entire refrigerant can be distributed in the small passages of each heat absorbing tube, further reducing the liquid level per small passage. Can be reduced. Thus, due to the generation of bubbles and the rise of bubbles, the liquid refrigerant rises in each small passage, and can further push up the apparent refrigerant liquid level.

【0011】請求項3記載の発明によれば、冷媒槽の小
通路は吸熱側下部連通部側から吸熱側上部連通部側へ向
かって延設されるため、液冷媒が各小通路内を上昇し、
請求項1記載の発明の効果に対し、更に、見かけの冷媒
液面を押し上げることができる。また、冷媒槽の上部か
ら下部に渡りムラなく熱を吸収できる。請求項4記載の
発明によれば、放熱器が略平行に配列された複数の放熱
管からなり、その各放熱管が多孔管であるので、気相冷
媒が放熱管に放熱する放熱面積を増加させることがで
き、請求項1記載の発明の効果に加え、更に放熱特性が
向上できる効果がある。
According to the third aspect of the present invention, since the small passage of the refrigerant tank extends from the heat-absorbing lower communication portion to the heat-absorbing upper communication portion, the liquid refrigerant rises in each small passage. And
In addition to the effect of the first aspect of the present invention, the apparent coolant level can be further increased. Further, heat can be absorbed evenly from the upper part to the lower part of the refrigerant tank. According to the fourth aspect of the present invention, the radiator includes a plurality of radiating tubes arranged substantially in parallel, and each of the radiating tubes is a perforated tube. In addition to the effects of the first aspect, there is an effect that the heat radiation characteristics can be further improved.

【0012】請求項5記載の発明によれば、小通路は放
熱側下部連通部側から放熱側上部連通部側へ向かって延
設されるため、請求項4記載の発明の効果の他に、更に
凝縮した冷媒を効率よく冷媒槽に戻すことができ、冷媒
の循環を効率よく行えるという効果がある。請求項6記
載の発明によれば、各小通路内で冷媒が沸騰が沸騰気化
する。吸熱量が多くなり沸騰が限界に近づくと、気泡が
大きくなりその小通路での吸熱性能が飽和してくるが、
冷媒槽は高温流体が流通する方向に複数の小通路が積層
されるように管状部材が配置されているため、手前(高
温流体の上流側)に位置する小通路内の冷媒から順に沸
騰気化していき、吸熱しきれない熱を後段(高温流体の
下流側)の小通路で吸熱するため、放熱特性が低下する
ことを防止できる。
According to the fifth aspect of the present invention, since the small passage extends from the lower radiating side communication portion to the upper radiating side communication portion side, in addition to the effect of the fourth aspect, Further, there is an effect that the condensed refrigerant can be efficiently returned to the refrigerant tank, and the refrigerant can be efficiently circulated. According to the sixth aspect of the present invention, the refrigerant boils and evaporates in each small passage. When the amount of heat absorption increases and boiling approaches the limit, bubbles become large and the heat absorption performance in the small passage becomes saturated,
Since the tubular member is arranged in the refrigerant tank such that a plurality of small passages are stacked in the direction in which the high-temperature fluid flows, the refrigerant in the small passage located in front (upstream of the high-temperature fluid) is vaporized in order. As the heat that cannot be absorbed is absorbed by the small passage at the subsequent stage (downstream of the high-temperature fluid), it is possible to prevent the heat radiation characteristics from being reduced.

【0013】請求項7記載の発明によれば、管状部材は
外形が扁平断面を有するため、高温空気と広い接触面積
を有し、管状部材内での沸騰を促進して更に液面低下防
止の効果が得られる。これにより請求項1記載の発明の
効果に加え、更に放熱特性が向上できる効果がある。請
求項8記載の発明によれば、複数の板状部材と2つの壁
面とで囲まれた複数の通路で小通路を構成するため、請
求項7記載の発明の効果に加え、更に外部と小通路内の
冷媒との伝熱性を向上させることができる効果を奏す
る。
According to the seventh aspect of the present invention, since the outer shape of the tubular member has a flat cross section, it has a large contact area with high-temperature air, promotes boiling in the tubular member, and further prevents the liquid level from lowering. The effect is obtained. Thereby, in addition to the effect of the invention described in claim 1, there is an effect that the heat radiation characteristic can be further improved. According to the invention described in claim 8, a small passage is constituted by a plurality of passages surrounded by a plurality of plate-like members and two wall surfaces. There is an effect that heat conductivity with the refrigerant in the passage can be improved.

【0014】請求項9記載の発明によれば、管状部材は
略目の字断面を有するため、請求項1記載の発明の効果
に加え、更に外部と小通路内の冷媒との伝熱性を向上さ
せることができる効果を奏する。請求項10記載の発明
によれば、管状部材における各小通路の直径が、冷媒の
沸騰面離脱時の気泡径の1〜102 倍に設定されるた
め、冷媒の沸騰の妨げとならない。そして、壁面に接触
する冷媒量を減らすことができるため、冷媒の熱容量を
小さくして更に沸騰しやすくなる。これにより、気泡が
合体して、直ちに小通路内で気泡による液冷媒の持ち上
げ効果を得られる。
According to the ninth aspect of the present invention, since the tubular member has a substantially O-shaped cross section, in addition to the effect of the first aspect, the heat transfer between the outside and the refrigerant in the small passage is further improved. The effect that can be made to play is produced. According to the invention of claim 10 wherein, the diameter of the small passages in the tubular member, to be set to 1 to 10 2 times the cell diameter at the boiling surface withdrawal of the refrigerant does not interfere with the boiling refrigerant. Since the amount of the refrigerant that contacts the wall surface can be reduced, the heat capacity of the refrigerant is reduced, and the refrigerant is more likely to boil. As a result, the bubbles are united and the liquid refrigerant can be immediately lifted in the small passage by the bubbles.

【0015】請求項11記載の発明によれば、請求項1
ないし請求項10の何れかに記載の発明の効果に加え、
更に高温流体側の熱を低温流体側へ効率よく放熱できる
という効果を奏する。請求項12記載の発明によれば、
冷媒は、沸騰気化していない時の液面が流体隔離板の位
置に略一致する位置まで冷媒槽内に注入されるため、冷
媒の液面が低下することを更に防止できる。
According to the eleventh aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention according to any one of claims 10 to 10,
Further, there is an effect that heat of the high-temperature fluid side can be efficiently radiated to the low-temperature fluid side. According to the invention of claim 12,
Since the refrigerant is injected into the refrigerant tank to a position where the liquid level when it is not vaporized substantially coincides with the position of the fluid separator, the liquid level of the refrigerant can be further prevented from lowering.

【0016】請求項13記載の発明によれば、冷媒槽で
沸騰気化した冷媒を高温側連通管により放熱器に送出
し、放熱器で凝縮液化された冷媒を低温側連通管により
冷媒槽に戻すため、効率よく冷媒を循環させることがで
きる。請求項14記載の発明によれば、内部連通室内
に、冷媒槽を、高温流体が流通する方向に複数の小通路
が積層されるように配置し、更に放熱器を、低温流体が
流通する方向に複数の小通路が積層されるように配置す
るため、請求項6記載の発明の効果と同等の効果が得ら
れる。
According to the thirteenth aspect of the present invention, the refrigerant vaporized in the refrigerant tank is sent to the radiator by the high-temperature side communication pipe, and the refrigerant condensed and liquefied by the radiator is returned to the refrigerant tank by the low-temperature side communication pipe. Therefore, the refrigerant can be efficiently circulated. According to the fourteenth aspect of the present invention, in the internal communication chamber, the refrigerant tank is arranged so that a plurality of small passages are stacked in the direction in which the high-temperature fluid flows, and the radiator is further arranged in the direction in which the low-temperature fluid flows. Since a plurality of small passages are arranged so as to be stacked on each other, an effect equivalent to the effect of the invention described in claim 6 can be obtained.

【0017】[0017]

【発明の実施の形態】次に、本発明の沸騰冷却装置の実
施の形態を図面に基づいて説明する。 (第1の実施の形態)図1は第1の実施の形態における
冷却器を筐体冷却装置に適用した場合の側面図であり、
図2は図1を外側、すなわち紙面左側から見た平面図で
ある。また、図3は沸騰冷却装置1の斜視図、図4は図
3における正面図、図5は図4における一部断面図、図
6は図3におけるII−II断面図、図7は図4に示した沸
騰冷却装置1の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a side view of a case where a cooler according to a first embodiment is applied to a casing cooling device.
FIG. 2 is a plan view of FIG. 1 as viewed from the outside, that is, from the left side of the drawing. 3 is a perspective view of the boiling cooling device 1, FIG. 4 is a front view in FIG. 3, FIG. 5 is a partial sectional view in FIG. 4, FIG. 6 is a II-II sectional view in FIG. It is explanatory drawing of the boiling cooling device 1 shown in FIG.

【0018】本実施の形態における冷却器は、図1に示
すように密閉空間9を形成する筐体80内に装着される
ものである。そしてその密閉空間9内には、例えば通信
機器等の送受信器や、その送受信器を駆動するためのパ
ワーアンプからなる発熱体7が収容されている。図1、
2に示すように冷却器の上部、下部には夫々密閉空間9
と連通する開口部13、14が設けられている。冷却器
は、密閉空間9の気体を高温側の伝熱空間11に取り込
むために、密閉空間9の上部と連通した開口部である通
気口13が形成されている。具体的には、側壁面9aと
仕切壁22とで冷却器内を上下方向に伸びる送風路23
を形成し、この送風路23の上端が通気口13として密
閉空間9内の上部(流体隔離板2より上方)に開口して
いる。通気口13の出口部分には密閉空間9の下部から
の冷風の導入を抑制するとともに、密閉空間9の上部か
らの高温風を積極的に導入するように、密閉空間9の上
部に開口する導入口221が形成されている。
The cooler according to the present embodiment is mounted in a housing 80 forming a closed space 9 as shown in FIG. The sealed space 9 accommodates, for example, a transceiver such as a communication device and a heating element 7 including a power amplifier for driving the transceiver. Figure 1,
As shown in FIG. 2, a closed space 9 is provided above and below the cooler, respectively.
The openings 13 and 14 are provided to communicate with the opening. The cooler is provided with a vent 13 which is an opening communicating with the upper part of the closed space 9 in order to take in the gas in the closed space 9 into the heat transfer space 11 on the high temperature side. Specifically, an air passage 23 extending vertically in the cooler between the side wall surface 9a and the partition wall 22.
The upper end of the air passage 23 is opened as an air vent 13 in the upper part of the closed space 9 (above the fluid separator 2). At the outlet of the ventilation hole 13, the introduction of the cool air from the lower part of the closed space 9 is suppressed, and the introduction opening at the upper part of the closed space 9 is made so as to positively introduce the hot air from the upper part of the closed space 9. A mouth 221 is formed.

【0019】これにより、発熱体7の熱で高温になった
気体が通気口13から送風路23内へ導入されてスムー
ズに冷媒槽3aへ導かれるため、密閉空間9内の温度を
均一に保つことができる。即ち、発熱体7から発生する
熱で高温となった気体が対流によって密閉空間9内を上
昇するため、密閉空間9内の上部に通気口13を設けた
方が密閉空間9内の冷却効率が良いと言える。言い換え
れば、通気口13が流体隔離板2より低い位置にある
と、密閉空間9内の比較的低温の気体が通気口13から
送風路23内に導入されて冷媒槽3aへ導かれるため、
密閉空間9内の冷却効率が低下する可能性がある。
As a result, the gas heated to a high temperature by the heat of the heating element 7 is introduced from the ventilation port 13 into the air passage 23 and smoothly guided to the refrigerant tank 3a, so that the temperature in the closed space 9 is kept uniform. be able to. That is, since the gas heated to high temperature by the heat generated from the heating element 7 rises in the closed space 9 by convection, the cooling efficiency in the closed space 9 is better when the vent 13 is provided in the upper part in the closed space 9. Good. In other words, when the vent 13 is located at a position lower than the fluid separator 2, relatively low-temperature gas in the closed space 9 is introduced from the vent 13 into the air passage 23 and guided to the refrigerant tank 3a.
There is a possibility that the cooling efficiency in the closed space 9 is reduced.

【0020】また、高温側および低温側の各伝熱空間1
1、12内で、冷媒槽3aおよび放熱器3bを通過する
気体が、それぞれ吸入側の通気口13、16から排出側
の通気口14、17へ向かってスムーズに流れる様に、
沸騰冷却装置1全体が前後方向(図1の左右方向)に傾
斜した状態で配置されている。これにより、冷媒槽3a
および放熱器3bを通過する気体の流れ方向の変化を緩
やかにできるため、狭いスペース内での送風経路損失を
低減できる。その結果、密閉空間9内にある内部ファン
15を小型化できる上に、内部ファン15の発熱量を低
減できるため、その分、発熱体7の発熱量を増やすこと
ができる(即ち、冷却能力を上げようとして内部ファン
15を大型化すると、内部ファン15の発熱量が増加す
るため、結果的に発熱体7の発熱量を増やせなくな
る)。
Further, each of the heat transfer spaces 1 on the high temperature side and the low temperature side
In the first and the second, the gas passing through the refrigerant tank 3a and the radiator 3b smoothly flows from the suction ports 13 and 16 to the discharge ports 14 and 17 respectively.
The entire boiling cooling device 1 is arranged in a state inclined in the front-back direction (the left-right direction in FIG. 1). Thereby, the refrigerant tank 3a
In addition, since the change in the flow direction of the gas passing through the radiator 3b can be moderated, the airflow path loss in a narrow space can be reduced. As a result, the size of the internal fan 15 in the closed space 9 can be reduced, and the amount of heat generated by the internal fan 15 can be reduced. Therefore, the amount of heat generated by the heating element 7 can be increased accordingly (that is, the cooling capacity can be reduced). If the size of the internal fan 15 is increased in order to raise the heat, the calorific value of the internal fan 15 increases, and as a result, the calorific value of the heating element 7 cannot be increased.

【0021】内部循環ファンとしての内部ファン15は
軸流ファンからなり、吸引することで、導入口221を
介して通気口13に導入された高温風(高温流体として
の高温空気)を冷媒槽3aの各吸熱管31a間に導入さ
せる。そして、内部ファン15は冷媒槽3aの吸熱管3
1aと平行となるように傾斜させられている。なお、内
部ファン15は冷媒槽3aの吸熱管31aに対して傾斜
していても良い。
The internal fan 15 as an internal circulation fan is composed of an axial fan, and sucks the high-temperature air (high-temperature air as a high-temperature fluid) introduced into the ventilation port 13 through the inlet port 221 to suck the refrigerant in the refrigerant tank 3a. Between the endothermic tubes 31a. The internal fan 15 is connected to the heat absorbing tube 3 of the refrigerant tank 3a.
It is inclined so as to be parallel to 1a. Note that the internal fan 15 may be inclined with respect to the heat absorbing tube 31a of the refrigerant tank 3a.

【0022】外部循環ファンとしての外部ファン18は
軸流ファンからなり、吸引することで、通気口16を介
して導入された低温風(低温流体としての低温空気)を
放熱器3bの各放熱管31b間に導入させる。なお、外
部ファン18は放熱器3bの放熱管31bに対して傾斜
して配置されている。そして、外部ファン18の排出側
には外部ファン18を出た風を上方に変向させる変向板
181が配設されている。外部ファン18を出た風は変
向板181により冷却器上面に開口された通気口17を
通り、外部に排出される。
The external fan 18 as an external circulating fan is composed of an axial fan, and sucks the low-temperature air (low-temperature air as a low-temperature fluid) introduced through the ventilation port 16 to each radiator pipe of the radiator 3b. It is introduced between 31b. The external fan 18 is arranged to be inclined with respect to the radiator tube 31b of the radiator 3b. On the discharge side of the external fan 18, there is provided a deflecting plate 181 for deflecting the wind exiting the external fan 18 upward. The wind that has exited the external fan 18 passes through the vent 17 opened on the upper surface of the cooler by the deflecting plate 181, and is discharged to the outside.

【0023】図1における冷却器の放熱器3bの側方に
は、放熱器3bをメンテナンスするメンテナンス蓋9b
が設けられている。放熱器3bは外部空気を導入するた
め、外部空気中に含まれる粉塵やゴミ等が放熱管31b
相互間に詰まってしまう可能性があるが、このメンテナ
ンス蓋9bを設けることにより、容易にそれらを除去す
ることができる。なお、このメンテナンス蓋9bは、作
動時には冷却器に固定されており、清掃時に開放される
ものである。
On the side of the radiator 3b of the cooler in FIG. 1, a maintenance lid 9b for maintaining the radiator 3b is provided.
Is provided. Since the radiator 3b introduces external air, dust and dirt contained in the external air are removed from the radiator tube 31b.
Although there is a possibility of clogging between them, the provision of the maintenance lid 9b makes it possible to easily remove them. The maintenance lid 9b is fixed to the cooler during operation and is opened during cleaning.

【0024】図3は沸騰冷却装置を示す斜視図である。
沸騰冷却装置が高温流体及び低温流体の夫々流れる方向
に複数積層させている。沸騰冷却装置1は図3、4に示
すように、高温流体(例えば高温の空気)と低温流体
(例えば低温の空気)とを隔離する流体隔離板2、流体
隔離板2よりも高温流体側に配設された複数本の吸熱管
31aからなる冷媒槽3a、吸熱管31aの内部に封入
され、高温流体から熱を受けて沸騰気化する冷媒8(図
示せず)、一方が冷媒槽3aに気密に連通され、他方が
流体隔離板2を通り抜けて低温流体側に延設された一対
の低温側連通管34a、高温側連通管34b、低温側連
通管34a、高温側連通管34bの他方に気密に連通さ
れ、流体隔離板2よりも低温流体側に配設され複数本の
放熱管31bからなる放熱器3b、冷媒槽3aの各吸熱
管31aの相互間に融合した状態(例えば、ろう付けさ
れた状態)で接合された受熱フィン6a、放熱器3bの
各放熱管31bの相互間に融合した状態(例えば、ろう
付けされた状態)で接合された放熱フィン6b、及び冷
媒槽3aと低温側連通管34aとの間、放熱器3bと低
温側連通管34bとの間に埋設され、夫々冷媒槽3aか
ら低温側連通管34aへの熱移動、放熱器3bから高温
側連通管34bへの熱移動を抑制する熱伝導抑制手段と
しての断熱材50(例えば、発泡性樹脂であるウレタン
フォーム)から構成される。
FIG. 3 is a perspective view showing a boiling cooling device.
A plurality of ebullient cooling devices are stacked in the direction in which the high-temperature fluid and the low-temperature fluid flow, respectively. As shown in FIGS. 3 and 4, the boiling cooling device 1 is a fluid separator 2 that separates a high-temperature fluid (for example, high-temperature air) from a low-temperature fluid (for example, low-temperature air). A refrigerant tank 3a composed of a plurality of heat absorbing tubes 31a disposed therein, a refrigerant 8 (not shown) sealed in the heat absorbing tube 31a and receiving heat from a high-temperature fluid and boiling and evaporating, one of which is airtight to the refrigerant tank 3a. And a pair of low-temperature side communication pipes 34a, high-temperature side communication pipes 34b, low-temperature side communication pipes 34a, and high-temperature side communication pipes 34b which are connected to each other and extend to the low-temperature fluid side through the fluid separator 2. And a radiator 3b, which is disposed closer to the low-temperature fluid than the fluid separator 2 and is composed of a plurality of radiator tubes 31b, and is fused between the heat absorbing tubes 31a of the refrigerant tank 3a (for example, brazed). Heat receiving fins 6a joined in the Radiating fins 6b joined in a fused state (for example, brazed state) between the respective radiating tubes 31b of the heat sink 3b, between the refrigerant tank 3a and the low-temperature side communication tube 34a, and between the radiator 3b and the low temperature. A heat insulating material buried between the side communication pipe 34b and a heat conduction suppressing means for suppressing heat transfer from the refrigerant tank 3a to the low temperature communication pipe 34a and heat transfer from the radiator 3b to the high temperature communication pipe 34b. 50 (for example, urethane foam which is a foamable resin).

【0025】流体隔離板2は、例えば内部が高温となる
密閉空間の一壁面を構成するもので、アルミニウム等の
金属材料から成り、低温側連通管34a、高温側連通管
34bと一体的に接合(例えばろう付け)されている。
この流体隔離板2には、低温側連通管34a、高温側連
通管34bを通すための挿通穴が開けられている。な
お、流体隔離板2と各連通管との間に、熱移動を抑制す
るゴム等の樹脂を挟持させても良い。また、流体隔離板
2をウレタンフォーム等の発泡性樹脂からなる断熱材で
周囲(低温流体もしくは高温流体の少なくとも一方)と
断熱させても良い。
The fluid separating plate 2 forms, for example, one wall surface of a closed space in which the inside has a high temperature, is made of a metal material such as aluminum, and is integrally joined with the low-temperature communication pipe 34a and the high-temperature communication pipe 34b. (Eg brazing).
The fluid separator 2 is provided with an insertion hole through which the low-temperature communication pipe 34a and the high-temperature communication pipe 34b pass. Note that a resin such as rubber for suppressing heat transfer may be interposed between the fluid separator 2 and each communication pipe. The fluid separator 2 may be insulated from the surroundings (at least one of a low-temperature fluid and a high-temperature fluid) with a heat insulating material made of a foamable resin such as urethane foam.

【0026】冷媒槽3aは、略平行に配列された複数本
の管状部材としての吸熱管31aと、吸熱管31aの下
部に配設されて、これら吸熱管31aを下方で連通する
吸熱側下部連通部41、及び吸熱管31aの上部に配設
されて、これら吸熱管31aを上方で連通する吸熱側上
部連通部42とから成る。吸熱管31aは、伝熱性に優
れた金属材(例えばアルミニウムや銅)を断面形状が長
円形状(または細長い長方形)を成す偏平管に形成した
ものである。
The refrigerant tank 3a is provided with a plurality of heat absorbing tubes 31a as a plurality of tubular members arranged substantially in parallel with each other, and a heat absorbing side lower communicating portion disposed below the heat absorbing tubes 31a and communicating these heat absorbing tubes 31a downward. And a heat-absorbing-side upper communication portion 42 disposed above the heat-absorbing tube 31a and communicating the heat-absorbing tube 31a upward. The heat absorbing tube 31a is a flat tube having a cross section of an elliptical shape (or an elongated rectangular shape) made of a metal material having excellent heat conductivity (for example, aluminum or copper).

【0027】図5は、吸熱管31aを示す一部断面図で
ある。なお、この図で受熱フィン6aは省略してある。
同図に示すように、吸熱管31aは断面形状が長円形状
からなる扁平管であり、内部には上下方向に渡って複数
の内部仕切り板33が形成されている(略目の字断
面)。この内部仕切り板33により、吸熱管31aは内
部が複数の小通路330に区分けされた多孔管として構
成されている。すなわち、吸熱管31aを構成する管状
部材は、対向する2つの壁面と、内部に2つの壁面に共
に接する複数の板状部材が配置され、この複数の板状部
材と前記2つの壁面とで囲まれた複数の通路で小通路3
30が構成されているといえる。これにより、耐圧性能
向上、冷媒との接触表面積拡大に伴う吸熱効率の向上等
の効果がある。なお、この吸熱管31aは、押し出し形
成により容易に形成できる。各小通路330の直径(小
通路が方形の場合は各辺の径の最大径、小通路が円形も
しくは楕円形の場合は最大径)は冷媒が沸騰して吸熱管
内壁を離脱する時の気泡径の1〜102 倍程度とするこ
とが好ましく、本実施の形態では0.5〜1mmに設定
されている。この吸熱管は小通路330が上下方向(吸
熱側下部連通部41から吸熱側上部連通部42)へ向か
って開口するように配置され、そして高温流体が流通す
る方向に小通路330が積層されるように配置される。
FIG. 5 is a partial sectional view showing the heat absorbing tube 31a. In this figure, the heat receiving fins 6a are omitted.
As shown in the figure, the heat absorption tube 31a is a flat tube having an elliptical cross section, and has a plurality of internal partition plates 33 formed therein in the vertical direction (substantially square cross section). . With this internal partition plate 33, the heat absorbing tube 31a is configured as a perforated tube whose inside is divided into a plurality of small passages 330. That is, the tubular member constituting the heat absorption tube 31a is provided with two opposing wall surfaces and a plurality of plate members in contact with the two wall surfaces inside, and is surrounded by the plurality of plate members and the two wall surfaces. Small passage 3 with multiple passages
30 can be said to be configured. As a result, there are effects such as improvement of pressure resistance performance and improvement of heat absorption efficiency due to an increase in contact surface area with the refrigerant. The heat absorbing tube 31a can be easily formed by extrusion. The diameter of each small passage 330 (the maximum diameter of each side when the small passage is rectangular, and the maximum diameter when the small passage is circular or elliptical) is the bubble when the refrigerant boils and leaves the inner wall of the heat absorbing tube. preferably from 1 to 10 2 times the diameter, in the present embodiment is set to 0.5 to 1 mm. The heat absorbing tube is arranged such that the small passages 330 open in the vertical direction (from the heat absorbing side lower communicating portion 41 to the heat absorbing side upper communicating portion 42), and the small passages 330 are stacked in the direction in which the high-temperature fluid flows. Are arranged as follows.

【0028】放熱器3bは、略平行に配列された複数本
の放熱管31bと、放熱管31bの下部に配設されて、
これら放熱管31bを下方で連通する放熱側下部連通部
43、及び放熱管31bの上部に配設されて、これら放
熱管31bを上方で連通する放熱側上部連通部44とか
ら成る。放熱管31bも、伝熱性に優れた金属材(例え
ばアルミニウムや銅)を断面形状が長円形状(または細
長い長方形)を成す偏平管に形成したものである。放熱
管31bにおいても図5に示す吸熱管31aと同様に断
面形状が長円形状からなる扁平管で構成され、内部には
上下方向に渡って複数の内部仕切り板33が形成されて
いる(図略)。これにより、耐圧性能向上、冷媒との接
触表面積拡大に伴う放熱効率の向上等の効果がある。こ
の放熱管31bも、押し出し形成により容易に形成でき
る。この放熱管31bも吸熱管31aと同様に小通路3
30が上下方向(放熱側下部連通部43から放熱側上部
連通部44)へ向かって開口するように配置され、そし
て低温流体が流通する方向に小通路330が積層される
ように配置される。
The radiator 3b includes a plurality of radiator tubes 31b arranged substantially in parallel and a lower portion of the radiator tubes 31b.
The heat radiation pipe 31b includes a heat radiation side lower communication part 43 that communicates downward, and a heat radiation side upper communication part 44 that is disposed above the heat radiation pipe 31b and communicates the heat radiation pipe 31b upward. The heat radiating tube 31b is also formed by forming a metal material having excellent heat conductivity (for example, aluminum or copper) into a flat tube having a cross-sectional shape of an ellipse (or an elongated rectangle). Similarly to the heat absorbing tube 31a shown in FIG. 5, the heat radiating tube 31b is also formed by a flat tube having an elliptical cross-sectional shape, and has a plurality of internal partitioning plates 33 formed therein in the vertical direction (see FIG. 5). Omitted). As a result, there are effects such as improvement of pressure resistance performance and improvement of heat radiation efficiency due to an increase in contact surface area with the refrigerant. This radiator tube 31b can also be easily formed by extrusion. The heat radiating pipe 31b has a small passage 3 similarly to the heat absorbing pipe 31a.
30 are arranged so as to open in the up-down direction (radiation side lower communication part 43 to heat radiation side upper communication part 44), and small passages 330 are arranged so as to be stacked in the direction in which the low-temperature fluid flows.

【0029】高温側連通管34bは、冷媒槽3aの吸熱
側上部連通部42と放熱器3bの放熱側上部連通部44
とに連通され、冷媒槽3aで沸騰気化された冷媒8を放
熱器3bに送出する。そして高温側連通管34bは、吸
熱管31bと略平行で所定間隔(好ましくは各吸熱管3
1b相互間の距離よりも大きい間隔、より好ましくはそ
の相互間間隔の2倍以上の間隔)を有して配設されてい
る。
The high-temperature communication pipe 34b is connected to the heat-absorbing upper communication section 42 of the refrigerant tank 3a and the heat-radiation-side upper communication section 44 of the radiator 3b.
And the refrigerant 8 boiled and vaporized in the refrigerant tank 3a is sent to the radiator 3b. The high-temperature side communication pipe 34b is substantially parallel to the heat absorption pipe 31b and at a predetermined interval (preferably each heat absorption pipe 3b).
1b are arranged with an interval larger than the distance between them, more preferably an interval of twice or more the interval between them.

【0030】低温側連通管34aは、放熱器3bの放熱
側下部連通部43と冷媒槽3aの吸熱側下部連通部41
とに連通され、放熱器3bで冷却液化された冷媒8を冷
媒槽3aに戻す。そして低温側連通管34aは、放熱管
31aと略平行で所定間隔(好ましくは各放熱管31a
相互間の距離よりも大きい間隔、より好ましくはその相
互間間隔の2倍以上の間隔)を有して配設されている。
The low-temperature side communication pipe 34a is connected to the heat-radiation-side lower communication part 43 of the radiator 3b and the heat-absorption-side lower communication part 41 of the refrigerant tank 3a.
The refrigerant 8 cooled and liquefied by the radiator 3b is returned to the refrigerant tank 3a. The low-temperature side communication pipe 34a is substantially parallel to the heat radiating pipe 31a and at a predetermined interval (preferably each heat radiating pipe 31a
They are arranged with an interval larger than the distance between them, and more preferably, at least twice the interval between them.

【0031】冷媒8は、HFC−134a(化学式:C
2 FCF3 )や水などから成り、その容器内部圧力が
あまり高くない範囲(HFC−134aの場合、例えば
数10気圧以下の圧力)内で、高温流体により沸騰し低
温流体により凝縮されるように設定されている。具体的
には、冷媒8は最高でも100℃以下で沸騰されるよう
に選択されている。ここで、冷媒は複数の組成の冷媒を
混合させてもよく、また、主として単一組成の冷媒を用
いても良い。また、冷媒8は液面が、非動作時に流体隔
離板2の位置に一致する程度、または冷媒が吸熱上部連
通部42内に液面がある程度に冷媒槽3a内に封入され
ている。冷媒量は作動時に液面が放熱管31bに達しな
い方が好ましい。但し、冷媒8の封入は、吸熱管31a
及び放熱管31bに夫々吸熱フィン6a及び放熱フィン
6bをろう付け接合した後に行なわれる。
The refrigerant 8 is HFC-134a (chemical formula: C
H 2 FCF 3 ), water, etc., in a range where the pressure inside the container is not so high (in the case of HFC-134a, for example, a pressure of several tens of atmospheres or less), it is possible to boil with a high temperature fluid and condense with a low temperature fluid. Is set to Specifically, the refrigerant 8 is selected to be boiled at a maximum of 100 ° C. or less. Here, as the refrigerant, a refrigerant having a plurality of compositions may be mixed, or a refrigerant mainly having a single composition may be used. Further, the refrigerant 8 is sealed in the refrigerant tank 3a to such an extent that the liquid level coincides with the position of the fluid separator 2 during non-operation, or to a certain extent in the heat absorbing upper communication part 42. It is preferable that the liquid level of the refrigerant does not reach the radiator tube 31b during operation. However, the refrigerant 8 is sealed in the heat absorbing tube 31a.
And after the heat absorbing fin 6a and the heat radiating fin 6b are brazed to the heat radiating tube 31b, respectively.

【0032】受熱フィン6aは、各吸熱管31a相互間
に配設され、放熱フィン6bは、各放熱管31b相互間
に配設されている。受熱フィン6a及び放熱フィン6b
は、伝熱性に優れる金属(例えばアルミニウム)の薄い
板(板厚0.02〜0.5mm程度)を交互に押し返して
波状に形成したコルゲートフィンであり、吸熱管31
a、放熱管31bの平坦な外壁面にろう付けされている
(即ち、融合した状態で接合されている)。この受熱フ
ィン6aは、高温流体側の熱を冷媒8に伝えやすくする
ものであり、同時に吸熱管31aの強度を向上させてい
る。また放熱フィン6bは、冷媒8の熱を低温流体側に
伝えやすくするものであり、同時に放熱管31bの強度
を向上させている。
The heat receiving fins 6a are arranged between the heat absorbing tubes 31a, and the heat radiating fins 6b are arranged between the heat radiating tubes 31b. Heat receiving fin 6a and heat radiating fin 6b
Is a corrugated fin formed by alternately pushing back a thin plate (having a thickness of about 0.02 to 0.5 mm) of a metal (for example, aluminum) having excellent heat conductivity to form a corrugated fin.
a, It is brazed to the flat outer wall surface of the heat radiating tube 31b (that is, joined in a fused state). The heat receiving fins 6a facilitate the transfer of heat on the high-temperature fluid side to the refrigerant 8, and at the same time improve the strength of the heat absorbing tube 31a. The radiating fins 6b facilitate the transfer of the heat of the refrigerant 8 to the low-temperature fluid side, and at the same time improve the strength of the radiating tube 31b.

【0033】高温部分には高温流体である高温空気が流
通される高温通路35aが形成され、低温部分には低温
流体である低温空気が流通される低温通路35bが形成
されている。そして、熱伝導抑制手段として、少なくと
も冷媒槽3aと低温側連通管34aとの間、放熱器3b
と連通管34bとの両方の間に配置された板状部材を用
いている。
A high-temperature passage 35a through which high-temperature fluid as a high-temperature fluid flows is formed in the high-temperature portion, and a low-temperature passage 35b through which low-temperature air as the low-temperature fluid flows is formed in the low-temperature portion. And as a heat conduction suppressing means, at least between the refrigerant tank 3a and the low temperature side communication pipe 34a, the radiator 3b
A plate-like member disposed between the first and second communication pipes 34b is used.

【0034】また、熱伝導抑制手段として、例えば、発
泡性樹脂、より具体的にはウレタンフォームからなる断
熱材50を有する。この断熱材50は、図4、6に示す
ように、冷媒槽3aと低温側連通管34aとの間、放熱
器3bと高温側連通管34bとの間に配設されている。
そして、断熱材50は、夫々冷媒槽3aから低温側連通
管34aへの熱移動、高温側連通管34bから放熱器3
bへの熱移動を抑制している。なお、図6において、各
冷媒槽は吸熱管31a、受熱フィン6aとが交互に積層
されて構成されており、その吸熱管31aがそれぞれ小
通路を有している。
Further, as the heat conduction suppressing means, there is provided a heat insulating material 50 made of, for example, a foamable resin, more specifically, urethane foam. As shown in FIGS. 4 and 6, the heat insulating material 50 is disposed between the refrigerant tank 3a and the low-temperature side communication pipe 34a and between the radiator 3b and the high-temperature side communication pipe 34b.
The heat insulating material 50 transfers heat from the refrigerant tank 3a to the low-temperature side communication pipe 34a, and the heat transfer from the high-temperature side communication pipe 34b to the radiator 3 respectively.
The heat transfer to b is suppressed. In FIG. 6, each refrigerant tank is configured by alternately stacking heat absorbing tubes 31a and heat receiving fins 6a, and each of the heat absorbing tubes 31a has a small passage.

【0035】ここで、断熱材50は冷媒槽3aと低温側
連通管34aとの間、放熱器3bと高温側連通管34b
との間に配設されるだけでなく、低温側連通管34a及
び高温側連通管34bの外周を被覆している。この被覆
は低温側連通管34a及び高温側連通管34bの外周全
体を覆ってもよく、一部(上下方向の一部)を覆うよう
にしてもよい。なお、断熱材50は各連通管34a、3
4bの外周全てを覆わず、冷媒槽3aと低温側連通管3
4aとの間、放熱器3bと高温側連通管34bとの間に
配設されるものでも良い。
Here, the heat insulating material 50 is provided between the refrigerant tank 3a and the low-temperature communication pipe 34a, and between the radiator 3b and the high-temperature communication pipe 34b.
And covers the outer circumferences of the low-temperature communication pipe 34a and the high-temperature communication pipe 34b. This coating may cover the entire outer circumference of the low-temperature communication pipe 34a and the high-temperature communication pipe 34b, or may cover a part (a part in the vertical direction). The heat insulating material 50 is connected to each of the communication pipes 34a, 3a.
4b does not cover the entire outer periphery, and the refrigerant tank 3a and the low-temperature side communication pipe 3
4a, and between the radiator 3b and the high-temperature side communication pipe 34b.

【0036】この高温通路35aは、流体隔離板2と冷
媒槽3aの外周を囲う板状部材からなる高温側区画部材
50dとで構成されている。そして冷媒槽3aがこの高
温通路35aに配置され、低温側連通管34aはこの高
温通路35aよりも低温の領域へ分離されている。これ
は、図6に示すように、低温側連通管34aを高温側区
画部材50dの外側に配置することで達成できる。そし
て、高温空気が流通する上流側における低温側連通管3
4aの全面にはブラケットが配置され、高温空気が低温
側連通管34aの配置される空間へ流入することを防止
している。
The high-temperature passage 35a is composed of the fluid separating plate 2 and a high-temperature side partition member 50d which is a plate-like member surrounding the outer periphery of the refrigerant tank 3a. The coolant tank 3a is disposed in the high-temperature passage 35a, and the low-temperature side communication pipe 34a is separated into a region at a lower temperature than the high-temperature passage 35a. This can be achieved by disposing the low-temperature side communication pipe 34a outside the high-temperature side partition member 50d as shown in FIG. And the low-temperature side communication pipe 3 on the upstream side through which the high-temperature air flows
A bracket is arranged on the entire surface of 4a to prevent high-temperature air from flowing into the space where the low-temperature side communication pipe 34a is arranged.

【0037】また、同様に低温通路35bは、流体隔離
板2と放熱器3bの外周を囲う板状部材からなる低温側
区画部材50cとで構成されている。そして放熱器3b
がこの低温通路35aに配置され、高温側連通管34b
はこの低温通路35bよりも高温の領域へ分離されてい
る。これは、高温側連通管34bを低温側区画部材50
cの外側に配置することで達成できる。
Similarly, the low-temperature passage 35b is composed of the fluid separating plate 2 and a low-temperature side partition member 50c formed of a plate-like member surrounding the outer periphery of the radiator 3b. And radiator 3b
Is disposed in the low temperature passage 35a, and the high temperature side communication pipe 34b
Is separated into a region having a higher temperature than the low-temperature passage 35b. This is because the high temperature side communication pipe 34b is connected to the low temperature side partition member 50.
This can be achieved by arranging outside c.

【0038】フランジは沸騰冷却装置を固定するもので
あり、冷媒槽31aと低温側連通管34aとの間を所定
間隔に保つ働きをし、また、放熱器31bと高温側連通
管34bとの間を所定間隔に保つ働きする。また、上記
沸騰冷却装置1は、各冷媒槽どうしが並列配置され更に
各放熱器どうしが並列配置されるように並列配置されて
いる。
The flange serves to fix the ebullient cooling device, and serves to maintain a predetermined distance between the refrigerant tank 31a and the low-temperature side communication pipe 34a. At predetermined intervals. Further, the boiling cooling device 1 is arranged in parallel such that the refrigerant tanks are arranged in parallel and the radiators are arranged in parallel.

【0039】次に、本実施の形態の作動を説明する。作
動することにより発熱体7が発熱し、密閉空間9内が高
温になる。内部ファン15は高温になった空気を循環さ
せ、その高温空気を冷媒槽3aに導入させる。冷媒槽3
aの各吸熱管31aに封入された冷媒8は、受熱フィン
6aを介して高温空気より伝達された熱を受けて沸騰気
化する。気化した冷媒蒸気は、低温流体に晒されて低温
となっている放熱器3bの各放熱管31bで内壁面に凝
縮液化し、その凝縮潜熱が放熱フィン6bを介して低温
空気に伝達される。放熱器3bで凝縮液化した冷媒8
は、自重により内壁面を伝って冷媒槽3aの吸熱側下部
連通部41へ滴下する。なお、外部ファン18は外部か
ら低温の空気を吸引し放熱器3bへ導入し続ける。この
冷媒8の沸騰・凝縮液化の繰り返しにより、高温空気と
低温空気とが混合することなく、発熱体7の熱を外部へ
効率よく放熱させることができる。
Next, the operation of this embodiment will be described. The heating element 7 generates heat by operating, and the inside of the closed space 9 becomes high temperature. The internal fan 15 circulates the high-temperature air and introduces the high-temperature air into the refrigerant tank 3a. Refrigerant tank 3
The refrigerant 8 sealed in each of the heat absorbing tubes 31a receives heat transmitted from the high-temperature air through the heat receiving fins 6a and evaporates. The vaporized refrigerant vapor is condensed and liquefied on the inner wall surface in each radiator pipe 31b of the radiator 3b which is exposed to the low-temperature fluid and has a low temperature, and the latent heat of condensation is transmitted to the low-temperature air through the radiation fins 6b. Refrigerant 8 condensed and liquefied by radiator 3b
Drops along the inner wall surface due to its own weight to the lower heat-communication side communication portion 41 of the refrigerant tank 3a. The external fan 18 continuously sucks low-temperature air from the outside and introduces it into the radiator 3b. By repeatedly boiling and condensing and liquefying the refrigerant 8, the heat of the heating element 7 can be efficiently radiated to the outside without mixing the high-temperature air and the low-temperature air.

【0040】以下、本実施の形態の効果を説明する。こ
のような沸騰冷却装置は、製作時に冷媒槽の受熱面をカ
バーするように図7のBレベルまで冷媒を封入しても、
実際に受熱すると沸騰冷却装置内の温度が上昇し、内
圧も上昇する、冷媒は密閉容器の中で容器内の温度に
より液相と気相がバランスして存在しているが、沸騰冷
却器内の温度上昇により、冷媒の気相割合が増え、液相
割合が減る、冷媒槽で沸騰し放熱器で凝縮して冷媒槽
に戻るまでの経路にある冷媒量が増えていく、の3つの
原因により、受熱量が増えれば増えるほど、冷媒槽の冷
媒液面は低下し(Cレベル)、沸騰による熱の移動を行
える領域が減り、性能が低下してしまう。
Hereinafter, effects of the present embodiment will be described. Such a boiling cooling device, even if the refrigerant is sealed up to the B level in FIG. 7 so as to cover the heat receiving surface of the refrigerant tank during manufacturing,
When the heat is actually received, the temperature inside the boiling cooling device rises and the internal pressure also rises.The refrigerant exists in a closed vessel in a liquid phase and a gas phase that are balanced by the temperature inside the vessel. The rise in temperature increases the proportion of refrigerant in the gas phase and decreases the proportion of liquid phase, and the amount of refrigerant in the path from boiling in the refrigerant tank to condensation in the radiator and returning to the refrigerant tank increases. Accordingly, as the amount of heat received increases, the coolant level in the coolant tank decreases (C level), and the area in which heat can be transferred by boiling decreases, and the performance decreases.

【0041】これを避けるために、製作時に冷媒を多め
(Aレベル以上)にいれると、受熱量が多くない時に、
冷媒液面が高くなりすぎ、放熱器3b内で本来凝縮に使
われるべき領域を減らしてしまったり、冷媒槽3aの吸
熱側上部連通部42の冷媒蒸気の循環路径を狭め、吸熱
管31aで気化した冷媒蒸気がスムーズに高温側連通管
34bに上昇できなくなる。この結果、放熱性能が低下
するという問題が発生する。
In order to avoid this, if a large amount of refrigerant (A level or more) is added at the time of production, when the amount of heat received is not large,
The refrigerant liquid level becomes too high, and the area that should be used for condensation in the radiator 3b is reduced, or the diameter of the circulation path of the refrigerant vapor in the heat-absorbing-side upper communication part 42 of the refrigerant tank 3a is reduced, and the refrigerant is vaporized by the heat-absorbing tube 31a. The cooled refrigerant vapor cannot smoothly rise to the high-temperature side communication pipe 34b. As a result, there is a problem that heat radiation performance is reduced.

【0042】特にこの現象は液化した冷媒が吸熱管壁の
上部より戻るヒートパイプ式より図7に示したような、
冷媒8が高温側連通管34bとは別の低温側連通管34
aより吸熱側下部連通部41に戻るタイプに影響が大き
い。図8は、冷媒槽3aを多孔管にしたことによる効果
を説明する図である。ここで同図(a)、(b)は参考
図、(c)、(d)は本願の説明図である。
Particularly, this phenomenon is caused by a heat pipe type in which the liquefied refrigerant returns from the upper part of the heat absorbing tube wall as shown in FIG.
The refrigerant 8 is connected to a low-temperature communication pipe 34 different from the high-temperature communication pipe 34b.
This has a greater effect on the type that returns to the heat-absorbing lower communication portion 41 than a. FIG. 8 is a diagram illustrating an effect obtained by using a perforated tube for the refrigerant tank 3a. Here, FIGS. 7A and 7B are reference diagrams, and FIGS. 7C and 7D are explanatory diagrams of the present application.

【0043】図8(a)は、吸熱時に冷媒8の液面が低
下して性能が低下するのを防止するため、吸熱管31a
を扁平にした際の吸熱管31aの断面図であり、同図
(b)は(a)のB−B断面図である。図8(a)、
(b)に示すように、吸熱管31aが扁平なので沸騰し
て上昇する途中に気泡が合体しやすく、合体して大きく
なった気泡が扁平の吸熱管内を上昇するときに、吸熱管
内に広がり上昇するため液冷媒を一緒に巻き上げ上昇す
る。これによって低下した液面を持ち上げることができ
る。
FIG. 8 (a) shows a heat absorbing tube 31a for preventing the performance of the refrigerant 8 from being lowered due to a decrease in the liquid level of the refrigerant 8 during heat absorption.
Is a cross-sectional view of the heat absorbing tube 31a when is flattened, and FIG. 2B is a cross-sectional view taken along line BB of FIG. FIG. 8A,
As shown in (b), since the heat absorbing tube 31a is flat, the air bubbles tend to coalesce while boiling and rising, and when the air bubbles that have become large as a result rise in the flat heat absorbing tube, they spread into the heat absorbing tube and rise. To raise the liquid refrigerant together. As a result, the lowered liquid level can be lifted.

【0044】図8(c)は(a)において、更に吸熱管
31aを多孔の管状部材とした際の吸熱管31aの断面
図であり、同図(d)は(c)のD−D断面図である。
図8(c)、(d)に示すように、吸熱管31aを多孔
の管状部材とすることで、気泡がほぼ管径と同じになっ
て各気泡の間に液冷媒をはさんで上昇し、大幅に液面を
上昇させる。これによって冷媒液面の低下を防止でき
る。また、この効果は吸熱によって発生する気泡による
ものなので、吸熱が小さい時(液面の低下が小さい)に
は気泡による持ち上げ効果も小さくなり、液面が高くな
りすぎることがない。多孔の管状部材は、その一つの管
径が冷媒の沸騰面離脱時の気泡径の1〜102 倍オーダ
ーの相当直径であると、冷媒の沸騰の妨げとならず、気
泡の合体によりすぐに管内で気泡による液冷媒の持ち上
げ効果を得られる。
FIG. 8 (c) is a cross-sectional view of the heat absorbing tube 31a when the heat absorbing tube 31a is a porous tubular member in FIG. 8 (a), and FIG. FIG.
As shown in FIGS. 8 (c) and 8 (d), by making the endothermic tube 31a a porous tubular member, the bubbles become almost the same in diameter, and the liquid refrigerant rises between the bubbles. , Greatly raises the liquid level. This can prevent the coolant level from lowering. In addition, since this effect is due to bubbles generated by heat absorption, when the heat absorption is small (the decrease in the liquid level is small), the lifting effect by the bubbles is reduced, and the liquid level does not become too high. Porous tubular member, if it is the equivalent diameter of 1 to 10 double order of cell diameter at the boiling surface withdrawal of the tube diameter of the one refrigerant, not interfere with the boiling of the refrigerant, immediately by bubble coalescence The effect of lifting the liquid refrigerant by bubbles in the pipe can be obtained.

【0045】また、図8(a)、(c)のように吸熱管
31aを扁平にする(2平面間距離を小さくする)こと
で合体気泡が管壁に挟まれて、図9のようにつぶれて上
昇する。このとき吸熱管31aと気泡の間で液冷媒の液
膜が薄くなる(δ>液膜)領域ができ、この領域では管
壁から受けた熱が薄い液冷媒に伝わる。薄い液冷媒の熱
容量は小さく、熱伝導によって他の液冷媒に逃げる熱量
がすくなくなるので、すぐに隣接する気泡がわに蒸発す
る。これは液冷媒の中で気泡を発生させる「沸騰」より
熱抵抗の小さな蒸発現象であり、より性能が向上する。
Further, as shown in FIGS. 8 (a) and 8 (c), by flattening the heat absorbing tube 31a (reducing the distance between the two planes), the united bubbles are sandwiched between the tube walls, and as shown in FIG. Crush and rise. At this time, a region where the liquid film of the liquid refrigerant becomes thinner (δ> liquid film) is formed between the heat absorbing tube 31a and the bubble, and in this region, the heat received from the tube wall is transmitted to the thin liquid refrigerant. Since the heat capacity of the thin liquid refrigerant is small and the amount of heat escaping to the other liquid refrigerant by heat conduction is reduced, the adjacent bubbles evaporate immediately. This is an evaporation phenomenon having a smaller thermal resistance than "boiling" which generates bubbles in the liquid refrigerant, and the performance is further improved.

【0046】しかし、図9に示すように、吸熱管31a
と気泡の間で液冷媒が薄くなる領域が剰り広くなると、
熱抵抗の小さな蒸発現象により、すぐに薄い液冷媒の気
化が起こり、周辺の厚い液冷媒側からの冷媒供給が間に
合わなくなる場合がある。その場合、蒸発が生じる領域
が減少してしまう。しかしながら、図8(c)のように
多孔の管状部材を用いることにより、合体気泡の大きさ
が小通路330壁によって制約され、上記の現象が起こ
りにくくなるという効果がある。さらに、壁面面積がさ
らに増加し、熱抵抗の小さな効果がさらに得られるメリ
ットもある。
However, as shown in FIG.
When the area where the liquid refrigerant becomes thin between the air bubbles becomes excessively wide,
Due to the evaporation phenomenon with a small thermal resistance, the thin liquid refrigerant is immediately vaporized, and the supply of the refrigerant from the surrounding thick liquid refrigerant side may not be enough. In that case, the region where evaporation occurs is reduced. However, by using a porous tubular member as shown in FIG. 8C, the size of the coalesced bubbles is restricted by the wall of the small passage 330, and there is an effect that the above-mentioned phenomenon is unlikely to occur. Further, there is a merit that the wall surface area is further increased and the effect of reducing thermal resistance is further obtained.

【0047】また、本案のように高温の流体から受熱し
て、内部に封入された冷媒を沸騰、凝縮させる沸騰冷却
装置においては、高温の流体の流れる方向と封入された
冷媒の沸騰し、上昇する流れの方向は平行よりも直角に
近い。図10(a)は図8(a)に示された吸熱管31
a内の気泡発生のの様子を示す模式図であり、図10
(b)は図10(a)に示した吸熱管31a近傍を通過
する高温空気の温度分布を示した図である。また図10
(c)は図8(c)に示された吸熱管31a内の気泡発
生のの様子を示す模式図であり、図10(d)は図10
(c)に示した吸熱管31a近傍を通過する高温空気の
温度分布を示した図である。図10(a)、(b)のよ
うに一孔の管状部材の場合、管の高温流体の入り口側か
ら沸騰が始まり、その気泡が合体し、上昇していく。こ
れにより特に吸熱管の長さが長い場合、吸熱管の上部は
合体気泡により覆われ、その気泡が大きく、高温流体の
熱量が大きい場合、吸熱管の上部の効率が低下する場合
がある。すなわち、図10(b)に示すように、温度T
1 で導入された高温空気のうち、下部III 、中部IIに導
入された高温空気は吸気管31の近傍を通過するにつれ
て、温度T2 まで低下するが、上部Iに導入された高温
空気はその温度を吸熱管31aに伝えきれず、T2 より
も高いT3 までしか低下しなくなる。これに対し、図1
0(c)に示した吸熱管31aの場合、高温流の流れ方
向に多孔の管状部材を用いたため、吸熱管31aの上部
Iにおいてもより下流側の管の冷媒が沸騰するため、温
度T2 まで低下させることができる。これにより性能の
低下が防止できる。
In the case of a boiling cooling device which receives heat from a high-temperature fluid and boils and condenses the refrigerant enclosed therein as in the present invention, the direction in which the high-temperature fluid flows and the boiling and rise of the enclosed refrigerant rise. The direction of the flowing stream is closer to right angle than parallel. FIG. 10A shows the endothermic tube 31 shown in FIG.
FIG. 10 is a schematic diagram showing a state of generation of bubbles in FIG.
FIG. 11B is a diagram showing a temperature distribution of the high-temperature air passing near the heat absorbing tube 31a shown in FIG. FIG.
FIG. 10C is a schematic diagram showing a state of generation of bubbles in the heat absorbing tube 31a shown in FIG. 8C, and FIG.
It is the figure which showed the temperature distribution of the hot air which passes near the heat absorption tube 31a shown to (c). In the case of a tubular member having a single hole as shown in FIGS. 10A and 10B, boiling starts from the inlet side of the high-temperature fluid in the tube, and the bubbles coalesce and rise. Thereby, especially when the length of the heat absorbing tube is long, the upper part of the heat absorbing tube is covered with the coalesced bubbles, and when the bubbles are large and the calorie of the high-temperature fluid is large, the efficiency of the upper part of the heat absorbing tube may be reduced. That is, as shown in FIG.
Among the high-temperature air introduced in 1, the high-temperature air introduced into the lower part III and the middle part II decreases to the temperature T2 as it passes near the intake pipe 31, but the high-temperature air introduced into the upper part I Cannot be transmitted to the endothermic tube 31a, and only decreases to T3 higher than T2. In contrast, FIG.
In the case of the endothermic tube 31a shown in FIG. 0 (c), since a porous tubular member is used in the flow direction of the high-temperature flow, the refrigerant in the tube on the downstream side also boils at the upper part I of the endothermic tube 31a. Can be reduced. This can prevent performance degradation.

【0048】なお、放熱管31bは密閉匡体外の低温流
体と熱交換を行う。このため放熱管31b側の低温流体
の送風経路は直接匡体外の環境と連結している。図11
に示すように、一般のヒートパイプ方式の円管であると
と、その後流(管近傍を通過した空気の流れ)は乱れ、
騒音が発生する。それに対し、扁平の放熱管を用いるこ
とにより、放熱管の後流の乱れは小さくなり、また送風
抵抗も小さくなるため、同じ送風量であっても騒音を低
減することができる。これは特に匡体の外と接続される
放熱器側で大きなな利点である。
The radiator tube 31b exchanges heat with a low-temperature fluid outside the closed casing. Therefore, the air flow path of the low-temperature fluid on the side of the radiator tube 31b is directly connected to the environment outside the enclosure. FIG.
As shown in the figure, if it is a general heat pipe type circular pipe, the wake (flow of air passing near the pipe) will be turbulent,
Noise is generated. On the other hand, by using a flat heat radiation tube, the turbulence of the wake of the heat radiation tube is reduced, and the ventilation resistance is also reduced, so that noise can be reduced even with the same ventilation volume. This is a great advantage especially on the side of the radiator connected to the outside of the housing.

【0049】また、外部の低温流体を取り入れる際に、
一緒にごみも取り込んでしまう。このとき定期的に放熱
器3bの清掃を行うが、放熱器3bの正面から洗浄器等
を使って清掃を行うことが多い。このとき、扁平の放熱
器は陰になる部分が少なく、効率的に清掃が可能であ
る。また、扁平のチューブでフィンを挟む構造により、
薄く、変形しやすい受熱、放熱フィンの保護になる。吸
熱管、放熱管の多孔化、目の字構造は管とフィンを積層
して一体ろう付けするときに管の剛性アップによるろう
付け性向上に役立つ。また、押し出し材を用いることに
より、低コストに製作できる。各管の相当直径が小さく
なることから耐圧性が増す。また、扁平構造により匡体
外からの異物(いたづらによる異物の打ち込み)が冷媒
を封入する放熱管を損傷する可能性が低くなる。
When taking in an external low-temperature fluid,
We take in garbage together. At this time, the radiator 3b is periodically cleaned, but the cleaning is often performed from the front of the radiator 3b using a cleaning device or the like. At this time, the flat radiator has few shaded portions and can be efficiently cleaned. In addition, due to the structure of sandwiching the fin between flat tubes,
It is thin and easily deformed, which protects the heat receiving and radiating fins. The perforated heat-absorbing tube and heat-radiating tube, and the cross-shaped structure are useful for improving brazing properties by increasing the rigidity of the tube when laminating the tube and fins and brazing integrally. Also, by using an extruded material, it can be manufactured at low cost. Since the equivalent diameter of each tube becomes smaller, the pressure resistance increases. In addition, due to the flat structure, the possibility that foreign matter from the outside of the housing (implantation of foreign matter due to tucks) damages the radiator tube in which the refrigerant is sealed is reduced.

【0050】また、本実施の形態においては、更に以下
の効果がある。 (1)低温側連通管34aと放熱管31aとの間に、流
体隔離板2とともに高温通路35aを区画する高温側区
画部材50dを有し、この高温側区画部材50dにより
低温側連通管34aを高温通路35aよりも低温の領域
へ分離する。これにより、高温通路から低温側連通管3
4aへの熱伝導を抑制できる。また、高温側連通管34
bと吸熱管31bとの間に、流体隔離板2とともに低温
通路35bを区画する低温側区画部材50cを有し、こ
の低温側区画部材50cにより高温側連通管34bを低
温通路35aよりも高温の領域へ分離する。これによ
り、低温側連通管34aから低温通路35bへの熱伝導
を抑制できる。結果、冷媒の循環が阻害されることを防
止できる。
Further, the present embodiment has the following effects. (1) A high-temperature side partition member 50d that partitions the high-temperature passage 35a together with the fluid separator 2 is provided between the low-temperature side communication tube 34a and the radiator tube 31a. It is separated into a lower temperature region than the high temperature passage 35a. As a result, the high-temperature passage to the low-temperature side communication pipe 3
4a can be suppressed. Also, the high-temperature side communication pipe 34
b and the heat absorbing tube 31b, there is a low-temperature side partition member 50c for partitioning the low-temperature passage 35b together with the fluid separator 2, and the low-temperature side partition member 50c causes the high-temperature side communication pipe 34b to have a higher temperature than the low-temperature passage 35a. Separate into regions. Thereby, heat conduction from the low-temperature side communication pipe 34a to the low-temperature passage 35b can be suppressed. As a result, it is possible to prevent the circulation of the refrigerant from being hindered.

【0051】(2)沸騰冷却装置は送風可能部分(フィ
ン部分)と送風不可能部分(低温側連通管34a、高温
側連通管34b)とに分けることができる。本実施の形
態のような多段式の沸騰冷却装置に、図示しないファン
により単純に送風すると、送風された風はフィン部分に
流入する際に縮流し、フィン部分通過後に拡大流れとな
り、圧力損失を生じる可能性がある。これに対し、本実
施の形態では流体隔離板2と高温側区画部材50dとで
高温通路35aを区画し、流体隔離板2と低温側区画部
材50cとで低温通路35bを区画しているため、各通
路35a,35bを流れる通気が直線的に流れるように
なり、これにより圧力損失を低減することができる。こ
のことは、ファンの消費電力低減と送風騒音低減に役立
つ。また、区画されない場合に比較して送風断面積が制
限されるため、フィン部分の流量を増加させることがで
きる。
(2) The boiling cooling device can be divided into a blowable portion (fin portion) and a blowable portion (low-temperature communication pipe 34a, high-temperature communication pipe 34b). When a fan (not shown) simply blows air to a multistage boiling cooling device such as this embodiment, the blown air contracts when flowing into the fin portion, becomes an expanded flow after passing through the fin portion, and reduces pressure loss. Can occur. On the other hand, in the present embodiment, the high temperature passage 35a is defined by the fluid separator 2 and the high temperature side partition member 50d, and the low temperature passage 35b is defined by the fluid separator 2 and the low temperature side partition member 50c. The air flowing through each of the passages 35a and 35b flows linearly, thereby reducing pressure loss. This is useful for reducing the power consumption of the fan and reducing the blowing noise. In addition, since the cross-sectional area of the air blow is limited as compared with the case where no partition is made, the flow rate of the fin portion can be increased.

【0052】(3)高温側連通管34bは、吸熱管31
bと略平行で所定間隔(好ましくは各吸熱管31b相互
間の距離よりも大きい間隔、より好ましくはその相互間
間隔の2倍以上の間隔)を有して配設されているため、
冷媒槽3aで沸騰気化して上昇する蒸気冷媒が、高温側
連通管34bを介して低温の放熱器3bへ熱を放熱し
て、高温側連通管34b内で降下することを防止でき
る。また、低温側連通管34aは、放熱器3bの放熱側
下部連通部43と冷媒槽3aの吸熱側下部連通部41と
に連通され、放熱器3bで冷却液化された冷媒8を冷媒
槽3aに戻す。そして低温側連通管34aは、放熱管3
1aと略平行で所定間隔(好ましくは各放熱管31a相
互間の距離よりも大きい間隔、より好ましくはその相互
間間隔の2倍以上の間隔)を有して配設されているた
め、放熱器3bで凝縮液化されて降下してくる凝縮冷媒
が、低温側連通管34aを介して高温の冷媒槽3aから
熱を吸収して、低温側連通管34a内で上昇力を受ける
ことを防止できる。 (4)冷媒槽3aは複数の吸熱管31aで熱を受けるこ
とができるので吸熱効率が向上する。そして、この吸熱
により沸騰気化する冷媒を上部の吸熱側上部連通部42
で収集し、その冷媒は高温側連通管31bにより放熱器
3bへ送出されているので、放熱器3bと冷媒槽3aと
を連通するための管の数を減らすことができ、流体隔離
板2の加工を容易にできる。また、同様に放熱器3bは
複数の吸熱管31bで熱を放出するので放熱効率が向上
する。そして、凝縮液化された冷媒を下部の放熱側下部
連通部43で収集し、その冷媒は低温側連通管34aに
より冷媒槽3aへ送出されているので、放熱器3bと冷
媒槽3aとを連通するための管の数を減らすことがで
き、流体隔離板2の加工を容易にできる。
(3) The high-temperature side communication pipe 34 b is
b, and is disposed at a predetermined interval (preferably, an interval larger than the distance between the heat absorbing tubes 31b, more preferably, twice or more the interval between the heat absorbing tubes 31b).
The vapor refrigerant, which evaporates and rises in the refrigerant tank 3a, radiates heat to the low-temperature radiator 3b via the high-temperature communication pipe 34b, and can be prevented from falling in the high-temperature communication pipe 34b. Further, the low-temperature side communication pipe 34a is communicated with the heat-radiation-side lower communication part 43 of the radiator 3b and the heat-absorption-side lower communication part 41 of the refrigerant tank 3a, and the refrigerant 8 cooled and liquefied by the radiator 3b is supplied to the refrigerant tank 3a. return. The low-temperature side communication pipe 34a is
1a, it is arranged with a predetermined interval (preferably, an interval larger than the distance between the heat radiating tubes 31a, more preferably, twice or more the interval between the heat radiating tubes 31a). The condensed refrigerant, which is condensed and liquefied in 3b and descends, absorbs heat from the high-temperature refrigerant tank 3a through the low-temperature communication pipe 34a, and can be prevented from receiving a rising force in the low-temperature communication pipe 34a. (4) Since the refrigerant tank 3a can receive heat in the plurality of heat absorbing tubes 31a, the heat absorbing efficiency is improved. The refrigerant that boils and evaporates due to the heat absorption is transferred to the upper heat-absorbing-side upper communication section 42.
And the refrigerant is sent to the radiator 3b by the high-temperature side communication pipe 31b, so that the number of pipes for communicating the radiator 3b and the refrigerant tank 3a can be reduced, Processing can be facilitated. Similarly, the radiator 3b emits heat through the plurality of heat absorbing tubes 31b, so that the heat radiation efficiency is improved. The condensed and liquefied refrigerant is collected at the lower heat-radiation-side lower communication portion 43, and the refrigerant is sent to the refrigerant tank 3a by the low-temperature communication pipe 34a, so that the radiator 3b communicates with the refrigerant tank 3a. The number of tubes for the fluid separator 2 can be reduced, and the processing of the fluid separator 2 can be facilitated.

【0053】(5)低温側連通管34aの外周に被覆さ
れた断熱材50aを有し、高温側連通管34bの外周に
被覆された断熱材50bを有する。これにより、冷媒の
循環が阻害されることを防止できる。 (6)また、受熱フィン6aおよび放熱フィン6bが夫
々冷媒槽3a、放熱器3bと融合した状態で接合されて
いることから、受熱フィン6aおよび放熱フィン6bを
冷媒槽3a、放熱器3bに対して機械的に取り付けた場
合と比較して、各フィンと沸騰冷却管との間の熱抵抗を
小さくできる。これにより、受熱フィン6aおよび放熱
フィン6bを冷媒槽3a、放熱器3bに対して機械的に
取り付けた場合より、更に沸騰冷却装置全体の小型化が
可能となる。
(5) A heat insulating material 50a is provided on the outer circumference of the low-temperature communication pipe 34a, and a heat insulating material 50b is provided on the outer circumference of the high-temperature communication pipe 34b. This can prevent the circulation of the refrigerant from being hindered. (6) Further, since the heat receiving fin 6a and the heat radiating fin 6b are joined in a state of being fused with the refrigerant tank 3a and the radiator 3b, respectively, the heat receiving fin 6a and the heat radiating fin 6b are connected to the refrigerant tank 3a and the heat radiator 3b. The heat resistance between each fin and the boiling cooling pipe can be reduced as compared with the case where the fins are mechanically attached. This makes it possible to further reduce the size of the entire boiling cooling device as compared with the case where the heat receiving fins 6a and the heat radiating fins 6b are mechanically attached to the refrigerant tank 3a and the radiator 3b.

【0054】なお、図12のようなヒートパイプ式の沸
騰冷却器であっても、上部の放熱管31bで凝縮した冷
媒が吸熱管の管壁全てを濡らして降下しているわけでは
なく、壁面の一部に片寄って降下するため、冷媒槽の吸
熱管を多孔の管状部材にすることで冷媒液面低下を防止
する効果がある。
Even in the heat pipe type boiling cooler as shown in FIG. 12, the refrigerant condensed in the upper radiating pipe 31b does not wet the entire wall of the heat absorbing pipe and descends. Of the refrigerant tank, the heat absorbing tube of the refrigerant tank is made of a porous tubular member, which has an effect of preventing the refrigerant liquid level from lowering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態における沸騰冷却装置を用い
た筐体冷却装置の側面図である。
FIG. 1 is a side view of a casing cooling device using a boiling cooling device according to a first embodiment.

【図2】図1に示した筐体冷却装置を外側から見た平面
図である。
FIG. 2 is a plan view of the case cooling device shown in FIG. 1 as viewed from the outside.

【図3】第1の実施の形態における沸騰冷却装置を示す
斜視図である。
FIG. 3 is a perspective view showing a boiling cooling device according to the first embodiment.

【図4】図3における沸騰冷却装置の正面図である。FIG. 4 is a front view of the boiling cooling device in FIG. 3;

【図5】図4に示した沸騰冷却装置の一部断面図であ
る。
FIG. 5 is a partial sectional view of the boiling cooling device shown in FIG. 4;

【図6】図3におけるII−II断面図である。FIG. 6 is a sectional view taken along the line II-II in FIG.

【図7】図4の沸騰冷却装置を説明するための模式図で
ある。
FIG. 7 is a schematic diagram for explaining the boiling cooling device of FIG. 4;

【図8】(a)〜(d)は第1の実施の形態における沸
騰冷却装置の説明図である。
FIGS. 8A to 8D are explanatory diagrams of a boiling cooling device according to the first embodiment.

【図9】第1の実施の形態における沸騰冷却装置の説明
図である。
FIG. 9 is an explanatory diagram of a boiling cooling device according to the first embodiment.

【図10】(a)〜(d)は第1の実施の形態における
沸騰冷却装置の説明図である。
FIGS. 10A to 10D are explanatory diagrams of a boiling cooling device according to the first embodiment.

【図11】(a)、(b)は第1の実施の形態における
沸騰冷却装置の説明図である。
FIGS. 11A and 11B are explanatory diagrams of a boiling cooling device according to the first embodiment.

【図12】本発明のその他の構成を示す断面図である。FIG. 12 is a sectional view showing another configuration of the present invention.

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 11 高温側の伝熱空間 12 低温側の伝熱空間 13、16 吸入側の通気口 14、17 排出側の通気口 15 内部ファン 2 流体隔離板 22 仕切壁 23 送風路 3a 冷媒槽 3b 放熱器 31a 吸熱管 31b 放熱管 330 小通路 33 内部仕切り板 34a 低温側連通管(連通管) 34b 高温側連通管(連通管) 35a 高温通路(高温部分) 35b 低温通路(低温部分) 41 吸熱側下部連通部 42 吸熱側上部連通部 43 放熱側下部連通部 44 放熱側上部連通部 50a、b 断熱材(熱伝導抑制手段) 50c 低温側区画部材 50d 高温側区画部材 6a 受熱フィン 6b 放熱フィン 7 発熱体 8 冷媒 9 密閉空間 9a 壁面 REFERENCE SIGNS LIST 1 boiling cooling device 11 high-temperature side heat transfer space 12 low-temperature side heat transfer space 13, 16 suction-side vent 14, 17 discharge-side vent 15 internal fan 2 fluid separator 22 partition wall 23 air passage 3 a refrigerant tank 3b Heat radiator 31a Heat absorption tube 31b Heat radiation tube 330 Small passage 33 Internal partition plate 34a Low temperature side communication tube (communication tube) 34b High temperature side communication tube (communication tube) 35a High temperature passage (high temperature portion) 35b Low temperature passage (low temperature portion) 41 Heat absorption Lower side communication part 42 Heat absorption side upper communication part 43 Heat radiation side lower communication part 44 Heat radiation side upper communication part 50a, b Heat insulating material (heat conduction suppressing means) 50c Low temperature side partition member 50d High temperature side partition member 6a Heat receiving fin 6b Radiation fin 7 Heating element 8 Refrigerant 9 Enclosed space 9a Wall surface

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 高温部分から受熱して沸騰気化する冷媒
が内部に封入された冷媒槽と、 一方が前記冷媒槽と気密に連通され、他方が前記高温部
分よりも低温の低温部分に延設された連通管と、 前記連通管の前記他方に気密に連通されて前記冷媒槽よ
りも上部に配置され、前記冷媒槽で沸騰気化した冷媒の
熱を前記低温部分に放出して前記冷媒を凝縮液化させる
放熱器とを有し、少なくとも前記冷媒槽は管状部材から
なり、該管状部材は、内部が複数の小通路からなる多孔
管であることを特徴とする沸騰冷却装置。
1. A refrigerant tank in which a refrigerant that receives heat from a high-temperature part and evaporates and evaporates is enclosed therein, one of which is air-tightly connected to the refrigerant tank, and the other extends to a low-temperature part lower in temperature than the high-temperature part. And the communication pipe is airtightly communicated with the other of the communication pipes, is disposed above the refrigerant tank, and discharges heat of the refrigerant vaporized in the refrigerant tank to the low-temperature portion to condense the refrigerant. A radiator for liquefaction, wherein at least the refrigerant tank is formed of a tubular member, and the tubular member is a porous tube having a plurality of small passages therein.
【請求項2】 前記冷媒槽は、略平行に配列された複数
の吸熱管からなり、前記各吸熱管が多孔管である請求項
1記載の沸騰冷却装置。
2. The boiling cooling device according to claim 1, wherein the refrigerant tank comprises a plurality of heat absorbing tubes arranged substantially in parallel, and each of the heat absorbing tubes is a perforated tube.
【請求項3】 前記冷媒槽は、前記複数の吸熱管の下部
に配設されて前記複数の吸熱管を夫々連通させる吸熱側
下部連通部と、前記複数の吸熱管の上部に配設されて前
記複数の吸熱管を夫々連通させる吸熱側上部連通部とを
有し、前記小通路は前記吸熱側下部連通部側から前記吸
熱側上部連通部側へ向かって延設されることを特徴とす
る請求項2記載の沸騰冷却装置。
3. The heat-absorbing side lower communication part, which is disposed below the plurality of heat-absorbing tubes and communicates the plurality of heat-absorbing tubes, and is disposed above the plurality of heat-absorbing tubes. A heat-absorbing-side upper communication portion for communicating the plurality of heat-absorbing tubes with each other, wherein the small passage extends from the heat-absorbing-side lower communication portion to the heat-absorbing-side upper communication portion. The boiling cooling device according to claim 2.
【請求項4】 前記放熱器は、略平行に配列された複数
の放熱管からなり、前記各放熱管が多孔管である請求項
1ないし請求項3の何れかに記載の沸騰冷却装置。
4. The boiling cooling device according to claim 1, wherein the radiator includes a plurality of radiating tubes arranged substantially in parallel, and each of the radiating tubes is a perforated tube.
【請求項5】 前記複数の放熱管の下部に配設されて前
記複数の放熱管を夫々連通させる放熱側下部連通部と、
前記複数の放熱管の上部に配設されて前記複数の放熱管
を夫々連通させる放熱側上部連通部とを有し、前記小通
路は前記放熱側下部連通部側から前記放熱側上部連通部
側へ向かって延設されることを特徴とする請求項4記載
の沸騰冷却装置。
5. A heat-dissipation-side lower communication portion disposed below the plurality of heat-dissipation tubes and communicating the plurality of heat-dissipation tubes, respectively.
A heat-dissipation-side upper communication portion disposed above the plurality of heat-dissipation tubes and communicating the plurality of heat-dissipation tubes, respectively, wherein the small passage extends from the heat-dissipation-side lower communication portion side to the heat-dissipation-side upper communication portion side The evaporative cooling device according to claim 4, wherein the elongate cooling device is extended toward the evaporator.
【請求項6】 前記高温部分は高温流体が流通される通
路であり、前記冷媒槽は前記高温流体が流通する方向に
前記複数の小通路が積層されるように前記管状部材が配
置されることを特徴とする請求項1ないし請求項5の何
れかに記載の沸騰冷却装置。
6. The high-temperature portion is a passage through which a high-temperature fluid flows, and the refrigerant member is provided with the tubular member such that the plurality of small passages are stacked in a direction in which the high-temperature fluid flows. The boiling cooling device according to any one of claims 1 to 5, characterized in that:
【請求項7】 前記管状部材は外形が扁平断面を有する
ことを特徴とする請求項1ないし請求項6の何れかに記
載の沸騰冷却装置。
7. The boiling cooling device according to claim 1, wherein the outer shape of the tubular member has a flat cross section.
【請求項8】 前記管状部材は対向する2つの壁面を有
する扁平形状をを有し、内部に前記2つの壁面に共に接
する複数の板状部材が配置され、この複数の板状部材と
前記2つの壁面とで囲まれた複数の通路で前記小通路を
構成することを特徴とする請求項1ないし請求項7の何
れかに記載の沸騰冷却装置。
8. The tubular member has a flat shape having two opposing wall surfaces, and a plurality of plate members in contact with the two wall surfaces are arranged inside the tubular member. The boiling cooling device according to any one of claims 1 to 7, wherein the small passage is constituted by a plurality of passages surrounded by two wall surfaces.
【請求項9】 前記管状部材は略目の字断面を有するこ
とを特徴とする請求項8記載の沸騰冷却装置。
9. The cooling apparatus according to claim 8, wherein the tubular member has a substantially O-shaped cross section.
【請求項10】 前記冷媒槽を構成する前記管状部材に
おける各小通路の直径が、前記冷媒の沸騰面離脱時の気
泡径の1〜102 倍に設定されることを特徴とする請求
項1ないし請求項9の何れかに記載の沸騰冷却装置。
10. The method of claim 1 in which the diameter of the small passages in the tubular member constituting the refrigerant tank, characterized in that it is set to 1 to 10 2 times the cell diameter at the boiling surface separation of the refrigerant The boiling cooling device according to claim 9.
【請求項11】 前記高温部分に高温流体が流通され、
前記低温部分に低温流体が流通され、当該高温流体と低
温流体とが流体隔離板により隔離され、 前記冷媒槽は流体隔離板よりも前記高温流体側に配設さ
れ前記高温流体から受熱し、 前記連通管は、一方が前記冷媒槽と気密に連通され、他
方が前記流体隔離板を通り抜けて前記低温流体側に延設
され、 前記放熱器は、前記流体隔離板よりも前記低温流体側に
配設され前記沸騰気化した冷媒の熱を前記低温流体に放
出することを特徴とする請求項1ないし請求項10の何
れかに記載の沸騰冷却装置。
11. A high-temperature fluid flows through the high-temperature portion,
The low-temperature fluid flows through the low-temperature portion, the high-temperature fluid and the low-temperature fluid are isolated by a fluid separator, and the refrigerant tank is disposed closer to the higher-temperature fluid than the fluid separator and receives heat from the high-temperature fluid, One of the communication pipes is air-tightly connected to the refrigerant tank, and the other is extended to the low-temperature fluid side through the fluid separator, and the radiator is disposed closer to the lower-temperature fluid side than the fluid separator. The boiling cooling device according to any one of claims 1 to 10, wherein the cooling device is provided to release heat of the boiling vaporized refrigerant to the low-temperature fluid.
【請求項12】 前記冷媒は、沸騰気化していない時の
液面が前記流体隔離板の位置に略一致する位置まで前記
冷媒槽内に注入されることを特徴とする請求項11記載
の沸騰冷却装置。
12. The boiling according to claim 11, wherein the refrigerant is injected into the refrigerant tank until the liquid level when the liquid is not vaporized substantially coincides with the position of the fluid separator. Cooling system.
【請求項13】 前記連通管は、前記冷媒槽で沸騰気化
した冷媒を前記放熱器に送出する高温側連通管と、前記
放熱器で凝縮液化された冷媒を前記冷媒槽に戻す低温側
連通管とを備えることを特徴とする請求項1ないし請求
項12の何れかに記載の沸騰冷却装置。
13. The communication pipe according to claim 1, wherein the communication pipe is a high-temperature communication pipe that sends the refrigerant vaporized in the refrigerant tank to the radiator, and a low-temperature communication pipe that returns the refrigerant condensed and liquefied by the radiator to the refrigerant tank. The boiling cooling device according to any one of claims 1 to 12, comprising:
【請求項14】 請求項1ないし請求項13の何れかに
記載の沸騰冷却装置と、 作動することにより発熱する電気機器が内部に収容され
る筐体と、 前記筐体内部に連通した内部連通室に配設され、前記電
気機器を含む領域内で空気循環を行うことで前記内部連
通室内に前記高温流体を発生させる内部循環ファンと、 前記筐体外部に連通した外部連通室に配設され、外部と
の空気循環を行うことで前記外部連通室内に前記低温流
体を発生させる外部循環ファンとを有し、前記内部連通
室内に、前記冷媒槽を、前記高温流体が流通する方向に
前記複数の小通路が積層されるように配置し、更に前記
放熱器を、前記低温流体が流通する方向に前記複数の小
通路が積層されるように配置したことを特徴とする沸騰
冷却装置を用いた筐体冷却装置。
14. A boiler / cooler according to claim 1, wherein a housing accommodating an electric device which generates heat when activated, and an internal communication communicating with the inside of the housing. And an internal circulation fan that generates the high-temperature fluid in the internal communication chamber by circulating air in a region including the electric device, and an external communication chamber that is communicated with the outside of the housing. An external circulation fan that generates the low-temperature fluid in the external communication chamber by performing air circulation with the outside, and the refrigerant tank is provided in the internal communication chamber in a direction in which the high-temperature fluid flows. The evaporator is arranged such that the small passages are stacked, and the radiator is further arranged so that the plurality of small passages are stacked in the direction in which the low-temperature fluid flows. Case cooling device.
JP34010896A 1996-12-19 1996-12-19 Boiling cooling device and casing cooling device using the same Expired - Lifetime JP3893651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34010896A JP3893651B2 (en) 1996-12-19 1996-12-19 Boiling cooling device and casing cooling device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34010896A JP3893651B2 (en) 1996-12-19 1996-12-19 Boiling cooling device and casing cooling device using the same

Publications (2)

Publication Number Publication Date
JPH10178292A true JPH10178292A (en) 1998-06-30
JP3893651B2 JP3893651B2 (en) 2007-03-14

Family

ID=18333803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34010896A Expired - Lifetime JP3893651B2 (en) 1996-12-19 1996-12-19 Boiling cooling device and casing cooling device using the same

Country Status (1)

Country Link
JP (1) JP3893651B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037917A1 (en) * 2000-11-02 2002-05-10 Thermosys Co., Ltd Parts cooling apparatus for electric/electronic equipments
JP2007147262A (en) * 2005-11-04 2007-06-14 Denso Corp Cooling device and method of manufacturing the same
JP2008025884A (en) * 2006-07-19 2008-02-07 Denso Corp Ebullient cooling type heat exchange device
CN106288893A (en) * 2015-06-03 2017-01-04 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger system
CN114234535A (en) * 2021-12-15 2022-03-25 浙江酷灵信息技术有限公司 Thermosiphon heat sink

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311666U (en) * 1976-07-12 1978-01-31
JPS62233687A (en) * 1986-04-01 1987-10-14 Yamato Seisakusho:Kk Heat transfer device
JPS63121492U (en) * 1987-01-30 1988-08-05
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JPH06260783A (en) * 1993-03-02 1994-09-16 Mitsubishi Alum Co Ltd Cooling apparatus
JPH0878588A (en) * 1994-09-06 1996-03-22 Nippondenso Co Ltd Boiling/cooling device
JPH08340189A (en) * 1995-04-14 1996-12-24 Nippondenso Co Ltd Boiling cooling device
JPH102686A (en) * 1996-06-12 1998-01-06 Denso Corp Ebullition cooling apparatus
JPH10227554A (en) * 1997-02-14 1998-08-25 Denso Corp Cooling apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311666U (en) * 1976-07-12 1978-01-31
JPS62233687A (en) * 1986-04-01 1987-10-14 Yamato Seisakusho:Kk Heat transfer device
JPS63121492U (en) * 1987-01-30 1988-08-05
JPH04190090A (en) * 1990-11-22 1992-07-08 Akutoronikusu Kk Loop type fine tube heat pipe
JPH06260783A (en) * 1993-03-02 1994-09-16 Mitsubishi Alum Co Ltd Cooling apparatus
JPH0878588A (en) * 1994-09-06 1996-03-22 Nippondenso Co Ltd Boiling/cooling device
JPH08340189A (en) * 1995-04-14 1996-12-24 Nippondenso Co Ltd Boiling cooling device
JPH102686A (en) * 1996-06-12 1998-01-06 Denso Corp Ebullition cooling apparatus
JPH10227554A (en) * 1997-02-14 1998-08-25 Denso Corp Cooling apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037917A1 (en) * 2000-11-02 2002-05-10 Thermosys Co., Ltd Parts cooling apparatus for electric/electronic equipments
JP2007147262A (en) * 2005-11-04 2007-06-14 Denso Corp Cooling device and method of manufacturing the same
JP2008025884A (en) * 2006-07-19 2008-02-07 Denso Corp Ebullient cooling type heat exchange device
CN106288893A (en) * 2015-06-03 2017-01-04 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger system
CN114234535A (en) * 2021-12-15 2022-03-25 浙江酷灵信息技术有限公司 Thermosiphon heat sink

Also Published As

Publication number Publication date
JP3893651B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US6360814B1 (en) Cooling device boiling and condensing refrigerant
JP4423792B2 (en) Boiling cooler
KR100259599B1 (en) Cooling apparatus using boiling and condensing refrigerant
US6119767A (en) Cooling apparatus using boiling and condensing refrigerant
US5737923A (en) Thermoelectric device with evaporating/condensing heat exchanger
JP3651081B2 (en) Boiling cooler
US7093647B2 (en) Ebullition cooling device for heat generating component
US20030094266A1 (en) Cabinet having heat exchanger integrally installed between roof and solar shield
JP3767053B2 (en) Boiling cooling device and casing cooling device using the same
JP3887857B2 (en) Boiling cooling device and casing cooling device using the same
CN113613468A (en) Brazing refrigerant radiator
JPH10227554A (en) Cooling apparatus
JPH10178292A (en) Boiling cooler and housing cooler employing it
KR20070115312A (en) A heatpipe module for cooling devices
JP3834932B2 (en) Boiling cooler
US6279649B1 (en) Cooling apparatus using boiling and condensing refrigerant
CN214381914U (en) Phase change heat dissipation structure and heat dissipation device
JP3924674B2 (en) Boiling cooler for heating element
JP3861361B2 (en) COOLING DEVICE AND CASE COOLING DEVICE HAVING THE COOLING DEVICE
JPH1098142A (en) Boiling cooler
JP3487374B2 (en) Boiling cooling device
JPH102686A (en) Ebullition cooling apparatus
JP2001068611A (en) Boiling cooler
JPH09264677A (en) Ebullient cooler, heat exchanger equipped with ebullient cooler and ebullient cooling apparatus equipped with ebullient cooler
JP2000156445A (en) Boiling cooling device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term