JPH10176247A - Iron base silicon-manganese alloy or iron base silicon-manganese-nickel alloy good in grindability and alloy powder thereof - Google Patents

Iron base silicon-manganese alloy or iron base silicon-manganese-nickel alloy good in grindability and alloy powder thereof

Info

Publication number
JPH10176247A
JPH10176247A JP9201591A JP20159197A JPH10176247A JP H10176247 A JPH10176247 A JP H10176247A JP 9201591 A JP9201591 A JP 9201591A JP 20159197 A JP20159197 A JP 20159197A JP H10176247 A JPH10176247 A JP H10176247A
Authority
JP
Japan
Prior art keywords
alloy
iron
iron base
powder
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9201591A
Other languages
Japanese (ja)
Other versions
JP3693789B2 (en
Inventor
Koichi Aoki
宏一 青木
Atsuo Onoda
敦夫 小埜田
Masao Kamata
政男 鎌田
Hitoshi Nishimura
均 西村
Kuniteru Suzuki
邦輝 鈴木
Toshiji Kikuchi
俊士 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Nippon Steel Welding and Engineering Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP20159197A priority Critical patent/JP3693789B2/en
Priority to TW086120060A priority patent/TW470779B/en
Priority to US09/009,299 priority patent/US5968449A/en
Priority to CN98104056A priority patent/CN1079445C/en
Priority to KR1019980003609A priority patent/KR100325127B1/en
Priority to NO980631A priority patent/NO980631L/en
Priority to EP98102511A priority patent/EP0894872B1/en
Publication of JPH10176247A publication Critical patent/JPH10176247A/en
Application granted granted Critical
Publication of JP3693789B2 publication Critical patent/JP3693789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an easily grindable and mass-producible iron base S-Mn or iron base Si-Mn-Ni alloy and to produce the alloy powder thereof. SOLUTION: This alloy and alloy powder have a compsn. contg., by weight, 0.40 to 1.20% C, 5.0 to 12.0% Si and 19.0 to 42.0% Mn or <=30% N, and the balance Fe, also satisfying Si >=11.89-2.92C-0.077Mn, moreover having >=550 Vickers hardness (Hv), and in which the area ratio of dendrite in the structure is regulated to <=50%. Furthermore, in a condition in which they have this componental compsn., Si<=8.3C+0.14Mn is also satisfied, and moreover, <=1.10 relative permeability (μ) is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に粉砕性の優れ
た鉄系Si−Mn合金または鉄系Si−Mn−Ni合金
およびその合金粉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based Si--Mn alloy or an iron-based Si--Mn--Ni alloy having particularly excellent pulverizability, and an alloy powder thereof.

【0002】[0002]

【従来の技術】従来、主として鉄鋼製造時の脱酸、脱
硫、造滓及び合金成分添加剤として用いられるフェロマ
ンガン、フェロシリコン及びシリコマンガンは、そのJ
IS規格(G2301,G2302,G2304−19
86)に規定されているように、何れも合金成分が高く
[例えば、Mn≧73%、(Mn+Si)≧74%
等]、かつ炭素含有量も極めて高い(例えば、FMnM
2:C≦2.0%、SiMn0:C≦1.5%)。そし
て、これらの合金鉄はその用途上、規定されている粒度
に従って、合金粉又は粒として供給されることになって
いる。すなわち、これらの合金鉄はJISの中のロット
の作り方にも示されているように、大量にかつ粉粒状で
供給されるという性状の特徴があり、これは夫々の合金
鉄の中の合金量と炭素量が高いために、溶解後の冷却後
に容易に粉粒状の形状が得られることによって実現して
いる。
2. Description of the Related Art Conventionally, ferromanganese, ferrosilicon and silicomanganese, which are mainly used as deoxidation, desulfurization, slag-making and alloying components additives in steel production, are known as J
IS standard (G2301, G2302, G2304-19
86), the alloy components are high [Mn ≧ 73%, (Mn + Si) ≧ 74%, for example]
And the carbon content is extremely high (for example, FMnM
2: C ≦ 2.0%, SiMn0: C ≦ 1.5%). Then, these alloyed irons are to be supplied as alloy powders or granules according to the prescribed particle size for the purpose of use. In other words, these ferro-alloys have a characteristic feature that they are supplied in large quantities and in the form of powder and granules, as shown in the production method for lots in JIS. And a high carbon content, so that a powdery shape can be easily obtained after cooling after melting.

【0003】一方、近年、鉄鋼成品の多様化に伴い、従
来のJIS規格よりも、Si,Mn等の合金量、さらに
は炭素含有量のより少ない粉状合金鉄の必要性が高くな
って来ている。例えば、鋼構造物の溶接に適用するアー
ク溶接用フラックス入りワイヤのフラックスには、目的
に応じてスラグ形成剤、脱酸剤、合金剤、鉄粉等の種々
の粉末原料が含まれ、具体的には上記の粉状のフェロマ
ンガン、フェロシリコン、シリコマンガン及び鉄粉等が
合計で数10%も含まれている。この混合フラックスか
ら生ずる成分の偏析は、鋼材溶接時の溶接品質に悪影響
を及ぼす場合がある。
On the other hand, in recent years, with the diversification of steel products, the necessity of powdered ferromagnetic iron having a smaller amount of alloys such as Si and Mn and a lower carbon content than conventional JIS standards has been increasing. ing. For example, the flux of a flux-cored wire for arc welding applied to welding of a steel structure contains various powder raw materials such as a slag forming agent, a deoxidizing agent, an alloying agent, and iron powder depending on the purpose. Contains powdered ferromanganese, ferrosilicon, silicomanganese, iron powder and the like in a total amount of several tens%. The segregation of the components generated from the mixed flux may adversely affect the welding quality when welding steel.

【0004】従って、上記数種類の粉末原料を配合して
揃えた成分と同じ成分を持った単一合金鉄粉を予め製造
し、これをフラックス中に使用する方法が強く望まれる
ところである。しかしながら、一般的にフェロアロイ中
のSi,Mnさらには炭素等を下げてゆくと、その延
性、靱性が次第に良くなり、通常の生産設備では、中々
粉粒状の製品を得ることが難しくなる。また、これを改
善するための成分調整を行なうと、磁性を帯び易くな
り、磁性を帯びた合金鉄粉を混合したフラックスを用い
て、例えば特公平4−72640号公報の提案に見られ
るような、帯鋼の成形とフラックスの充填、シーム溶接
を連続に行なって、フラックス入りワイヤを作る場合に
は、その製造作業条件によっては、成分の偏析、シーム
部の融合不良等が発生し、フラックス入りワイヤの製造
歩留及び鋼材溶接時の溶接品質に悪影響を及ぼす場合が
ある。
[0004] Therefore, there is a strong demand for a method in which a single alloy iron powder having the same components as those prepared by blending the above several kinds of powder raw materials and having the same components is used in advance and used in a flux. However, generally, when Si, Mn and carbon in ferroalloys are reduced, their ductility and toughness gradually improve, and it becomes difficult to obtain a medium-granular product with ordinary production equipment. In addition, when component adjustment for improving this is performed, it becomes easy to take on magnetism, and a flux mixed with ferromagnetic alloyed iron powder is used, for example, as shown in the proposal of Japanese Patent Publication No. 4-72640. When forming a flux-cored wire by continuously forming a strip, filling with flux, and seam welding, depending on the manufacturing conditions, segregation of components, poor fusion of the seam, etc. may occur, resulting in flux-cored wire. This may adversely affect the production yield of the wire and the welding quality when welding steel.

【0005】さらに、例えば高張力鋼や低温用鋼等の鋼
構造物の溶接に適用するアーク溶接用フラックス入りワ
イヤのフラックスには、Si,Mn,Ni及び鉄粉等を
同時に含有しているものが一般的である。これらの原料
としては、単体原料(Si粉、Mn粉及びNi粉)の
他、上記の粉粒状のフェロシリコン、フェロマンガン、
シリコマンガン、フェロニッケルなどが主に使用されて
いる。これらの合金成分であるSi,Mn及びNiは溶
接部の品質に対し相互に強く作用し合う成分である。従
って、原料を配合、混合したフラックスには、原料ロッ
ト毎の成分変動や原料種類毎の粒径差が原因で生じやす
い成分偏析がなく、所定量のSi,Mn及びNiを含有
するフラックス組成となっていることが好ましい。この
ためには、Niを含有する鉄系Si−Mnの単一鉄合金
粉が必要となる。
[0005] Furthermore, the flux of a flux-cored wire for arc welding applied to the welding of steel structures such as high-strength steel and low-temperature steel, for example, contains Si, Mn, Ni, iron powder and the like at the same time. Is common. As these raw materials, in addition to simple raw materials (Si powder, Mn powder and Ni powder), the above-mentioned powdery ferrosilicon, ferromanganese,
Silicomanganese, ferronickel and the like are mainly used. These alloy components, Si, Mn, and Ni, are components that mutually act strongly on the quality of the weld. Therefore, the flux in which the raw materials are blended and mixed does not have a component segregation that is likely to occur due to a component variation for each raw material lot and a particle size difference for each raw material type. It is preferred that it is. For this purpose, a single iron alloy powder of iron-based Si-Mn containing Ni is required.

【0006】[0006]

【発明が解決しようとする課題】そこで、上記のような
鉄分を多く含有する鉄系Si−Mn合金粉または鉄系S
i−Mn−Ni合金粉を製造するにあたり、粉体として
大量生産するためには、製造過程において容易に粉砕が
可能であることが必要である。鉄分含有量の多い合金粉
として、特公平4−62838号公報、特開平5−31
594号公報にFe−Mn系合金粉が記載されている
が、それらは常法の機械的粉砕では粉砕性が極めて悪い
という難点があり、従来においては、これら鉄合金であ
って、しかも容易に粉砕して多量生産が可能な鉄系Si
−Mn合金粉体または鉄系Si−Mn−Ni合金粉体は
存在していないのが実状である。また、その合金粉が非
磁性であることはさらに種々の用途拡大が可能となる。
Therefore, iron-based Si--Mn alloy powder or iron-based S
In producing the i-Mn-Ni alloy powder, it is necessary that the powder can be easily pulverized in the production process in order to mass-produce the powder. As an alloy powder having a high iron content, Japanese Patent Publication No. 4-62838,
No. 594 discloses Fe-Mn-based alloy powders, but they have the disadvantage that the pulverizability is extremely poor in conventional mechanical pulverization. Conventionally, these powders are iron alloys and are easily used. Iron-based Si that can be mass-produced by grinding
Actually, there is no -Mn alloy powder or iron-based Si-Mn-Ni alloy powder. In addition, the fact that the alloy powder is non-magnetic can further expand various uses.

【0007】本発明は上述のような、現在においては存
在していない鉄合金であって、しかも容易に粉砕して多
量生産が可能な鉄系Si−Mn合金または鉄系Si−M
n−Ni合金とその粉体を提供するものである。その発
明の要旨とするところは、 (1)重量%で、C:0.40〜1.20%、Si:
5.0〜12.0%、Mn:19.0〜42.0%を含
み、残部Feからなり、かつ、Si≧11.89−2.
92C−0.077Mnを満たし、さらに、ビッカース
硬度(Hv)≧550、組織のデンドライト面積率≦5
0%であることを特徴とする粉砕性の良好な鉄系Si−
Mn合金。
[0007] The present invention relates to an iron-based Si-Mn alloy or an iron-based Si-M alloy as described above, which does not exist at present and which can be easily pulverized and mass-produced.
An n-Ni alloy and its powder are provided. The gist of the invention is as follows: (1) By weight%, C: 0.40 to 1.20%, Si:
5.0-12.0%, Mn: 19.0-42.0%, the balance being Fe, and Si ≧ 11.8-9-2.
92C-0.077Mn, Vickers hardness (Hv) ≧ 550, dendrite area ratio of structure ≦ 5
0-% iron-based Si-
Mn alloy.

【0008】(2)重量%で、C:0.40〜1.20
%、Si:5.0〜12.0%、Mn:19.0〜4
2.0%を含み、残部Feからなり、かつ、Si≧1
1.89−2.92C−0.077MnおよびSi≦
8.3C+0.14Mnを満たし、さらに、ビッカース
硬度(Hv)≧550、組織のデンドライト面積率≦5
0%および比透磁率(μ)≦1.10であることを特徴
とする粉砕性の良好な鉄系Si−Mn合金。
(2) C: 0.40 to 1.20 by weight%
%, Si: 5.0 to 12.0%, Mn: 19.0 to 4
2.0%, the balance being Fe and Si ≧ 1
1.89-2.92C-0.077Mn and Si ≦
8.3C + 0.14Mn, Vickers hardness (Hv) ≧ 550, dendrite area ratio of structure ≦ 5
An iron-based Si-Mn alloy having good pulverizability, wherein 0% and relative magnetic permeability (μ) ≦ 1.10.

【0009】(3)P:0.10〜0.40%を含有す
ることを特徴とする前記(1)または(2)記載の粉砕
性の良好な鉄系Si−Mn合金。 (4)粒径212μm以下であることを特徴とする前記
(1)〜(3)記載の鉄系Si−Mn合金粉。 (5)Niを30%以下含有することを特徴とする前記
(1)〜(3)記載の粉砕性の良好な鉄系Si−Mn−
Ni合金。 (6)粒径212μm以下であることを特徴とする前記
(5)記載の鉄系Si−Mn−Ni合金粉にある。
(3) The iron-based Si-Mn alloy according to the above (1) or (2), wherein P: 0.10 to 0.40% is contained. (4) The iron-based Si-Mn alloy powder according to the above (1) to (3), wherein the particle diameter is 212 µm or less. (5) The iron-based Si-Mn- having good pulverizability according to any one of the above (1) to (3), which contains 30% or less of Ni.
Ni alloy. (6) The iron-based Si-Mn-Ni alloy powder according to (5), wherein the particle size is 212 µm or less.

【0010】以下、本発明について図面に従って詳細に
説明する。図1は本発明に係る合金鉄鋳片のビッカース
硬度(Hv)とその光学顕微鏡観察時のデンドライト相
の面積率(%)との関係を示す図である。図1から、こ
の種合金鉄の粉砕性は鋳片の硬度(Hv)とデンドライ
ト面積率(%)と強い相関があり、デンドライト面積率
を50%以下にし、硬度(Hv)を550以上にするこ
とにより、粉砕性が容易となることが確認される。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the relationship between the Vickers hardness (Hv) of the iron alloy slab according to the present invention and the area ratio (%) of the dendrite phase when observed with an optical microscope. From FIG. 1, it can be seen that the grindability of this kind of ferroalloys has a strong correlation between the hardness (Hv) of the slab and the dendrite area ratio (%), and the dendrite area ratio is set to 50% or less and the hardness (Hv) is set to 550 or more. This confirms that the pulverizability becomes easy.

【0011】図2は本発明を含むSi−Mn合金鉄にお
いて鋳片の化学成分と磁性の関係を求めた結果である。
縦軸は鋳片に含まれる強磁性分をフェライトメーターで
測定した値(%)であり、横軸の値、A/F(以下、オ
ーステナイト指数と言う)は、図に示すように、鋳片の
C,Si及びMn含有量によって求められる値であり、
右に行く程(大きな値になる程)、オーステナイト化傾
向が強くなると言う意味をもっている。この図2から、
オーステナイト指数が大きくなる程、磁性を示すフェラ
イト量がほゞ直線的に減少し、ばらつきを考慮しても、
このオーステナイト指数が2.40〜2.80になると
フェライト量は殆ど消失し、いわゆる、非磁性化するこ
とが確認される。
FIG. 2 is a graph showing the relationship between the chemical composition of the cast slab and the magnetism of the Si-Mn alloy iron according to the present invention.
The vertical axis represents the value (%) of the ferromagnetic component contained in the slab measured by a ferrite meter, and the value of the horizontal axis, A / F (hereinafter referred to as austenite index), is shown in FIG. Is the value determined by the C, Si and Mn contents of
The meaning to the right (the larger the value) is, the stronger the austenitizing tendency is. From this Figure 2,
As the austenite index increases, the amount of ferrite exhibiting magnetism decreases almost linearly, and even when variations are considered,
When the austenite index becomes 2.40 to 2.80, the amount of ferrite almost disappears, and it is confirmed that the ferrite is demagnetized.

【0012】次に、本発明における成分規制の理由につ
いて、粉砕性と非磁性化の観点から説明する。先ず粉砕
性に重要な影響をもつ、鋳片のビッカース硬度(Hv)
と化学成分の関係を、一連の試験によって求め、関係式
で表すことが出来た。この式を次に示す。 Hv=380C+130Si+10Mn+[P]−10
76 但し、各成分は重量%、[P]=80(P≧0.10
%)及び[P]=0(P<0.10%)
Next, the reasons for the regulation of the components in the present invention will be explained from the viewpoint of pulverizability and demagnetization. First, Vickers hardness (Hv) of slab, which has an important effect on grindability
The relationship between and the chemical components was determined by a series of tests and could be expressed by a relational expression. This equation is shown below. Hv = 380C + 130Si + 10Mn + [P] -10
76 However, each component is% by weight, [P] = 80 (P ≧ 0.10
%) And [P] = 0 (P <0.10%)

【0013】ビッカース硬度(Hv)が約550以上に
なると、粉砕性が良くなると言う前記図1の結果から、
粉砕性の良好な鉄系Si−Mn合金を得るための、C,
Si,Mn及びP含有量の組合わせは上記式によって自
ら決まる。この式からC,Si,Mnの硬度(Hv)に
及ぼす影響は、Mn<Si<Cの順に大きくなるが、本
発明で請求している夫々の成分の範囲から考えると、実
用的には、Siの影響(係数=130)が最も強いこと
が判る。
From the result of FIG. 1 that the crushability is improved when the Vickers hardness (Hv) is about 550 or more,
C, in order to obtain an iron-based Si-Mn alloy having good grindability,
The combination of Si, Mn and P contents is determined by the above equation. From this equation, the effect of C, Si, and Mn on the hardness (Hv) increases in the order of Mn <Si <C. However, considering the range of each component claimed in the present invention, practically, It can be seen that the influence of Si (coefficient = 130) is the strongest.

【0014】そこで、例えば、Siの含有量が請求範囲
の下限の5%の時にも、この合金鉄のビッカース硬度
(Hv)が550以上を確保するに必要なC,Mn及び
Pの値を実験によって求めた。その実施例を表1のNo
1、No2に示す。No1は、Siが4%で低すぎるた
めに粉砕性は不充分であるが、No2のこのデータから
C及びMnを夫々本発明のほゞ上限値(C:1.20
%,Mn:42.0%)に保持し、さらに0.15%前
後のPを添加してやれば、Siが約5%でも、良好な粉
砕性が得られ、かつ、この値がほゞ下限であることが明
らかとなった。なお、Siを5%以上にして行くと、必
要なC,Mn及びPの含有量は少なくてよいが、この値
が約12%をこえると粉砕性は良いが、非磁性を確保す
ることが困難になる。そこでSi量の範囲を5.0〜1
2.0%とした。
Therefore, for example, even when the content of Si is 5%, which is the lower limit of the claims, the values of C, Mn and P necessary for securing the Vickers hardness (Hv) of this ferromagnetic iron to 550 or more are experimentally determined. Asked by. The example is shown in Table 1 as No.
1 and No. 2. In No. 1, the pulverizability was insufficient because the content of Si was too low at 4%. However, from the data of No. 2, C and Mn were respectively determined to be almost the upper limit values (C: 1.20) of the present invention.
%, Mn: 42.0%), and if about 0.15% of P is added, good pulverizability can be obtained even with about 5% of Si, and this value is almost at the lower limit. It became clear that there was. When the content of Si is increased to 5% or more, the necessary contents of C, Mn, and P may be small, but when this value exceeds about 12%, the pulverizability is good, but nonmagnetic properties can be secured. It becomes difficult. Therefore, the range of Si amount is set to 5.0 to 1
2.0%.

【0015】次に、Cの影響について述べる。表1のN
o3,No4,No5に実施例を示す。No3、No4
の結果からSiが約7%、Mnが約24%の時には、C
を1%以上にすると、良好な粉砕性が得られる。また、
No5の結果からCが約0.4%のときには、安定した
粉砕性を確保するためSiおよびMnを増加する必要が
ある。なお、Cの上限値については、この値が1.20
%を超えても、粉砕性および非磁性に対する効果は殆ん
ど変わらない。そこでC量の範囲を0.40〜1.20
%とした。
Next, the effect of C will be described. N in Table 1
Examples are shown in o3, No4 and No5. No3, No4
From the results of the above, when Si is about 7% and Mn is about 24%, C
If the content is 1% or more, good pulverizability can be obtained. Also,
From the result of No. 5, when C is about 0.4%, it is necessary to increase Si and Mn in order to secure stable grindability. The upper limit of C is 1.20.
%, The effect on grindability and non-magnetism hardly changes. Therefore, the range of the C amount is set to 0.40 to 1.20.
%.

【0016】Mnに関しては、ビッカース硬度(Hv)
に対する寄与度が小さい(前式の係数:10)ことか
ら、粉砕性に対する影響は、CやSi程に強くはない
が、この合金鉄を非磁性の安定したオーステナイト相に
保持するためにも、最低19%程度は必要であり、前述
したようにフェライト形成能の強いSiが12%程度に
なると、Mnは40%以上必要になって来る。そこでM
n量の範囲は19.0〜42.0%とした。
Regarding Mn, Vickers hardness (Hv)
The effect on grindability is not as strong as that of C or Si because of its small contribution (coefficient of the previous formula: 10) to the alloy, but in order to keep this ferromagnetic alloy in a nonmagnetic stable austenite phase, At least about 19% is necessary, and as described above, when Si having a strong ferrite forming ability is about 12%, Mn is required to be 40% or more. So M
The range of n amount was 19.0 to 42.0%.

【0017】[0017]

【表1】 [Table 1]

【0018】また、本発明の合金鉄に微量のPを添加す
ると、硬度(Hv)の上昇、すなわち、粉砕性の改良に
極めて有効であることが初めて明らかとなった。その他
実施例を踏まえて、総合的に整理すると、Pを0.1%
以上添加するとビッカース硬度(Hv)は約80も上昇
する。しかしながら、余り多量に添加すると本発明の合
金粉を使用した鋼成品の材質を脆化させる危険性がある
ので本発明での範囲を0.10〜0.40%とした。
It has also been found for the first time that the addition of a small amount of P to the ferroalloy of the present invention is extremely effective in increasing the hardness (Hv), ie, improving the grindability. Based on other examples, P is 0.1%
With the above addition, the Vickers hardness (Hv) increases by about 80. However, if added in an excessively large amount, there is a risk of embrittlement of the material of a steel product using the alloy powder of the present invention. Therefore, the range in the present invention is set to 0.10 to 0.40%.

【0019】以上、本発明の鉄系Si−Mn合金の粉砕
性に及ぼすC,Si,Mn及びPの成分限定の理由につ
いて述べたが、その請求の範囲内で各元素のバランスし
た組合わせを選び、Hv≧550とすることにより、本
発明合金鉄は、常に良好な粉砕性を確保することが出来
る。なお、上記硬度(Hv)の計算式は、 Hv=380C+130Si+10Mn+[P]−1076 … (1) 良好な粉砕性を得る条件Hv≧550と[P]=80を
代入して、整理すると Si≧11.89−2.92C−0.077Mn … (2) なる式が得られる。Pの含有量が0.10%未満の場合
には、Si≧12.51−2.92C−0.077Mn
の式となり、硬度(Hv)≧550を得るためには、
(2)式によるよりもSiを約0.6%多目に含有させ
れば良い。
The reasons for limiting the components of C, Si, Mn and P which affect the crushability of the iron-based Si-Mn alloy of the present invention have been described above. By selecting and setting Hv ≧ 550, the alloyed iron of the present invention can always ensure good pulverizability. The formula for calculating the hardness (Hv) is as follows: Hv = 380 C + 130 Si + 10 Mn + [P] −1076 (1) Conditions for Obtaining Good Grindability .89-2.92C-0.077Mn (2) is obtained. When the content of P is less than 0.10%, Si ≧ 12.51-2.92C-0.077Mn
In order to obtain the hardness (Hv) ≧ 550,
It suffices that the content of Si is increased by about 0.6% as compared with the equation (2).

【0020】次に、図1でデンドライト面積率が小さく
なると、粉砕性が良くなることを示したが、その理由に
ついて述べる。図3は鋳片の凝固組織の光学顕微鏡写真
を示す。この図3(a)はデンドライト面積率24%、
硬さ(Hv)が682の組織であり、その粉砕性は良好
で、一方、図3(b)はデンドライト面積率73%、硬
さ(Hv)が347の組織であり、その粉砕性は悪い。
図3(a)、図3(b)を比べると、図3(b)ではデ
ンドライトが多く、かつ破面の電子顕微鏡写真でも凹凸
が多く、これに比べ図3(a)は平滑である。破面は両
者共に、劈開破面の特徴をもっているが、外力によって
デンドライト組織の間で発生した亀裂が進行する際に、
亀裂の尖端が金属学的な特性の異なるデンドライト組織
に衝突すると、更にこれを破壊して前進するためにデン
ドライト組織の少ない場合に比べて、余分の破壊エネル
ギーを必要とし、従って、デンドライト面積率を少なく
することは、硬度の外に粉砕性を改善する効果がある。
Next, FIG. 1 shows that the smaller the dendrite area ratio, the better the pulverizability. The reason for this will be described. FIG. 3 shows an optical micrograph of the solidified structure of the slab. FIG. 3A shows a dendrite area ratio of 24%,
Hardness (Hv) is a structure of 682, and its grindability is good. On the other hand, FIG. 3B is a structure of a dendrite area ratio of 73% and hardness (Hv) of 347, and its grindability is poor. .
3 (a) and 3 (b), the dendrite is large in FIG. 3 (b), and the electron micrograph of the fracture surface has many irregularities, and in comparison, FIG. 3 (a) is smooth. Both fracture surfaces have the characteristic of cleavage fracture surface, but when a crack generated between dendrite structures by external force progresses,
When the tip of a crack collides with a dendrite structure having a different metallurgical property, extra fracture energy is required to further break and advance the dendrite structure as compared with a case where the dendrite structure is small, and therefore, the dendrite area ratio is reduced. Reducing the amount has the effect of improving the crushability in addition to the hardness.

【0021】次に、非磁性と成分との関係について述べ
る。図2において、A/F(オーステナイト指数)が
2.80又は2.40以上になると、その合金鉄はほゞ
完全に非磁性化することを明らかにしたが、この夫々の
点を通るA/Fとαの関係直線を求めると、夫々図2の
中の(3)、(4)式の如くなる。この夫々の場合、非
磁性(α≦0)の条件を入れると(3)、(4)式は、
(3)式より [133−47.4(30C+0.5Mn)/1.5Si]≦0 … (3´) (4)式より [114−47.4(30C+0.5Mn)/1.5Si]≦0 … (4´) となり、これを整理すると、 (3´)式は、Si≦7.1C+0.12Mn (A/F≧2.80) (4´)式は、Si≦8.3C+0.14Mn (A/F≧2.40)…(5) なる関係が得られ、本発明の合金鉄が非磁性であるため
の、C,Si,Mn量及びそれらの間の関係は、この関
係式で規制されることになる。なお、多くの試験から非
磁性化には、実用上A/F≧2.40[式(5)]でほ
ゞ充分であることが確認された。
Next, the relationship between non-magnetism and components will be described. In FIG. 2, it was revealed that when the A / F (austenite index) becomes 2.80 or 2.40 or more, the ferromagnetic alloy is almost completely demagnetized. When the relationship straight line between F and α is obtained, they become as shown in equations (3) and (4) in FIG. 2, respectively. In each case, if the condition of non-magnetism (α ≦ 0) is included, the expressions (3) and (4) are as follows.
From formula (3), [133-47.4 (30C + 0.5Mn) /1.5Si] ≦ 0 (3 ′) From formula (4), [114-47.4 (30C + 0.5Mn) /1.5Si] ≦ 0 ... (4 '), and when this is arranged, the expression (3') is Si≤7.1C + 0.12Mn (A / F≥2.80) (4 ') The expression is Si≤8.3C + 0.14Mn (A / F ≧ 2.40) (5) is obtained, and the amounts of C, Si, Mn and the relationship between them for the non-magnetic ferromagnetic iron of the present invention are expressed by this relational expression. It will be regulated. In many tests, it was confirmed that A / F ≧ 2.40 [formula (5)] was practically sufficient for demagnetization.

【0022】さらに、前述した(2)、(5)式を用い
て、CとMnを大幅に変化させた場合、良好な粉砕性
(Hv≧550)と非磁性(A/F≧2.40)を共に
維持するSi規制量を計算してみると、表2の如くな
る。この表2から夫々のC,Mn量に対して、目的に応
じて太枠内のSi量(但し、12.0%以下)を選べ
ば、良好な粉砕性と非磁性化が得られることが判る。こ
の表2からも明らかなように、本発明ではSiが粉砕性
及び非磁性化の両方に対し極めて重要な役割を果してい
ることが特徴である。
Further, when C and Mn are largely changed using the above-mentioned equations (2) and (5), good grindability (Hv ≧ 550) and non-magnetism (A / F ≧ 2.40) are obtained. ) Are calculated as shown in Table 2. From Table 2, for each C and Mn content, if the Si content (12.0% or less) in the thick frame is selected according to the purpose, good pulverizability and demagnetization can be obtained. I understand. As is apparent from Table 2, the present invention is characterized in that Si plays an extremely important role in both pulverizability and demagnetization.

【0023】以上、本発明の鉄系Si−Mn合金粉の基
本成分であるC,Si,Mn及びこれに微量のPを添加
した場合の限定理由を述べたが、これに含有させること
が出来るその他の成分としては、Al:1.0%以下、
Ti:2.0%以下をそれぞれの範囲で含有させると、
粉砕性を若干改善する効果がある。その他BやMo,C
r,VおよびNb等も粉砕性及び非磁性化を損わない範
囲で含有させることができる。
As described above, the basic components of the iron-based Si-Mn alloy powder of the present invention, such as C, Si, Mn, and the reason for the limitation when a small amount of P is added thereto, have been described. As other components, Al: 1.0% or less;
When Ti: 2.0% or less is contained in each range,
This has the effect of slightly improving grindability. Other B, Mo, C
r, V, Nb, and the like can be contained in a range that does not impair the grindability and demagnetization.

【0024】[0024]

【表2】 [Table 2]

【0025】鉄系Si−Mn合金粉の比透磁率(μ)を
1.10以下としたのは、比透磁率(μ)が1.10と
いう値は磁性を僅かに帯びる性質を有する限界値であっ
て、例えば、溶接用フラックス入りワイヤでのフラック
ス原料として使用する場合の用途等を考慮すると、比透
磁率(μ)1.10以下であればフラックス入りワイヤ
製造工程のシーム溶接に際しても溶接欠陥が全く発生し
ないことから、今回、非磁性化の目安を得るために測定
して来た鋳片のフェライト量で表はすと、比透磁率
(μ)1.10は丁度フェライト量で1〜2%(A/F
≧2.40)に対応していることが明らかとなった。こ
の事実が上記合金粉の比透磁率(μ)を1.10以下と
した。
The reason why the relative magnetic permeability (μ) of the iron-based Si—Mn alloy powder is set to 1.10 or less is that the value of the relative magnetic permeability (μ) of 1.10 is a critical value having a property of slightly magnetizing. Considering, for example, the application when used as a flux raw material in a flux-cored wire for welding, if the relative permeability (μ) is 1.10 or less, welding is also performed during seam welding in the flux-cored wire manufacturing process. Since no defects are generated, the ferrite amount of the cast slab, which was measured to obtain a measure of demagnetization this time, shows that the relative magnetic permeability (μ) 1.10 is just 1 in ferrite amount. ~ 2% (A / F
≧ 2.40). This fact made the relative magnetic permeability (μ) of the alloy powder less than 1.10.

【0026】また、鉄系Si−Mn合金粉の粒径を21
2μm以下とした理由は、これも例えば、溶接用ワイヤ
等でのフラックス原料に使用する場合の用途等を考慮し
た場合に、粒径212μm以下の粉体であればワイヤの
製造工程における歩留りの向上、また、フラックス成分
の偏析防止及び溶接性能のばらつき減少などの利点があ
るため、その粒径を212μm以下とした。
The iron-based Si—Mn alloy powder has a particle size of 21%.
The reason why the particle size is set to 2 μm or less is that, for example, considering the use when used as a flux raw material in welding wires and the like, if the powder has a particle size of 212 μm or less, the yield in the wire manufacturing process is improved. Further, since there are advantages such as prevention of segregation of flux components and reduction in variation in welding performance, the particle size is set to 212 μm or less.

【0027】次に、上記本発明の鉄系Si−Mn合金に
Niを含有させた場合の粉砕性及び磁性について調査し
た。その結果、Niが30%以下の範囲において良好な
粉砕性及び実質的な非磁性を確保できることを確認し
た。なお、Niの含有量を増加させるにともなって、粉
砕性および非磁性化は向上するが、鋳片のビッカース硬
度(Hv)の上昇に対する効果はMnよりもやや小さ
く、また、フェライト量(α)の減少に対してはMnと
同等の効果を示した。
Next, the pulverizability and magnetism when the iron-based Si-Mn alloy of the present invention contained Ni was investigated. As a result, it was confirmed that good crushability and substantial non-magnetism can be ensured in the range of 30% or less of Ni. The crushability and the demagnetization are improved as the Ni content is increased, but the effect of increasing the Vickers hardness (Hv) of the slab is slightly smaller than that of Mn. Has an effect equivalent to that of Mn.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいて、さらに詳
細に説明する。 (実施例1)所定の成分となるように配合した溶解原料
を、高周波誘導加熱炉(溶解量2kg)を用いて溶解
し、鋳型に鋳込み、厚さ10〜25mmの鋳片を得た。
この鋳片をハンマーで粗粉砕後、図4に形状を示すリン
グミル粉砕機で粉砕性を評価した。図4(a)はリング
ミル粉砕機の図4(b)のB−B´平面図、図4(b)
は図4(a)のA−A´断面図であり、底部材3と一体
である外筒1の中に内リング2が装入されており、底部
材3を所定の条件で水平振動を付与すると、内リング2
は移動し、外筒1と内リング2の間に挿填された鋳片は
衝撃を受けて粉砕される。粉砕性の評価は上記リングミ
ル粉砕機に粗粉砕した鋳片(平均サイズ10〜20mm
塊)を約100g入れて、振幅100mm、振動数18
00回/分、60秒間衝撃を与えた後、粒径212μm
以下の割合が90%以上の場合を評価記号◎印(極めて
良)、50%以上の場合を○印(良)、50%未満の場
合を△印(不充分)とした。試験結果は、表1に示し、
前記SiおよびC含有量の限定範囲等について説明した
通りである。なお、表1においてNo1は比較例、No
2〜5は本発明例で良好な粉砕性が得られた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail based on embodiments. (Example 1) A molten raw material blended so as to have predetermined components was melted using a high-frequency induction heating furnace (melting amount: 2 kg) and cast into a mold to obtain a slab having a thickness of 10 to 25 mm.
This slab was roughly pulverized with a hammer, and the pulverizability was evaluated with a ring mill pulverizer having the shape shown in FIG. FIG. 4A is a plan view of the ring mill pulverizer taken along the line BB ′ of FIG. 4B, and FIG.
FIG. 4A is a cross-sectional view taken along the line AA ′ of FIG. 4A, in which an inner ring 2 is inserted into an outer cylinder 1 integrated with a bottom member 3, and horizontal vibration is applied to the bottom member 3 under predetermined conditions. When given, inner ring 2
Moves, and the slab inserted between the outer cylinder 1 and the inner ring 2 is crushed by impact. The crushability was evaluated by using a slab (average size of 10 to 20 mm) roughly crushed by the ring mill crusher.
Lump), put about 100g, amplitude 100mm, frequency 18
After giving an impact at 00 times / minute for 60 seconds, the particle size is 212 μm
When the following ratio was 90% or more, the evaluation symbol was ◎ (extremely good), when it was 50% or more, was と し た (good), and when it was less than 50%, it was △ (insufficient). The test results are shown in Table 1,
This is as described for the limited ranges of the Si and C contents. In Table 1, No. 1 is a comparative example, and No.
In Examples 2 to 5, good pulverizability was obtained in the examples of the present invention.

【0029】(実施例2)実施例1と同様の方法で少量
溶解(2kg溶解)を行った。表3に合金粉の化学成分
およびその鋳片での調査結果(硬度、デンドライト面積
率、フェライト量および粉砕性)を示す。表中のNo1
〜12およびNo18,No19およびNo21はいず
れも粉砕性が優れている。また、No2,No4,No
5,No7,No8,No11,No12,No21は
フェライト量も殆どなく、実質的に非磁性の鉄系Si−
Mn合金粉が得られていることが判る。なお、No1
1,No12は夫々Ti,Alを少量添加した場合であ
る。これに対して、比較材No13〜No17およびN
o20は粉砕性が不充分であり、何れもビッカース硬度
(Hv)<550、デンドライト面積率>50%となっ
ている。また、表中のNo18〜21は硬度(Hv)お
よびデンドライト面積率に及ぼすPの添加効果を示した
もので、他成分が殆んど変わらないNo18とNo19
及びNo20とNo21を比べるとその添加効果が顕著
であることが判る。
Example 2 A small amount of dissolution (2 kg) was carried out in the same manner as in Example 1. Table 3 shows the chemical compositions of the alloy powders and the results of investigations on the cast pieces (hardness, dendrite area ratio, ferrite content, and grindability). No1 in the table
-12 and No18, No19 and No21 all have excellent pulverizability. No2, No4, No
5, No7, No8, No11, No12 and No21 have almost no ferrite content and are substantially non-magnetic iron-based Si-
It turns out that Mn alloy powder was obtained. No1
Nos. 1 and 12 are cases where Ti and Al were added in small amounts, respectively. On the other hand, comparative materials No13 to No17 and N
O20 has insufficient pulverizability, and all have Vickers hardness (Hv) <550 and dendrite area ratio> 50%. Nos. 18 to 21 in the table show the effect of adding P on the hardness (Hv) and the dendrite area ratio, and No. 18 and No. 19 in which other components hardly change.
Also, comparing No. 20 and No. 21, it can be seen that the addition effect is remarkable.

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例3)表4に、実施例1と同様に少
量溶解を行い、その合金粉の化学成分、磁性およびその
他の特性値を示す。本発明例のNo1〜No4はオース
テナイト指数が何れも2.40以上で、そのフェライト
量も0.14%以下となり、(良好な)非磁性を示し、
かつ、粉砕性も良好である。一方、これに比べ、比較例
No5,No6およびNo7はオーステナイト指数が夫
々1.44、1.75および2.14と何れも低く、か
つ多量のフェライト相が析出して強い磁性を持っている
ことが判る。そして、この場合には硬度(Hv)と粉砕
性の間にも異常な関係があることが伺はれる。
Example 3 Table 4 shows the chemical composition, magnetism, and other characteristic values of the alloy powder obtained by dissolving a small amount in the same manner as in Example 1. No. 1 to No. 4 of the present invention each have an austenite index of 2.40 or more and a ferrite content of 0.14% or less, exhibiting (good) non-magnetism,
Also, the pulverizability is good. On the other hand, Comparative Examples No. 5, No. 6, and No. 7 have low austenite indices of 1.44, 1.75, and 2.14, respectively, and have strong magnetism due to precipitation of a large amount of ferrite phase. I understand. In this case, it can be seen that there is an abnormal relationship between the hardness (Hv) and the grindability.

【0032】[0032]

【表4】 [Table 4]

【0033】(実施例4)高周波誘導加熱炉(溶解量2
50kg)を用いて、多量溶解により本発明の効果をさ
らに確認した。原料を溶解、鋳込み、厚さ20〜50m
mの鋳片を得た。この鋳片をジョークラッシャー粉砕機
で粗粉砕し、更にこれをロッドミルで微粉砕した後、粒
径212μmでの篩分けという一貫工程により合金粉を
製造した。表5に得られた合金粉の化学成分、粒度構成
及び振動試料型磁力計で測定した比透磁率(μ)、また
鋳片で測定したビッカース硬度(Hv)、デンドライト
面積率(%)及びフェライトメーターによるフェライト
量(%)を示す。 その結果、表5に示すように本発明
の範囲に該当する実施例No1、2、3はいずれも常法
の機械的粉砕方法において充分な粉砕性を有し、かつ比
透磁率(μ)も小さく、多量溶解においても、前記少量
溶解結果を再現することが確かめられた。
Example 4 High-frequency induction heating furnace (melting amount 2)
(50 kg), the effect of the present invention was further confirmed by a large amount of dissolution. Dissolve and cast raw materials, thickness 20-50m
m was obtained. The cast slab was coarsely pulverized by a jaw crusher and further finely pulverized by a rod mill, and then an alloy powder was produced through an integrated process of sieving with a particle size of 212 μm. Table 5 shows the chemical composition, particle size composition, relative permeability (μ) measured by a vibrating sample magnetometer, Vickers hardness (Hv), dendrite area ratio (%), and ferrite measured on a slab. The ferrite content (%) is indicated by a meter. As a result, as shown in Table 5, Examples Nos. 1, 2, and 3, which fall within the scope of the present invention, all have sufficient pulverizability in a conventional mechanical pulverization method, and also have a relative magnetic permeability (μ). It was confirmed that the result of the above-mentioned small amount dissolution was reproduced even in a small and large amount dissolution.

【0034】[0034]

【表5】 [Table 5]

【0035】(実施例5)高周波誘導加熱炉(容量25
0kg)を用いて、実施例4と同様の方法でNiを含有
させた合金粉を製造した。表6に得られた合金粉の化学
成分、粒度構成及び比透磁率(μ)、また鋳片で測定し
たビッカース硬度(Hv)、デンドライト面積率(%)
及びフェライト量(%)を示す。その結果、Niを含有
させた実施例No.1〜7のいずれも機械的な粉砕方法
によって容易に粉砕が可能で、また、実施例No.1〜
5は比透磁率(μ)が1.10以下で実質的に非磁性化
している。なお、実施例No.5において、粒径212
μmよりも粗粒部分が9%生じたが、同ロッドミル粉砕
機で再粉砕することにより全量を粒径212μm以下に
することができた。
(Example 5) High frequency induction heating furnace (capacity 25
0 kg) to produce an alloy powder containing Ni in the same manner as in Example 4. Table 6 shows the chemical composition, particle size composition and relative permeability (μ) of the obtained alloy powder, Vickers hardness (Hv) measured on a slab, and dendrite area ratio (%).
And ferrite content (%). As a result, in Example No. 1 containing Ni. Each of Examples 1 to 7 can be easily pulverized by a mechanical pulverization method. 1 to
No. 5 is substantially non-magnetic when the relative magnetic permeability (μ) is 1.10 or less. In addition, in Example No. In 5, the particle size is 212.
Although 9% of coarse-grained portions were generated, the total amount could be reduced to 212 μm or less by re-grinding with the same rod mill.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【発明の効果】以上述べたように、本発明によって鉄成
分の含有量が多く実質的に非磁性鉄系Si−Mn合金粉
または鉄系Si−Mn−Ni合金粉を、製造工程におい
て、極めて粉砕性良く、しかも容易に多量生産すること
が可能となった。
As described above, according to the present invention, a non-magnetic iron-based Si-Mn alloy powder or an iron-based Si-Mn-Ni alloy powder having a large iron component content can be produced in an extremely Good pulverizability and easy mass production became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る合金鉄鋳片のビッカース硬度(H
v)とその光学顕微鏡観察時のデンドライト相の面積率
(%)との関係を示す図である。
FIG. 1 shows a Vickers hardness (H) of an iron alloy slab according to the present invention.
FIG. 4 is a diagram showing the relationship between v) and the area ratio (%) of the dendrite phase when observed with an optical microscope.

【図2】本発明を含むSi−Mn合金鉄において鋳片の
化学成分と磁性の関係を求めた結果を示す図である。
FIG. 2 is a diagram showing a result of obtaining a relationship between a chemical composition of a cast slab and magnetism in a Si—Mn alloy iron including the present invention.

【図3】鋳片の凝固組織の光学顕微鏡写真を示す図であ
る。
FIG. 3 is a view showing an optical microscope photograph of a solidified structure of a cast slab.

【図4】粉砕性評価に使用したリングミル粉砕機を示す
概略図である。
FIG. 4 is a schematic view showing a ring mill pulverizer used for pulverizability evaluation.

【符号の説明】[Explanation of symbols]

1 外筒 2 内筒リング 3 底部材 4 上蓋 5 鋳片 DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Inner cylinder ring 3 Bottom member 4 Top lid 5 Cast piece

フロントページの続き (72)発明者 鎌田 政男 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 (72)発明者 西村 均 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 (72)発明者 鈴木 邦輝 東京都中央区日本橋小網町8番4号 日本 重化学工業株式会社内 (72)発明者 菊池 俊士 東京都中央区日本橋小網町8番4号 日本 重化学工業株式会社内Continued on the front page (72) Inventor Masao Kamada 3-5-4 Tsukiji, Chuo-ku, Tokyo Nippon Steel Welding Industry Co., Ltd. (72) Inventor Hitoshi Nishimura 3-5-4 Tsukiji, Chuo-ku, Tokyo Nippon Steel Inside Welding Industry Co., Ltd. (72) Inventor Kuniki Suzuki 8-4 Nihonbashi Koami-cho, Chuo-ku, Tokyo Inside Japan Heavy Chemical Industry Co., Ltd. (72) Inventor Toshishi Kikuchi 8-4-2 Nihonbashi Koami-cho, Chuo-ku, Tokyo No. Japan Heavy Chemical Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.40〜1.20%、 Si:5.0〜12.0%、 Mn:19.0〜42.0%を含み、 残部Feからなり、かつ、Si≧11.89−2.92
C−0.077Mnを満たし、さらに、ビッカース硬度
(Hv)≧550、組織のデンドライト面積率≦50%
であることを特徴とする粉砕性の良好な鉄系Si−Mn
合金。
1. The composition contains, by weight%, C: 0.40 to 1.20%, Si: 5.0 to 12.0%, and Mn: 19.0 to 42.0%, the balance being Fe, and , Si ≧ 11.89−2.92
C-0.077Mn, Vickers hardness (Hv) ≧ 550, dendritic area ratio of the structure ≦ 50%
Iron-based Si-Mn having good pulverizability, characterized by being
alloy.
【請求項2】 重量%で、 C:0.40〜1.20%、 Si:5.0〜12.0%、 Mn:19.0〜42.0%を含み、 残部Feからなり、かつ、Si≧11.89−2.92
C−0.077MnおよびSi≦8.3C+0.14M
nを満たし、さらに、ビッカース硬度(Hv)≧55
0、組織のデンドライト面積率≦50%および比透磁率
(μ)≦1.10であることを特徴とする粉砕性の良好
な鉄系Si−Mn合金。
2. The composition according to claim 1, comprising 0.40 to 1.20% of C, 5.0 to 12.0% of Si, and 19.0 to 42.0% of Mn, with the balance being Fe. , Si ≧ 11.89−2.92
C-0.077Mn and Si ≦ 8.3C + 0.14M
n, and Vickers hardness (Hv) ≧ 55
0, an iron-based Si-Mn alloy having good pulverizability, characterized by satisfying a dendrite area ratio of the structure ≦ 50% and a relative magnetic permeability (μ) ≦ 1.10.
【請求項3】 P:0.10〜0.40%を含有するこ
とを特徴とする請求項1または2記載の粉砕性の良好な
鉄系Si−Mn合金。
3. The iron-based Si—Mn alloy having good pulverizability according to claim 1, wherein the content of P is 0.10 to 0.40%.
【請求項4】 粒径212μm以下であることを特徴と
する請求項1〜3記載の鉄系Si−Mn合金粉。
4. The iron-based Si—Mn alloy powder according to claim 1, wherein the particle size is 212 μm or less.
【請求項5】 Niを30%以下含有することを特徴と
する請求項1〜3記載の粉砕性の良好な鉄系Si−Mn
−Ni合金。
5. The iron-based Si—Mn having good pulverizability according to claim 1, which contains 30% or less of Ni.
-Ni alloy.
【請求項6】 粒径212μm以下であることを特徴と
する請求項5記載の鉄系Si−Mn−Ni合金粉。
6. The iron-based Si—Mn—Ni alloy powder according to claim 5, having a particle size of 212 μm or less.
JP20159197A 1996-10-16 1997-07-28 Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof Expired - Fee Related JP3693789B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20159197A JP3693789B2 (en) 1996-10-16 1997-07-28 Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof
TW086120060A TW470779B (en) 1997-07-28 1997-12-31 Iron base Si-Mn alloy or iron base Si-Mn-Ni alloy having good crushability and alloy powder thereof
CN98104056A CN1079445C (en) 1997-07-28 1998-01-20 Si-Mn alloy or ferrous series Si-Mn-Mi alloy and alloy powder with good pulverization property
US09/009,299 US5968449A (en) 1997-07-28 1998-01-20 Iron base Si--Mn alloy or iron base Si--Mn--Ni alloy having good crushability and alloy powder thereof
KR1019980003609A KR100325127B1 (en) 1997-07-28 1998-02-07 Iron-based Si-Mn alloys or iron-based Si-Mn-Ni alloys and their powders
NO980631A NO980631L (en) 1997-07-28 1998-02-13 Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good crushability, and alloy powder thereof
EP98102511A EP0894872B1 (en) 1997-07-28 1998-02-13 Iron base Si- Mn alloy or iron base Si- Mn- Ni alloy having good crushability and alloy powder thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-273203 1996-10-16
JP27320396 1996-10-16
JP20159197A JP3693789B2 (en) 1996-10-16 1997-07-28 Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof

Publications (2)

Publication Number Publication Date
JPH10176247A true JPH10176247A (en) 1998-06-30
JP3693789B2 JP3693789B2 (en) 2005-09-07

Family

ID=26512879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20159197A Expired - Fee Related JP3693789B2 (en) 1996-10-16 1997-07-28 Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof

Country Status (1)

Country Link
JP (1) JP3693789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140607A (en) * 1999-04-23 2000-10-31 Nippon Steel Welding Products & Engineering Co., Ltd. Gas shielded arc-welding flux cored wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140607A (en) * 1999-04-23 2000-10-31 Nippon Steel Welding Products & Engineering Co., Ltd. Gas shielded arc-welding flux cored wire

Also Published As

Publication number Publication date
JP3693789B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3803582B2 (en) Steel refinement method, steel refinement alloy and production method of refinement alloy
CA2597562C (en) Improved glass stability, glass forming ability, and microstructural refinement
KR100335386B1 (en) Gas shield arc-welding flux cored wire
CN104087829B (en) Steel material for high heat input welding
KR101014396B1 (en) Thin ribbon of amorphous iron alloy
US20080053274A1 (en) Glass stability, glass forming ability, and microstructural refinement
JP5253738B2 (en) Hardfacing alloy iron material
KR100325127B1 (en) Iron-based Si-Mn alloys or iron-based Si-Mn-Ni alloys and their powders
JP3693789B2 (en) Iron-based Si-Mn alloy or iron-based Si-Mn-Ni alloy with good grindability and alloy powder thereof
US4036641A (en) Cast iron
US3243288A (en) Ferrosilicon-alloy
JPH11181507A (en) Production of iron base si-mn alloy powder good in pulverizability
JPH01139702A (en) Powder for magnetic shield, magnetic shield material and manufacture of powder
JPH1150206A (en) Ferrous si-mn-ni alloy excellent in pulverizability and alloy powder thereof
JPH11245058A (en) Bainite steel rail thermit weld metal or thermit agent thereof
JP5434437B2 (en) High heat input welding steel
JP2007210004A (en) Flux-cored wire for gas-shielded arc welding
JP2002206150A (en) Soft magnetic alloy powder and production method therefor
JP3652499B2 (en) Seamless flux-cored wire for gas shielded arc welding
JP3217427B2 (en) Lump-resistant mineral wear material
CN113355609B (en) Modified high-boron iron-based wear-resistant alloy and preparation method thereof
CA1076399A (en) Crushable low reactivity nickel-base magnesium additive
JPH11179590A (en) Flux-cored wire for gas shield arc welding
JPH10166166A (en) Aluminothermite mixture
JP3717644B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees