JPH10175917A - Production of unsaturated glycol diester - Google Patents

Production of unsaturated glycol diester

Info

Publication number
JPH10175917A
JPH10175917A JP9280256A JP28025697A JPH10175917A JP H10175917 A JPH10175917 A JP H10175917A JP 9280256 A JP9280256 A JP 9280256A JP 28025697 A JP28025697 A JP 28025697A JP H10175917 A JPH10175917 A JP H10175917A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
tellurium
distribution
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9280256A
Other languages
Japanese (ja)
Other versions
JP3858383B2 (en
Inventor
Masato Sato
眞人 佐藤
Hironobu Ono
博信 大野
Nobuyuki Murai
信行 村井
Youji Iwasaka
洋司 岩阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28025697A priority Critical patent/JP3858383B2/en
Publication of JPH10175917A publication Critical patent/JPH10175917A/en
Application granted granted Critical
Publication of JP3858383B2 publication Critical patent/JP3858383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a conjugated diene can be reacted with a carboxylic acid and molecular oxygen to industrially and advantageously produce an unsaturated glycol diester with a high activity. SOLUTION: A solid catalyst in which >=80% of the total palladium supported by the catalyst and >=75% of the total tellurium supported by the catalyst are present in a surface layer part to a depth of 30% of a radius from the surface of the catalyst toward the center in the support distribution of active components measured according to an electron probe X-ray microanalyzer(EPMA) is used as the catalyst in the method for reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of the solid catalyst supporting the palladium and tellurium as the active components on an inorganic porous carrier and producing the corresponding unsaturated glycol diester.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不飽和グリコール
ジエステルの製造方法に関する。詳しくは、活性成分で
あるパラジウムとテルルが特定の担持分布を有する固体
触媒の存在下、共役ジエンをカルボン酸及び分子状酸素
と反応させて対応する不飽和グリコールジエステルを製
造する方法に関する。不飽和グリコールジエステル、例
えばブテンジオールジエステルはエンジニアリングプラ
スチックス、エラストマー、弾性繊維、合成皮革等の原
料である1,4−ブタンジオールや、高性能溶剤、弾性
繊維の原料であるテトラヒドロフランを製造するための
重要な中間化合物である。
[0001] The present invention relates to a method for producing an unsaturated glycol diester. More specifically, the present invention relates to a method for producing a corresponding unsaturated glycol diester by reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst in which active components palladium and tellurium have a specific supported distribution. Unsaturated glycol diesters such as butenediol diester are used for producing engineering plastics, elastomers, elastic fibers, 1,4-butanediol which is a raw material for synthetic leather and the like, high-performance solvents, and tetrahydrofuran which is a raw material for elastic fibers. It is an important intermediate compound.

【0002】[0002]

【従来の技術】このブテンジオールジエステルを製造す
る方法については、従来、数多くの提案がなされてお
り、中でもパラジウムとテルルを活性炭に担持させた固
体触媒を使用し、ブタジエンをカルボン酸及び分子状酸
素と反応させてブテンジオールジエステルを製造する方
法は良く知られている。具体的には、例えばパラジウム
とテルル及びセレンの少なくとも一種とを含有した固体
触媒を用いる方法(特開昭48−72090号公報)、
パラジウムとアンチモン及びビスマスの少なくとも一種
と、テルル及びセレンの少なくとも一種とを含有する固
体触媒を用いる方法(特開昭48−96513号公報)
が提案されている。
2. Description of the Related Art There have been proposed many methods for producing butenediol diester. Among them, a solid catalyst in which palladium and tellurium are supported on activated carbon is used, and butadiene is converted to carboxylic acid and molecular oxygen. The method of producing butenediol diester by reacting with is well known. Specifically, for example, a method using a solid catalyst containing palladium and at least one of tellurium and selenium (JP-A-48-72090),
A method using a solid catalyst containing palladium, at least one of antimony and bismuth, and at least one of tellurium and selenium (JP-A-48-96513)
Has been proposed.

【0003】しかしながら、これらの触媒を用いる方法
はある程度の活性を示すものの、実用的とは言えず、触
媒活性を向上させるために、これらの触媒で用いる担体
の活性炭を硝酸で前処理して使用する方法(特開昭49
−11812号公報)、固体触媒を還元処理した後、2
00℃以上の温度において分子状酸素を含むガスで処理
し、更にこれを還元処理した上で用いる方法(特開昭5
0−4011号公報)、固体触媒をメタノールガスによ
る還元処理及びこれに続く分子状酸素による酸化処理か
らなる一連の還元酸化処理を少なくとも一回実施した
後、酢酸及び分子状酸素を接触させ、次いで水素ガスに
よる還元処理を実施した上で用いる方法(特開昭55−
3856号公報)等が提案されている。一方、触媒活性
の経時低下を少なくするために、特定の細孔分布を有す
る担体を用いる方法が提案されている(特開昭56−1
30232号、特開平8−3110号各公報)。
[0003] However, although the method using these catalysts exhibits a certain degree of activity, it cannot be said that it is practical, and in order to improve the catalytic activity, activated carbon as a carrier used in these catalysts is pretreated with nitric acid. (Japanese Unexamined Patent Publication No.
After the reduction treatment of the solid catalyst, 2
A method of treating with a gas containing molecular oxygen at a temperature of 00 ° C. or higher, and further reducing and treating the gas (Japanese Patent Laid-Open No.
No. 0-4011), a solid catalyst is subjected to at least one series of reductive oxidation treatments comprising a reduction treatment with methanol gas and a subsequent oxidation treatment with molecular oxygen, and then brought into contact with acetic acid and molecular oxygen. A method used after performing a reduction treatment with hydrogen gas (Japanese Unexamined Patent Application Publication No.
3856) and the like. On the other hand, a method using a carrier having a specific pore distribution has been proposed in order to reduce the deterioration with time of the catalyst activity (Japanese Patent Laid-Open No. 56-1).
No. 30232, JP-A-8-3110).

【0004】[0004]

【発明が解決しようとする課題】従来提案されたいろい
ろな方法により固体触媒の欠点はかなり改善されるが、
工業的に目的物を製造する上では未だ十分とは言えず、
また、高価な貴金属であるパラジウムを用いるために単
位パラジウム当りの活性をより高くする事が必要であ
る。本発明の課題は、共役ジエンをカルボン酸及び分子
状酸素と反応させて不飽和グリコールジエステルを工業
的有利に製造するために更に活性の高い触媒を用いた不
飽和グリコールジエステルの製造方法を提供する事にあ
る。
The disadvantages of solid catalysts are considerably improved by the various methods proposed so far,
It is still not enough to produce the target industrially,
Further, in order to use palladium which is an expensive noble metal, it is necessary to increase the activity per unit palladium. An object of the present invention is to provide a method for producing an unsaturated glycol diester using a more active catalyst in order to industrially advantageously produce an unsaturated glycol diester by reacting a conjugated diene with a carboxylic acid and molecular oxygen. Is in the thing.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意検討した結果、活性成分であるパラ
ジウムとテルルの担持分布が触媒性能に大きな影響を及
ぼす事を見出し、本発明を完成するに到った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the distribution of the active components, palladium and tellurium, has a great effect on the catalyst performance. Was completed.

【0006】即ち、本発明は、パラジウムとテルルを活
性成分として無機多孔体に担持した固体触媒の存在下
に、共役ジエンをカルボン酸及び分子状酸素と反応させ
て対応する不飽和グリコールジエステルを製造する方法
において、触媒として、X線マイクロアナライザー(以
下、EPMAと略記する)で測定された活性成分の担持
分布において、担体表面から中心に対する半径の30%
の深さ迄の表層部に、触媒に担持された全パラジウムの
80%以上が存在し、且つ、触媒に担持された全テルル
の75%以上が存在する触媒を用いる事を特徴とする不
飽和グリコールジエステルの製造方法、にある。以下、
本発明について詳細に説明する。
That is, the present invention provides a method for producing a corresponding unsaturated glycol diester by reacting a conjugated diene with carboxylic acid and molecular oxygen in the presence of a solid catalyst having palladium and tellurium as active components supported on an inorganic porous material. In the method of carrying out the method, as a catalyst, the distribution of the active ingredient measured by an X-ray microanalyzer (hereinafter abbreviated as EPMA) is 30% of the radius from the carrier surface to the center.
Unsaturation characterized by using a catalyst in which at least 80% of the total palladium supported on the catalyst is present on the surface layer up to the depth of 75% and at least 75% of the total tellurium supported on the catalyst is present. Production method of glycol diester. Less than,
The present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】上記課題は、パラジウムとテルル
を活性成分として無機多孔体に担持した固体触媒の存在
下に、共役ジエンをカルボン酸及び分子状酸素と反応さ
せて対応する不飽和グリコールジエステルを製造する方
法において、該触媒が、EPMAで測定された活性成分
の担持分布において、担体表面から中心に対する半径の
30%の深さ迄の表層部に、触媒に担持された全パラジ
ウムの80%以上が存在し、且つ、触媒に担持された全
テルルの75%以上が存在する触媒を用いて反応を行う
事により、更に好ましくは、使用する触媒が、EPMA
で測定された活性成分の担持分布において、担体表面か
ら中心に対する半径の30%の深さ迄の表層部に存在す
るパラジウムの内、テルル/パラジウム原子比が0.1
5から0.35までの範囲であるパラジウムの占める割
合が50%以上である触媒を用いて反応を行う事により
達成される。
The object of the present invention is to react a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst having palladium and tellurium as active components and supported on an inorganic porous material to form a corresponding unsaturated glycol diester. Wherein the catalyst comprises 80% of the total palladium supported by the catalyst on the surface layer from the support surface to a depth of 30% of the radius from the center in the distribution of active components measured by EPMA. More preferably, the reaction is carried out using a catalyst in which 75% or more of the total tellurium supported on the catalyst is present.
Of the palladium present in the surface layer from the surface of the carrier to a depth of 30% of the radius from the center to the center, the tellurium / palladium atomic ratio is 0.1%.
This is achieved by performing the reaction using a catalyst in which the proportion of palladium in the range of 5 to 0.35 is 50% or more.

【0008】(I)アシロキシ化用固体触媒 本発明に用いる触媒は、上記のような活性成分であるパ
ラジウムとテルルが特定の担持分布を有する固体触媒で
ある。担体に活性成分を担持した固体触媒の担持分布
は、触媒調製に関する全ての要素(例えば、担体の物
性、活性成分の原料塩種及びそれを溶解して得られた溶
液の物性、含浸方法、乾燥方法等)に左右される為、特
定の担持分布を得る事が出来る手法は一概には特定でき
ない。例えば、本発明の実施例及び比較例で示した通
り、同一条件で触媒を調製しても原料テルル塩が異なれ
ば担持分布は大きく異なり(実施例4と比較例10参
照:この調製条件では、テルル塩として金属テルルを使
用すれば、活性成分は表層に濃化する)、また、同一の
触媒原料(担体、パラジウム塩、テルル塩)を使用して
も乾燥方法を変えたり(比較例10と実施例1及び実施
例7)、或いは条件の一部を変える(実施例3と比較例
1)だけでも、その担持分布は異なっており、従来の開
示された技術により単に触媒を調製したのでは同一の担
持分布をもつ触媒を得る事は出来ない。そこで本発明者
らは、固体触媒に含まれた活性成分であるパラジウムと
テルルの担持分布が触媒性能に及ぼす影響について鋭意
検討を重ねた結果、触媒調製の条件を規定は出来ない
が、その極めて多くの組み合わせの中で結果的に得られ
た触媒の形態が、触媒性能に極めて重要な因子であり、
その活性成分が特定の担持分布を有する固体触媒は非常
に高活性であることを見出したのである。
(I) Solid catalyst for acyloxylation The catalyst used in the present invention is a solid catalyst in which the active components palladium and tellurium have a specific distribution. The distribution of the solid catalyst in which the active ingredient is supported on the carrier depends on all the factors related to catalyst preparation (for example, the properties of the carrier, the raw material salt of the active ingredient and the solution obtained by dissolving it, the impregnation method, the drying method, Method, etc.), a method that can obtain a specific loading distribution cannot be specified unconditionally. For example, as shown in Examples and Comparative Examples of the present invention, even if the catalyst is prepared under the same conditions, the distribution of loading is greatly different if the raw material tellurium salt is different (see Example 4 and Comparative Example 10; When metal tellurium is used as the tellurium salt, the active ingredient is concentrated in the surface layer.) In addition, even if the same catalyst material (carrier, palladium salt, tellurium salt) is used, the drying method may be changed (compared with Comparative Example 10). Even if only the examples 1 and 7) or some of the conditions were changed (Example 3 and Comparative Example 1), the distribution of the loadings was different, and the catalyst was simply prepared by the conventional disclosed technology. It is not possible to obtain a catalyst with the same loading distribution. Thus, the present inventors have conducted intensive studies on the effect of the distribution of the active components contained in the solid catalyst, palladium and tellurium, on the catalyst performance. The resulting catalyst morphology in many combinations is a critical factor in catalyst performance,
It has been found that a solid catalyst whose active component has a specific supported distribution is very active.

【0009】この担持分布を測定する手法は一般的にE
PMAが用いられるが、実際には同一手法で調製した触
媒でもその担持分布は正確に同一ではなく、更には同じ
ロットの触媒でも粒子1つ1つによりある程度のバラツ
キがあるために、1粒子についての担持分布を測定した
だけでは、その担持分布による効果を正確に知る事は難
しい。また、1つの粒子の担持分布も、その粒子の中で
ある程度の偏り(この場合の偏りとは触媒粒子中心を中
心とした一様な偏りの事ではなく、例えば、球状触媒の
任意の断面に於いて、その断面の中心を通る任意の直線
上を複数測定した場合、それらの測定線上の担持分布が
全て同一ではない等)が有る事が多く、1つの線上を測
定しただけでは、その粒子の正確な担持分布を表す事は
難しい。また、仮にその測定された担持分布に偏りがな
かったとしても、担体の形状が球状であれば任意の中心
線上を測定した結果でその触媒粒子の担持分布を代表さ
せる事は出来るが、不定形の担体では線分析の結果のみ
では正確な担持分布を表わす事は難しい。従って、全て
の触媒について、その触媒を代表する正確な担持分布を
得る事は事実上困難である。そこで本発明者らは、担持
分布を得る手法として以下に記す測定方法により得られ
た担持分布をその触媒を代表する担持分布とした。
[0009] Generally, the method of measuring the supported distribution is E
PMA is used. However, even in the case of catalysts prepared by the same method, the loading distribution is not exactly the same, and even catalysts of the same lot have a certain degree of variation in each particle. It is difficult to accurately know the effect of the distribution of the carrier only by measuring the distribution of the carrier. In addition, the distribution of the loading of a single particle is also a certain degree of deviation within the particle (in this case, the deviation is not a uniform deviation centering on the center of the catalyst particle, but may be, for example, an arbitrary cross section of a spherical catalyst. In the case where a plurality of arbitrary straight lines passing through the center of the cross section are measured, there are many cases in which the distributions of support on the measurement lines are not all the same, etc.). It is difficult to represent the exact loading distribution of Further, even if the measured distribution of the support is not biased, the support distribution of the catalyst particles can be represented by the result of measurement on an arbitrary center line if the shape of the support is spherical, but the shape is irregular. With this carrier, it is difficult to express an accurate distribution of the carrier only by the results of the line analysis. Therefore, it is practically difficult to obtain an accurate distribution of the support representative of all the catalysts. Accordingly, the present inventors have determined the supported distribution obtained by the measurement method described below as a method for obtaining the supported distribution as a supported distribution representative of the catalyst.

【0010】即ち、触媒の内10個の触媒粒子を任意に
選び、各々の粒子についての最大面積を与える各断面に
於いて、その断面を切る線の長さが最大になる直線(以
後、この直線を長径線と記す。また、その長さを長径方
向の直径、長径線の中点を長径方向の中心、直径の1/
2を長径方向の半径とする)上、及び長径線と直交する
直線で、その長さが最大になる直線(以後、この直線を
短径線と記す。また、その長さを短径方向の直径、短径
線の中点を短径方向の中心、直径の1/2を短径方向の
半径とする)上についてEPMAにより20μmの間隔
で測定し、後述の(1)〜(5)式の計算により補正さ
れた10本の長径線直径担持分布と10本の短径線直径
担持分布を得る。この時、担体が球状の場合には、その
担体形状を真球と仮定して長径線のみを測定し、その値
から求められた担持分布をその触媒を代表する担持分布
とする。担体が円柱状の場合には担体の形状を真の円柱
と仮定し、軸(断面が与える長方形の長径方向中心線)
を長径線とし、短径線は長径線の中点を直交する直線と
する。また、それ以外の担体形状の場合にはその断面
を、長径線を長軸、短径線を短軸とした楕円に置き換
え、その面を長軸を軸として回転させた立体をその触媒
粒子の形状として計算する。次に、この各長径線直径担
持分布について長径線の両端(触媒粒子表面)の位置を
0%と、長径線の中点の位置を100%として各測定点
の位置(%)を求め、更に各長径線を中心で2分割し、
合計20本の長径線半径担持分布を得る。この20本の
長径線半径担持分布を各位置(%)毎に平均化する事に
より、長径線平均半径担持分布を得る。また、短径線に
ついても長径線と同様に合計20本の短径線半径担持分
布と短径線平均担持分布を求める。
That is, arbitrarily select ten catalyst particles out of the catalyst, and in each cross-section that gives the maximum area for each particle, a straight line in which the length of the line that cuts the cross-section is maximum (hereinafter, this straight line) A straight line is referred to as a major axis line, and its length is the diameter in the major axis direction, the middle point of the major axis is the center in the major axis direction, and 1 / the diameter.
2 is a straight line having a maximum length on a straight line orthogonal to the long diameter line (hereinafter, this straight line is referred to as a short diameter line. The center of the diameter and the minor axis is defined as the center in the minor axis direction, and 直径 of the diameter is defined as the radius in the minor axis direction), and measured at intervals of 20 μm by EPMA, and the following equations (1) to (5) are used. To obtain the distribution of the long diameter wire carrying the ten lines and the distribution of the short diameter wire carrying the ten lines corrected by the above calculation. At this time, when the support is spherical, only the long diameter line is measured assuming that the support shape is a true sphere, and the load distribution obtained from the value is set as the load distribution representative of the catalyst. If the carrier is cylindrical, the shape of the carrier is assumed to be a true cylinder, and the axis (center line of the rectangle given by the cross section in the major axis direction)
Is the major axis, and the minor axis is a straight line perpendicular to the middle point of the major axis. In the case of other carrier shapes, the cross-section is replaced with an ellipse with the major axis as the major axis and the minor axis as the minor axis, and the solid whose surface is rotated around the major axis is the catalyst particle. Calculate as shape. Next, the position (%) of each measurement point for each of the long diameter wire diameter distribution distributions was determined with the position of both ends (catalyst particle surface) of the long diameter wire being 0% and the position of the middle point of the long diameter wire being 100%. Divide each long diameter wire into two at the center,
A total of 20 long diameter radius carrying distributions are obtained. By averaging the 20 long diameter wire radius carrying distributions for each position (%), a long diameter wire average radius carrying distribution is obtained. As for the short diameter wire, similarly to the long diameter wire, a total of 20 short diameter wire radius distributions and short diameter wire average distributions are determined.

【0011】EPMAによる具体的な定量手法としては
ZAF補正法を用いるのが好ましい。ZAF補正法と
は、Z:原子番号効果、A:吸収効果、F:蛍光励起効
果についての補正係数、即ち下式の
As a specific quantification method using EPMA, it is preferable to use a ZAF correction method. The ZAF correction method is a correction coefficient for Z: atomic number effect, A: absorption effect, F: fluorescence excitation effect, that is,

【0012】[0012]

【数1】 Cunk /Cstd =(Iunk /Isdt )×fZAF ×fother (1)[Number 1] C unk / C std = (I unk / I sdt) × f ZAF × f other (1)

【0013】[式中、Cunk は各元素の濃度、Cstd
標準試料の濃度、Iunk は各成分の測定強度、Isdt
標準試料の測定強度、fZAF はZAF補正法により得ら
れた補正係数、fother はその他の補正係数] fZAF を求める手法で、その詳細は専門書(例えば「電
子線マイクロアナリシス」副島啓義著、日刊工業新聞社
発行、等参照)に記載されている。また、本発明で用い
られる触媒の如く多孔体である場合は、密度効果等によ
りfother が無視出来なくなる為、測定に用いられる標
準試料は測定される触媒と同じ担体に、活性成分が既知
の濃度で均質(この場合の「均質」とは、入射電子の拡
散領域と特定X線の発生領域及び脱出経路が10nm程
度まで均質である事、即ち、標準試料全体がnmスケー
ルまで均質である事)に担持された試料である事が望ま
しいが、そのような標準試料を調製する事は難しい為、
本発明者らは標準試料をパラジウムについてはパラジウ
ム金属、テルルについてはテルル金属、担体を構成する
各元素については活性成分が担持されていない担体とし
てZAF補正法により担持分布を測定し、以下の計算に
より求めた。即ち、仮に触媒粒子が球状であった場合に
は、各測定点に於けるパラジウムの濃度Irw(wt%)
は次式で求められる。
[0013] In the formula, C unk concentration of each element, C std is the concentration of the standard sample, I unk the measured intensity of the components, I sdt the measured intensity of the standard sample, f ZAF is obtained by ZAF correction method Correction coefficient, f other is another correction coefficient] f A method of obtaining ZAF , the details of which are described in a specialized book (for example, "Electron Beam Microanalysis " by Hiroyoshi Soejima, published by Nikkan Kogyo Shimbun, etc.). . Further, in the case of a porous material such as the catalyst used in the present invention, f other can not be ignored due to the density effect and the like, so that the standard sample used for the measurement is the same carrier as the catalyst to be measured, and the active component is known. Homogeneous in concentration ("homogeneous" in this case means that the diffusion region of incident electrons, the generation region of specific X-rays, and the exit path are uniform up to about 10 nm, that is, the entire standard sample is uniform up to the nm scale. ) Is preferable, but it is difficult to prepare such a standard sample.
The present inventors measured the distribution of the standard sample as a palladium metal for palladium, a tellurium metal for tellurium, and a carrier on which the active component was not supported for each element constituting the carrier by the ZAF correction method. Determined by That is, if the catalyst particles are spherical, the concentration of palladium at each measurement point I rw (wt%)
Is obtained by the following equation.

【0014】[0014]

【数2】 Vfr=r^3−(r−20)^3 (2) Wcalc=Σ(Ir ×Vfr)/ΣVfr (3) fwt=(Wanl ×n)/(全ての測定粒子のWcalcの合計) (4) Irw=Ir ×fwt (5)V fr = r ^ 3− (r−20) ^ 3 (2) W calc = Σ (I r × V fr ) / frV fr (3) f wt = (W anl × n) / (all total W calc for measuring particles) (4) I rw = I r × f wt (5)

【0015】[式中、Vfrは各測定位置における体積補
正係数、rは測定直線の中点からの測定点迄の距離(μ
m)、但し、r<20の場合はr=20として計算し
た。Wca lcはEPMA測定結果より求めた各測定試料の
パラジウム濃度(wt%)、Irは各測定試料のZAF
補正法により求められた各測定位置におけるパラジウム
の濃度(wt%)、Σは各測定直線毎の直径の範囲の総
和、fwtは担持率補正係数で(1)式のfother に相当
する。Wanl はその触媒のパラジウムの担持率(wt
%)、nは測定試料数、Irwは各測定試料の各測定点に
於ける補正後のパラジウム濃度(wt%)を示す。]
Where V fr is the volume correction coefficient at each measurement position, and r is the distance (μ) from the midpoint of the measurement line to the measurement point.
m) However, when r <20, calculation was performed on the assumption that r = 20. W ca lc palladium concentration (wt%) of each sample determined from EPMA measurements, Ir ZAF is each measurement sample
The concentration (wt%) of palladium at each measurement position obtained by the correction method, Σ is the sum of the diameter ranges for each measurement straight line, and f wt is a loading rate correction coefficient, which corresponds to f other in equation (1). W anl is the palladium loading of the catalyst (wt.
%), N is the number of measurement samples, and I rw is the corrected palladium concentration (wt%) at each measurement point of each measurement sample. ]

【0016】触媒粒子が円柱状の場合には、上記(2)
式は長径方向については下記(2−b1)式、短径方向
については下記(2−b2)式により各々Vfrを求め、
続いて各々上記(3)〜(4)式よりfwtを求め、その
2つのfwtの平均値をその触媒のfwtとして上記(5)
式を計算する。
When the catalyst particles are cylindrical, the above (2)
In the formula, V fr is obtained by the following formula (2-b1) for the major axis direction, and V fr by the following formula (2-b2) for the minor axis direction.
Subsequently, f wt is obtained from each of the above equations (3) to (4), and the average value of the two f wts is defined as the f wt of the catalyst (5).
Calculate the formula.

【0017】[0017]

【数3】 Vfr=1 (2−b1) Vfr=r^2−(r−20)^2 但し、r<20の場合はr=20とする (2−b2)V fr = 1 (2-b1) V fr = r ^ 2− (r−20) ^ 2 However, when r <20, r = 20 (2-b2)

【0018】また、それ以外の担体形状については(2
−b1)式及び(2−b2)式を(2−c)式とした事
以外は円柱状の場合と同様にして計算する。外は円柱状
の場合と同様にして計算する。
For other carrier shapes, see (2)
The calculation is performed in the same manner as in the case of the columnar shape except that the equations (b1) and (2-b2) are replaced by the equation (2-c). The outside is calculated in the same manner as in the case of the columnar shape.

【0019】[0019]

【数4】 Vfr=(ra1×rb1^2)−(ra2×rb2^2) (2−c)V fr = (r a1 × r b1 ^ 2) − (r a2 × r b2 ^ 2) (2-c)

【0020】上式計算で長径方向の計算時には、ra1
長径方向の測定直線の中点からの測定点迄の距離(μ
m)とし、ra2、rb1、rb2は下式により求める。
In the calculation in the major axis direction by the above equation, r a1 is the distance (μ) from the middle point of the measurement line in the major axis direction to the measurement point.
m), and r a2 , rb 1 , and rb 2 are obtained by the following equations.

【0021】[0021]

【数5】 ra2=ra1−20 但しra1<20の場合はra1=20とする (2−c−a1) rb1=(ra1/Da )×Db (2−c−a2) rb2=(ra2/Da )×Db (2−c−a3)Equation 5] r a2 = For r a1 -20 However r a1 <20 and r a1 = 20 (2-c -a1) r b1 = (r a1 / D a) × D b (2-c- a2) r b2 = (r a2 / D a ) × D b (2-c-a3)

【0022】また短径方向の計算時には、rb1は長径方
向の測定直線の中点からの測定点迄の距離(μm)と
し、rb2、ra1、ra2は下式により求める。
In the calculation in the minor axis direction, r b1 is the distance (μm) from the midpoint of the measurement straight line in the major axis direction to the measurement point, and r b2 , ra 1 , and ra 2 are obtained by the following equations.

【0023】[0023]

【数6】 rb2=rb1−20 但しrb1<20の場合はrb1=20とする (2−c−b1) ra1=(rb1/Db )×Da (2−c−b2) ra2=(rb2/Db )×Da (2−c−b3)R b2 = r b1 −20 However, if r b1 <20, then r b1 = 20. (2-c−b1) r a1 = (r b1 / D b ) × D a (2-c− b2) r a2 = (r b2 / D b ) × D a (2-c−b3)

【0024】[式中、Da は長径線の直径(μm)、D
b は短径線の直径(μm)を示す] テルルについても上記パラジウムと同じ手法で求める。
[Where D a is the diameter (μm) of the long diameter wire, D
b indicates the diameter (μm) of the short diameter wire.] Tellurium is determined by the same method as that for palladium.

【0025】上記の如く求められた平均半径担持分布よ
り、担体表面から中心に対する半径の30%の深さ迄の
表層部に存在する活性成分の、触媒に担持された各活性
成分全量に対する比率は、以下の如く計算して求めた。
即ち、仮に固体触媒が球状である場合には、触媒表面か
らの距離r1 からr2 までの範囲にあるパラジウムの全
パラジウムに対する割合Cra(%)は次式で求められ
る。
From the average radius carrying distribution determined as described above, the ratio of the active component present in the surface layer from the support surface to a depth of 30% of the radius from the center to the total amount of each active component supported on the catalyst is as follows. Was calculated as follows.
That is, if the solid catalyst is spherical, the ratio C ra (%) of palladium to the total palladium within the range of r 1 to r 2 from the catalyst surface can be obtained by the following equation.

【0026】[0026]

【数7】 Vfr=(R−r1 )^3−(R−r2 )^3 (6) Cr =(Irw×Vfr/(Σ(Irw×Vfr)))×100 (7) Cra=各測定試料のCr の総和/n (8)V fr = (R-r 1 ) ^ 3- (R-r 2 ) ^ 3 (6) C r = (I rw × V fr / (Σ (I rw × V fr ))) × 100 (7) C ra = sum of C r of each sample / n (8)

【0027】[式中、Vfrは各測定位置における体積補
正係数、Rは半径、Cr は各測定試料の触媒表面からの
距離r1 からr2 までの範囲にあるパラジウムの全パラ
ジウムに対する割合(%)、Irwは各測定試料の各測定
位置における補正後のパラジウムの濃度(wt%)、Σ
は各測定試料の触媒表面から中心までの総和、nは測定
試料数を示す] 従って、触媒表面から中心に対する半径の30%の深さ
迄に担持されたパラジウムの全パラジウムに対する比率
r30 (%)は、
Where V fr is a volume correction coefficient at each measurement position, R is a radius, and Cr is the ratio of palladium to the total palladium in the range of distances r 1 to r 2 from the catalyst surface of each measurement sample. (%) And I rw are the corrected palladium concentration (wt%) at each measurement position of each measurement sample, and Σ
Is the total of each measurement sample from the catalyst surface to the center, and n is the number of measurement samples.] Therefore, the ratio of the supported palladium to the total palladium C r30 (% )

【0028】[0028]

【数8】 Cr30 =(深さ0%から30%迄の各測定位置におけるCraの総和)(9) となる。球状以外では、長径線平均半径分布と短径線平
均半径分布の各々につきCr30 を求め、その平均値をそ
の触媒のCr30 とする。その際、担体の形状が円柱状の
場合では、(6)式を長径線平均半径担持分布の計算時
には(6−b1)式に、短径線平均半径担持分布の計算
時には(6−b2)式に置き換えて計算する。
C r30 = (Sum of C ra at each measurement position from 0% to 30% depth) (9) Outside spherical, each per seeking C r30 major axis line average radius distribution and the short diameter line average radius distribution, and the average value C r30 of the catalyst. At this time, when the shape of the carrier is a columnar shape, the expression (6) is applied to the expression (6-b1) at the time of calculating the long diameter line average radius carrying distribution, and the expression (6-b2) is used at the time of calculating the short diameter line average radius carrying distribution. Calculate by replacing the formula.

【0029】[0029]

【数9】 Vfr=1 (6−b1) Vfr=(R−r1 )^2−(R−r2 )^2 (6−b2) また、それ以外の担体形状の場合では、長径線平均半径
担持分布の計算時には(6)式を(6−c1)に置き換
えて計算し、
V fr = 1 (6-b1) V fr = (R-r 1 ) ^ 2- (R-r 2 ) ^ 2 (6-b2) In the case of other carrier shapes, the major axis is At the time of calculating the line average radius carrying distribution, the equation (6) is replaced with (6-c1), and the calculation is performed.

【0030】[0030]

【数10】 Vfr=((R−r1 )×(R′−r1 ′)^2)−((R−r2 )×(R′− r2 ′)^2) (6−c1)V fr = ((R−r 1 ) × (R′−r 1 ′) ^ 2) − ((R−r 2 ) × (R′−r 2 ′) ^ 2) (6-c1 )

【0031】[式中、R′は短径線の半径、r1 ′はr
1 ′=(r1 /R)×R′、r2 ′はr2 ′=(r2
R)×R′を示す] 短径線平均担持分布の計算時には(6)式を(6−c
2)式に置き換えて計算する。
[Wherein R 'is the radius of the minor diameter line, and r 1 ' is r
1 ′ = (r 1 / R) × R ′, r 2 ′ is r 2 ′ = (r 2 /
R) × R ′] When calculating the short-diameter wire average carrying distribution, the equation (6) is changed to (6-c
2) Calculate by replacing the equation.

【0032】[0032]

【数11】 Vfr=((R−r1 )^2×(R′−r1 ′))−((R−r2 )^2×(R ′−r2 ′)) (6−c2)V fr = ((R−r 1 ) ^ 2 × (R′−r 1 ′)) − ((R−r 2 ) ^ 2 × (R′−r 2 ′)) (6-c2 )

【0033】[式中、R′は長径線の半径、r1 ′はr
1 ′=(r1 /R)×R′、r2 ′はr2 ′=(r2
R)×R′を示す] テルルについても上記パラジウムと同じ手法で求められ
る。
Where R 'is the radius of the long diameter wire and r 1 ' is r
1 ′ = (r 1 / R) × R ′, r 2 ′ is r 2 ′ = (r 2 /
R) × R ′] Tellurium can be obtained in the same manner as for palladium.

【0034】次に触媒表面から中心に対する半径の30
%の深さ迄の範囲に担持された活性成分において、各測
定試料の各測定位置におけるテルル/パラジウム原子比
rは次式で求められる。
Next, a radius of 30 from the catalyst surface to the center is used.
In percent range supported active ingredient up to a depth, a tellurium / palladium atom ratio X r at each measurement position of each measurement sample is calculated by the following equation.

【0035】[0035]

【数12】 Xr =(Irw(Te)/127.61)/(Irw(Pd)/106.4) (10)X r = (I rw (Te) /127.61 ) / (I rw (Pd) /106.4) (10)

【0036】[式中、Irw(Te)は各測定試料の各測定位
置における補正後のテルルの濃度(wt%)、Irw(Pd)
は各測定試料の各測定位置における補正後のパラジウム
の濃度(wt%)を示す]
[Where, Irw (Te) is the corrected tellurium concentration (wt%) at each measurement position of each measurement sample, and Irw (Pd)
Indicates the corrected palladium concentration (wt%) at each measurement position of each measurement sample]

【0037】従って、触媒表面から中心に対する半径の
30%の深さ迄に担持されたパラジウムの内、テルル/
パラジウム原子比Xr が0.15から0.35の範囲に
あるパラジウムの比率Ctp(%)は、
Therefore, of the palladium supported up to a depth of 30% of the radius from the catalyst surface to the center, tellurium /
Ratio palladium atomic ratio X r of palladium in the range of 0.15 0.35 of C tp (%) is

【0038】[0038]

【数13】 Ctp=((半径の0%から30%の深さ迄にあるパラジウムでXr が0.15 から0.35の範囲にあるCr の全測定半径の総和)/((長径方向のCr30 × n)+(短径方向のCr30 ×n)))×100 (11)Equation 13] C tp = ((the radius of all measured radii of the total sum of C r with 0% in the range palladium X r is 0.15 to 0.35 in up to 30% of the depth) / (( the major axis C r30 × n) + (C r30 × n) of the minor axis)) × 100 (11)

【0039】で求められる。但し、触媒粒子が球状の場
合には上記(11)式を下記(11′)式として求め
る。
Is obtained by However, when the catalyst particles are spherical, the above equation (11) is obtained as the following equation (11 ′).

【0040】[0040]

【数14】 Ctp=((半径の0%から30%の深さ迄にあるパラジウムでXr が0.15 から0.35の範囲にあるCr の全測定半径の総和)/(Cr30 ×n))×10 0 (11′)Equation 14] C tp = ((the radius of all measured radii of the total sum of C r with 0% in the range palladium X r is 0.15 to 0.35 in up to 30% of the depth) / (C r30 × n)) × 10 0 (11 ′)

【0041】本発明における特定の担持分布を有する触
媒が高活性である理由については今のところ明らかでは
ないが、次のような理由と考えられる。該反応の進行
は、(1)反応基質が触媒細孔内に浸入し、(2)反応
基質が細孔内を拡散し、(3)細孔内に担持された活性
成分の活性点に吸着し、(4)吸着点で反応が起こり、
(5)反応生成物が活性点より脱離し、(6)反応生成
物が細孔内を拡散し、(7)反応生成物が細孔内より離
脱する、の段階に分ける事が出来る。これらの段階の
内、(2)の段階もしくは(2)及び(6)の段階に要
する時間がその他の各段階に要する時間より相対的に長
い場合には、反応基質もしくは反応生成物が細孔内を移
動する距離が短い程、即ち、活性成分を触媒細孔の入口
より近い所(触媒の表層部)により多くの活性成分が存
在する方が反応速度的に有利となる。しかしながら、こ
の移動距離がある点よりも短くなると(2)の段階もし
くは(2)及び(6)の段階に要する時間とその他の段
階に要する時間との差が小さくなり、反応速度への影響
は小さくなる。従って、活性成分が多く存在する部分は
必ずしも担体表面部のみである必要はなく、ある程度の
深さ迄の部分に存在すれば良いと考えられる、即ち、本
発明の範囲である担体表面から中心に対する半径の30
%の深さ迄の表層部に、担持された全パラジウムの80
%以上が存在し、且つ、担持された全テルルの75%以
上が存在する触媒であれば活性の高い触媒となる。
The reason why the catalyst having a specific distribution in the present invention has high activity is not clear at present, but is considered to be as follows. The progress of the reaction is as follows: (1) the reaction substrate penetrates into the catalyst pores, (2) the reaction substrate diffuses in the pores, and (3) the active component carried in the pores is adsorbed at the active site. (4) A reaction occurs at the adsorption point,
(5) The reaction product is desorbed from the active site, (6) The reaction product is diffused in the pores, and (7) The reaction product is desorbed from the pores. When the time required for the step (2) or the steps (2) and (6) is relatively longer than the time required for each of the other steps, the reaction substrate or the reaction product may have pores. The shorter the moving distance in the inside, that is, the more the active component is present near the entrance of the catalyst pore (the surface layer of the catalyst), the more advantageous the reaction rate is. However, if this movement distance is shorter than a certain point, the difference between the time required for the step (2) or the steps (2) and (6) and the time required for the other steps becomes smaller, and the effect on the reaction speed is reduced. Become smaller. Therefore, the portion where the active ingredient is present in a large amount is not necessarily limited to only the carrier surface portion, and it is considered that the active component only needs to be present in a portion up to a certain depth, that is, from the carrier surface to the center within the scope of the present invention. Radius of 30
% Of the total palladium supported on the surface up to a depth of
%, And a catalyst having 75% or more of all supported tellurium is a catalyst having high activity.

【0042】本アシロキシ化反応に於いて、活性成分で
あるパラジウムとテルルの担持比率は重要であり、担持
されたパラジウムに対し担持されたテルルの量が少なす
ぎるとアシロキシ化反応に於いてパラジウムが担体から
反応液中に流出し、また、テルル量が多すぎるとテルル
が反応液中に流出し、何れの場合も触媒活性低下の原因
となる。触媒中のパラジウムとテルルの担持量の比率
は、担持されたパラジウム1グラム原子に対する担持さ
れたテルルの原子比で、通常0.05から5.0の範囲
が特に良いとされている。しかしながら、パラジウムと
テルルの担持分布は完全に同一ではない場合が多く、実
際にはある程度の差があり、従って、担持されたパラジ
ウムとテルルの全てが一定の原子比で存在してはいな
い。パラジウムの量とそのパラジウムのテルル/パラジ
ウム原子比をヒストグラム化した場合、その分布の広さ
が大きすぎると前述の如くパラジウムまたはテルルの溶
出により好ましくないが、逆に分布が非常に狭い事が必
須ではない。何故なら、本アシロキシ化反応に於ける良
好なテルル/パラジウム原子比はある程度の範囲を許容
する事からヒストグラムの分布もまたある程度の広がり
を持っていても良い。また、このテルル/パラジウム原
子比は触媒の全体が問題になるのではなく、本発明の如
く担体表面から半径の30%の深さ迄に存在する活性種
についてのみヒストグラム分布の広さが制限される。即
ち、担体表面から中心に対する半径の30%の深さ迄の
表層部に存在するパラジウムの内、テルル/パラジウム
原子比が0.15から0.35までの範囲であるパラジ
ウムの占める割合が50%以上である触媒は非常に高活
性を発現する事が判明した。
In the present acyloxylation reaction, the loading ratio of the active components palladium and tellurium is important. If the amount of the supported tellurium is too small relative to the supported palladium, the palladium is not reacted in the acyloxylation reaction. If the amount of tellurium flows out of the carrier into the reaction solution, and if the amount of tellurium is too large, tellurium flows out into the reaction solution, and in any case, causes a decrease in the catalytic activity. It is said that the ratio of the supported amount of palladium and tellurium in the catalyst is particularly preferably in the range of 0.05 to 5.0 in terms of the atomic ratio of supported tellurium to 1 gram atom of supported palladium. However, the distribution of supported palladium and tellurium is often not completely the same, and in practice there is some difference, so that not all of the supported palladium and tellurium are present at a constant atomic ratio. When a histogram of the amount of palladium and the tellurium / palladium atomic ratio of the palladium is formed, if the distribution is too large, it is not preferable due to elution of palladium or tellurium as described above, but conversely, the distribution must be very narrow. is not. Because the good tellurium / palladium atomic ratio in this acyloxylation reaction allows a certain range, the distribution of the histogram may also have a certain spread. In addition, this tellurium / palladium atomic ratio does not matter for the whole catalyst, but the width of the histogram distribution is limited only for the active species existing up to a depth of 30% of the radius from the support surface as in the present invention. You. That is, the proportion of palladium in the tellurium / palladium atomic ratio in the range of 0.15 to 0.35 occupies 50% of the palladium present in the surface layer from the surface of the carrier to a depth of 30% of the radius from the center. It was found that the catalyst described above exhibited a very high activity.

【0043】本発明における共役ジエンのアシロキシ化
触媒の担体としては、本質的に本反応条件下に変化しな
い無機多孔体が使用される。例えば、活性炭やシリカ、
アルミナ、チタニア、ジルコニア等の酸化物担体及びそ
れらの混合酸化物等が用いられ、特にシリカが好まし
い。その形状については特に限定されるものではない
が、その担体粒子径が大きすぎると触媒粒子外表面積が
小さくなり、逆に小さすぎると触媒充填層の圧力損失が
大きくなる事から、工業的には1〜8mmの大きさを有
するものが有効である。その担体物性としては多孔質で
ある必要があり、平均細孔直径は10〜50nmの範囲
が好ましい。
As the carrier of the catalyst for acylating a conjugated diene in the present invention, an inorganic porous material which does not essentially change under the reaction conditions is used. For example, activated carbon or silica,
Oxide carriers such as alumina, titania and zirconia and mixed oxides thereof are used, and silica is particularly preferred. The shape is not particularly limited, but if the carrier particle diameter is too large, the external surface area of the catalyst particles will be small, and if it is too small, the pressure loss of the catalyst packed layer will be large. Those having a size of 1 to 8 mm are effective. The physical properties of the carrier must be porous, and the average pore diameter is preferably in the range of 10 to 50 nm.

【0044】本発明において無機多孔体へ活性成分を担
持する方法は、前記の如く特定の担持分布に担持する事
が出来れば良く、その目的を達成するものであれば担体
方法は特に限定されるものではない。例えば、活性成分
を含有する水溶液を尿素の存在下で多孔性担体に含浸す
る方法(特開昭51−40392号公報)、ポリエチレ
ングリコールを添加した活性成分を含有する溶液中に無
機担体を含浸する方法(特公55−33381号公
報)、活性成分塩を溶解するケトン類、エステル類、ア
ルコール類から選ばれた少なくとも一種類の溶媒に炭化
水素類を添加してアセトンより極性の低い性状の混合溶
液を無機多孔質担体に含浸する方法(特公昭57−55
78号公報)、加熱した担体に活性成分溶液を噴霧し担
体表層部に析出させる方法(特開平3−293036号
公報)等の触媒表面に活性成分を担持する方法や、最初
に少量の活性成分を担体に担持した後に必要量の活性成
分を担持する方法(特公昭54−8638号公報)等の
如く担体表面付近に担持する方法、競争吸着法(例えば
特公昭52−23920号公報、特公昭52−3047
5号公報等)等のように活性成分を担持する位置を制御
する方法、更には活性成分が担体に強く吸着される条件
で担体表層部に吸着させた後に乾燥し担持させる方法
や、活性成分が担体に吸着されない条件で活性成分溶液
を担体に含浸し、短時間で乾燥する事により担体表層部
に活性成分を多く析出させる方法、或いは担体を表面処
理等により疏水性を高め、活性成分を含有する水溶液を
担体表層部にのみ含浸した後に乾燥し担持する方法等の
いずれを用いても良い。また、なぜ特定の担持分布に活
性成分を担持せしめる事ができるか、そのメカニズムに
ついては不明であるが、活性成分を含有した水溶液を担
体に含浸した後、キルンの如き触媒を流動させた状態で
水素ガスを流し乾燥及び還元を同時に行う方法や、過熱
水蒸気により乾燥を行う方法は有効である。
In the present invention, the method for supporting the active ingredient on the inorganic porous material may be such that it can be supported in a specific distribution as described above, and the carrier method is particularly limited as long as the object is achieved. Not something. For example, a method of impregnating a porous carrier with an aqueous solution containing an active ingredient in the presence of urea (JP-A-51-40392), impregnating an inorganic carrier in a solution containing an active ingredient to which polyethylene glycol is added Method (JP-B-55-33381), mixing hydrocarbons to at least one kind of solvent selected from ketones, esters, and alcohols in which the active ingredient salt is dissolved, and mixing with properties lower in polarity than acetone. A method of impregnating a solution with an inorganic porous carrier (Japanese Patent Publication No. 57-55)
No. 78), a method in which an active ingredient solution is sprayed on a heated carrier and deposited on the surface of the carrier (Japanese Patent Application Laid-Open No. 3-293039), a method in which the active ingredient is supported on the catalyst surface, , A method for supporting a required amount of active ingredient after supporting on a carrier (Japanese Patent Publication No. 54-8638), a method for supporting the active ingredient in the vicinity of the carrier surface, a competitive adsorption method (for example, Japanese Patent Publication No. 52-23920, 52-3047
No. 5, publication No. 5), a method of controlling the position where the active ingredient is carried, a method of adsorbing the active ingredient on the carrier surface under conditions where the active ingredient is strongly adsorbed on the carrier, and then drying and carrying the active ingredient. A method in which the active ingredient solution is impregnated into the carrier under conditions where the active ingredient is not adsorbed on the carrier, and dried in a short time to precipitate a large amount of the active ingredient on the surface layer of the carrier, or the carrier is subjected to surface treatment to increase the hydrophobicity, and Any method of impregnating only the surface layer of the carrier with the aqueous solution to be contained, followed by drying and supporting the solution may be used. In addition, it is unclear why the active ingredient can be supported in a specific loading distribution, but the mechanism is unknown, but after impregnating the carrier with an aqueous solution containing the active ingredient, a catalyst such as a kiln is flowed. A method in which drying and reduction are performed simultaneously by flowing hydrogen gas and a method in which drying is performed using superheated steam are effective.

【0045】このように活性成分を担持した触媒は、還
元処理をした後に使用されるが、必要な場合は、例えば
活性成分を担持させた後でも乾燥が不十分な場合や、硝
酸塩を担持した時に還元時に発生するNOx 量を低減化
するため、還元時の発熱を抑えるため等、予めある程度
塩を分解させたい場合等には、還元前に乾燥や焼成処理
を行っても良く、必要とあればそれらを繰り返し行って
も良い。乾燥、焼成、還元の方法は、本発明による触媒
の特定の担持分布を達成する事を妨げない限り特に限定
されるものではなく、例えば、乾燥方法としてはロータ
リエバポレータやコニカルブレンダーを用いた流動床減
圧乾燥、減圧乾燥機や棚段乾燥装置等の静置式乾燥、キ
ルン乾燥装置等の流動床乾燥、窒素や空気、水素、水蒸
気等気流中での乾燥等のいずれでも良く、焼成方法とし
ては窒素や空気及びその混合物気流中、固定床或いはキ
ルンの如く流動床に窒素や空気及びその混合物等のガス
気流中で加熱する方法や、ガスを流通せずに加熱する方
法のいずれでも良く、還元方法としては水素ガスやメタ
ノールガス等による気相還元、ヒドラジンやホルマリン
で代表されるような液相還元のいずれでも良い。
The catalyst supporting the active component is used after the reduction treatment. If necessary, for example, when the drying is insufficient even after the active component is supported, or when the nitrate is supported. to reduce the amount of NO x generated during the time of reduction, and the like to suppress heat generation during reduction, the like when it is desired to decompose the advance somewhat salt may be dried and calcined prior to reduction, require If so, they may be repeated. The method of drying, calcining, and reduction is not particularly limited as long as it does not prevent achievement of a specific distribution of the catalyst according to the present invention. Examples of the drying method include a fluidized bed using a rotary evaporator or a conical blender. Any of drying under reduced pressure, standing drying such as a reduced-pressure dryer or a tray drying device, fluidized-bed drying such as a kiln drying device, and drying in an air stream such as nitrogen, air, hydrogen, and steam may be used. Heating method in a gas stream such as nitrogen or air or a mixture thereof in a fluidized bed such as a fixed bed or a kiln, or a method of heating without flowing gas, or a reduction method. The method may be any of gas-phase reduction using hydrogen gas or methanol gas, or liquid-phase reduction represented by hydrazine or formalin.

【0046】触媒調製のために用いられるパラジウム化
合物としては、酸化パラジウムや、硝酸パラジウム、塩
化パラジウム、硫酸パラジウム等の無機酸塩、酢酸パラ
ジウム等の有機酸塩、テトラアンミンパラジウムクロリ
ド等の錯塩、更にはパラジウムアセチルアセトナートに
代表されるような有機金属化合物等が挙げられるが、必
要ならば金属パラジウムも使用できる。担体に担持され
るパラジウム濃度は、一般的には0.1〜20重量%の
範囲から選択されるが、0.5〜10重量%の範囲がよ
り好ましい。前記範囲の下限未満では単位触媒重量当り
の活性が低く実用的ではない。また、前記範囲の上限を
越えると単位パラジウム当りの活性が低下し、更には高
価なパラジウムを多量に必要とする事から触媒費が高く
なり、そのいずれも経済的に好ましくない。
The palladium compound used for preparing the catalyst includes palladium oxide, inorganic acid salts such as palladium nitrate, palladium chloride and palladium sulfate, organic acid salts such as palladium acetate, complex salts such as tetraammine palladium chloride, and the like. An organic metal compound represented by palladium acetylacetonate and the like can be mentioned, but if necessary, metal palladium can also be used. The concentration of palladium carried on the carrier is generally selected from the range of 0.1 to 20% by weight, but is more preferably in the range of 0.5 to 10% by weight. If it is less than the lower limit of the above range, the activity per unit weight of the catalyst is so low that it is not practical. If the amount exceeds the upper limit of the above range, the activity per unit palladium decreases, and furthermore, a large amount of expensive palladium is required, so that the catalyst cost is increased.

【0047】次に触媒の調製に用いられるテルル化合物
としては、塩化テルル(II)、(IV)のようなハロゲン
化合物、酸化テルル(IV)、(VI)のような酸化物、テ
ルル酸(H6 TeO6 )及びその塩類、亜テルル酸(H
2 TeO3 )及びその塩類、金属テルル、ソジウムハイ
ドロジェンテルライド(NaHTe)、ジフェニルジテ
ルライド([PhTe]2 )に代表される有機テルル等
が用いられる。担体担持されるテルル量は、前記第2の
発明である担体表面から中心に対する半径の30%の深
さ迄の表層部に存在するパラジウムの内、その各部位に
於けるテルル/パラジウム原子比が0.15から0.3
5までの範囲であるパラジウムの占める割合が50%以
上であれば、触媒全体の担持量は特に限定されるもので
はない。
The tellurium compounds used for preparing the catalyst include halogen compounds such as tellurium chlorides (II) and (IV), oxides such as tellurium oxides (IV) and (VI), and telluric acid (H 6 TeO 6 ) and its salts, tellurous acid (H
2 TeO 3 ) and salts thereof, metallic tellurium, sodium hydrogen telluride (NaHTe), organic tellurium represented by diphenyl ditelluride ([PhTe] 2 ), and the like are used. The amount of tellurium carried on the carrier is such that the atomic ratio of tellurium / palladium in each part of the palladium present in the surface layer from the surface of the carrier to a depth of 30% of the radius from the center according to the second invention is determined. 0.15 to 0.3
As long as the proportion of palladium in the range up to 5 is 50% or more, the amount of the supported catalyst as a whole is not particularly limited.

【0048】(II)不飽和グリコールジエステルの製造 上記の触媒を用いて不飽和グリコールジエステルを製造
する際に使用する反応原料である共役ジエン、例えばブ
タジエンは必ずしも純粋なものである必要はなく、窒素
ガスのような不活性ガスや、メタン、エタン、ブタン等
の飽和炭化水素、又はブテン等の不飽和炭化水素を含む
ものであっても良い。共役ジエンとしては他にイソプレ
ン、2,3−ジメチルブタジエン、ピペリレン等のアル
キル置換ブタジエン、更にはシクロペンタジエンのよう
な環状ジエンを使用する事ができる。
(II) Production of Unsaturated Glycol Diester The conjugated diene, for example, butadiene, which is a reaction raw material used when producing the unsaturated glycol diester using the above catalyst, is not necessarily required to be pure, An inert gas such as a gas, a saturated hydrocarbon such as methane, ethane, and butane, or an unsaturated hydrocarbon such as butene may be used. As the conjugated diene, an alkyl-substituted butadiene such as isoprene, 2,3-dimethylbutadiene and piperylene, and a cyclic diene such as cyclopentadiene can be used.

【0049】次にもう一方の反応原料であるカルボン酸
は、低級モノカルボン酸、例えば酢酸、プロピオン酸、
酪酸等があり、特に反応性及び価格の点から酢酸がより
好ましい。前記カルボン酸は反応原料でありながら溶媒
を兼ねても良く、また、必要であれば反応に不活性な有
機溶媒、例えば、飽和炭化水素、エステル等が存在して
いても良い。しかし、反応溶媒の50重量%以上は原料
のカルボン酸である事が好ましい。カルボン酸の使用量
は共役ジエン1モルに対する化学量論量以上、60モル
以下の範囲が好ましい。
Next, the carboxylic acid which is another reaction raw material is a lower monocarboxylic acid such as acetic acid, propionic acid,
There are butyric acid and the like, and acetic acid is more preferable, particularly in view of reactivity and price. The carboxylic acid may serve as a solvent while being a raw material for the reaction, and if necessary, may contain an organic solvent inert to the reaction, such as a saturated hydrocarbon or an ester. However, it is preferable that 50% by weight or more of the reaction solvent is a carboxylic acid as a raw material. The amount of the carboxylic acid to be used is preferably in the range of not less than the stoichiometric amount and not more than 60 mol based on 1 mol of the conjugated diene.

【0050】本発明の方法で使用される分子状酸素は純
粋な酸素である必要はなく、窒素等の不活性ガスで希釈
された酸素、例えば、空気でも良い。酸素の使用量は化
学量論量以上であれば良く特に限定されるものではない
が、安全上の理由から工業的には爆発組成とならないよ
うな範囲が好ましい。
The molecular oxygen used in the method of the present invention need not be pure oxygen, but may be oxygen diluted with an inert gas such as nitrogen, for example, air. The amount of oxygen used is not particularly limited as long as it is not less than the stoichiometric amount, but is preferably industrially within a range that does not result in an explosive composition for safety reasons.

【0051】本発明による共役ジエンとカルボン酸及び
分子状酸素を反応させて対応する不飽和グリコールのカ
ルボン酸ジエステルを製造する反応は、回分式、連続式
のいずれの方法でも行う事ができる。また、反応方式と
しては固定床式、流動床式、懸濁槽式等任意の方法を採
用する事ができるが、工業的には固定床式がより好まし
い。反応温度は通常20℃以上の温度で行われるが、反
応速度及び副生物の生成等を考慮すると、好適な反応温
度の範囲は40〜120℃である。また、反応圧力は常
圧、加圧のいずれも可能である。反応速度を高めるには
加圧の方が好ましいが反応設備経費が高くなり、それら
を考慮すると好適なのは常圧〜100kgf/cm2
範囲である。
The reaction of the present invention for producing a corresponding carboxylic acid diester of unsaturated glycol by reacting a conjugated diene with a carboxylic acid and molecular oxygen can be carried out by any of a batch method and a continuous method. Further, as the reaction system, any method such as a fixed bed system, a fluidized bed system, and a suspension tank system can be adopted, but the fixed bed system is more preferable industrially. The reaction is usually carried out at a temperature of 20 ° C. or higher, but a preferable range of the reaction temperature is 40 to 120 ° C. in consideration of the reaction rate and the generation of by-products. The reaction pressure can be normal pressure or pressurization. To increase the reaction rate, pressurization is preferable, but the cost of the reaction equipment is high, and considering them, the preferable range is normal pressure to 100 kgf / cm 2 .

【0052】[0052]

【実施例】以下、実施例によって本発明を更に詳細に説
明するが、本発明はその要旨を越えない限り下記実施例
によって限定されるものではない。尚、以下の実施例及
び比較例において使用する触媒の活性成分の担持分布に
ついて、担体表面から中心に対する半径の30%の深さ
迄の表層部に存在する活性成分の、触媒に担持された各
活性成分全量にたいする比率、即ち前記(9)式で求め
られた比率をA比率(%)と、また担体表面から中心に
対する半径の30%の深さ迄の表層部に存在するパラジ
ウムの内、その各部位におけるテルル/パラジウム原子
比が0.15から0.35までの範囲であるパラジウム
の占める割合、即ち前記(11)式で求められた割合を
B比率(%)と、それぞれ略記する。また、反応結果に
於いて活性とは反応生成物の内、3,4−ジアセトキシ
ブテン−1、3−ヒドロキシ−4−アセトキシブテン−
1、1−アセトキシクロトンアルデヒド、1,4−ジア
セトキシブテン−2(1,4−DABE)、1−ヒドロ
キシ−4−アセトキシブテン−2、1,4−ジヒドロキ
シブテン−2、ジアセトキシオクタトリエン、トリアセ
トキシブテンの合計の生成量が触媒1kg、1時間当り
何mmolであったかを表わし、1,4−DABE選択
率とは、上記生成物にフラン、アクロレイン、モノアセ
トキシブテン、ブタノール、モノアセトキシ−1,3−
ブタジエンの生成物を加えた合計の生成物量に対し、
1,4−ジアセトキシブテン−2の生成量の占める割合
(mol%)を表わす。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which, however, are not intended to limit the scope of the present invention. The distribution of the active components of the catalyst used in the following Examples and Comparative Examples was determined for each of the active components present in the surface layer from the support surface to a depth of 30% of the radius from the center to the depth of the center. The ratio to the total amount of the active ingredient, that is, the ratio determined by the above formula (9), is the A ratio (%), and among the palladium present in the surface layer from the surface of the carrier to a depth of 30% of the radius with respect to the center, The proportion occupied by palladium in which the atomic ratio of tellurium / palladium at each site is in the range of 0.15 to 0.35, that is, the proportion obtained by the above formula (11), is abbreviated as B ratio (%). Further, the activity in the reaction results means that, among the reaction products, 3,4-diacetoxybutene-1,3-hydroxy-4-acetoxybutene-
1,1-acetoxycyclotonaldehyde, 1,4-diacetoxybutene-2 (1,4-DABE), 1-hydroxy-4-acetoxybutene-2, 1,4-dihydroxybutene-2, diacetoxyoctatriene, It represents the total amount of triacetoxybutene produced per kg of catalyst and 1 mmol per hour, and the 1,4-DABE selectivity means that furan, acrolein, monoacetoxybutene, butanol, monoacetoxy-1 , 3-
With respect to the total product amount including the product of butadiene,
It represents the ratio (mol%) of the amount of 1,4-diacetoxybutene-2 produced.

【0053】実施例1 50mlのメスフラスコにテルル金属(NEケムキャッ
ト製)0.843gを入れ、続いて35重量%硝酸水溶
液20gを加え溶解した。これに10.0重量%硝酸パ
ラジウム水溶液(NEケムキャット製)27.05gを
加え、更に35重量%硝酸水溶液を加える事により50
mlへメスアップした。この溶媒に球状シリカ担体(富
士シリシア化学製CARiACT−Q−15:商品名、
1.7〜3.36mm、以下CARiACT−Q−15
と記す)25.05gを加え室温で1時間浸漬した後、
これを濾過して溶液を除去し、更に遠心分離器で脱液す
る事により56.05gを得た。この触媒の内28.0
gを横型キルン(内径3cm、有効断面積7.1c
2 )の中に入れ、毎分30回転の速度で回転させなが
ら4.2Nl/分の水素ガスを流し、室温から150℃
まで1時間で昇温し、更に150℃で2時間保持して乾
燥及び還元を同時に行った後、窒素気流中で冷却し活性
化処理した触媒13.39gを得た。この触媒はパラジ
ウム5.0重量%及びテルル1.56重量%を含有して
いた。
Example 1 0.843 g of tellurium metal (manufactured by NE Chemcat) was placed in a 50-ml volumetric flask, and then 20 g of a 35% by weight nitric acid aqueous solution was added and dissolved. To this, 27.05 g of a 10.0% by weight aqueous solution of palladium nitrate (manufactured by NE Chemcat) is added, and 50% by adding a 35% by weight aqueous solution of nitric acid.
ml. A spherical silica carrier (CariACT-Q-15 manufactured by Fuji Silysia Chemical Ltd .: trade name,
1.7 to 3.36 mm, hereinafter CARiACT-Q-15
After adding 25.05 g and immersing at room temperature for 1 hour,
This was filtered to remove the solution, and the solution was further removed by a centrifugal separator to obtain 56.05 g. 28.0 of this catalyst
g in a horizontal kiln (inner diameter 3 cm, effective area 7.1 c
m 2 ), flowing 4.2 Nl / min of hydrogen gas while rotating at a speed of 30 revolutions per minute, from room temperature to 150 ° C.
The temperature was raised in 1 hour until the temperature was further increased, and the temperature was further maintained at 150 ° C. for 2 hours to carry out drying and reduction at the same time. Then, 13.39 g of an activated and cooled catalyst was obtained. The catalyst contained 5.0% by weight of palladium and 1.56% by weight of tellurium.

【0054】次に、この触媒4gを内径12mm(有効
断面積1.005cm2 )のステンレス製反応管に充填
し、反応圧力60kgf/cm2 、反応温度80℃に於
いて1,3−ブタジエン0.15モル/時、酢酸2.5
モル/時、酸素6%を含有する窒素100Nl/時の流
量で流通し、連続的に7時間反応を実施した。この反応
に於いて、反応開始後4〜5時間の間の反応液留分及び
6〜7時間の間の反応液留分を各々ガスクロマトグラフ
ィーにより生成物を定量し、その平均値をもって反応結
果とした。反応結果より活性及び選択率を求め、その結
果を表−1に示す。
Next, 4 g of this catalyst was filled in a stainless steel reaction tube having an inner diameter of 12 mm (effective area: 1.005 cm 2 ), and the reaction pressure was 60 kgf / cm 2 , and the reaction temperature was 80 ° C .; .15 mol / h, acetic acid 2.5
The reaction was carried out continuously at a flow rate of 100 Nl / hour of nitrogen containing 6% of oxygen per mole / hour and continuously for 7 hours. In this reaction, the product was quantified by gas chromatography for the reaction liquid fraction for 4 to 5 hours and the reaction liquid fraction for 6 to 7 hours after the start of the reaction. And Activity and selectivity were determined from the reaction results, and the results are shown in Table 1.

【0055】また、担持分布については以下の如く求め
た。上記触媒の内、無作為に10個の触媒粒子を選び、
その各々の触媒粒子についての最大断面積を与える各断
面に於いて、その断面を切る線の長さが最大になる直線
上をEPMA(日本電子製JXA−8600M)により
20μmの間隔で測定を実施し、その各測定点毎にZA
F補正及び担持率補正を行い、パラジウム及びテルル毎
に合計20本の半径担持分布と平均半径担持分布を求め
た。この平均半径担持分布よりA比率を求め、更に、2
0本の半径担持分布からB比率を求めた。その結果を表
−1に示す。また、担持分布及び触媒粒子表層から30
%以内に存在するパラジウムのテルル/パラジウム原子
比に対するヒストグラムを図1−A〜Cに示した。
The loading distribution was determined as follows. Of the above catalysts, randomly select 10 catalyst particles,
In each cross section that gives the maximum cross-sectional area for each of the catalyst particles, measurement was performed at a 20 μm interval by EPMA (JXA-8600M manufactured by JEOL) on a straight line where the length of the line cutting the cross section was the maximum. ZA for each measurement point
The F correction and the loading rate correction were performed, and a total of 20 radius loading distributions and an average radius loading distribution were obtained for each of palladium and tellurium. The A ratio was determined from the average radius carrying distribution, and
The B ratio was determined from the zero radius carrying distribution. Table 1 shows the results. In addition, from the loading distribution and the surface of the catalyst particles, 30
Histograms of the palladium present within% in relation to the tellurium / palladium atomic ratio are shown in FIGS.

【0056】実施例2 乾燥及び還元の際の水素ガス流量を0.26Nl/分と
した事以外は実施例1と同様にして触媒を調製し、ブタ
ジエンのジアセトキシ化反応及び担持分布測定を行っ
た。その結果を表−1に示した。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that the hydrogen gas flow rate during drying and reduction was 0.26 Nl / min, and the diacetoxylation reaction of butadiene and the distribution of supported catalyst were measured. . The results are shown in Table 1.

【0057】実施例3 50mlのメスフラスコに二酸化テルル(三津和化学
製)1.244gを入れ、続いて35重量%硝酸水溶液
28gを入れて溶解し、これに10.0重量%硝酸パラ
ジウム水溶液20.89gを加え、更に35重量%硝酸
水溶液を加える事により50mlへメスアップした。こ
の溶液に球状シリカ担体(シェル化学社製S980G:
商品名、粒子直径2.4〜3.4mm)20.81gを
加え室温で1時間浸漬した後、これを濾過して溶液を除
去し、更に遠心分離器で脱液する事により49.10g
を得た。この触媒を内径2.5cm(有効断面積4.9
cm 2 )のパイレックスガラス管の中に入れ、6.7N
l/分の窒素ガスを流しながら90℃に於いて2時間、
更に150℃に昇温して2時間乾燥した。次いで0.4
2Nl/分の水素に切り替え毎時50℃の割合で昇温
し、400℃に2時間保持した後、窒素気流中で冷却し
活性化処理した触媒22.23gを得た。この触媒はパ
ラジウム4.4重量%及びテルル1.98重量%を含有
していた。この触媒を使用した以外は実施例1と同様に
ブタジエンのアセトキシ化反応及び担持分布測定を行っ
た。その結果を表−1に示した。
Example 3 Tellurium dioxide (Mitsuwa Chemical Co., Ltd.) was placed in a 50 ml volumetric flask.
1.244 g), followed by a 35% by weight aqueous nitric acid solution
28 g was added and dissolved.
20.89 g of an aqueous solution of sodium was added, and 35% by weight of nitric acid was further added.
The volume was increased to 50 ml by adding an aqueous solution. This
In a spherical silica carrier (S980G manufactured by Shell Chemical Co., Ltd.):
Trade name, particle diameter 2.4-3.4mm) 20.81g
After immersion for 1 hour at room temperature, this was filtered to remove the solution.
49.10 g by removing and removing the liquid with a centrifuge.
I got This catalyst was treated with an inner diameter of 2.5 cm (effective area 4.9).
cm Two) Put in Pyrex glass tube of 6.7N
2 hours at 90 ° C. while flowing nitrogen gas at 1 / min.
The temperature was further raised to 150 ° C., and drying was performed for 2 hours. Then 0.4
Switch to 2Nl / min hydrogen and heat up at 50 ° C / hour
And kept at 400 ° C for 2 hours, then cooled in a nitrogen stream
22.23 g of the activated catalyst was obtained. This catalyst is
Contains 4.4% by weight of radium and 1.98% by weight of tellurium
Was. Same as Example 1 except that this catalyst was used.
Performed acetoxylation reaction of butadiene and measurement of supported distribution.
Was. The results are shown in Table 1.

【0058】実施例4 テルル金属27.2gを35重量%硝酸水溶液735.
6gに溶解し、これに10.0重量%硝酸パラジウム水
溶液758.8gを加え、更に35重量%硝酸水溶液を
加える事により液量を1400mlとした。この溶液に
球状シリカ担体(CARiACT−Q−15)950g
を加え室温で1時間浸漬した後、これを濾過して溶液を
除去し、更に遠心分離器で脱液する事により2145.
5gを得た。この触媒を内径8cm(有効断面積50.
2cm2 )のSUS反応管中に入れ、317Nl/分の
乾燥空気を流しながら90℃に於いて2時間、更に15
0℃に昇温して2時間乾燥したのち取り出し、102
4.1gの触媒を得た。更に内径5.2cm(有効断面
積21.2cm2 )のSUS反応管に乾燥した触媒26
8.4gを充填し5.2Nl/分で窒素ガスを流しなが
ら150℃まで昇温した。次いで5.2Nl/分の水素
に切り替え毎時50℃の割合で昇温し、400℃に4時
間保持した後、窒素気流中で冷却し活性化処理した触媒
260.5gを得た。この触媒はパラジウム4.9重量
%及びテルル1.76重量%を含有していた。この触媒
を使用した以外は実施例1と同様にブタジエンのアセト
キシ化反応及び担持分布測定を行った。その結果を表−
1に示した。
EXAMPLE 4 27.2 g of tellurium metal was added to a 35 wt% aqueous solution of nitric acid 735.
The resulting solution was dissolved in 6 g, to which 758.8 g of a 10.0% by weight aqueous solution of palladium nitrate was added, and further, a 35% by weight aqueous solution of nitric acid was added to adjust the liquid volume to 1400 ml. 950 g of spherical silica carrier (CARiACT-Q-15) was added to this solution.
After immersion at room temperature for 1 hour, the solution was filtered to remove the solution, and the solution was further centrifuged to remove 2145.
5 g were obtained. This catalyst was treated with an inner diameter of 8 cm (effective sectional area of 50.
2 cm 2 ) in a SUS reaction tube, at 90 ° C. for 2 hours and a further 15 hours with flowing 317 Nl / min of dry air.
After the temperature was raised to 0 ° C. and dried for 2 hours,
4.1 g of catalyst were obtained. Further, the dried catalyst 26 was placed in a SUS reaction tube having an inner diameter of 5.2 cm (effective sectional area of 21.2 cm 2 ).
8.4 g was charged, and the temperature was raised to 150 ° C. while flowing nitrogen gas at 5.2 Nl / min. Then, the temperature was increased at a rate of 50 ° C./hour by switching to hydrogen at 5.2 Nl / min, maintained at 400 ° C. for 4 hours, and then cooled and activated in a nitrogen stream to obtain 260.5 g of a catalyst. The catalyst contained 4.9% by weight palladium and 1.76% by weight tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. Table-
1 is shown.

【0059】実施例5 50mlのメスフラスコに二酸化テルル1.244gを
入れ、続いて35重量%硝酸水溶液28gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液22.
09gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(富士シリシア化学[旧社名:富士デヴィソン化
学]製CARiACT−15、粒子直径2.4〜4.0
mm)20.56gを加え室温で1時間浸漬した後、こ
れを濾過して溶液を除去し、更に遠心分離器で脱液する
事により45.39gを得た。この触媒を内径2.5c
m(有効断面積4.9cm2 )のパイレックスガラス管
の中に入れ、6.7Nl/分の窒素ガスを流しながら9
0℃に於いて2時間、更に150℃に昇温して2時間乾
燥した。次いで0.42Nl/分の水素に切り替え毎時
50℃の割合で昇温し、400℃に2時間保持した後、
窒素気流中で冷却し活性化処理した触媒21.89gを
得た。この触媒はパラジウム4.9重量%及びテルル
1.18重量%を含有していた。この触媒を使用した以
外は実施例1と同様にブタジエンのアセトキシ化反応及
び担持分布測定を行った。その結果を表−1に示した。
Example 5 1.244 g of tellurium dioxide was placed in a 50-ml volumetric flask, and 28 g of a 35% by weight aqueous nitric acid solution was added and dissolved therein.
09 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. A spherical silica carrier (CariACT-15, manufactured by Fuji Silysia Chemical [former name: Fuji Devison Chemical]) having a particle diameter of 2.4 to 4.0 was added to the solution.
After adding 20.56 g and immersing at room temperature for 1 hour, this was filtered to remove the solution, and the solution was removed by a centrifugal separator to obtain 45.39 g. This catalyst is 2.5 c inside diameter
m (effective area: 4.9 cm 2 ) in a Pyrex glass tube, while flowing nitrogen gas at 6.7 Nl / min.
It was dried at 0 ° C. for 2 hours and further heated to 150 ° C. for 2 hours. Then, switching to hydrogen of 0.42 Nl / min, the temperature was raised at a rate of 50 ° C./hour, and the temperature was maintained at 400 ° C. for 2 hours.
21.89 g of a catalyst cooled and activated in a stream of nitrogen was obtained. The catalyst contained 4.9% by weight palladium and 1.18% by weight tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1.

【0060】実施例6 50mlのメスフラスコに金属テルル0.955gを入
れ、続いて35重量%硝酸水溶液20gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液26.
51gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)20.78gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により45.97gを
得た。この触媒を内径2.5cm(有効断面積4.9c
2 )のパイレックスガラス管の中に入れ、1.7Nl
/分の窒素ガスを流しながら90℃に於いて3時間、更
に150℃に昇温して2時間乾燥した。次いで0.42
Nl/分の水素に切り替え毎時50℃の割合で昇温し、
400℃に2時間保持した後、窒素気流中で冷却し活性
化処理した触媒22.26gを得た。この触媒はパラジ
ウム4.9重量%及びテルル1.76重量%を含有して
いた。この触媒を使用した以外は実施例1と同様にブタ
ジエンのアセトキシ化反応及び担持分布測定を行った。
その結果を表−1に示した。
Example 6 0.955 g of metallic tellurium was placed in a 50-ml volumetric flask, and 20 g of a 35% by weight aqueous nitric acid solution was added and dissolved therein.
51 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 20.78 g of a spherical silica carrier (CARiACT-Q-15) to the solution and immersing it at room temperature for 1 hour, the solution was filtered to remove the solution, and 45.97 g was further removed by centrifugation to remove 45.97 g. Obtained. This catalyst was used for an inner diameter of 2.5 cm (effective area 4.9 c).
placed in a Pyrex glass tube of m 2), 1.7Nl
The mixture was dried at 90 ° C. for 3 hours while further flowing nitrogen gas at a rate of 150 ° C./minute, and further dried at 150 ° C. for 2 hours. Then 0.42
Switch to hydrogen at Nl / min and heat up at a rate of 50 ° C per hour
After maintaining at 400 ° C. for 2 hours, 22.26 g of an activated catalyst was obtained by cooling in a nitrogen stream. The catalyst contained 4.9% by weight palladium and 1.76% by weight tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used.
The results are shown in Table 1.

【0061】比較例1 球状シリカ担体(シェル化学社製S980G:商品名、
粒子直径2.4〜3.4mm)56gに、10重量%硝
酸パラジウム水溶液57g及び二酸化テルル2.6gを
硝酸に溶解して得られた水溶液140gを添加し、30
℃に2時間保持した後、5時間放冷した。これを濾過し
て溶液を除去し、更に遠心分離器で脱液することにより
触媒136gを得た。この触媒を内径4.6cm(有効
断面積16.6cm2 )のパイレックスガラス管の中に
入れ2.3Nl/分の窒素ガスを流しながら、65℃に
於いて6時間、次いで100℃に昇温して2時間乾燥し
た。次に150℃に昇温した後、水素ガスを330Nl
/時の流量で流通させながら毎時50℃の割合で昇温
し、300℃に4時間保持した後、窒素気流中で冷却
し、活性化処理した触媒60gを得た。この触媒はパラ
ジウム4.86重量%及びテルル1.76重量%を含有
していた。この触媒を使用した以外は実施例1と同様に
ブタジエンのアセトキシ化反応及び担持分布測定を行っ
た。その結果を表−1に示した。また、担持分布及び触
媒粒子表層から30%以内に存在するパラジウムのテル
ル/パラジウム原子比に対するヒストグラムを図2−A
〜Cに示した。
Comparative Example 1 Spherical silica carrier (S980G manufactured by Shell Chemical Company, trade name,
57 g of a 10% by weight aqueous palladium nitrate solution and 140 g of an aqueous solution obtained by dissolving 2.6 g of tellurium dioxide in nitric acid were added to 56 g of a particle diameter of 2.4 to 3.4 mm), and 30 g of the aqueous solution were added.
After keeping at 2 ° C. for 2 hours, it was left to cool for 5 hours. This was filtered to remove the solution, and the solution was further removed by a centrifugal separator to obtain 136 g of a catalyst. This catalyst was placed in a Pyrex glass tube having an inner diameter of 4.6 cm (effective area: 16.6 cm 2 ), and the temperature was raised to 65 ° C. for 6 hours and then to 100 ° C. while flowing a nitrogen gas of 2.3 Nl / min. And dried for 2 hours. Next, after raising the temperature to 150 ° C., 330 Nl of hydrogen gas was added.
The temperature was raised at a rate of 50 ° C./hour while flowing at a flow rate of / h, and the temperature was maintained at 300 ° C. for 4 hours, followed by cooling in a nitrogen stream to obtain 60 g of an activated catalyst. The catalyst contained 4.86% by weight of palladium and 1.76% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1. FIG. 2A shows a histogram of the distribution of supported particles and the atomic ratio of tellurium / palladium of palladium present within 30% of the surface of the catalyst particles.
To C.

【0062】比較例2 触媒担体として富士シリシア化学(旧社名:富士デヴィ
ソン化学)製CARiACT−15(商品名、粒子直径
2.4〜4.0mm)を使用した事及び使用される二酸
化テルルの量を1.3gとした事以外は比較例1と同様
に触媒を調製し、ブタジエンのアセトキシ化反応及び担
持分布測定を行った。その結果を表−1に示した。
Comparative Example 2 CARiACT-15 (trade name, particle diameter of 2.4 to 4.0 mm) manufactured by Fuji Silysia Chemical (formerly Fuji Devison Chemical) was used as a catalyst carrier, and the amount of tellurium dioxide used. The catalyst was prepared in the same manner as in Comparative Example 1 except that the amount was changed to 1.3 g, and the acetoxylation reaction of butadiene and the distribution of supported catalyst were measured. The results are shown in Table 1.

【0063】比較例3 触媒担体としてビート成形炭(オランダノリット社製、
商品名Sorbnorit−2X、直径2mm、長さ6
mmの円柱状)を用い、この40gに水60g及び60
重量%硝酸水溶液60gを加え、90〜94℃に3時間
保持した。これを冷却した後濾過して溶液を除去し、硝
酸処理した活性炭を得た。次に、この活性炭に10.0
重量%硝酸パラジウム水溶液20g及び金属テルル0.
55gを35重量%硝酸に溶解して得られた水溶液12
0gを添加し、30℃に3時間保持した後、5時間放冷
した。これを濾過した溶液を除去した後、240トール
の減圧下に最高140℃で8時間乾燥し、パラジウム
4.2重量%及びテルル0.78重量%を含有する担持
触媒を得た。この担持触媒の内、30mlを内径2.5
cm(有効断面積4.9cm2 )のパイレックス製ガラ
ス管に充填し、これに8容量%のメタノールを含有する
窒素を39Nl/時の流量で流通させながら毎時50℃
の割合で350℃まで昇温し、この温度に4時間保持し
た後、窒素気流中で室温まで放冷した。次に酸素2容量
%を含有する窒素を39Nl/時で流通させながら30
0℃まで昇温してこの温度に10時間保持した後、窒素
気流中で室温まで放冷した。次にメタノール8容量%を
含有する窒素を39Nl/時の流量で流通させながら、
毎時50℃の割合で350℃まで昇温し、この温度に1
5時間保持した後、窒素気流中で室温まで放冷した。次
に酸素2容量%を含有する窒素を39Nl/時の流量で
流通させながら300℃まで昇温してこの温度に4時間
保持した後、窒素気流中で室温まで放冷した。次に水素
を39Nl/時の流量で流通させながら、毎時50℃の
割合で350℃まで昇温し、この温度に4時間保持した
後、窒素気流中で室温まで放冷した。次に酸素2容量%
を含有する窒素を39Nl/時の流量で流通させながら
300℃まで昇温してこの温度に15時間保持した後、
窒素気流中で室温まで放冷した。次に水素を39Nl/
時の流量で流通させながら、毎時50℃の割合で350
℃まで昇温し、この温度に4時間保持した後、窒素気流
中で室温まで放冷した。以上のような酸化及び還元を繰
り返す活性化処理を行って調製した担持触媒は、パラジ
ウム4.7重量%及びテルル0.87重量%を含有して
いた。この触媒を使用した以外は実施例1と同様にブタ
ジエンのアセトキシ化反応を行い、その結果を表−1に
示した。また、担持分布については、その担体の形状が
円柱状である事から以下の如く求めた。上記触媒の内、
無作為に10個の触媒粒子を選び、その各粒子について
の最大断面を与える各断面に於いて、軸(断面が与える
長方形の長径方向中心線)を長径線とし、その長径線の
中点を直交する直線を短径線として、それらの線上をE
PMA(日本電子製JXA−8600M)により20μ
mの間隔で測定を実施し、その各測定点毎にZAF補正
及び担持率補正を行い合計20本の長径線半径担持分布
と長径線平均半径担持分布、20本の短径線半径担持分
布及び短径線平均半径担持分布を求めた。この長径線平
均半径担持分布及び短径線平均半径担持分布よりA比率
を求め、更に、合計40本の半径担持分布(長径及び短
径)からB比率を求めた。その結果を表−1に示す。
Comparative Example 3 Beet-formed coal (manufactured by Norit Holland Co., Ltd.,
Product name Sorbnorit-2X, diameter 2mm, length 6
mm column), 60 g of water and 60 g of water
A 60% by weight aqueous nitric acid solution was added, and the mixture was kept at 90 to 94 ° C. for 3 hours. After cooling, the solution was filtered to remove the solution, and activated carbon treated with nitric acid was obtained. Next, add 10.0 g to this activated carbon
20 g of a weight% aqueous solution of palladium nitrate and 0.1% of metallic tellurium.
Aqueous solution 12 obtained by dissolving 55 g in 35% by weight nitric acid
After adding 0 g, the mixture was kept at 30 ° C. for 3 hours, and then left to cool for 5 hours. After filtering the solution, the solution was removed and dried under a reduced pressure of 240 Torr at a maximum of 140 ° C. for 8 hours to obtain a supported catalyst containing 4.2% by weight of palladium and 0.78% by weight of tellurium. Of this supported catalyst, 30 ml had an inner diameter of 2.5
cm (effective area: 4.9 cm 2 ) into a glass tube made of Pyrex, and 50 ° C./hour while flowing nitrogen containing 8% by volume of methanol at a flow rate of 39 Nl / hour.
The temperature was raised to 350 ° C. at this rate and kept at this temperature for 4 hours, and then allowed to cool to room temperature in a nitrogen stream. Next, 30 Nl / h of nitrogen containing 2% by volume of oxygen was passed at a flow rate of 39 Nl / h.
After the temperature was raised to 0 ° C. and maintained at this temperature for 10 hours, it was allowed to cool to room temperature in a nitrogen stream. Next, while flowing nitrogen containing 8% by volume of methanol at a flow rate of 39 Nl / hour,
The temperature is raised to 350 ° C at a rate of 50 ° C per hour,
After holding for 5 hours, it was allowed to cool to room temperature in a nitrogen stream. Next, the temperature was raised to 300 ° C. while flowing nitrogen containing 2% by volume of oxygen at a flow rate of 39 Nl / hour and maintained at this temperature for 4 hours, and then allowed to cool to room temperature in a nitrogen stream. Next, while flowing hydrogen at a flow rate of 39 Nl / hour, the temperature was raised to 350 ° C. at a rate of 50 ° C./hour, and maintained at this temperature for 4 hours, followed by cooling in a nitrogen stream to room temperature. Next, oxygen 2% by volume
While flowing nitrogen containing 39 at a flow rate of 39 Nl / hour and maintaining the temperature at this temperature for 15 hours,
It was allowed to cool to room temperature in a nitrogen stream. Next, 39Nl /
At a rate of 50 ° C. per hour while flowing at a flow rate of 350 hours.
C., and kept at this temperature for 4 hours, and then allowed to cool to room temperature in a nitrogen stream. The supported catalyst prepared by performing the activation treatment of repeating the oxidation and reduction as described above contained 4.7% by weight of palladium and 0.87% by weight of tellurium. An acetoxylation reaction of butadiene was carried out in the same manner as in Example 1 except that this catalyst was used, and the results are shown in Table 1. The distribution of the carrier was determined as follows because the shape of the carrier was cylindrical. Of the above catalysts,
In each of the cross-sections that randomly select ten catalyst particles and give the maximum cross-section for each particle, the axis (the center line in the long-axis direction of the rectangle given by the cross-section) is the long-diameter line, and the midpoint of the long-diameter line is The orthogonal straight line is defined as the short diameter line, and E
20μ by PMA (JEOL JXA-8600M)
The measurement is performed at intervals of m, the ZAF correction and the loading ratio correction are performed for each of the measurement points, and a total of 20 long diameter wire radius distributions and a long diameter wire average radius distribution, 20 short diameter wire radius distributions and The distribution of the average diameter carrying the minor axis was determined. The A ratio was determined from the long diameter line average radius distribution and the short diameter line average radius distribution, and further the B ratio was determined from a total of 40 radius distributions (long and short diameters). Table 1 shows the results.

【0064】比較例4 50mlのメスフラスコに金属テルル0.887gを入
れ、続いて35重量%硝酸水溶液20gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液28.
46gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)20.21gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により44.62gを
得た。この触媒を内径2.5cm(有効断面積4.9c
2 )のパイレックスガラス管の中に入れ、1.7Nl
/分の窒素ガスを流しながら90℃に於いて3時間、更
に150℃に昇温して2時間乾燥した。この触媒を内径
9.5cmの円筒容器に入れ、毎分20回転の速度で回
転しながら80重量%ヒドラジン1水和物溶液を、触媒
粒子が完全に浸るまで噴霧した後、回転を止めて静置し
た状態で18時間放置した。この触媒を水洗した後、横
型キルン(内径3cm、有効断面積7.1cm2 )の中
に入れ、毎分30回転の速度で回転させながら6.7N
l/分の窒素ガスを流し、室温で1時間保持し、更に1
50℃で1時間保持して乾燥した。次にこの触媒を内径
2.5cm(有効断面積4.9cm2 )のパイレックス
ガラス管の中に入れ、窒素ガスを流しながら30分で1
50℃迄昇温した後0.42Nl/分の水素に切り替え
毎時50℃の割合で昇温し、400℃に2時間保持した
後、窒素気流中で冷却し活性化処理した触媒21.65
gを得た。この触媒はパラジウム5.1重量%及びテル
ル1.59重量%を含有していた。この触媒を使用した
以外は実施例1と同様にブタジエンのアセトキシ化反応
及び担持分布測定を行った。その結果を表−1に示し
た。
COMPARATIVE EXAMPLE 4 0.887 g of metal tellurium was placed in a 50 ml measuring flask, and 20 g of a 35% by weight aqueous nitric acid solution was added and dissolved therein.
46 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 20.21 g of a spherical silica carrier (CARiACT-Q-15) to this solution and immersing it at room temperature for 1 hour, the solution was filtered to remove the solution, and 44.62 g was further removed by centrifugation. Obtained. This catalyst was used for an inner diameter of 2.5 cm (effective area 4.9 c).
placed in a Pyrex glass tube of m 2), 1.7Nl
The mixture was dried at 90 ° C. for 3 hours while further flowing nitrogen gas at a rate of 150 ° C./minute, and further dried at 150 ° C. for 2 hours. The catalyst was placed in a cylindrical container having an inner diameter of 9.5 cm and sprayed with an 80% by weight hydrazine monohydrate solution while rotating at a speed of 20 revolutions per minute until the catalyst particles were completely immersed. This was left standing for 18 hours. After washing the catalyst with water, it is placed in a horizontal kiln (inner diameter 3 cm, effective sectional area 7.1 cm 2 ), and 6.7 N while rotating at a rate of 30 revolutions per minute.
1 / min of nitrogen gas, hold at room temperature for 1 hour,
It was kept at 50 ° C. for 1 hour and dried. Next, the catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective cross-sectional area of 4.9 cm 2 ), and the mixture was supplied for 1 minute in 30 minutes while flowing nitrogen gas.
After the temperature was raised to 50 ° C., the temperature was switched to hydrogen of 0.42 Nl / min, the temperature was raised at a rate of 50 ° C./hour, the temperature was maintained at 400 ° C. for 2 hours, and the catalyst was cooled and activated in a nitrogen stream to activate 21.65.
g was obtained. The catalyst contained 5.1% by weight of palladium and 1.59% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1.

【0065】比較例5 50mlのメスフラスコに金属テルル0.897gを入
れ、続いて35重量%硝酸水溶液20gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液26.
70gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)20.46gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により44.92gを
得た。この触媒を200mlのナスフラスコに入れ毎分
30回転の速度で回転させながら0.08Nl/分の窒
素ガスを吹き込み、80℃で12時間、更に150℃で
3時間保持して乾燥した。次にこの触媒を内径2.5c
m(有効断面積4.9cm2 )のパイレックスガラス管
の中に入れ、窒素ガスを流しながら30分で150℃迄
昇温した後0.42Nl/分の水素に切り替え毎時50
℃の割合で昇温し、400℃に2時間保持した後、窒素
気流中で冷却し活性化処理した触媒21.86gを得
た。この触媒はパラジウム4.8重量%及びテルル1.
61重量%を含有していた。この触媒を使用した以外は
実施例1と同様にブタジエンのアセトキシ化反応及び担
持分布測定を行った。その結果を表−1に示した。ま
た、担持分布及び触媒粒子表層から30%以内に存在す
るパラジウムのテルル/パラジウム原子比に対するヒス
トグラムを図3−A〜Cに示した。
Comparative Example 5 0.897 g of tellurium metal was placed in a 50-ml volumetric flask, followed by 20 g of a 35% by weight aqueous nitric acid solution to be dissolved therein.
70 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 20.46 g of spherical silica carrier (CARiACT-Q-15) to this solution and immersing it at room temperature for 1 hour, this was filtered to remove the solution, and 44.92 g was removed by centrifugation to remove the solution. Obtained. The catalyst was placed in a 200 ml eggplant flask, and nitrogen gas was blown therein at 0.08 Nl / min while being rotated at a rate of 30 revolutions per minute, and dried at 80 ° C. for 12 hours and further at 150 ° C. for 3 hours. Next, this catalyst was used with an inner diameter of 2.5c.
m (effective area: 4.9 cm 2 ) in a Pyrex glass tube, heated to 150 ° C. in 30 minutes while flowing nitrogen gas, and then switched to hydrogen at 0.42 Nl / min.
After the temperature was raised at a rate of ° C and kept at 400 ° C for 2 hours, 21.86 g of an activated catalyst was obtained by cooling in a nitrogen stream. The catalyst is 4.8% by weight palladium and 1.
It contained 61% by weight. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1. In addition, FIGS. 3A to 3C show histograms of the distribution of loading and the atomic ratio of tellurium / palladium of palladium present within 30% from the surface of the catalyst particles.

【0066】比較例6 50mlのメスフラスコに金属テルル1.062gを入
れ、続いて35重量%硝酸水溶液20gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液28.
55gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)20.28gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により44.40gを
得た。この触媒を200mlのナスフラスコに入れ毎分
30回転の速度で回転させながら6.7Nl/分の窒素
ガスを吹き込み、80℃で4時間、更に150℃で3時
間保持して乾燥した。次にこの触媒を内径2.5cm
(有効断面積4.9cm2 )のパイレックスガラス管の
中に入れ、窒素ガスを流しながら30分で150℃迄昇
温した後0.42Nl/分の水素に切り替え毎時50℃
の割合で昇温し、400℃に2時間保持した後、窒素気
流中で冷却し活性化処理した触媒21.79gを得た。
この触媒はパラジウム5.1重量%及びテルル1.82
重量%を含有していた。この触媒を使用した以外は実施
例1と同様にブタジエンのアセトキシ化反応及び担持分
布測定を行った。その結果を表−1に示した。
Comparative Example 6 1.062 g of metal tellurium was placed in a 50 ml volumetric flask, and 20 g of a 35% by weight aqueous nitric acid solution was added and dissolved therein.
55 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 20.28 g of a spherical silica carrier (CARiACT-Q-15) to this solution and immersing it for 1 hour at room temperature, this was filtered to remove the solution, and 44.40 g was further removed by centrifugation. Obtained. The catalyst was placed in a 200 ml eggplant-shaped flask, and nitrogen gas was blown at 6.7 Nl / min while being rotated at a rate of 30 revolutions per minute, and dried at 80 ° C. for 4 hours and further at 150 ° C. for 3 hours. Next, the catalyst was placed 2.5 cm in inner diameter.
(Effective sectional area: 4.9 cm 2 ), placed in a Pyrex glass tube, heated to 150 ° C. in 30 minutes while flowing nitrogen gas, and then switched to hydrogen at 0.42 Nl / min.
, And kept at 400 ° C. for 2 hours, then cooled in a nitrogen stream to obtain 21.79 g of an activated catalyst.
This catalyst comprises 5.1% by weight of palladium and 1.82 of tellurium.
% By weight. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1.

【0067】比較例7 50mlのメスフラスコにテルル金属1.008gを入
れ、続いて35重量%硝酸水溶液20gを加え溶解し
た。これに10.0重量%硝酸パラジウム水溶液27.
10gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)25.11gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により54.28gを
得た。この触媒の内28.2gを横型キルン(内径3c
m、有効断面積7.1cm2 )の中に入れ、毎分30回
転の速度で回転させながら4.3Nl/分の窒素ガスを
流し、60℃で5時間、更に150℃で2時間保持して
乾燥した。次にこの触媒を内径2.5cm(有効断面積
4.9cm2 )のパイレックスガラス管の中に入れ、窒
素ガスを流しながら30分で150℃迄昇温した後0.
27Nl/分の水素に切り替え毎時50℃の割合で昇温
し、400℃に2時間保持した後、窒素気流中で冷却し
活性化処理した触媒13.98gを得た。この触媒はパ
ラジウム5.0重量%及びテルル1.86重量%を含有
していた。この触媒を使用した以外は実施例1と同様に
ブタジエンのアセトキシ化反応及び担持分布測定を行っ
た。その結果を表−1に示した。
Comparative Example 7 1.008 g of tellurium metal was placed in a 50-ml volumetric flask, and then 20 g of a 35% by weight aqueous nitric acid solution was added and dissolved. This was followed by a 10.0% by weight aqueous solution of palladium nitrate 27.
10 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 25.11 g of a spherical silica carrier (CARiACT-Q-15) to this solution and immersing it at room temperature for 1 hour, the solution was filtered to remove the solution, and 54.28 g was further removed by centrifugation. Obtained. 28.2 g of this catalyst was transferred to a horizontal kiln (internal diameter 3c).
m, an effective area of 7.1 cm 2 ), and while rotating at a speed of 30 revolutions per minute, a nitrogen gas of 4.3 Nl / min is flown, and the temperature is maintained at 60 ° C. for 5 hours and further at 150 ° C. for 2 hours. And dried. Next, this catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective cross-sectional area of 4.9 cm 2 ), and heated to 150 ° C. in 30 minutes while flowing nitrogen gas.
After switching to hydrogen at 27 Nl / min, the temperature was raised at a rate of 50 ° C./hour, and maintained at 400 ° C. for 2 hours. Then, 13.98 g of a catalyst activated and cooled in a nitrogen stream was obtained. The catalyst contained 5.0% by weight of palladium and 1.86% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1.

【0068】比較例8 50mlのメスフラスコに金属テルル0.988gを入
れ、続いて35重量%硝酸水溶液20gを入れて溶解
し、これに10.0重量%硝酸パラジウム水溶液26.
52gを加え、更に35重量%硝酸水溶液を加える事に
より50mlへメスアップした。この溶液に球状シリカ
担体(CARiACT−Q−15)20.47gを加え
室温で1時間浸漬した後、これを濾過して溶液を除去
し、更に遠心分離器で脱液する事により45.27gを
得た。この触媒を内径2.5cm(有効断面積4.9c
2 )のパイレックスガラス管の中に入れ、0.017
Nl/分の窒素ガスを流しながら90℃に於いて40時
間、更に150℃に昇温して2時間乾燥した。次いで
0.42Nl/分の水素に切り替え毎時50℃の割合で
昇温し、400℃に2時間保持した後、窒素気流中で冷
却し活性化処理した触媒21.91gを得た。この触媒
はパラジウム4.9重量%及びテルル1.81重量%を
含有していた。この触媒を使用した以外は実施例1と同
様にブタジエンのアセトキシ化反応及び担持分布測定を
行った。その結果を表−1に示した。
Comparative Example 8 0.988 g of metallic tellurium was placed in a 50 ml volumetric flask, followed by 20 g of a 35% by weight aqueous nitric acid solution, and dissolved therein.
52 g was added, and a 35 wt% aqueous solution of nitric acid was further added to make up to 50 ml. After adding 20.47 g of a spherical silica carrier (CARiACT-Q-15) to this solution and immersing it at room temperature for 1 hour, the solution was filtered to remove the solution, and 45.27 g was removed by centrifugation to remove the solution. Obtained. This catalyst was used for an inner diameter of 2.5 cm (effective area 4.9 c).
placed in a Pyrex glass tube of m 2), 0.017
The mixture was dried at 90 ° C. for 40 hours while flowing a nitrogen gas at N1 / min, and further heated to 150 ° C. for 2 hours. Then, the temperature was increased at a rate of 50 ° C./hour after switching to hydrogen at 0.42 Nl / min, kept at 400 ° C. for 2 hours, and then cooled and activated in a nitrogen stream to obtain 21.91 g of a catalyst. The catalyst contained 4.9% by weight of palladium and 1.81% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of the distribution of butadiene were carried out in the same manner as in Example 1 except that this catalyst was used. The results are shown in Table 1.

【0069】実施例7 50mlのメスフラスコにテルル酸(H6 TeO6 :三
津和化学製)1.536gを入れ、続いて水16gを入
れて溶解し、これに10.0重量%硝酸パラジウム水溶
液28.45gを加え、更に水を加える事により50m
lへメスアップした。この溶液に球状シリカ担体(CA
RiACT−Q−15)25.58gを加え室温で1時
間浸漬した後、これを濾過して溶液を除去し、更に遠心
分離器で脱液する事により53.64gを得た。この触
媒を250℃の過熱水蒸気気流下(2m/s)15分乾
燥した。次にこの触媒を内径2.5cm(有効断面積
4.9cm2 )のパイレックスガラス管の中に入れ、窒
素ガスを流しながら30分で150℃迄昇温した後0.
51Nl/分の水素に切り替え毎時50℃の割合で昇温
し、400℃に2時間保持した後、窒素気流中で冷却し
活性化処理した触媒27.42gを得た。この触媒はパ
ラジウム5.2重量%及びテルル1.56重量%を含有
していた。この触媒6gを内径12mmのガラス管に充
填し、常圧下、反応温度80℃に於いて1,3−ブタジ
エン6.4g/時、酢酸12ml/時、酸素9%を含有
する窒素1.8Nl/時の流量で流通し、連続的に7時
間反応を実施した。この反応に於いて、反応開始後5〜
6時間の間の反応液留分及び6〜7時間の間の反応液留
分を各々ガスクロマトグラフィーにより生成物を定量
し、その平均値をもって反応結果とした。反応結果より
活性及び選択率を求め、その結果を表−1に示す。ま
た、この触媒を使用した以外は実施例1と同様に担持分
布を求め、その結果を表−1に示す。また、担持分布及
び触媒粒子表層から30%以内に存在するパラジウムの
テルル/パラジウム原子比に対するヒストグラムを図4
−A〜Cに示した。
Example 7 1.536 g of telluric acid (H 6 TeO 6 : manufactured by Mitsui Kagaku) was placed in a 50-ml volumetric flask, followed by 16 g of water and dissolved, and a 10.0 wt% aqueous solution of palladium nitrate was added thereto. 50m by adding 28.45g and further adding water
l. A spherical silica carrier (CA
After adding 25.58 g of RiACT-Q-15) and immersing at room temperature for 1 hour, the solution was filtered to remove the solution, and the solution was further removed by centrifugation to obtain 53.64 g. This catalyst was dried under a stream of superheated steam at 250 ° C. (2 m / s) for 15 minutes. Next, this catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective cross-sectional area of 4.9 cm 2 ), and heated to 150 ° C. in 30 minutes while flowing nitrogen gas.
After switching to hydrogen at 51 Nl / min, the temperature was raised at a rate of 50 ° C./hour, and the temperature was maintained at 400 ° C. for 2 hours, followed by cooling in a nitrogen stream to obtain 27.42 g of an activated catalyst. The catalyst contained 5.2% by weight of palladium and 1.56% by weight of tellurium. 6 g of this catalyst was filled in a glass tube having an inner diameter of 12 mm, and under normal pressure at a reaction temperature of 80 ° C., 6.4 g / h of 1,3-butadiene, 12 ml / h of acetic acid, and 1.8 Nl of nitrogen containing 9% of oxygen. The reaction was carried out at the flow rate at the time, and the reaction was continuously performed for 7 hours. In this reaction, 5 to 5
The product was quantified by gas chromatography for the reaction liquid fraction for 6 hours and for the reaction liquid fraction for 6 to 7 hours, and the average value was used as the reaction result. Activity and selectivity were determined from the reaction results, and the results are shown in Table 1. Except for using this catalyst, the loading distribution was determined in the same manner as in Example 1, and the results are shown in Table 1. FIG. 4 is a histogram showing the distribution of supported particles and the tellurium / palladium atomic ratio of palladium present within 30% of the surface of the catalyst particles.
-A to C.

【0070】実施例8 過熱水蒸気乾燥の際の温度を150℃とした事以外は実
施例7と同様にして触媒を調製し、ブタジエンのジアセ
トキシ化反応及び担持分布測定を行った。その結果を表
−1に示した。
Example 8 A catalyst was prepared in the same manner as in Example 7 except that the temperature during superheated steam drying was set at 150 ° C., and the diacetoxylation reaction of butadiene and the distribution of supported catalyst were measured. The results are shown in Table 1.

【0071】実施例9 トリメチルシリルクロライド5.44gをn−ヘキサン
100mlに溶解し、これに球状シリカ担体(CARi
ACT−Q−15)20.01gを加え時々震盪しなが
ら18時間放置した後、これを濾過して溶液を除去し、
更にn−ヘキサン100mlで洗浄する事を5回繰り返
し、続いて80℃、3時間減圧乾燥した。この疏水化処
理をしたシリカ担体にテルル酸1.535g及び10.
0重量%硝酸パラジウム水溶液28.5gを含む水溶液
50mlを加え室温で1時間浸漬した後これを濾過して
溶液を除去し、更に遠心分離器で脱液する事により4
2.68gを得た。この触媒を内径2.5cm(有効断
面積4.9cm2 )のパイレックスガラス管の中に入
れ、1.7Nl/分の窒素ガスを流しながら90℃に於
いて2時間、更に150℃に昇温して2時間乾燥した。
次いで0.42Nl/分の水素に切り替え毎時50℃の
割合で昇温し、400℃に2時間保持した後、窒素気流
中で冷却し活性化処理した触媒21.95gを得た。こ
の触媒はパラジウム5.0重量%及びテルル1.51重
量%を含有していた。この触媒を使用した以外は実施例
7と同様にブタジエンのアセトキシ化反応及び担持分布
測定を行った。その結果を表−1に示した。
Example 9 A solution of 5.44 g of trimethylsilyl chloride in 100 ml of n-hexane was added to a spherical silica carrier (CARi).
ACT-Q-15) 20.01 g was added, and the mixture was allowed to stand for 18 hours with occasional shaking, and then filtered to remove the solution.
Further, washing with 100 ml of n-hexane was repeated 5 times, followed by drying under reduced pressure at 80 ° C. for 3 hours. 1.535 g of telluric acid and 10.
50 ml of an aqueous solution containing 28.5 g of a 0% by weight aqueous solution of palladium nitrate was added, and the mixture was immersed at room temperature for 1 hour, and then filtered to remove the solution.
2.68 g were obtained. This catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective cross-sectional area of 4.9 cm 2 ), and the temperature was further increased to 150 ° C. at 90 ° C. for 2 hours while flowing a nitrogen gas of 1.7 Nl / min. And dried for 2 hours.
Then, the temperature was switched to hydrogen of 0.42 Nl / min, the temperature was raised at a rate of 50 ° C./hour, and the temperature was maintained at 400 ° C. for 2 hours. Then, 21.95 g of an activated and cooled catalyst was obtained in a nitrogen stream. The catalyst contained 5.0% by weight of palladium and 1.51% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of supported distribution were performed in the same manner as in Example 7 except that this catalyst was used. The results are shown in Table 1.

【0072】比較例9 50mlのメスフラスコにテルル酸1.535gを入
れ、続いて水16gを入れて溶解し、これに10.0重
量%硝酸パラジウム水溶液28.44gを加え、更に水
を加える事により50mlへメスアップした。この溶液
に球状シリカ担体(CARiACT−Q−15)26.
09gを加え室温で1時間浸漬した後、これを濾過して
溶液を除去し、更に遠心分離器で脱液する事により5
4.62gを得た。この触媒を真空乾燥機(ヤマト科学
製、DP−32)に入れ、減圧下(50Torr未満)
60℃で2時間、80℃で5時間、更に150℃で2時
間乾燥した。次にこの触媒を内径2.5cm(有効断面
積4.9cm2 )のパイレックスガラス管の中に入れ、
窒素ガスを流しながら30分で150℃迄昇温した後
0.54Nl/分の水素に切り替え毎時50℃の割合で
昇温し、400℃に2時間保持した後、窒素気流中で冷
却し活性化処理した触媒27.96gを得た。この触媒
はパラジウム5.1重量%及びテルル1.53重量%を
含有していた。この触媒を使用した以外は実施例7と同
様にブタジエンのアセトキシ化反応及び担持分布測定を
行った。その結果を表−1に示した。
Comparative Example 9 1.535 g of telluric acid was placed in a 50 ml volumetric flask, followed by 16 g of water to dissolve, 28.44 g of a 10.0% by weight aqueous palladium nitrate solution was added, and water was further added. To make up to 50 ml. 25. A spherical silica carrier (CARiACT-Q-15) was added to this solution.
After adding 9 g and immersing for 1 hour at room temperature, the solution was filtered to remove the solution, and the solution was further removed by centrifugation.
4.62 g were obtained. This catalyst is placed in a vacuum dryer (DP-32, manufactured by Yamato Scientific Co., Ltd.), and under reduced pressure (less than 50 Torr).
It was dried at 60 ° C. for 2 hours, at 80 ° C. for 5 hours, and further at 150 ° C. for 2 hours. Next, this catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective cross-sectional area of 4.9 cm 2 ),
After raising the temperature to 150 ° C. in 30 minutes while flowing nitrogen gas, switching to hydrogen at 0.54 Nl / min, raising the temperature at a rate of 50 ° C./hour, maintaining at 400 ° C. for 2 hours, cooling in a nitrogen stream and activating 27.96 g of the catalyzed catalyst was obtained. The catalyst contained 5.1% by weight of palladium and 1.53% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of supported distribution were performed in the same manner as in Example 7 except that this catalyst was used. The results are shown in Table 1.

【0073】比較例10 25mlのメスフラスコにテルル酸0.768gを入
れ、続いて水8gを入れて溶解し、これに10.0重量
%硝酸パラジウム水溶液14.21gを加え、更に水を
加える事により25mlへメスアップした。この溶液に
球状シリカ担体(CARiACT−Q−15)12.7
5gを加え室温で1時間浸漬した後、これを濾過して溶
液を除去し、更に遠心分離器で脱液する事により26.
60gを得た。この触媒を内径2.5cm(有効断面積
4.9cm2 )のパイレックスガラス管の中に入れ、
4.3Nl/分の乾燥空気を流しながら90℃に於いて
2時間、更に150℃に昇温して2時間乾燥した。次い
で0.27Nl/分の水素ガスに切り替え毎時50℃の
割合で昇温し、400℃に2時間保持した後、窒素気流
中で冷却し活性化処理した触媒13.68gを得た。こ
の触媒はパラジウム5.0重量%及びテルル1.52重
量%を含有していた。この触媒を使用した以外は実施例
7と同様にブタジエンのアセトキシ化反応及び担持分布
測定を行った。その結果を表−1に示した。
Comparative Example 10 0.768 g of telluric acid was placed in a 25 ml volumetric flask, and then 8 g of water was added and dissolved. To this, 14.21 g of a 10.0% by weight aqueous solution of palladium nitrate was added, and water was further added. To make up to 25 ml. To this solution was added a spherical silica carrier (CARiACT-Q-15) 12.7.
After adding 5 g and immersing at room temperature for 1 hour, the solution was filtered to remove the solution, and the solution was further removed by a centrifugal separator.
60 g were obtained. The catalyst was placed in a Pyrex glass tube having an inner diameter of 2.5 cm (effective area: 4.9 cm 2 ),
Drying was performed at 90 ° C. for 2 hours while flowing dry air at 4.3 Nl / min, and the temperature was further increased to 150 ° C. for 2 hours. Then, the gas temperature was increased at a rate of 50 ° C./hour after switching to hydrogen gas of 0.27 Nl / min, and the temperature was maintained at 400 ° C. for 2 hours. Then, 13.68 g of a catalyst cooled and activated in a nitrogen stream was obtained. The catalyst contained 5.0% by weight of palladium and 1.52% by weight of tellurium. Acetoxylation reaction of butadiene and measurement of supported distribution were performed in the same manner as in Example 7 except that this catalyst was used. The results are shown in Table 1.

【0074】[0074]

【表1】 [Table 1]

【0075】比較例11 触媒担体として、富士シリシア化学(旧社名:富士デヴ
ィソン化学)製シリカゲルID(商品名)を、空気中で
500℃、1時間加熱処理後のシリカ担体を用い、この
10.02gに、塩化パラジウム(NEケムキャット
製)0.1750g及び二酸化テルル(三津和化学製)
0.0536gを6規定塩酸40mlに溶解した溶液を
加え、室温で24時間浸漬した。浸漬終了後、減圧しな
がら湯浴上で60℃で2時間、更に80℃で3時間蒸発
乾固し、次いでこの固体を内径2.5cm(有効断面積
4.9cm2 )のパイレックス製ガラス管に充填し、
1.9Nl/分の窒素を流しながら150℃において3
時間乾燥後、室温においてメタノールで飽和された窒素
1.9Nl/分を流しながら200℃で3時間、更に4
00℃で2時間保持した後、窒素気流中で冷却し活性化
処理した触媒10.17gを得た。この触媒はパラジウ
ム1.03重量%及びテルル0.42重量%を含有して
いた。この触媒を使用した以外は実施例1と同様にブタ
ジエンのアセトキシ化反応を行い、その結果を表−2に
示した。また、担持分布については、その担体の形状が
破砕状である事から以下の如く求めた。上記触媒の内、
無作為に10個の触媒粒子を選び、その各粒子について
の最大断面を与える各断面に於いて、その長さが最大に
なる直線を長径線とし、その長径線と直交する直線でそ
の長さが最大になる直線を短径線として、それらの線上
をEPMA(日本電子製JXA−8600M)により2
0μmの間隔で測定を実施し、その各測定点毎にZAF
補正及び担持率補正を行い合計20本の長径線半径担持
分布と長径線平均半径担持分布、20本の短径線半径担
持分布及び短径線平均半径担持分布を求めた。この長径
線平均半径担持分布及び短径線平均半径担持分布よりA
比率を求め、更に、合計40本の半径担持分布(長径及
び短径)からB比率を求めた。その結果を表−2に示
す。尚、比較のために、実施例1の結果もあわせて表−
2に示すが、実施例で使用された触媒のパラジウム濃度
に比べ、該比較例11の触媒のパラジウム濃度は約1/
5であるので、表−2中の活性の数値はパラジウム1g
当たり、1時間当たりの数値を示した。
Comparative Example 11 As a catalyst carrier, silica gel ID (trade name) manufactured by Fuji Silysia Chemical Ltd. (former name: Fuji Devison Chemical) was used. To 0.2 g, 0.1750 g of palladium chloride (manufactured by NE Chemcat) and tellurium dioxide (manufactured by Mitsuwa Kagaku)
A solution obtained by dissolving 0.0536 g in 40 ml of 6N hydrochloric acid was added, and the resultant was immersed at room temperature for 24 hours. After the immersion, the solid was evaporated to dryness in a hot water bath at 60 ° C. for 2 hours and further at 80 ° C. for 3 hours under reduced pressure, and then the solid was made into a Pyrex glass tube having an inner diameter of 2.5 cm (effective sectional area of 4.9 cm 2 ). Filling
3 at 150 ° C. while flowing 1.9 Nl / min of nitrogen
After drying for 2 hours at room temperature while flowing 1.9 Nl / min of nitrogen saturated with methanol at 200 ° C. for 3 hours, further 4 hours
After maintaining at 00 ° C. for 2 hours, 10.17 g of a catalyst which was cooled and activated in a nitrogen stream was obtained. The catalyst contained 1.03% by weight of palladium and 0.42% by weight of tellurium. Except that this catalyst was used, butadiene was subjected to acetoxylation reaction in the same manner as in Example 1, and the results are shown in Table 2. The distribution of the carrier was determined as follows because the shape of the carrier was crushed. Of the above catalysts,
In each section, which randomly selects ten catalyst particles and gives the maximum section for each particle, the straight line having the maximum length is defined as the major axis line, and the length is defined as a straight line orthogonal to the major axis line. Is the shortest diameter line, and the EPMA (JXA-8600M manufactured by JEOL Ltd.)
Measurement is performed at intervals of 0 μm, and ZAF is measured at each measurement point.
Correction and loading ratio correction were performed to determine a total of 20 long diameter wire radius distributions, 20 long diameter wire average radius distributions, 20 short diameter wire radius distributions, and 20 short diameter wire average radius distributions. From the long diameter wire average radius carrying distribution and the short diameter wire average radius carrying distribution, A
The ratio was determined, and the B ratio was determined from a total of 40 radius carrying distributions (major axis and minor axis). Table 2 shows the results. For comparison, the results of Example 1 are also shown in Table 1.
2, the palladium concentration of the catalyst of Comparative Example 11 was about 1 /
5, the activity value in Table 2 is 1 g of palladium.
Per hour and per hour.

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【発明の効果】本発明の方法によれば、固体触媒の存在
下、共役ジエンをカルボン酸及び分子状酸素と反応させ
て対応する不飽和グリコールのカルボン酸ジエステルを
製造する方法において、無機多孔質担体に有効成分とし
てパラジウム及びテルルを特定の分布に担持させた固体
触媒を用いることにより、不飽和グリコールジエステル
を高活性に得ることができ、その工業的価値は極めて大
である。
According to the method of the present invention, a method for producing a corresponding carboxylic acid diester of unsaturated glycol by reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst, comprises the steps of: By using a solid catalyst in which palladium and tellurium are supported as active ingredients in a specific distribution on a carrier, an unsaturated glycol diester can be obtained with high activity, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは実施例1の触媒におけるPdの平均分布で
ある。Bは実施例1の触媒におけるTeの平均分布であ
る。Cは実施例1の触媒におけるPdのヒストグラムで
ある。
FIG. 1A is an average distribution of Pd in the catalyst of Example 1. B is the average distribution of Te in the catalyst of Example 1. C is a histogram of Pd in the catalyst of Example 1.

【図2】Aは比較例1の触媒におけるPdの平均分布で
ある。Bは比較例1の触媒におけるTeの平均分布であ
る。Cは比較例1の触媒におけるPdのヒストグラムで
ある。
FIG. 2A is an average distribution of Pd in the catalyst of Comparative Example 1. B is the average distribution of Te in the catalyst of Comparative Example 1. C is a histogram of Pd in the catalyst of Comparative Example 1.

【図3】Aは比較例5の触媒におけるPdの平均分布で
ある。Bは比較例5の触媒におけるTeの平均分布であ
る。Cは比較例5の触媒におけるPdのヒストグラムで
ある。
3A is an average distribution of Pd in the catalyst of Comparative Example 5. FIG. B is the average distribution of Te in the catalyst of Comparative Example 5. C is a histogram of Pd in the catalyst of Comparative Example 5.

【図4】Aは実施例7の触媒におけるPdの平均分布で
ある。Bは実施例7の触媒におけるTeの平均分布であ
る。Cは実施例7の触媒におけるPdのヒストグラムで
ある。
FIG. 4A is an average distribution of Pd in the catalyst of Example 7. B is the average distribution of Te in the catalyst of Example 7. C is a histogram of Pd for the catalyst of Example 7.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (72)発明者 岩阪 洋司 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C07B 61/00 300 C07B 61/00 300 (72) Inventor Yoji Iwasaka 1 Tohocho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation Yokkaichi Office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 パラジウムとテルルを活性成分として無
機多孔体に担持した固体触媒の存在下に、共役ジエンを
カルボン酸及び分子状酸素と反応させて対応する不飽和
グリコールジエステルを製造する方法において、触媒と
して、X線マイクロアナライザー(EPMA)で測定さ
れた活性成分の担持分布において、担体表面から中心に
対する半径の30%の深さ迄の表層部に、触媒に担持さ
れた全パラジウムの80%以上が存在し、且つ、触媒に
担持された全テルルの75%以上が存在する触媒を用い
る事を特徴とする不飽和グリコールジエステルの製造方
法。
1. A method for producing a corresponding unsaturated glycol diester by reacting a conjugated diene with a carboxylic acid and molecular oxygen in the presence of a solid catalyst having palladium and tellurium as active components supported on an inorganic porous material, As a catalyst, in the distribution of active components measured by an X-ray microanalyzer (EPMA), at least 80% of the total palladium supported on the catalyst is deposited on the surface layer from the support surface to a depth of 30% of the radius from the center to the center. Characterized by the use of a catalyst in which is present and at least 75% of all tellurium supported on the catalyst is present.
【請求項2】 該触媒が、EPMAで測定された活性成
分の担持分布において、担体表面から中心に対する半径
の30%の深さ迄の表層部に存在するパラジウムの内、
テルル/パラジウム原子比が0.15から0.35まで
の範囲であるパラジウムの占める割合が50%以上であ
る請求項1の製造方法。
2. The catalyst according to claim 1, wherein the catalyst has a distribution of active components, as determined by EPMA, of palladium present in the surface layer from the surface of the support to a depth of 30% of the radius from the center to the center.
2. The method according to claim 1, wherein the proportion of palladium having a tellurium / palladium atomic ratio in the range of 0.15 to 0.35 is 50% or more.
【請求項3】 無機多孔体がシリカである請求項1又は
2に記載の製造方法。
3. The method according to claim 1, wherein the inorganic porous material is silica.
【請求項4】 無機多孔体の粒子径が1mm以上である
請求項1乃至3のいずれかに記載の製造方法。
4. The method according to claim 1, wherein the inorganic porous material has a particle diameter of 1 mm or more.
【請求項5】 共役ジエンがブタジエン、イソプレン又
はアルキル置換ブタジエンから選ばれる請求項1乃至4
のいずれかに記載の製造方法。
5. The conjugated diene is selected from butadiene, isoprene or alkyl-substituted butadiene.
The production method according to any one of the above.
【請求項6】 カルボン酸が酢酸である請求項1乃至5
のいずれかに記載の製造方法。
6. The method of claim 1, wherein the carboxylic acid is acetic acid.
The production method according to any one of the above.
【請求項7】 パラジウムとテルルを活性成分として無
機多孔体に担持したパラジウム−テルル系固体触媒であ
って、X線マイクロアナライザー(EPMA)で測定さ
れた活性成分の担持分布において、担体表面から中心に
対する半径の30%の深さ迄の表層部に、触媒に担持さ
れた全パラジウムの80%以上が存在し、且つ、触媒に
担持された全テルルの75%以上が存在し、EPMAで
測定された活性成分の担持分布において、担体表面から
中心に対する半径の30%の深さ迄の表層部に存在する
パラジウムの内、テルル/パラジウム原子比が0.15
から0.35までの範囲であるパラジウムの占める割合
が50%以上であるパラジウム−テルル系固体触媒。
7. A palladium-tellurium-based solid catalyst in which palladium and tellurium are supported on an inorganic porous material as active components, wherein the distribution of the active components measured by an X-ray microanalyzer (EPMA) indicates that the center of the active component is determined from the surface of the carrier. In the surface layer up to a depth of 30% of the radius with respect to, more than 80% of the total palladium supported on the catalyst is present and more than 75% of the total tellurium supported on the catalyst is present, measured by EPMA. Of the palladium present in the surface layer from the surface of the carrier to a depth of 30% of the radius with respect to the center, the tellurium / palladium atomic ratio is 0.15.
A palladium-tellurium solid catalyst in which the proportion of palladium in the range of from 0.5 to 0.35 is 50% or more.
JP28025697A 1996-10-16 1997-10-14 Process for producing unsaturated glycol diester Expired - Fee Related JP3858383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28025697A JP3858383B2 (en) 1996-10-16 1997-10-14 Process for producing unsaturated glycol diester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27356996 1996-10-16
JP8-273569 1996-10-16
JP28025697A JP3858383B2 (en) 1996-10-16 1997-10-14 Process for producing unsaturated glycol diester

Publications (2)

Publication Number Publication Date
JPH10175917A true JPH10175917A (en) 1998-06-30
JP3858383B2 JP3858383B2 (en) 2006-12-13

Family

ID=26550707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28025697A Expired - Fee Related JP3858383B2 (en) 1996-10-16 1997-10-14 Process for producing unsaturated glycol diester

Country Status (1)

Country Link
JP (1) JP3858383B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP2005013800A (en) * 2003-06-24 2005-01-20 Mitsubishi Chemicals Corp Solid-state catalyst and method for manufacturing oxidative addition product using it
JP2012024687A (en) * 2010-07-22 2012-02-09 Mitsubishi Chemicals Corp Method of preserving catalyst for production of carboxylic acid ester, and method for producing carboxylic acid ester
CN113210014A (en) * 2021-05-07 2021-08-06 南京工业大学 Application of supported L-proline catalyst in continuous flow chemistry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP4489222B2 (en) * 2000-01-17 2010-06-23 旭化成ケミカルズ株式会社 Acetic acid synthesis catalyst
JP2005013800A (en) * 2003-06-24 2005-01-20 Mitsubishi Chemicals Corp Solid-state catalyst and method for manufacturing oxidative addition product using it
JP2012024687A (en) * 2010-07-22 2012-02-09 Mitsubishi Chemicals Corp Method of preserving catalyst for production of carboxylic acid ester, and method for producing carboxylic acid ester
CN113210014A (en) * 2021-05-07 2021-08-06 南京工业大学 Application of supported L-proline catalyst in continuous flow chemistry

Also Published As

Publication number Publication date
JP3858383B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
KR100458785B1 (en) A two step gold addition method for preparing a vinyl acetate catalyst
US5571771A (en) Carrier catalyst, process for the production thereof, and use thereof for the preparation of vinyl acetate
JPH10503118A (en) Production method of silver catalyst
EP0839793A1 (en) Process for the production of vinyl acetate
AU3291800A (en) Catalysts for the gas-phase oxidation of ethylene and acetic acid to vinyl acetate and method for the production and use thereof
JPH0647281A (en) Catalyst and method for producing vinyl acetate
JP2009108094A (en) Method for preparing vinyl acetate utilizing catalyst comprising palladium, gold, and any of certain third metal
JPH10175917A (en) Production of unsaturated glycol diester
JP2012254446A (en) Method for producing metal-containing shell catalyst without intermediate calcining
EP0923986B1 (en) Silver catalyst, method for its production, and method for production of ethylene oxide
CZ291511B6 (en) Process for preparing a catalyst for synthesizing unsaturated esters
JPH0531533B2 (en)
US5777155A (en) Process for producing unsaturated glycol diester
JP2007245068A (en) NOBLE METAL-CONTAINING CATALYST AND PRODUCTION METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID USING IT
JP2005013800A (en) Solid-state catalyst and method for manufacturing oxidative addition product using it
JP3710944B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
EP0033589A1 (en) Method of preparing a catalyst for synthesizing unsaturated esters
JP4409021B2 (en) Vinyl acetate synthesis catalyst
JP5648520B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP4258199B2 (en) Method for producing acetic acid production catalyst
CA2218216A1 (en) Solid catalyst and process for producing unsaturated glycol diester using the same
JP4908332B2 (en) Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
Kunimori et al. Catalytic performance of egg white type Pt/Al2O3 catalyst in the oxidation of C3H8 and CO
JPH03275141A (en) Preparation of catalyst for production of unsaturated ester
FI113016B (en) High productivity shell impregnated catalyst for vinyl! acetate prodn.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees