JPH10177860A - Positive electrode material for lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery

Info

Publication number
JPH10177860A
JPH10177860A JP9286150A JP28615097A JPH10177860A JP H10177860 A JPH10177860 A JP H10177860A JP 9286150 A JP9286150 A JP 9286150A JP 28615097 A JP28615097 A JP 28615097A JP H10177860 A JPH10177860 A JP H10177860A
Authority
JP
Japan
Prior art keywords
sample
positive electrode
lithium
capacity
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9286150A
Other languages
Japanese (ja)
Inventor
Jun Sugiyama
純 杉山
Itsuki Sasaki
厳 佐々木
Tatsuya Hatanaka
達也 畑中
Tatsuo Noritake
達夫 則竹
Tatsumi Hioki
辰視 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9286150A priority Critical patent/JPH10177860A/en
Publication of JPH10177860A publication Critical patent/JPH10177860A/en
Priority to US09/255,704 priority patent/US6087042A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure charging/discharging cycle durability so as to provide a positive electrode material for suppressing the reduction of a charging/ discharging capacity by introducing lithium ions in the mangan site made of lithium mangan composite oxide having a spinel crystal structure and substituting fluorine for all or a part of oxygen deficiency. SOLUTION: A material having a composition represented by an expression is used. In the expression, x is 0.0133<=x<=0.3333; y is 0<y<=0.2; z is 0.01<=z<=0; z<=y. By introducing lithium ions, a charging/discharging cycle characteristic is improved. Following the introduction of lithium ions, a mangan ion valency number is charged, and the disadvantage of the reduction of an initial charging/ discharging capacity is prevented by providing oxygen deficiency in a crystal grid. The weakening of a crystal structure caused by the oxygen deficiency is prevented by introducing fluorine. This positive electrode material is applied to a lithium secondary battery for communication office equipment such as a personal computer or a portable telephone set and thus an energy density is increased and the need for a long life can be satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用正極材料に関し、さらに詳しくは、スピネル型結晶構
造を持つリチウム・マンガンの複合酸化物であるリチウ
ム二次電池用正極材料に関するものである。
The present invention relates to a positive electrode material for a lithium secondary battery, and more particularly to a positive electrode material for a lithium secondary battery, which is a lithium-manganese composite oxide having a spinel-type crystal structure. .

【0002】[0002]

【従来の技術】近年、リチウム二次電池が、充放電電圧
が高く、充放電容量も大きいという特長を有するために
注目されている。そしてエネルギー密度が高く、小型・
軽量化が図れるということで、パソコンや携帯電話など
の通信事務用機器、あるいは近い将来には電気自動車の
電源などとしての用途も期待されている。
2. Description of the Related Art In recent years, attention has been paid to lithium secondary batteries because of their high charge / discharge voltage and large charge / discharge capacity. And high energy density, small size
Because it can be reduced in weight, it is also expected to be used as communication office equipment such as personal computers and mobile phones, or in the near future as a power source for electric vehicles.

【0003】ところでこのリチウム二次電池の正極材料
としては、これまでのコバルト酸リチウム(LiCoO
2 )材料に代えて、スピネル型結晶構造を持つリチウム
・マンガンの複合酸化物であるマンガン酸リチウム(L
iMn24)系化合物が有望視されている。
As a cathode material of this lithium secondary battery, lithium cobalt oxide (LiCoO) has been used.
2 ) Instead of materials, lithium manganate (L), which is a lithium-manganese composite oxide having a spinel-type crystal structure, is used.
iMn 2 O 4 ) -based compounds are promising.

【0004】特にLiMn24系化合物の中でも、組成
式Li1+XMn2-X4(0<x<0.03)で表されるよ
うに、MnサイトにLiイオンをごく僅か置換導入した
ものが充放電のサイクル耐久性を向上させるということ
で注目されている(Y.Gao and J.K.Dahn, J.Electroche
m. Soc.,143,100(1996))。サイクル耐久性向上の原因
は、Mnサイトを部分的にLiで置換することにより、
充放電すなわちLiイオンの脱離・挿入に伴う結晶格子
の変化が減少するためと考えられている。
In particular, among LiMn 2 O 4 compounds, as shown by the composition formula Li 1 + X Mn 2-X O 4 (0 <x <0.03), Li ions are very slightly substituted on Mn sites. Attention has been paid to the fact that those introduced improve the cycle durability of charge and discharge (Y. Gao and JKDahn, J. Electroche
m. Soc., 143 , 100 (1996)). The cause of the cycle durability improvement is that the Mn site is partially replaced with Li,
It is considered that the change in crystal lattice due to charge / discharge, that is, desorption / insertion of Li ions is reduced.

【0005】一方、LiMn24系化合物の酸素を部分
的にフッ素(F)で置換したものが、特開平7−254
403号公報に開示されている。これは、組成式LiX
Mn24-ab(ここで、0<x≦1.02、a≦0.0
5、0.01≦b<0.1)で表される。充電状態での自
己放電を抑え、放電容量、特に高温条件下での放電容量
が確保されるとするものである。
On the other hand, LiMn 2 O 4 compounds in which oxygen is partially substituted with fluorine (F) are disclosed in JP-A-7-254.
No. 403 discloses this. This is the composition formula Li X
Mn 2 O 4-a F b (where 0 <x ≦ 1.02, a ≦ 0.0
5, 0.01 ≦ b <0.1). It is assumed that self-discharge in a charged state is suppressed and a discharge capacity, particularly a discharge capacity under a high temperature condition, is ensured.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者の
例、すなわち僅かにLiを過剰にしたスピネル構造のL
1+xMn2-x4 には、放電容量が低下するという重大
な問題がある。この場合Li1+xMn2-x4の陽イオン
配置は、(Li)8a[LixMn2-x16d4 と書き表
される。この結晶格子の8個の4配位四面体サイト(8
aサイト)にLiイオンが位置する。またこの結晶格子
の16個の6配位八面体サイト(16dサイト)にMn
イオンとこのMnイオンが部分的に置換された過剰のL
iイオンとが位置している。
However, the former example, that is, L of a spinel structure with a slight excess of Li
i 1 + x Mn 2-x O 4 has a serious problem that the discharge capacity is reduced. In this case, the cation configuration of Li 1 + x Mn 2-x O 4 is expressed as (Li) 8a [Li x Mn 2-x ] 16d O 4 . Eight four-coordinate tetrahedral sites (8
Li ion is located at (a site). Further, Mn was added to 16 hexacoordinate octahedral sites (16d sites) of this crystal lattice.
Ion and the excess L partially substituted for this Mn ion
i ion is located.

【0007】つまり、過剰のLiは16dサイトに位置
するので、Mnイオンの平均価数が3.5以上に増加す
る。Li1+xMn2-x4のLi金属に対する充放電は、
Mn3+とMn4+間の酸化還元反応であるから、Mnイオ
ンの平均価数の増加は電池の充放電容量、特に初期充放
電容量の低下につながる。
That is, since excess Li is located at the 16d site, the average valence of Mn ions increases to 3.5 or more. The charge and discharge of Li 1 + x Mn 2-x O 4 with respect to Li metal is as follows:
Because of the oxidation-reduction reaction between Mn 3+ and Mn 4+, an increase in the average valence of Mn ions leads to a decrease in the charge / discharge capacity of the battery, particularly the initial charge / discharge capacity.

【0008】上記過剰Li量と理論容量(mAh/g) との関
係を調べると図1のようになる。この図の中でLi1+x
Mn2-x4 の試料(材料c)に注目した場合、過剰L
i量xが増すにつれて直線的に理論容量が低下すること
がわかる。過剰Li量xの値がx=0.03の時にLi
1+xMn2-x4試料の理論容量は、x=0の試料の約9
2%まで減少する。
FIG. 1 shows the relationship between the excess Li amount and the theoretical capacity (mAh / g). In this figure, Li 1 + x
When focusing on the sample of Mn 2-x O 4 (material c), excess L
It can be seen that the theoretical capacity decreases linearly as the i amount x increases. When the value of the excess Li amount x is x = 0.03, Li
The theoretical capacity of the 1 + x Mn 2-x O 4 sample is about 9 for the sample with x = 0.
Reduce to 2%.

【0009】従来は、耐久性向上のためにこの容量の低
下を容認していた。しかし容量の低下は高エネルギー密
度であるというリチウム二次電池の特長を損なってしま
う。携帯用電子機器あるいは電気自動車用動力源への応
用を考えると、これは重大な問題である。
Conventionally, this reduction in capacity has been tolerated in order to improve durability. However, a decrease in capacity impairs the feature of the lithium secondary battery that it has a high energy density. This is a significant problem when considering its application to portable electronic devices or power sources for electric vehicles.

【0010】一方、後者の例、すなわちフッ素で酸素を
部分的に置換した LixMn24-ab の場合には、M
nサイトにLiが置換導入されるものではない。したが
って、この材料の場合は初期充放電容量の低下はない
が、充放電を繰り返した時に放電容量が大きく低下し、
充放電のサイクル耐久性が十分ではないという問題があ
る。またスピネル構造中の酸素をフッ素で置換すること
は、通常の固相反応法では困難であるとされている。
On the other hand, the latter example, that is, when the fluorine-oxygen partially substituted with a Li x Mn 2 O 4-a F b is, M
Li is not substituted into the n-site. Therefore, in the case of this material, the initial charge / discharge capacity does not decrease, but the discharge capacity greatly decreases when charge / discharge is repeated,
There is a problem that the charge / discharge cycle durability is not sufficient. Further, it is said that it is difficult to replace oxygen in the spinel structure with fluorine by a normal solid-state reaction method.

【0011】本発明の解決しようとする課題は、充放電
のサイクル耐久性を確保すると同時に、充放電容量の低
下を抑制して高エネルギー密度を確保できるようにした
リチウム二次電池用正極材料を提供することにある。
The problem to be solved by the present invention is to provide a positive electrode material for a lithium secondary battery capable of securing a high energy density by suppressing a decrease in the charge / discharge capacity while securing cycle durability of charge / discharge. To provide.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に本発明のリチウム二次電池用正極材料は、スピネル型
結晶構造を持つリチウム・マンガンの複合酸化物であっ
て、組成式Li1+x Mn2-x4-yZ(ここでxは0.0
133≦x≦0.3333、yは0<y≦0.2、zは
0.01≦z≦0.2であり、かつz≦yである)で表さ
れる組成を有することを要旨とするものである。
In order to achieve this object, a cathode material for a lithium secondary battery according to the present invention is a lithium-manganese composite oxide having a spinel type crystal structure, and has a composition formula of Li 1+ x Mn 2-x O 4-y F Z (where x is 0.0
133 ≦ x ≦ 0.3333, y is 0 <y ≦ 0.2, and z is 0.01 ≦ z ≦ 0.2, and z ≦ y. Is what you do.

【0013】上記したLi1+xMn2-x4-yZの組成に
おいて過剰リチウムによるマンガンイオンの価数上昇を
抑制するために A)酸素を欠損させる。(z=0の場合) B)酸素をフッ素で置換する。(y=zの場合) C)酸素の一部をフッ素で置換し、さらに酸素も欠損さ
せる。(z<yの場合)ことが考えられる。しかし、
A)の場合に酸素欠損を過剰にすると、スピネル構造が
不安定になり、さらにサイクル耐久性を低下させてしま
う。そこでB)やC)の場合のように、酸素欠損の全部
または一部をフッ素で置換する事が望ましい。
In the above composition of Li 1 + x Mn 2-x O 4-y F Z , oxygen is deficient in order to suppress an increase in the valence of manganese ions due to excess lithium. (When z = 0) B) Replace oxygen with fluorine. (When y = z) C) A part of oxygen is replaced by fluorine, and oxygen is also deficient. (If z <y). But,
If the oxygen deficiency is excessive in the case of A), the spinel structure becomes unstable, and the cycle durability is further reduced. Therefore, it is desirable to replace all or part of the oxygen vacancy with fluorine as in the cases B) and C).

【0014】図1に示した過剰Li量xと理論容量 (mA
h/g)との関係について説明すると、上記した場合A)は
材料a:Li1+xMn2-x4-x の直線で表され、場合
B)は材料b:Li1+xMn2-x4-xxの直線で表され
る。そして場合C)は、材料aの直線と材料bの直線と
の間の斜線領域に相当する。ここで理論容量Ctheo(mAh
/g) と過剰Li量xとの関係は、次の数1に示した関係
式で与えられる。数1においてmw(x)は試料の分子
量、Fはファラデー定数(9.6485×104 C/mo
l)を示している。
The excess Li amount x and the theoretical capacity (mA) shown in FIG.
Explaining the relationship with h / g), the above case A) is represented by a straight line of the material a: Li 1 + x Mn 2-x O 4-x , and the case B) is the material b: Li 1 + x Mn represented by a straight line of 2-x O 4-x F x. Case C) corresponds to a shaded region between the straight line of the material a and the straight line of the material b. Where the theoretical capacity C theo (mAh
/ g) and the excess Li amount x are given by the following equation (1). In Equation 1, mw (x) is the molecular weight of the sample, and F is the Faraday constant (9.6485 × 10 4 C / mo).
1).

【0015】[0015]

【数1】 (Equation 1)

【0016】数1の理論式からもわかるようにLi1+x
Mn2-x4-xxの試料では、容量の低下をLi1+xMn
2-x4の場合の最高で約1/3に低減できる。したがっ
て本発明にかかる正極材料は、従来品とほぼ同様に高容
量である。さらに耐久性はLiMn24正極の場合より
大幅に向上する。
As can be seen from the theoretical equation (1), Li 1 + x
In the sample of Mn 2-x O 4-x F x , the decrease in capacity was measured as Li 1 + x Mn.
In the best case of 2-x O 4 can be reduced to about 1/3. Therefore, the positive electrode material according to the present invention has a high capacity almost the same as a conventional product. Further, the durability is greatly improved as compared with the case of the LiMn 2 O 4 positive electrode.

【0017】次にLi1+xMn2-x4-yZの過剰Li量
xの範囲について説明する。耐久性試験におけるnサイ
クル目の容量C(n)と初期容量C0 の関係は、次の数2
に示した式のように表される。
Next, the range of the excess Li amount x of Li 1 + x Mn 2-x O 4-y F Z will be described. The relationship between the capacity C (n) at the nth cycle and the initial capacity C 0 in the durability test is given by the following equation (2).
It is expressed like the equation shown in FIG.

【0018】[0018]

【数2】 (Equation 2)

【0019】ここでαは1サイクル当たりの容量保持率
である。逆にこの式から、充放電を100サイクル繰り
返した後に初期容量の60%の容量を維持するために
は、1サイクル当たりの容量保持率は α=0.9949
となる。このαとxの関係をLi1+xMn2-x4につい
て示したのが図2である。
Here, α is the capacity retention rate per cycle. Conversely, from this equation, in order to maintain a capacity of 60% of the initial capacity after 100 cycles of charge and discharge, the capacity retention rate per cycle is α = 0.94949.
Becomes FIG. 2 shows the relationship between α and x for Li 1 + x Mn 2-x O 4 .

【0020】図2において、過剰Li量xの増加ととも
に容量保持率αは増加するが、実用上必要な耐久性を保
持するためには、x≧0.0133 である。なおこの関
係はLi1+xMn2-x4-yZについてもほぼ同様であっ
た。
In FIG. 2, the capacity retention rate α increases with an increase in the excess Li amount x, but x ≧ 0.0133 in order to maintain practically necessary durability. This relationship was substantially the same for Li 1 + x Mn 2-x O 4-y F Z.

【0021】一方x=0.3333で、Li1+xMn2-x
4のMnイオンは全て+4価になり、これ以上過剰に
Liを導入しても試料を合成できない。すなわち図2の
[A]の領域では、サイクル数による容量の減少が大き
く実用上使用が困難である。図2の[B]の領域では、
初期容量は純粋な試料の96%程度まで減少するが、1
00-300 サイクルまでは容量を維持できる。図2の
[C]領域では、初期容量は96%以下に減少するが、
300サイクル以上の長期にわたって安定な特性を示す
正極が得られる。本発明は、図2の[B]と[C]の領
域に相当する。
On the other hand, when x = 0.333, Li 1 + x Mn 2-x
All Mn ions of O 4 become +4, and a sample cannot be synthesized even if Li is introduced in excess. That is, in the region [A] of FIG. 2, the capacity is greatly reduced by the number of cycles, and it is difficult to use in practical use. In the area [B] in FIG.
The initial volume decreases to about 96% of the pure sample,
Capacity can be maintained up to 00-300 cycles. In the region [C] of FIG. 2, the initial capacity decreases to 96% or less,
A positive electrode exhibiting stable characteristics over a long period of 300 cycles or more can be obtained. The present invention corresponds to the regions [B] and [C] in FIG.

【0022】なお先行技術として挙げた特開平7−25
4403号公報に示されたものは、Li1+xMn2-x
4-yZと表記した場合に、0≦x≦0.0132(図2
の[A]の領域に相当する)である。この領域では過剰
Li量xが少なすぎて、耐久性の向上は充分でないこと
が明らかである。
Note that Japanese Patent Application Laid-Open No. 7-25 is cited as a prior art.
No. 4403 discloses Li 1 + x Mn 2-x O
4-y F Z when expressed as, 0 ≦ x ≦ 0.0132 (2
(Corresponding to the region [A] in FIG. 3). It is clear that in this region, the excess Li amount x is too small and the durability is not sufficiently improved.

【0023】また酸素の一部を適量欠損させたりFで置
換すると、酸素を介したMnイオン間の長距離相互作用
は著しく弱められる。このため充放電を繰り返しても、
結晶構造が変化しにくく、より耐久性に優れたリチウム
二次電池用正極材料を提供することができる。
When a part of oxygen is deficiently substituted or replaced with F, the long-range interaction between Mn ions via oxygen is significantly weakened. Therefore, even if charging and discharging are repeated,
It is possible to provide a positive electrode material for a lithium secondary battery having a crystal structure that does not easily change and is more excellent in durability.

【0024】上記組成式Li1+xMn2-x4-yZにおい
て、0<y≦0.2で0.01≦z≦0.2である。z<
0.01ではF置換による十分な効果が得られない。ま
た 0.2≦zではFは酸素を置換せずLiFが不純物と
して析出していまう。
In the above composition formula Li 1 + x Mn 2-x O 4-y F Z , 0 <y ≦ 0.2 and 0.01 ≦ z ≦ 0.2. z <
At 0.01, a sufficient effect by F substitution cannot be obtained. When 0.2 ≦ z, F does not replace oxygen, and LiF is precipitated as an impurity.

【0025】なおLi1+xMn2-x4-yZの結晶構造は
立方晶スピネル構造であることが望ましい。酸素欠損量
y−zを増加させると、y−z=0.07 近傍で結晶構
造が正方晶に変化する。正極材料中にこの正方晶相が出
現すると充放電電圧が低下してしまう。したがって酸素
欠損を導入しても立方晶スピネル構造を保つためにy−
zは0.07より小さいことが望ましい。
The crystal structure of Li 1 + x Mn 2-x O 4-y F Z is preferably a cubic spinel structure. When the oxygen deficiency yz is increased, the crystal structure changes to tetragonal in the vicinity of yz = 0.07. When the tetragonal phase appears in the positive electrode material, the charge / discharge voltage decreases. Therefore, to maintain the cubic spinel structure even when oxygen vacancies are introduced, y-
z is preferably smaller than 0.07.

【0026】[0026]

【発明の実施の形態】以下、本発明を実施例により具体
的に説明する。初めに組成式Li1+xMn2-x4-yz
の材料の合成について説明する。この材料の合成のため
にまずLiMn24の材料を合成した。原料には炭酸リ
チウム(Li2CO3)と二酸化マンガン(MnO2)の
粉末を用いた。3.505gのLi2CO3と16.495
gのMnO2をエタノールを溶媒として、遊星ボールミ
ルで混合した。この混合粉末を乾燥後、ペレット状に形
成して、700℃×8時間、静止大気中で3回仮焼し
た。そして、このペレットを充分に粉砕して LiMn2
4 の材料を得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples. First , the composition formula Li 1 + x Mn 2-x O 4-y F z
The synthesis of the above materials will be described. For the synthesis of this material, first, a LiMn 2 O 4 material was synthesized. Powders of lithium carbonate (Li 2 CO 3 ) and manganese dioxide (MnO 2 ) were used as raw materials. 3.505 g of Li 2 CO 3 and 16.495
g of MnO 2 was mixed in a planetary ball mill using ethanol as a solvent. After drying this mixed powder, it was formed into pellets and calcined three times in a still atmosphere at 700 ° C. for 8 hours. Then, the pellet is sufficiently pulverized to obtain LiMn 2
To give the O 4 of the material.

【0027】次にこのLiMn24の粉末材料24.6
89g にフッ化リチウム(LiF)0.182gと炭酸
リチウム(Li2CO3)0.129gを加えてよく混合
した。この混合粉末を再びペレット状にプレス成形し
て、650℃×12時間酸素気流中で熱処理し、室温ま
で炉中で徐冷した。組成分析によるとこの試料は、Li
1. 05Mn1.953.950.05であった。これを「本実施例
試料1」と呼ぶ。
Next, this LiMn 2 O 4 powder material 24.6
To 89 g, 0.182 g of lithium fluoride (LiF) and 0.129 g of lithium carbonate (Li 2 CO 3 ) were added and mixed well. The mixed powder was press-formed again into a pellet, heat-treated in an oxygen stream at 650 ° C. for 12 hours, and gradually cooled in a furnace to room temperature. According to the composition analysis, this sample was Li
1. was 05 Mn 1.95 O 3.95 F 0.05. This is called “Sample 1 of the present example”.

【0028】また同様の手法により、Li1.02Mn1.98
3.980.02(本実施例試料2)、Li1.1Mn1.9
3.90.1(本実施例試料3)、Li1.15Mn1.853.85
0.15(本実施例試料4)、Li1.2Mn1.83.80.2
(本実施例試料5)、Li1.05Mn1.953.96
0.04(本実施例試料6)、Li1.05Mn1.953.97
0.03(本実施例試料7)、及びLi1.05Mn1.953.99
0.01(本実施例試料8)を得た。
In the same manner, Li 1.02 Mn 1.98
O 3.98 F 0.02 (Sample 2 of this example), Li 1.1 Mn 1.9 O
3.9 F 0.1 (Sample 3 of this example), Li 1.15 Mn 1.85 O 3.85
F 0.15 (Sample 4 of this example), Li 1.2 Mn 1.8 O 3.8 F 0.2
(Sample 5 of this example), Li 1.05 Mn 1.95 O 3.96 F
0.04 (sample 6 of this example), Li 1.05 Mn 1.95 O 3.97 F
0.03 (Sample 7 of the present example) and Li 1.05 Mn 1.95 O 3.99
F 0.01 (sample 8 of this example) was obtained.

【0029】また本実施例試料1の混合粉末成形品を6
50℃、20%O2-Ar雰囲気から急冷して、Li1.05
Mn1.953.950.04(本実施例試料9)を、本実施例
試料7のものを650℃、15%O2-Ar雰囲気から急
冷して、Li1.05Mn1.953.950.03(本実施例試料
10)を、本実施例試料8のものを650℃、10%O
2-Ar雰囲気から急冷して、Li1.05Mn1.953.95
0.01(本実施例試料11)を得た。
The mixed powder molded product of the sample 1 of the present embodiment was
50 ° C., quenched from a 20% O 2 -Ar atmosphere to obtain Li 1.05
Mn 1.95 O 3.95 F 0.04 (Example 9) and sample 7 of Example 7 were quenched from 650 ° C. and 15% O 2 -Ar atmosphere to obtain Li 1.05 Mn 1.95 O 3.95 F 0.03 (Example 9). Sample 10) was changed to 650 ° C., 10% O
After quenching from the 2 -Ar atmosphere, Li 1.05 Mn 1.95 O 3.95 F
0.01 (Example 11 of this example) was obtained.

【0030】次に比較例試料を以下に示す方法で合成し
た。比較例試料C1(Li1.05Mn1.954)は、Li
Mn24粉末24.613gに炭酸リチウム(Li2CO
3)0.387g を加えてよく混合し、650℃×12
時間酸素気流中で加熱して、その後室温まで炉中で徐冷
して得た。さらにこの試料を650℃、10%O2-Ar
雰囲気から急冷して、Li1.05Mn1.953.95(比較例
試料C2)を得た。本実施例試料1−11,比較例試料
C1、C2の組成と、合成に必要な各原料の配合量をま
とめて表1に示す。
Next, a comparative sample was synthesized by the following method. Comparative Example Sample C1 (Li 1.05 Mn 1.95 O 4 )
To 24.613 g of Mn 2 O 4 powder, lithium carbonate (Li 2 CO 3) was added.
3 ) Add 0.387 g and mix well.
It was obtained by heating in an oxygen stream for an hour and then gradually cooling in a furnace to room temperature. Further, this sample was subjected to 650 ° C., 10% O 2 -Ar
The mixture was rapidly cooled from the atmosphere to obtain Li 1.05 Mn 1.95 O 3.95 (Comparative Sample C2). Table 1 shows the compositions of the sample 1-11 of the example and the samples C1 and C2 of the comparative example and the amounts of the respective raw materials necessary for the synthesis.

【0031】[0031]

【表1】 [Table 1]

【0032】なお以上の合成では炭酸リチウムとフッ化
リチウムを原料に用いたが、リチウム源として硝酸リチ
ウム、酢酸リチウム、水酸化リチウム等を、フッ素源と
してフッ化アンモニウム等を用いても、同様の試料が得
られる。
In the above synthesis, lithium carbonate and lithium fluoride were used as raw materials. However, the same applies when lithium nitrate, lithium acetate, lithium hydroxide or the like is used as a lithium source and ammonium fluoride or the like is used as a fluorine source. A sample is obtained.

【0033】次にリチウム二次電池の正極材料としての
特性を評価した。用いた試料は本実施例試料1−11と
比較例試料C1、C2および原料として用いたLiMn
24(標準試料S1)である。
Next, the characteristics of the lithium secondary battery as a positive electrode material were evaluated. The samples used were Sample 1-11 of this example, Samples C1 and C2 of Comparative Example, and LiMn used as a raw material.
2 O 4 (standard sample S1).

【0034】まず上記リチウム二次電池の構成につき説
明する。上記リチウム二次電池の正極は上記のようにし
て得た各試料90wt%、導電性結着剤10wt%とを混合
したものを用いた。また上記負極には厚さ0.4mm の金
属リチウム箔を1枚用いた。上記正極と負極との間に設
けたセパレーターにはポリプロピレン不織布を用いた。
さらに上記リチウム二次電池における電解液は1規定の
LiPF6 溶液で、その溶媒はエチレンカーボネートと
ジエチルカーボネートの1:1混合液である。
First, the structure of the lithium secondary battery will be described. As the positive electrode of the lithium secondary battery, a mixture of 90 wt% of each sample obtained as described above and 10 wt% of the conductive binder was used. One metal lithium foil having a thickness of 0.4 mm was used for the negative electrode. A polypropylene nonwoven fabric was used for the separator provided between the positive electrode and the negative electrode.
The electrolyte in the lithium secondary battery is a 1N LiPF 6 solution, and the solvent is a 1: 1 mixture of ethylene carbonate and diethyl carbonate.

【0035】このリチウム二次電池の、初期放電特性と
サイクル特性測定における充放電条件について説明す
る。まず各リチウム二次電池を、4.5Vまで1mA/cm2
の定電流充電した。その後電圧が4.5V に到達後は、
この電圧で定電圧充電を行った。なお以上の充電時間の
合計は2時間であった。次いでこの充電完了直後に放電
を開始した。放電条件は1mA/cm2の定電流で放電を行
い、3.5V に到達したら放電を終了した。その直後に
再度充電を開始した。以上を1サイクルとした。
The charge and discharge conditions for measuring the initial discharge characteristics and cycle characteristics of this lithium secondary battery will be described. First, charge each lithium secondary battery up to 4.5 V at 1 mA / cm 2
Was charged at a constant current. After that, when the voltage reaches 4.5V,
Constant voltage charging was performed at this voltage. The total of the above charging times was 2 hours. Then, immediately after completion of the charging, discharging was started. The discharge was performed at a constant current of 1 mA / cm 2 , and the discharge was terminated when the voltage reached 3.5 V. Immediately after that, charging was started again. The above was regarded as one cycle.

【0036】図3に、本実施例試料1、比較例試料C
1、C2および標準試料S1をそれぞれ正極としたリチ
ウム二次電池の初期放電特性を示す。標準試料S1と比
較すると、本実施例試料1、比較例試料C1、C2を用
いたリチウム二次電池では、初期放電容量が低下してい
ることが分かる。初期放電容量の低下は比較例試料C1
が最も大きく、次いで本実施例試料1、比較例試料C2
の順であった。これらの挙動は図1で予想される通りで
あった。なお図中では比較を容易にするために、比較例
試料C2は0.2V、比較例試料C1は0.4V、標準試
料S1は 0.6V、縦軸方向にデータをシフトさせてあ
る。
FIG. 3 shows sample 1 of the present embodiment and sample C of the comparative example.
1 shows the initial discharge characteristics of a lithium secondary battery using positive electrodes 1, C2 and standard sample S1, respectively. As compared with the standard sample S1, it can be seen that the initial discharge capacity of the lithium secondary batteries using the sample 1 of the present example and the samples C1 and C2 of the comparative examples is reduced. The decrease in the initial discharge capacity is shown in Comparative Sample C1
Is the largest, followed by Sample 1 of the present example and Sample C2 of the comparative example.
It was in order. These behaviors were as expected in FIG. In the figures, the comparative sample C2 is 0.2 V, the comparative sample C1 is 0.4 V, the standard sample S1 is 0.6 V, and the data is shifted in the vertical axis direction for easy comparison.

【0037】図4に、本実施例試料1、比較例試料C
1、C2および標準試料S1を正極としたリチウム二次
電池の放電サイクル特性を示す。縦軸は放電容量(mAh/
g) である。また横軸は充放電を繰り返した回数すなわ
ちサイクル数(回)である。標準試料S1は初期放電容
量は高いが、サイクルを繰り返すと放電容量が急激に減
少する。
FIG. 4 shows sample 1 of the present embodiment and sample C of the comparative example.
1 shows the discharge cycle characteristics of a lithium secondary battery using positive electrodes 1, C2 and standard sample S1 as positive electrodes. The vertical axis shows the discharge capacity (mAh /
g). The horizontal axis represents the number of times charge / discharge was repeated, that is, the number of cycles (times). Although the standard sample S1 has a high initial discharge capacity, the discharge capacity sharply decreases when the cycle is repeated.

【0038】比較例試料C1はサイクルの繰り返しによ
る放電容量の低下は少ないが、初期放電容量は大きく低
下してしまう。一方、本実施例試料1と比較例試料C2
を用いたリチウム二次電池では、初期放電容量の低下は
C1ほど顕著ではない。本実施例試料1では特に充放電
の繰り返しによる放電容量の低下は少ないことが分か
る。
In the comparative sample C1, the decrease in the discharge capacity due to the repetition of the cycle is small, but the initial discharge capacity is greatly reduced. On the other hand, the sample of this example 1 and the sample of comparative example C2
In the lithium secondary battery using, the decrease in the initial discharge capacity is not as remarkable as C1. It can be seen that in the sample 1 of the present example, the decrease in the discharge capacity due to repetition of charge and discharge is small.

【0039】またフッ素置換量の効果を調べるために、
本実施例試料1−5および比較例試料C1を正極とした
リチウム二次電池の充放電サイクル特性を図5に示す。
本実施例試料2のLi1.02Mn1.983.980.02では、
過剰Li量およびF置換量が不充分で、100サイクル
後には初期容量の約90%まで容量が低下してしまう。
しかし比較例試料C1よりは大きな放電容量を維持す
る。
In order to examine the effect of the amount of fluorine substitution,
FIG. 5 shows charge / discharge cycle characteristics of the lithium secondary battery using the sample 1-5 of the example and the sample C1 of the comparative example as a positive electrode.
For Li 1.02 Mn 1.98 O 3.98 F 0.02 of the sample 2 of the present example,
The excess Li amount and F substitution amount are insufficient, and after 100 cycles, the capacity is reduced to about 90% of the initial capacity.
However, it maintains a larger discharge capacity than the comparative sample C1.

【0040】これに対して本実施例試料1のLi1.05
1.953.950.05、本実施例試料3のLi1.1Mn1.9
3.90.1、本実施試料4のLi1.15Mn1.853.85
0.15、本実施試料5のLi1.2Mn1.83.80.2の順で
過剰Li量およびF置換量が増加すると、初期放電容量
は低下するものの、サイクル特性が大幅に向上すること
が確認された。特に本実施例試料4のLi1.15Mn1.85
3.850.15と本実施試料5のLi1.2Mn1.83.8
0.2では、初期放電容量は比較例試料C1より劣るけれ
ど、100サイクル後にもほとんど劣化しなかった。
On the other hand, Li 1.05 M
n 1.95 O 3.95 F 0.05 , Li 1.1 Mn 1.9
O 3.9 F 0.1 , Li 1.15 Mn 1.85 O 3.85 F
It was confirmed that when the excess Li amount and the F replacement amount increased in the order of 0.15 and Li 1.2 Mn 1.8 O 3.8 F 0.2 of Sample 5, the initial discharge capacity was reduced, but the cycle characteristics were significantly improved. In particular, Li 1.15 Mn 1.85 of Sample 4 of the present example.
O 3.85 F 0.15 and Li 1.2 Mn 1.8 O 3.8 F
At 0.2 , the initial discharge capacity was inferior to the comparative sample C1, but hardly deteriorated even after 100 cycles.

【0041】次にLiとMnの組成比を一定にしてかつ
陰イオンの欠損を無くして、フッ素置換量の効果を調べ
た。図3ないし図5で明らかなように、高容量とサイク
ル耐久性が高レベルで両立したのは、本実施例試料1
(Li1.05Mn1.953.950. 05)であった。そこで陽
イオンの比(Li:Mn=1.05:1.95)と陰イオ
ンの総和(4−y+z=4)を一定に保ったまま、F量
を変えた試料(本実施例試料6−8)を合成した。図6
に、本実施例試料1、6−8、比較例試料C1を正極と
したリチウム二次電池の充放電サイクル特性を示す。縦
軸は放電容量(mAh/g) である。また横軸は充放電容量を
繰り返した回数すなわちサイクル数(回)である。
Next, the effect of the amount of fluorine substitution was examined while keeping the composition ratio of Li and Mn constant and eliminating the loss of anions. As is clear from FIGS. 3 to 5, the high capacity and the cycle durability at a high level were both satisfied in the sample 1 of the present embodiment.
Was (Li 1.05 Mn 1.95 O 3.95 F 0. 05). Therefore, while maintaining the ratio of cations (Li: Mn = 1.05: 1.95) and the total sum of anions (4-y + z = 4) constant, a sample with a different F content (Sample 6- 8) was synthesized. FIG.
The charge / discharge cycle characteristics of a lithium secondary battery using Samples 1 and 6-8 of this example and Comparative sample C1 as positive electrodes are shown below. The vertical axis is the discharge capacity (mAh / g). The horizontal axis represents the number of repetitions of the charge / discharge capacity, that is, the number of cycles (times).

【0042】本実施例試料1は初期容量も高く、サイク
ルの繰り返しによる放電容量の低下も少ない。フッ素量
を本実施例試料6、7、8、比較例試料C1の順に減ら
していくと、初期容量は順次低下し、充放電の繰り返し
による放電容量の低下は同程度であることが分かる。す
なわち陰イオンの欠損を無くして、フッ素を置換するこ
とにより、高容量とサイクル耐久性を両立し得ることが
明らかとなった。
Sample 1 of the present example has a high initial capacity and a small decrease in discharge capacity due to repetition of cycles. As the amount of fluorine is reduced in the order of Samples 6, 7, and 8 of the present example and Sample C1 of Comparative Example, the initial capacity decreases sequentially, and it can be seen that the decrease in discharge capacity due to repetition of charge and discharge is almost the same. In other words, it has been clarified that high capacity and cycle durability can both be achieved by substituting fluorine without deficiency of anions.

【0043】さらにLiとMnの組成比と酸素量を一定
にして、フッ素置換量の効果を調べた。すなわち陽イオ
ンの比(Li:Mn=1.05:1.95)と 酸素量
(3.95)を一定に保ったまま、F置換量を変えた試
料(本実施例試料9−11)を合成した。図7に、本実
施例試料1、9−11、比較例試料C1とC2を正極と
したリチウム二次電池の充放電サイクル特性を示す。縦
軸は放電容量 (mAh/g)である。また横軸は充放電を繰り
返した回数すなわちサイクル数(回)である。
Further, the effect of the amount of fluorine substitution was examined while keeping the composition ratio of Li and Mn and the amount of oxygen constant. That is, while keeping the ratio of cations (Li: Mn = 1.05: 1.95) and the oxygen amount (3.95) constant, a sample (Sample 9-11 in this example) in which the amount of F substitution was changed was used. Synthesized. FIG. 7 shows the charge / discharge cycle characteristics of the lithium secondary batteries using the positive electrode samples of Examples 1 and 9-11 and Comparative Examples C1 and C2. The vertical axis is the discharge capacity (mAh / g). The horizontal axis represents the number of times charge / discharge was repeated, that is, the number of cycles (times).

【0044】本実施例試料1は初期放電容量も高く、サ
イクルの繰り返しによる容量の低下も少ない。酸素量を
一定にしてフッ素量を本実施例試料9、10、11、比
較例試料C1の順に減らしていくと、初期放電容量は順
次増加するものの、充放電の繰り返しによる放電容量の
低下が顕著になることが分かる。
The sample 1 of this example has a high initial discharge capacity and a small decrease in capacity due to repetition of the cycle. When the amount of fluorine is reduced in the order of Samples 9, 10, and 11 of the present example and Comparative Example Sample C1 while the amount of oxygen is kept constant, the initial discharge capacity increases sequentially, but the discharge capacity decreases remarkably due to repeated charging and discharging. It turns out that it becomes.

【0045】特に本実施例試料1と4−6の方が本実施
例試料9−11と比較例試料C1よりサイクル特性は良
好であった。これは陰イオンサイトが完全に満たされて
いる本実施例試料1と6−8の方が、欠損サイトのある
本実施例試料9−11と比較例試料C1より結晶構造が
安定であることを意味していると考えられる。
In particular, the cycle characteristics of Samples 1 and 4-6 of this example were better than those of Sample 9-11 of this example and Comparative sample C1. This indicates that Samples 1 and 6-8 of the present example, in which the anion sites are completely filled, have more stable crystal structures than Samples 9-11 of the present Example having a defective site and Comparative Sample C1. It is considered to mean.

【0046】さらに本実施例試料1−11、比較例試料
C1、C2ともに室温で立方晶スピネル構造であった。
過剰の酸素欠損は試料を室温でも正方晶に変えてしま
う。この正方晶が出現すると充放電電圧が低下してしま
うので、電池作動温度範囲あるいは少なくとも室温では
立方晶スピネル構造であることが望ましい。
Further, both the sample 1-11 of the present embodiment and the comparative samples C1 and C2 had a cubic spinel structure at room temperature.
Excessive oxygen deficiency turns the sample into a tetragon at room temperature. The appearance of the tetragonal system lowers the charge / discharge voltage. Therefore, it is desirable that the battery has a cubic spinel structure in the operating temperature range of the battery or at least at room temperature.

【0047】以上の結果をまとめると、スピネル型結晶
構造のマンガン酸リチウム系材料:組成式LiMnO4
のMnサイトにLiを置換導入すれば充放電サイクル特
性は良くなるものの、初期放電容量が低下する。そして
この初期放電容量の低下を回避するため結晶格子中に酸
素欠損を設けることは有効なるも、さらにその酸素欠損
部分にフッ素(F)を導入すれば、充放電サイクル特性
がさらに良くなって最も実用性の高い材料になることが
確認された。
The above results can be summarized as follows: lithium manganate-based material having a spinel crystal structure: composition formula LiMnO 4
When Li is substituted and introduced into the Mn site, the charge / discharge cycle characteristics are improved, but the initial discharge capacity is reduced. It is effective to provide oxygen vacancies in the crystal lattice in order to avoid the decrease in the initial discharge capacity. However, if fluorine (F) is further introduced into the oxygen vacancies, the charge / discharge cycle characteristics are further improved. It was confirmed that the material would be highly practical.

【0048】以上実施例について説明したが、本発明は
上記した実施の形態に何ら限定されるものではなく、本
発明の趣旨を逸脱しない範囲で種々の改変が可能であ
る。例えば上記実施例では、フッ素(F)を結晶格子中
に導入するのにその結晶格子中の酸素の部分的置換とい
う方法を用いたが、そうではなくて結晶格子中に酸素の
欠損を設けておいて、その欠損部分の一部又は全部にF
を導入するという方法でも勿論良い。
Although the embodiment has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, the method of partial substitution of oxygen in the crystal lattice was used to introduce fluorine (F) into the crystal lattice, but instead, oxygen deficiency was provided in the crystal lattice. In part or all of the missing part,
Of course, it is also good to introduce the method.

【0049】また過剰LiのMnサイトへの置換導入と
結晶格子中へのFの導入をフッ化リチウム(LiF)を
用いて同時に行ったが、これを別々の方法で行うように
しても良い。そうすればLiの置換量とFの導入量とは
それぞれ適切な量に決定することができ、初期放電容量
と充放電サイクル特性とをより一層妥当な特性に調整で
きることになる。
Although the introduction of excess Li into the Mn site and the introduction of F into the crystal lattice are performed simultaneously using lithium fluoride (LiF), these may be performed by different methods. Then, the Li replacement amount and the F introduction amount can be determined to be appropriate amounts, respectively, and the initial discharge capacity and the charge / discharge cycle characteristics can be adjusted to more appropriate characteristics.

【0050】[0050]

【発明の効果】本発明のリチウム二次電池用正極材料
は、スピネル型結晶構造を持つリチウム・マンガン複合
酸化物のマンガンサイトにリチウムイオンを導入するこ
とにより充放電サイクル特性を改善し、そのリチウムイ
オンの導入に伴ってマンガン価数が変化し、初期放電容
量が低下することの欠点を結晶格子中に酸素欠損を設け
ることにより回避し、さらにその酸素欠損に伴って結晶
構造が弱くなることの欠点をフッ素の導入によって解消
したものである。
The positive electrode material for a lithium secondary battery according to the present invention has an improved charge / discharge cycle characteristic by introducing lithium ions into the manganese site of a lithium-manganese composite oxide having a spinel-type crystal structure. The disadvantage that the manganese valency changes with the introduction of ions and the initial discharge capacity decreases is avoided by providing oxygen vacancies in the crystal lattice, and the crystal structure becomes weaker with the oxygen vacancies. The disadvantage was solved by introducing fluorine.

【0051】したがって本発明のリチウム二次電池用正
極材料によれば、高い初期充放電容量が確保され、かつ
スピネル型結晶構造の安定状態が維持されて充放電サイ
クル特性、つまりサイクル耐久性の改善にも寄与するも
のである。今後の普及が期待されるパソコンや携帯電話
などの通信事務用機器用のリチウム二次電池の正極材料
として、あるいは近い将来の需要が期待される電気自動
車電源としてのリチウム二次電池の正極材料に適用され
れば、エネルギー密度が高く、かつ長寿命であることの
ニーズに十分応え得るものである。
Therefore, according to the positive electrode material for a lithium secondary battery of the present invention, a high initial charge / discharge capacity is secured, and a stable state of the spinel type crystal structure is maintained to improve the charge / discharge cycle characteristics, that is, the cycle durability. It also contributes to. As a positive electrode material for lithium secondary batteries for communication office equipment such as personal computers and mobile phones, which are expected to spread in the future, or as a positive electrode material for lithium secondary batteries as electric vehicle power supplies, for which demand is expected in the near future If applied, it can sufficiently meet the needs of high energy density and long life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るLi1+xMn2-x4-yz材料と従
来のLi1+xMn2-x4 材料等との比較における理論容
量と過剰Li量xとの関係を示した図である。
FIG. 1 shows the theoretical capacity and excess Li amount x in comparison between a Li 1 + x Mn 2-x O 4-y F z material according to the present invention and a conventional Li 1 + x Mn 2-x O 4 material and the like. FIG.

【図2】図1に示したLi1+xMn2-x4 材料の充放電
1サイクル当たりの容量保持率と過剰Li量xとの関係
を示した図である。
FIG. 2 is a diagram showing the relationship between the capacity retention ratio per charge / discharge cycle of the Li 1 + x Mn 2-x O 4 material shown in FIG. 1 and the excess Li amount x.

【図3】本実施例試料1、比較例試料C1、C2および
標準試料S1を正極材料として用いたリチウム二次電池
の初期放電特性を示した図である。なお図中では比較を
容易にするために、比較例試料C2は0.2V、比較例
試料C1は0.4V、標準試料S1は0.6V、縦軸方向
にデータをシフトさせてある。
FIG. 3 is a diagram showing the initial discharge characteristics of a lithium secondary battery using Sample 1 of the present Example, Samples C1 and C2 of Comparative Example, and Standard Sample S1 as a positive electrode material. In the figure, for ease of comparison, the comparative sample C2 is 0.2 V, the comparative sample C1 is 0.4 V, the standard sample S1 is 0.6 V, and the data is shifted in the vertical axis direction.

【図4】本実施例試料1、比較例試料C1、C2および
標準試料S1を正極としたリチウム二次電池の充放電サ
イクル特性を示した図である。
FIG. 4 is a diagram showing charge / discharge cycle characteristics of a lithium secondary battery using the sample of the present example 1, the samples of comparative examples C1, C2, and the standard sample S1 as positive electrodes.

【図5】本実施例試料1−5および比較例試料C1を正
極としたリチウム二次電池の充放電サイクル特性を示し
た図である。
FIG. 5 is a diagram showing charge / discharge cycle characteristics of a lithium secondary battery using the sample 1-5 of the example and the sample C1 of the comparative example as positive electrodes.

【図6】本実施例試料1、6−8および比較例試料C1
を正極としたリチウム二次電池の充放電サイクル特性を
示した図である。
FIG. 6 shows samples 1 and 6-8 of the present example and comparative sample C1.
FIG. 3 is a diagram showing charge / discharge cycle characteristics of a lithium secondary battery having a positive electrode as a positive electrode.

【図7】本実施例試料1、9−11および比較例試料C
1、C2を正極としたリチウム二次電池の充放電サイク
ル特性を示した図である。
FIG. 7 shows Samples 1 and 9 to 11 of the present invention and Sample C of Comparative Example.
FIG. 1 is a diagram showing charge / discharge cycle characteristics of a lithium secondary battery having C2 as a positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑中 達也 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 則竹 達夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 日置 辰視 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuya Hatanaka 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Tatsumi Hioki 41, Okucho, Yoji, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 Toyota Toyota Central Research Laboratory Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スピネル型結晶構造を持つリチウム・マ
ンガンの複合酸化物であって、組成式Li1+XMn2-X
4-yZ(ここでxは0.0133≦x≦0.3333、y
は0<y≦0.2、zは0.01≦z≦0.2 であり、か
つz≦yである)で表される組成を有することを特徴と
するリチウム二次電池用正極材料。
1. A composite oxide of lithium and manganese having a spinel type crystal structure, wherein the composition formula is Li 1 + X Mn 2-X O
4-y F Z (where x is 0.0133 ≦ x ≦ 0.3333, y
Is 0 <y ≦ 0.2, and z is 0.01 ≦ z ≦ 0.2, and z ≦ y).
JP9286150A 1996-10-18 1997-10-01 Positive electrode material for lithium secondary battery Pending JPH10177860A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9286150A JPH10177860A (en) 1996-10-18 1997-10-01 Positive electrode material for lithium secondary battery
US09/255,704 US6087042A (en) 1996-10-18 1999-02-23 Positive electrode material for secondary lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-297422 1996-10-18
JP29742296 1996-10-18
JP9286150A JPH10177860A (en) 1996-10-18 1997-10-01 Positive electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10177860A true JPH10177860A (en) 1998-06-30

Family

ID=26556188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9286150A Pending JPH10177860A (en) 1996-10-18 1997-10-01 Positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10177860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251894A (en) * 1998-12-29 2000-09-14 Hitachi Maxell Ltd Nonaqueous secondary battery, and usage thereof
EP1049183A1 (en) * 1998-11-10 2000-11-02 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
JP2007317639A (en) * 2006-05-29 2007-12-06 Lg Chem Ltd Cathode active material and lithium secondary cell containing this
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049183A1 (en) * 1998-11-10 2000-11-02 Matsushita Electric Industrial Co., Ltd. Lithium secondary cell
EP1049183A4 (en) * 1998-11-10 2005-04-27 Matsushita Electric Ind Co Ltd Lithium secondary cell
JP2000251894A (en) * 1998-12-29 2000-09-14 Hitachi Maxell Ltd Nonaqueous secondary battery, and usage thereof
JP2007317639A (en) * 2006-05-29 2007-12-06 Lg Chem Ltd Cathode active material and lithium secondary cell containing this
JP4717847B2 (en) * 2006-05-29 2011-07-06 エルジー・ケム・リミテッド Positive electrode active material and lithium secondary battery including the same
JP2015015244A (en) * 2013-07-03 2015-01-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
US10629902B2 (en) 2013-07-03 2020-04-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
JP3142522B2 (en) Lithium secondary battery
US6087042A (en) Positive electrode material for secondary lithium battery
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US8535832B2 (en) Metal oxide coated positive electrode materials for lithium-based batteries
KR100430938B1 (en) Cathode material for lithium secondary battery and mathod for manufacturing the same
TWI397205B (en) Positive electrode materials for high discharge capacity lithium ion batteries
US6277521B1 (en) Lithium metal oxide containing multiple dopants and method of preparing same
US7892679B2 (en) Non-aqueous electrolyte secondary battery
US20080048615A1 (en) Electrochemical Cell
KR20110076955A (en) Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US20150180031A1 (en) Lithium metal oxide electrodes for lithium batteries
JP2000231920A (en) Lithium secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
CN100359723C (en) Negative electrode for lithium batteries
EP1026765B1 (en) Positive active material for lithium secondary battery and method of manufacturing the same
KR102131738B1 (en) Method for producing positive electrode active material
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2000200607A (en) Lithium secondary battery
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
JP5642696B2 (en) Battery cathode materials with improved cycling performance at high current densities
US10573889B2 (en) Layered-spinel electrodes for lithium batteries
JP2001052704A (en) Lithium secondary battery
WO2007007581A1 (en) Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JPH10177860A (en) Positive electrode material for lithium secondary battery