JPH10176981A - Apparatus for testing wear of fluid bed - Google Patents

Apparatus for testing wear of fluid bed

Info

Publication number
JPH10176981A
JPH10176981A JP33808796A JP33808796A JPH10176981A JP H10176981 A JPH10176981 A JP H10176981A JP 33808796 A JP33808796 A JP 33808796A JP 33808796 A JP33808796 A JP 33808796A JP H10176981 A JPH10176981 A JP H10176981A
Authority
JP
Japan
Prior art keywords
test piece
test
actual machine
temperature
fluid bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33808796A
Other languages
Japanese (ja)
Inventor
Kazuo Nanba
一夫 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP33808796A priority Critical patent/JPH10176981A/en
Publication of JPH10176981A publication Critical patent/JPH10176981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate in a short time a wear line of a member set in a fluid bed, by rotating a test piece in the fluid bed simulating an actual machine end enabling an accelerated test. SOLUTION: A test piece 10 is set at a test piece-fitting part 12 and a fluid material is deposited on a porous plate 4. The air is supplied from a gas injection pipe 3 to form a fluid bed 5. A heating apparatus 6 is started to turn a temperature in a container to be equal to that of an actual machine. When a temperature of the fluid bed 5 approaches the temperature of the actual machine, a cooling water is supplied from a cooling water feed apparatus 17 to cool a returning waste water and circulate the waste water as the cooling water. The amount of the cooling water to the fed is set so that a temperature inside the test pipe 10 becomes the same as the temperature of the actual machine. When a test state is equal to a state of the actual machine, a motor 15 is driven to rotate a rotary shaft 11. A revolution number is wet to make an average peripheral velocity of the test piece 10 approximately 5-15 times a flow velocity in the fluid bed 5. Since the test piece 10 has a larger peripheral velocity than the flow velocity of the gas, an accelerated test reproducing a wear given rise to the actual machine can be realized in a shot time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動層内に設けら
れる伝熱管材料などの摩耗挙動を試験する流動層摩耗試
験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed wear tester for testing the wear behavior of a heat transfer tube material or the like provided in a fluidized bed.

【0002】[0002]

【従来の技術】加圧下で石炭を流動燃焼させる加圧流動
層ボイラは、ガスタービンと組み合わされたコンバイン
ドサイクルにより40%以上の熱効率を有し、炉内脱硫
率が高く、NOxの発生量が少ない等の特徴を有するこ
とから、従来のボイラに代わる新型ボイラとして現在開
発が進められている。
2. Description of the Related Art A pressurized fluidized bed boiler in which coal is fluidly burned under pressure has a thermal efficiency of 40% or more by a combined cycle combined with a gas turbine, a high desulfurization rate in a furnace, and a low NOx generation amount. Due to its small number and other features, it is currently being developed as a new type of boiler that replaces conventional boilers.

【0003】加圧流動層ボイラでは、ボイラ本体内に、
空気、微粉炭、石炭灰や砂等からなるベッド材により流
動層が構成され、流動層内には水蒸気を発生する蒸発
器、過熱器、再熱器等が設けられており、流動層内で石
炭の燃焼により発生した熱により水蒸気の発生、過熱、
再熱が行われる。このような蒸発器、過熱器、再熱器は
いずれも伝熱管で構成されている。
In a pressurized fluidized-bed boiler, a boiler body has
The fluidized bed is composed of bed material composed of air, pulverized coal, coal ash, sand, etc., and the fluidized bed is provided with evaporators, superheaters, reheaters, etc. that generate steam. The generation of water vapor, overheating,
Reheating takes place. Each of such evaporators, superheaters, and reheaters is constituted by a heat transfer tube.

【0004】[0004]

【発明が解決しようとする課題】このような伝熱管は微
粉炭やベッド材と高温でかつかなりの流速で接触するた
め摩耗する。さらに内部には外部より低温の水蒸気が高
速で流れているため温度差が発生し、これにより摩耗も
影響を受ける。このため使用する伝熱管を使用状態とほ
ぼ同一にして摩耗特性をテストする装置が必要となる。
実開昭60−114944号公報には流動床摩耗試験装
置が開示されているが、試験片の温度はベッド材の温度
と同じで、内部を通る水蒸気の温度を模擬しておらず、
また加速試験が出来ないため試験に長時間かかるという
問題点があった。
Such a heat transfer tube wears due to contact with pulverized coal and bed material at a high temperature and at a considerable flow rate. Further, since a lower temperature steam flows at a higher speed in the inside than in the outside, a temperature difference is generated, which also affects the wear. For this reason, a device for testing the wear characteristics with the heat transfer tube used being almost the same as the use condition is required.
Japanese Utility Model Laid-Open No. 60-114944 discloses a fluidized bed abrasion test apparatus, but the temperature of the test piece is the same as the temperature of the bed material, and does not simulate the temperature of steam passing through the inside.
In addition, there is a problem that the test takes a long time because the accelerated test cannot be performed.

【0005】本発明は、かかる問題点に鑑みてなされた
もので、試験片の内外の温度差を実現すると共に、加速
試験も可能な流動層摩耗試験装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and has as its object to provide a fluidized-bed abrasion test apparatus capable of realizing a temperature difference between the inside and outside of a test piece and capable of performing an acceleration test.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、上部に流動剤排出管を有し、
下部に多孔板とこの多孔板の下方よりガス注入管を有す
る容器と、この容器内に垂直の回転軸を有しこの回転軸
にほぼ直交して試験片を取付けこの試験片を回転する試
験片回転装置と、前記容器周囲に設けられこの容器を加
熱する加熱装置と、を備える。
In order to achieve the above object, according to the first aspect of the present invention, a fluid agent discharge pipe is provided at an upper portion,
A container having a perforated plate at the lower part and a gas injection pipe from below the perforated plate, and a test piece having a vertical rotation axis in the container and having a test piece mounted substantially perpendicular to the rotation axis and rotating the test piece A rotating device; and a heating device provided around the container to heat the container.

【0007】多孔板の上に流動材(ベッド材)を置き、
下方からガス注入管によりガスを注入して容器内に流動
層を発生させ、加熱装置で加熱することにより実機と同
じ流動層を実現する。試験片を回転軸にほぼ直交して取
付け流動層内で回転することにより摩耗が促進され加速
試験が可能となる。
A fluid material (bed material) is placed on a perforated plate,
A fluidized bed is generated in the container by injecting a gas from below with a gas injecting tube, and heated by a heating device to realize the same fluidized bed as the actual machine. By mounting the test piece substantially perpendicular to the rotation axis and rotating in the fluidized bed, wear is promoted and an accelerated test is possible.

【0008】請求項2の発明では、前記回転軸内に冷却
流体路を設け、試験片内を冷却流体が通るようにし、前
記回転軸に冷却流体を供給する冷却流体供給装置を備え
る。
According to the second aspect of the present invention, a cooling fluid supply device is provided in the rotating shaft so that the cooling fluid passes through the test piece and supplies the cooling fluid to the rotating shaft.

【0009】冷却流体供給装置より冷却流体を回転軸の
冷却流体路を介して試験片内を通すことにより、試験片
の内部温度を実機と同じくすることができ、試験片の内
外温度差を実現することができる。
[0009] By passing the cooling fluid from the cooling fluid supply device through the cooling fluid path of the rotating shaft through the test piece, the internal temperature of the test piece can be made the same as that of the actual machine, and the temperature difference between the inside and outside of the test piece is realized. can do.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明の実施形態の
構成図である。容器1の頂部には流動剤排出管2が設け
られサイクロン7に接続され、下面にはガス注入管3が
接続され、図示しないガス供給装置からガスを供給す
る。容器内の底部には多孔板4が設けられ、ガス注入管
3より流入したガスを容器内に均等に吹き出し、上面に
堆積したベッド材(流動剤)を吹上げて流動層5を形成
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of the present invention. A fluid agent discharge pipe 2 is provided at the top of the container 1 and connected to a cyclone 7, and a gas injection pipe 3 is connected to a lower surface of the vessel 1 to supply gas from a gas supply device (not shown). A perforated plate 4 is provided at the bottom of the container, and the gas flowing from the gas injection pipe 3 is uniformly blown into the container, and the bed material (fluidizing agent) deposited on the upper surface is blown up to form the fluidized bed 5.

【0011】容器1の周囲には加熱装置6が設けられ容
器内の流動層5を加熱し実機(試験装置が模擬しようと
するプラント、例えば加圧流動層ボイラ)の流動層と同
一温度にする。加熱装置6としては電気ヒータなどが用
いられる。容器1および加熱装置6はケーシング8に覆
われ断熱されている。流動層5の内部には熱伝対9が設
けられ、この計測データに基づいて加熱装置6は流動層
5の温度を制御する。
A heating device 6 is provided around the vessel 1 and heats the fluidized bed 5 in the vessel to the same temperature as the fluidized bed of an actual machine (a plant simulated by a test apparatus, for example, a pressurized fluidized bed boiler). . As the heating device 6, an electric heater or the like is used. The container 1 and the heating device 6 are covered with a casing 8 and insulated. A thermocouple 9 is provided inside the fluidized bed 5, and the heating device 6 controls the temperature of the fluidized bed 5 based on the measurement data.

【0012】容器1の頂部を貫通して回転軸11が垂直
に設けられ、下端に試験片取付部12を有し、試験片1
0を水平に取付けるようになっている。回転軸11の上
部にはプーリ13が取付けられ、ベルト14を介してモ
ータ15により回転軸11を回転する。回転軸11の頂
部にはロータリジョイント16が設けられ、回転軸11
内に設けられた給水路11aと排水路11bに接続し、
冷却水供給装置17からの冷却水を給水路11aに供給
し、排水路11bからの排水を冷却水供給装置17に戻
している。
A rotating shaft 11 is provided vertically through the top of the container 1 and has a test piece mounting portion 12 at the lower end.
0 is mounted horizontally. A pulley 13 is attached to an upper portion of the rotating shaft 11, and the rotating shaft 11 is rotated by a motor 15 via a belt 14. A rotary joint 16 is provided on the top of the rotating shaft 11.
Connected to the water supply channel 11a and the drain channel 11b provided in the
The cooling water from the cooling water supply device 17 is supplied to the water supply channel 11a, and the wastewater from the drainage channel 11b is returned to the cooling water supply device 17.

【0013】図2は回転軸11下端の試験片取付部12
の詳細を示す。回転軸11内には給水路11aと、排水
路11bとが設けられている。回転軸11下端に水平に
試験片取付部12が左右にそれぞれ設けられ、それぞれ
の試験片取付部12に伝熱管等の管状の試験片10(試
験用チューブ)が取付けられ、ボルト12aにより固定
される。試験用チューブ10は外側端面は塞がれており
内部を冷却水が通るようになっている。
FIG. 2 shows a test piece mounting portion 12 at the lower end of the rotating shaft 11.
The details are shown below. A water supply channel 11a and a drainage channel 11b are provided in the rotating shaft 11. At the lower end of the rotating shaft 11, test piece mounting portions 12 are provided horizontally on the left and right, respectively. A tubular test piece 10 (test tube) such as a heat transfer tube is mounted on each test piece mounting portion 12, and fixed by bolts 12a. You. The outer end surface of the test tube 10 is closed so that cooling water passes through the inside.

【0014】次に動作について説明する。先ず図2に示
すように試験片10を試験片取付部12に装着し、多孔
板4上にベッド材を堆積する。ガス注入管3より空気を
供給して流動層5を生成する。次に加熱装置6を起動し
て容器1内の温度を実機と同じくする。また空気の流量
も容器1内の流速が実機と同じくなるようにする。流動
層5の温度が実機に近づくと冷却水供給装置17より冷
却水を供給し戻り排水を冷却して冷却水として循環す
る。冷却水の供給量は試験片10内部の温度が実機と等
しくなるようにする。試験片10の内部温度は戻り排水
の温度から推定できる。
Next, the operation will be described. First, as shown in FIG. 2, the test piece 10 is mounted on the test piece mounting portion 12, and a bed material is deposited on the perforated plate 4. The fluidized bed 5 is generated by supplying air from the gas injection pipe 3. Next, the heating device 6 is activated to make the temperature in the container 1 the same as the actual device. Also, the flow rate of air is set so that the flow rate in the container 1 is the same as that of the actual machine. When the temperature of the fluidized bed 5 approaches the actual machine, the cooling water is supplied from the cooling water supply device 17, and the drain water is cooled and circulated as cooling water. The supply amount of the cooling water is set so that the temperature inside the test piece 10 becomes equal to that of the actual device. The internal temperature of the test piece 10 can be estimated from the temperature of the return water.

【0015】このように実機と試験状態が同じくなった
ときにモータ15を起動して回転軸11を回転する。回
転数は試験片10の平均周速が流動層5内の流速の5〜
15倍ぐらいになるように設定する。通常流動層5内の
気体の流速は1m/sec程度であるので、周速が5〜
15m/secとなるような回転数にする。このように
気体の流速より大きな周速とすることにより、短時間で
実機に生じる摩耗を再現する加速試験を実現できる。
When the test condition is the same as that of the actual machine, the motor 15 is started to rotate the rotating shaft 11. The number of rotations is such that the average peripheral speed of the test piece 10 is 5 to 5 of the flow velocity in the fluidized bed 5.
Set to about 15 times. Since the flow velocity of the gas in the fluidized bed 5 is usually about 1 m / sec, the peripheral velocity is 5 to 5 m / sec.
The rotation speed is set to be 15 m / sec. By setting the peripheral speed higher than the gas flow velocity in this way, it is possible to realize an accelerated test that reproduces the wear that occurs in the actual machine in a short time.

【0016】実機では伝熱管は静止し流動層が流動する
が、試験では移動する流動層5と直角方向に試験片10
を移動する。このような相違により試験が実機での摩耗
を再現するのかを調べた結果を図3、図4を用いて説明
する。
In the actual machine, the heat transfer tube is stationary and the fluidized bed flows, but in the test, the test piece 10 is perpendicular to the moving fluidized bed 5.
To move. The result of examining whether or not the test reproduces the wear in the actual machine due to such a difference will be described with reference to FIGS.

【0017】図3は蒸発器(エバポレータ)に用いられ
る伝熱管の実機と本発明の試験装置での摩耗状態を示す
図である。(A)は営業用のプラントに先立って建設さ
れ各種テストを行うパイロットプラントにおける摩耗状
態を示す。横軸は(B)に示すようにベッド材の流れ方
向を0度とし、反時計回りに取った角度θを示すが、伝
熱管はベッド材の流れに対して対称なので、摩耗も対称
の位置に発生するので時計回りの角度も表す。縦軸は摩
耗により減少した板厚の元の板厚に対する%を示し、1
00%で板厚が0になることを示す。伝熱管の材質は1
Cr−0.5Mo鋼である。摩耗は70度近傍を中心と
して30度から120度の範囲に発生している。
FIG. 3 is a view showing the actual state of the heat transfer tube used in the evaporator (evaporator) and the state of wear in the test apparatus of the present invention. (A) shows the state of wear in a pilot plant that is constructed prior to a commercial plant and performs various tests. The horizontal axis indicates the angle θ taken counterclockwise with the flow direction of the bed material taken as 0 ° as shown in (B). However, since the heat transfer tube is symmetric with respect to the flow of the bed material, wear is also symmetric. , It also represents a clockwise angle. The vertical axis represents the% of the sheet thickness reduced by abrasion with respect to the original sheet thickness.
It shows that the plate thickness becomes 0 at 00%. The material of the heat transfer tube is 1
Cr-0.5Mo steel. Abrasion occurs in the range of 30 to 120 degrees around 70 degrees.

【0018】図3(B)は本発明の摩耗試験装置で同一
の伝熱管での摩耗テストの結果を示す。図は試験片10
の断面を示し外周の破線は摩耗しない状態を示す。ベッ
ド材流れ方向とは、試験片10が静止しベッド材が流れ
る(実機の状態と同じ表現)としたものである。なお、
図1に示す装置においては、試験片10が回転により左
右方向、この場合右方向へ移動し、かつ下側から上側に
向かって流動層5の流れがあるが、上下方向の流速が1
m/s程度に対し、左右方向の相対流速は5〜15m/
s程度でテストするので主たる流れ方向を示したもので
ある。正確には上下と左右方向の流れを合成したベクト
ル表示がよい。試験結果は時計回り、反時計回りの角度
とも70〜80度を中心に摩耗が発生しており、(A)
に示す実機(パイロットプラント)の場合と摩耗発生位
置や状態が極めて類似していることを示している。
FIG. 3B shows the result of a wear test on the same heat transfer tube using the wear test apparatus of the present invention. The figure shows test piece 10
And a broken line on the outer periphery indicates a state where it is not worn. The bed material flow direction is the one in which the test piece 10 is stationary and the bed material flows (the same expression as that of the actual machine). In addition,
In the apparatus shown in FIG. 1, the test piece 10 moves in the left and right direction by rotation, in this case to the right, and there is a flow of the fluidized bed 5 from the lower side to the upper side.
m / s, the relative velocity in the left-right direction is 5-15 m / s.
Since the test is performed at about s, the main flow direction is shown. To be precise, a vector display that combines the vertical and horizontal flows is preferable. The test results show that wear occurs around 70 to 80 degrees in both clockwise and counterclockwise angles.
It shows that the wear occurrence position and condition are extremely similar to those of the actual machine (pilot plant) shown in FIG.

【0019】図4は図3と同様な実機と試験片10の摩
耗結果を示す。対象として過熱器(スーパーヒータ)の
伝熱管を用いている。材質は18Cr−10Ni−0.
8Nbである。(A)はパイロットプラントの伝熱管の
摩耗を示しており、45度近傍で摩耗量が最大となり3
0度、60度に向かって急激に減少している。(B)は
本摩耗試験装置における試験片10の摩耗状態を示す。
ベッド材流れ方向に向かって試験片10が回転してゆ
く。時計回りおよび反時計回りにほぼ45度を中心に大
きく摩耗しており、(A)に示す場合の摩耗位置と極め
て類似している。
FIG. 4 shows the wear results of the actual machine and the test piece 10 as in FIG. A heat transfer tube of a superheater (super heater) is used as an object. The material is 18Cr-10Ni-0.
8Nb. (A) shows the wear of the heat transfer tube of the pilot plant.
It decreases sharply toward 0 and 60 degrees. (B) shows a wear state of the test piece 10 in the present wear test apparatus.
The test piece 10 rotates toward the bed material flow direction. It wears largely at about 45 degrees clockwise and counterclockwise, and is very similar to the wear position shown in FIG.

【0020】図3および図4は伝熱管の摩耗位置が材質
によって変わることをしめしており本摩耗試験装置の試
験結果もこの傾向を忠実に示している。本摩耗試験装置
では、実機と異なり試験片10の水平方向(回転方向)
と流動層5の流れ方向となる上下方向とからベッド材に
よる摩耗を受けるが、上下方向の流れは回転方向に対し
て小さいため、摩耗位置や摩耗量はほとんど回転方向の
相対的流れで決まる。これにより、回転速度を調整する
ことにより加速試験が可能となり、試験期間を大幅に短
縮することができる。また、試験片10内に冷却水を導
通することにより試験片10の内外の温度を実機と同じ
くすることができる。
FIGS. 3 and 4 show that the wear position of the heat transfer tube changes depending on the material, and the test results of the present wear test apparatus faithfully show this tendency. In this wear test apparatus, unlike the actual machine, the horizontal direction (rotation direction) of the test piece 10
The bed material is worn by the bed material from the vertical direction, which is the flow direction of the fluidized bed 5, and the vertical flow is small relative to the rotation direction, so the wear position and the wear amount are almost determined by the relative flow in the rotation direction. Thereby, an acceleration test can be performed by adjusting the rotation speed, and the test period can be significantly reduced. In addition, by supplying cooling water to the inside of the test piece 10, the temperature inside and outside the test piece 10 can be made the same as that of the actual device.

【0021】上述の実施形態ではガス注入管3より空気
を供給したが、他のガス、例えば窒素ガスなどの安定し
たガスであればよい。また、冷却水供給装置17から冷
却水を供給して試験片10を冷却したが、空気等の安定
した気体を用いて冷却してもよい。
In the above-described embodiment, air is supplied from the gas injection pipe 3, but any other gas, for example, a stable gas such as nitrogen gas may be used. In addition, the test piece 10 is cooled by supplying cooling water from the cooling water supply device 17, but may be cooled using a stable gas such as air.

【0022】本流動層摩耗試験装置により、各種ベッド
材を用い、容器1内の流速、試験片10の回転速度、ベ
ッド材の硬さ、粒径、試験片10の材質や硬度、ベッド
材の温度、試験片10の温度などをパラメータとして伝
熱管などの摩耗寿命を短期間で予測することができる。
Using the present fluidized bed abrasion tester, using various bed materials, the flow velocity in the container 1, the rotation speed of the test piece 10, the hardness and particle size of the bed material, the material and hardness of the test piece 10, and the bed material The wear life of the heat transfer tube or the like can be predicted in a short period of time using the temperature, the temperature of the test piece 10 and the like as parameters.

【0023】[0023]

【発明の効果】以上の説明より明らかなように、本発明
は、実機を模擬した流動層内で試験片を回転することに
より、加速試験を行うことができ、短期間で流動層内に
設置される伝熱管等の部材の摩耗寿命を精度よく予測す
ることができる。また、試験片内を冷却することにより
試験片の温度条件を実機と同一にすることができる。
As is clear from the above description, according to the present invention, an accelerated test can be performed by rotating a test piece in a fluidized bed simulating an actual machine, and it can be installed in the fluidized bed in a short period of time. It is possible to accurately predict the wear life of a member such as a heat transfer tube. Further, by cooling the inside of the test piece, the temperature condition of the test piece can be made the same as that of the actual device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】試験片取付部の詳細図である。FIG. 2 is a detailed view of a test piece mounting portion.

【図3】蒸発器伝熱管の実機(A)と試験片(B)の摩
耗状態を示すデータである。
FIG. 3 is data showing the state of wear of an actual evaporator heat transfer tube (A) and a test piece (B).

【図4】過熱器伝熱管の実機(A)と試験片(B)の摩
耗状態を示すデータである。
FIG. 4 is data showing the abrasion state of an actual superheater heat transfer tube (A) and a test piece (B).

【符号の説明】[Explanation of symbols]

1 容器 2 流動剤排出管 3 ガス注入管 4 多孔板 5 流動層 6 過熱装置 7 サイクロン 8 ケーシング 9 熱電対 10 試験片 11 回転軸 12 試験片取付部 13 プーリ 14 ベルト 15 モータ 16 ロータリジョイント 17 冷却水供給装置 DESCRIPTION OF SYMBOLS 1 Container 2 Fluid discharge pipe 3 Gas injection pipe 4 Perforated plate 5 Fluidized bed 6 Superheater 7 Cyclone 8 Casing 9 Thermocouple 10 Test piece 11 Rotation axis 12 Test piece mounting part 13 Pulley 14 Belt 15 Motor 16 Rotary joint 17 Cooling water Supply device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上部に流動剤排出管を有し、下部に多孔
板とこの多孔板の下方よりガス注入管を有する容器と、
この容器内に垂直の回転軸を有しこの回転軸にほぼ直交
して試験片を取付けこの試験片を回転する試験片回転装
置と、前記容器周囲に設けられこの容器を加熱する加熱
装置と、を備えたことを特徴とする流動層摩耗試験装
置。
A container having a fluidizing agent discharge pipe in an upper part, a perforated plate in a lower part, and a gas injection pipe from below the perforated plate;
A test piece rotating device that has a vertical rotation axis in the container, attaches a test piece substantially perpendicular to the rotation axis, and rotates the test piece; a heating device provided around the container to heat the container; A fluidized bed abrasion test device comprising:
【請求項2】 前記回転軸内に冷却流体路を設け、試験
片内を冷却流体が流れるようにし、前記回転軸に冷却流
体を供給する冷却流体供給装置を備えたことを特徴とす
る請求項1記載の流動層摩耗試験装置。
2. A cooling fluid supply device is provided in the rotating shaft, the cooling fluid is supplied to the rotating shaft so that the cooling fluid flows in a test piece. 2. The fluidized bed wear test apparatus according to 1.
JP33808796A 1996-12-18 1996-12-18 Apparatus for testing wear of fluid bed Pending JPH10176981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33808796A JPH10176981A (en) 1996-12-18 1996-12-18 Apparatus for testing wear of fluid bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33808796A JPH10176981A (en) 1996-12-18 1996-12-18 Apparatus for testing wear of fluid bed

Publications (1)

Publication Number Publication Date
JPH10176981A true JPH10176981A (en) 1998-06-30

Family

ID=18314789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33808796A Pending JPH10176981A (en) 1996-12-18 1996-12-18 Apparatus for testing wear of fluid bed

Country Status (1)

Country Link
JP (1) JPH10176981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149149A (en) * 2013-03-11 2013-06-12 北京矿冶研究总院 High-temperature high-speed titanium fire-proof material characteristic test machine and test method
CN104316423A (en) * 2014-10-13 2015-01-28 山东科技大学 Simulation experiment set for filling pipeline wear
CN104913997A (en) * 2015-07-07 2015-09-16 河南理工大学 Rotary erosion wearing testing device with temperature testing system
CN104913996A (en) * 2015-06-09 2015-09-16 西安交通大学 Experiment device used for measuring erosion corrosion of fused salt
CN106226185A (en) * 2016-08-31 2016-12-14 马鞍山市海天重工科技发展有限公司 A kind of abrasion wear test machine
KR20200006323A (en) * 2018-07-10 2020-01-20 무진정밀(주) Test device for part using wet type exhaust gas desulfurization equipment and method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149149A (en) * 2013-03-11 2013-06-12 北京矿冶研究总院 High-temperature high-speed titanium fire-proof material characteristic test machine and test method
CN104316423A (en) * 2014-10-13 2015-01-28 山东科技大学 Simulation experiment set for filling pipeline wear
CN104913996A (en) * 2015-06-09 2015-09-16 西安交通大学 Experiment device used for measuring erosion corrosion of fused salt
CN104913996B (en) * 2015-06-09 2017-06-20 西安交通大学 A kind of experimental provision for fuse salt erosion corrosion measurement
CN104913997A (en) * 2015-07-07 2015-09-16 河南理工大学 Rotary erosion wearing testing device with temperature testing system
CN106226185A (en) * 2016-08-31 2016-12-14 马鞍山市海天重工科技发展有限公司 A kind of abrasion wear test machine
KR20200006323A (en) * 2018-07-10 2020-01-20 무진정밀(주) Test device for part using wet type exhaust gas desulfurization equipment and method thereof

Similar Documents

Publication Publication Date Title
AU612257B2 (en) Controlling rapping cycle
JP6251845B2 (en) System and method for detecting, monitoring and removing deposits on the surface of boiler heat exchangers using vibration analysis
ATE210801T1 (en) STEAM GENERATOR OPERATING PROCEDURES
JPH10176981A (en) Apparatus for testing wear of fluid bed
TW524955B (en) Load based control system for active leakage control in an air preheater
CN107916990A (en) System and method for higher plant efficiency
JP2023011172A (en) Ammonia supply unit for power plant, ammonia vaporization method for power plant, and power plant
JP6847682B2 (en) How to operate a waste power plant and a waste power plant
JP3310798B2 (en) Rinsing equipment for regenerative heat exchangers
JP5844208B2 (en) Shot ball spraying device, shot ball spraying method and boiler for shot cleaning
Lakshmanan et al. Innovations to a Palm Biomass-Fueled Power Plant
JPH11101728A (en) Fluidized-bed type wear testing apparatus
Wingert et al. Design of a large coal-fired steam generator for 200° F exit-gas temperature and operating experience with pilot plant
CN201527162U (en) Drying pipe and drying drum body for drying brown coal
JPH0421086B2 (en)
JPH03236593A (en) Device and method for recovering waste heat in metallurgical furnace
JPS6227228A (en) Vertical rotary valve
US2086033A (en) Power plant
US20210238491A1 (en) Gasification gas treatment facility and gasification gas treatment method
JPS55121318A (en) Method of preventing generation of white exhaust smoke
JPH0719561Y2 (en) Mill air system
JP2007163117A (en) Spherical furnace for generating swirl hot air constantly at high temperature
JP3615822B2 (en) Soot blower equipment
WO2019176119A1 (en) Boiler facility and thermal power generation facility
Els et al. FERROALLOY OFF-GAS SYSTEM WASTE ENERGY RECOVERY: OPTIONS AND APPLICATIONS