JPH10174989A - Wastewater treatment method and microbe carrier - Google Patents

Wastewater treatment method and microbe carrier

Info

Publication number
JPH10174989A
JPH10174989A JP35371696A JP35371696A JPH10174989A JP H10174989 A JPH10174989 A JP H10174989A JP 35371696 A JP35371696 A JP 35371696A JP 35371696 A JP35371696 A JP 35371696A JP H10174989 A JPH10174989 A JP H10174989A
Authority
JP
Japan
Prior art keywords
hollow tubular
tubular plastic
carrier
microbial carrier
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35371696A
Other languages
Japanese (ja)
Inventor
Toru Miyajima
徹 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP35371696A priority Critical patent/JPH10174989A/en
Publication of JPH10174989A publication Critical patent/JPH10174989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide desiring shape of a microbe carrier made of a plastic to be used for a fluidized bed type biological wastewater treatment apparatus and provide a biological wastewater treatment method for which the microbe carrier is employed. SOLUTION: A microbe carrier 13 made of a hollow tubular plastic having the relation: outer diameter >= the tubular length: is used for a fluidized bed type biological wastewater treatment apparatus. The cross-section shape of the microbe carrier 13 is not restricted only to be circular but may be elliptical and rectangular. The desirable size of the microbe carrier is 1-10mm of both outer diameter and tubular length and the absolute specific gravity of the carrier is 0.8-1.5. In this fluidized bed type biological wastewater treatment apparatus, the treated water and the carrier can be efficiently separated from each other by a separator such as slits 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として流動床式
生物処理装置に使用される、その表面に微生物を付着さ
せ有機物の生分解・アンモニア態窒素の硝酸化・硝酸態
窒素の還元による脱窒反応等により汚染水を浄化するに
有効なプラスチック製微生物担体を使用した廃水処理方
法および微生物担体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used for a fluidized-bed biological treatment apparatus, and is used for biodegradation by attaching microorganisms to the surface thereof, biodegradation of organic substances, nitrification of ammonia nitrogen, and denitrification by reduction of nitrate nitrogen. The present invention relates to a wastewater treatment method and a microorganism carrier using a plastic microorganism carrier effective for purifying contaminated water by a reaction or the like.

【0002】[0002]

【従来の技術】廃水の処理方式の一つとして微生物担体
を槽内に流動させ、資化した微生物を微生物担体と共に
効率よく処理水と分離する流動床式生物処理方式が知ら
れ、該流動床式生物処理方式に用いられる微生物担体と
しては、砂・珊瑚・セラミック等の無機物、各種の架橋
樹脂から成る含水ゲル、ポリエチレン、ポリプロピレ
ン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレ
フタレート等のプラスチック製の微生物担体等が知られ
ている。
2. Description of the Related Art As one of wastewater treatment methods, there is known a fluidized bed biological treatment method in which a microorganism carrier is fluidized in a tank and assimilated microorganisms are efficiently separated from treated water together with the microorganism carrier. Microorganism carriers used in the biological treatment method include inorganic substances such as sand, coral, and ceramics, hydrogels composed of various crosslinked resins, and plastic microorganism carriers such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate. It has been known.

【0003】[0003]

【発明が解決しようとする課題】流動床方式の生物学的
廃水処理方法において、微生物担体を利用し廃水を処理
するにあたり、微生物担体と処理水を分離する手段とし
て重力を利用して比重差により分離する方法も知られて
はいるが効率が悪い。中身の詰まったペレットタイプの
プラスチック製微生物担体はプラスチック材料の使用効
率が悪く、比表面積を大きくした流動床方式のプラスチ
ック製微生物担体が望まれている。
SUMMARY OF THE INVENTION In a fluidized-bed biological wastewater treatment method, when treating wastewater using a microorganism carrier, gravity is used as a means for separating the microorganism carrier and the treated water by a specific gravity difference. A separation method is also known, but is inefficient. A plastic microbial carrier of a pellet type with a solid content has a low use efficiency of a plastic material, and a plastic microbial carrier of a fluidized bed type having a large specific surface area is desired.

【0004】[0004]

【課題を解決するための手段】本発明者は上記の課題に
鑑み、鋭意検討をおこなった結果、管長の小さい中空管
状のプラスチック製微生物担体が流動床方式用の微生物
担体として特に有効であり、スリット等のセパレーター
により微生物担体と処理水を効率良く分離することがで
きることを見いだし本発明を成すに至った。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies and as a result, a hollow tubular plastic microorganism carrier having a small tube length is particularly effective as a microorganism carrier for a fluidized bed system. The present inventors have found that a microorganism carrier and treated water can be efficiently separated by a separator such as a slit, and have accomplished the present invention.

【0005】本発明の請求項1の発明は、微生物の付着
した中空管状プラスチック製微生物担体を被処理水に接
触させ、プラスチック製微生物担体表面の微生物にて被
処理水中の汚染物質を除去したのち、該プラスチック製
微生物担体と処理水をスリット、多孔板あるいは網のい
ずれかより選ばれるセパレーターにより分離することを
特徴とする廃水の処理方法である。事により、プラスチ
ック製微生物担体の初期撥水性を抑制する事を特徴とす
るプラスチック担体の濡れ促進方法である。
According to the first aspect of the present invention, a microbial carrier made of hollow tubular plastic having microorganisms attached thereto is brought into contact with water to be treated, and the microorganisms on the surface of the plastic microbial carrier are used to remove contaminants in the water to be treated. A wastewater treatment method comprising separating the plastic microbial carrier and treated water by a separator selected from the group consisting of a slit, a perforated plate and a net. Thus, the method for promoting wetting of a plastic carrier is characterized by suppressing the initial water repellency of the plastic microorganism carrier.

【0006】本発明の請求項2の発明は、微生物の付着
した中空管状プラスチック製微生物担体を被処理水に接
触させ、プラスチック製微生物担体表面の微生物にて被
処理水中のBOD成分を除去したのち、該プラスチック
製微生物担体と処理水をスリットにより分離することを
特徴とする請求項1に記載の廃水の処理方法である。
[0006] The invention of claim 2 of the present invention is to provide a method of contacting a microbial carrier made of a hollow tubular plastic having microorganisms attached thereto with water to be treated and removing BOD components in the water to be treated by microorganisms on the surface of the plastic microbial carrier. The method for treating wastewater according to claim 1, wherein the plastic microorganism carrier and the treated water are separated by a slit.

【0007】本発明の請求項3の発明は、中空管状プラ
スチック製微生物担体が廃水処理槽内で浮遊流動する構
造の流動床式生物処理方法に用いることを特徴とする請
求項1ないし請求項2に記載の廃水の処理方法である。
[0007] The invention of claim 3 of the present invention is used in a fluidized bed biological treatment method having a structure in which a microbial carrier made of hollow tubular plastic floats and flows in a wastewater treatment tank. The method for treating wastewater described in 1. above.

【0008】本発明の請求項4の発明は、前記中空管状
プラスチック製微生物担体を好気性流動床式生物処理方
法に用いることを特徴とする請求項1ないし請求項3に
記載の廃水の処理方法である。
According to a fourth aspect of the present invention, there is provided the method for treating wastewater according to any one of the first to third aspects, wherein the microbial carrier made of hollow tubular plastic is used in an aerobic fluidized bed biological treatment method. It is.

【0009】本発明の請求項5の発明は、前記中空管状
プラスチック製微生物担体を嫌気性流動床式生物処理方
法に用いることを特徴とする請求項1ないし請求項3に
記載の廃水の処理方法である。
The invention according to claim 5 of the present invention is characterized in that the hollow tubular plastic microbial carrier is used in an anaerobic fluidized bed biological treatment method, and the wastewater treatment method according to any one of claims 1 to 3, wherein It is.

【0010】本発明の請求項6の発明は、中空管状プラ
スチック製微生物担体の外径と管長のサイズの関係が外
径≧管長である中空管状プラスチック製微生物担体を用
いることを特徴とする請求項1ないし請求項5に記載の
廃水の処理方法である。
[0010] The invention according to claim 6 of the present invention is characterized in that a hollow tubular plastic microbial carrier is used in which the relationship between the outer diameter of the hollow tubular plastic microbial carrier and the tube length is such that the outer diameter is greater than or equal to the tube length. A method for treating wastewater according to any one of claims 1 to 5.

【0011】本発明の請求項7の発明は、中空管状プラ
スチック製微生物担体の外径と管長のサイズの関係が外
径≧管長であることを特徴とする微生物担体である。
[0011] The invention of claim 7 of the present invention is a microorganism carrier characterized in that the relationship between the outer diameter and the tube length of the hollow tubular plastic microorganism carrier is such that outer diameter ≧ tube length.

【0012】本発明の請求項8の発明は、中空管状プラ
スチック製微生物担体の内径と管長のサイズの関係が内
径≧管長であることを特徴とする請求項7に記載の微生
物担体である。
The invention according to claim 8 of the present invention is the microorganism carrier according to claim 7, wherein the relationship between the inner diameter of the hollow tubular plastic microorganism carrier and the size of the tube length satisfies the relationship of inner diameter ≧ tube length.

【0013】本発明の請求項9の発明は、中空管状プラ
スチック製微生物担体の材質がポリエチレン、ポリプロ
ピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレン
テレフタレートあるいはこれらの誘導体から成る事を特
徴とする請求項7ないし請求項8に記載の微生物担体で
ある。
The invention of claim 9 of the present invention is characterized in that the material of the microbial carrier made of hollow tubular plastic is made of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate or derivatives thereof. Item 10. A microorganism carrier according to item 8.

【0014】本発明の請求項10の発明は、中空管状プ
ラスチック製微生物担体の外径と管長のサイズがともに
1mm〜10mmであることを特徴とする請求項7ない
し請求項9に記載の微生物担体である。
According to a tenth aspect of the present invention, the microbial carrier according to any one of the seventh to ninth aspects, wherein both the outer diameter and the tube length of the microbial carrier made of a hollow tubular plastic are 1 mm to 10 mm. It is.

【0015】本発明の請求項11の発明は、中空管状プ
ラスチック製微生物担体の真比重が0.8〜1.5であ
ることを特徴とする請求項7ないし請求項10に記載の
微生物担体である。
The invention according to claim 11 of the present invention is the microorganism carrier according to claims 7 to 10, wherein the true specific gravity of the hollow tubular plastic microorganism carrier is 0.8 to 1.5. is there.

【0016】本発明の請求項12の発明は、中空管状プ
ラスチック製微生物担体の真比重が0.95〜1.05
であることを特徴とする請求項7ないし請求項11に記
載の微生物担体である。
According to a twelfth aspect of the present invention, the true specific gravity of the microbial carrier made of hollow tubular plastic is 0.95 to 1.05.
The microorganism carrier according to any one of claims 7 to 11, wherein

【0017】本発明の請求項13の発明は、中空管状プ
ラスチック製微生物担体が流動床式生物処理用微生物担
体であることを特徴とする請求項7ないし請求項12に
記載の微生物担体である。
A thirteenth aspect of the present invention is the microorganism carrier according to any one of the seventh to twelfth aspects, wherein the microbial carrier made of a hollow tubular plastic is a microbial carrier for a fluidized bed type biological treatment.

【0018】本発明の請求項14の発明は、中空管状プ
ラスチック製微生物担体の表面に凹凸があることを特徴
とする請求項7ないし請求項13に記載の微生物担体で
ある。
According to a fourteenth aspect of the present invention, there is provided the microorganism carrier according to any one of the seventh to thirteenth aspects, wherein the surface of the microbial carrier made of a hollow tubular plastic has irregularities.

【0019】本発明の請求項15の発明は、中空管状プ
ラスチック製微生物担体中に破裂気泡、鉱物質粉末ある
いは有機質粉末から選ばれる非プラスチック製物質を有
することにより担体表面に凹凸があることを特徴とする
請求項7ないし請求項14に記載の微生物担体である。
A fifteenth aspect of the present invention is characterized in that the surface of the hollow tubular plastic microbial carrier has irregularities due to a non-plastic material selected from the group consisting of bursting bubbles, mineral powder and organic powder. The microorganism carrier according to any one of claims 7 to 14.

【0020】[0020]

【発明の実施の形態】本発明の第一の限定は、微生物の
付着した中空管状プラスチック製微生物担体を被処理水
に接触させ、プラスチック製微生物担体表面の微生物に
て被処理水中の汚染物質を除去したのち、該プラスチッ
ク製微生物担体と処理水をスリット、多孔板あるいは網
のいずれかより選ばれるセパレーターにより分離するこ
とを特徴とする廃水の処理方法である。本発明の第二の
限定は請求項1の廃水の処理方法において、微生物の付
着した中空管状プラスチック製微生物担体を被処理水に
接触させ、プラスチック製微生物担体表面の微生物にて
被処理水中のBOD成分を除去したのち、該プラスチッ
ク製微生物担体と処理水をスリットにより分離すること
を特徴とする。本発明の第三の限定は請求項1ないし請
求項2の廃水の処理方法において、中空管状プラスチッ
ク製微生物担体が廃水処理槽内で浮遊流動する構造の流
動床式生物処理方法に用いることを特徴とする。本発明
の第四の限定は請求項1ないし請求項3の廃水の処理方
法において、前記中空管状プラスチック製微生物担体を
好気性流動床式生物処理方法に用いることを特徴とす
る。本発明の第五の限定は請求項1ないし請求項3の廃
水の処理方法において、前記中空管状プラスチック製微
生物担体を嫌気性流動床式生物処理方法に用いることを
特徴とする。本発明の第六の限定は請求項1ないし請求
項5の廃水の処理方法において、中空管状プラスチック
製微生物担体の外径と管長のサイズの方法関係が外径≧
管長である中空管状プラスチック製微生物担体を用いる
ことを特徴とする。本発明の第七の限定は、中空管状プ
ラスチック製微生物担体の外径と管長のサイズの関係が
外径≧管長であることを特徴とする微生物担体である。
本発明の第八の限定は請求項7の微生物担体において、
中空管状プラスチック製微生物担体の内径と管長のサイ
ズの関係が内径≧管長であることを特徴とする。本発明
の第九の限定は請求項7ないし請求項8の微生物担体に
おいて、中空管状プラスチック製微生物担体の材質がポ
リエチレン、ポリプロピレン、ポリスチレン、ポリ塩化
ビニル、ポリエチレンテレフタレートあるいはこれらの
誘導体から成る事を特徴とする。本発明の第十の限定は
請求項7ないし請求項9の微生物担体において、中空管
状プラスチック製微生物担体の外径と管長のサイズがと
もに1mm〜10mmであることを特徴とする。本発明
の第十一の限定は請求項7ないし請求項10の微生物担
体において、中空管状プラスチック製微生物担体の真比
重が0.8〜1.5であることを特徴とする。本発明の
第十二の限定は請求項7ないし請求項11の微生物担体
において、中空管状プラスチック製微生物担体の真比重
が0.95〜1.05であることを特徴とする。本発明
の第十三の限定は請求項7ないし請求項12の微生物担
体において、中空管状プラスチック製微生物担体が流動
床式生物処理用微生物担体であることを特徴とする。本
発明の第十四の限定は請求項7ないし請求項13の微生
物担体において、中空管状プラスチック製微生物担体の
表面に凹凸があることを特徴とする。本発明の第十五の
限定は請求項7ないし請求項14の微生物担体におい
て、中空管状プラスチック製微生物担体中に破裂気泡、
鉱物質粉末あるいは有機質粉末から選ばれる非プラスチ
ック製物質を有することにより担体表面に凹凸があるこ
とを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION A first limitation of the present invention is that a microbial carrier made of hollow tubular plastic having microorganisms attached thereto is brought into contact with water to be treated, and contaminants in the water to be treated are removed by microorganisms on the surface of the microbial carrier made of plastic. A method for treating wastewater, comprising removing the plastic microbial carrier and treated water after removal by a separator selected from any of slits, perforated plates and nets. A second limitation of the present invention is that in the method for treating wastewater according to claim 1, the microbial carrier made of hollow tubular plastic having microorganisms attached thereto is brought into contact with the water to be treated, and the BOD in the water to be treated is treated with the microorganisms on the surface of the plastic microorganism carrier. After removing the components, the plastic microbial carrier and the treated water are separated by a slit. A third limitation of the present invention is that, in the method for treating wastewater according to claim 1 or claim 2, the method is used for a fluidized bed biological treatment method in which a hollow tubular plastic microorganism carrier floats and flows in a wastewater treatment tank. And A fourth limitation of the present invention is that in the method for treating wastewater according to claims 1 to 3, the hollow tubular plastic microbial carrier is used in an aerobic fluidized bed biological treatment method. A fifth limitation of the present invention is the method for treating wastewater according to any one of claims 1 to 3, wherein the hollow tubular plastic microbial carrier is used in an anaerobic fluidized bed biological treatment method. A sixth limitation of the present invention is that, in the method for treating wastewater according to claims 1 to 5, the method relationship between the outer diameter of the hollow tubular plastic microorganism carrier and the size of the tube length is outer diameter ≧
It is characterized by using a microbial carrier made of a hollow tubular plastic having a tube length. A seventh limitation of the present invention is a microorganism carrier characterized in that the relationship between the outer diameter and the tube length of the hollow tubular plastic microorganism carrier is such that outer diameter ≧ tube length.
An eighth limitation of the present invention is the microorganism carrier according to claim 7,
The relationship between the inner diameter of the microbial carrier made of hollow tubular plastic and the size of the tube length is characterized in that the inner diameter ≧ the tube length. A ninth limitation of the present invention is that in the microorganism carrier according to claim 7 or claim 8, the material of the hollow tubular plastic microorganism carrier is made of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate or a derivative thereof. And According to a tenth limitation of the present invention, in the microorganism carrier according to any one of claims 7 to 9, the outer diameter and the tube length of the hollow tubular plastic microorganism carrier are both 1 mm to 10 mm. An eleventh limitation of the present invention is characterized in that, in the microorganism carrier according to any one of claims 7 to 10, the true specific gravity of the hollow tubular plastic microorganism carrier is 0.8 to 1.5. A twelfth limitation of the present invention is the microorganism carrier according to any one of claims 7 to 11, wherein the true specific gravity of the hollow tubular plastic microorganism carrier is 0.95 to 1.05. A thirteenth limitation of the present invention is the microorganism carrier according to any one of claims 7 to 12, characterized in that the microorganism carrier made of hollow tubular plastic is a microorganism carrier for fluidized bed biological treatment. A fourteenth limitation of the present invention is the microorganism carrier according to any one of claims 7 to 13, wherein the surface of the hollow tubular plastic microorganism carrier has irregularities. The fifteenth limitation of the present invention is the microorganism carrier according to any one of claims 7 to 14, wherein bursting bubbles are contained in the hollow tubular plastic microorganism carrier,
The carrier is characterized by having irregularities on its surface by having a non-plastic material selected from mineral powder or organic powder.

【0021】本発明の廃水処理方法は中空管状プラスチ
ック製微生物担体により廃水処理を行い、スリット等の
セパレーターにより処理水と該微生物担体を分離するこ
とを特徴とし、該中空管状プラスチック製微生物担体を
廃水処理槽内で浮遊流動する構造の流動床式生物処理方
法に用いる事を特徴とする。 多孔板、網等に較べスリ
ットは強度的に最も丈夫な構造を持つことから選ばれ、
中空管状プラスチック製微生物担体は中身の詰まったペ
レット状プラスチック製微生物担体に較べ、見掛け外寸
が大きくなることからスリット等のセパレーターにより
分離しやすく、流動性に優れ管内面にも微生物が繁殖す
ることから重量あたりの有効表面積が大きくなり処理効
率に優れる利点がある。 中空管状プラスチック製微生
物担体の外径と管長の間に外径≧管長の関係があると、
管内面に被処理水が流通し易くなるばかりではなく、管
端末がスリット等にぶつかってスリット面を清掃しスラ
イム等を除去しスリット面を清浄にする効果が発揮され
る。 外径<管長のばあいは管の外周部がスリット等に
ぶつかるので(エッジを持った管端末ではなく丸みを帯
びた外周部がスリット等にぶつかるので)スリット面を
清浄にする効果は、あまり期待できない。 担体の浮遊
流動にはガス攪拌が多用され、空気等の酸化性ガスを吹
き込む好気性流動床式生物処理方法が最も一般的ではあ
るが、窒素酸化物を還元する脱窒処理やメタン発酵の如
き嫌気性流動床式生物処理方法にも嫌気性ガスを吹き込
む方法で対応でき、ガス攪拌以外にもパドル等による機
械攪拌により担体の浮遊流動を行うことができる。 担
体の浮遊流動は連続的に常時行うのが一般的ではある
が、間欠的に時間を区切って浮遊流動を行うことも可能
である。 中空管の断面形状は円ばかりではなく、楕円
あるいは角状であっても本質的に本発明の実施を妨げな
い。
[0021] The wastewater treatment method of the present invention is characterized in that wastewater treatment is performed using a hollow tubular plastic microbial carrier, and the treated water and the microbial carrier are separated by a separator such as a slit. It is characterized in that it is used in a fluidized bed biological treatment method having a structure that floats and flows in a treatment tank. The slit is selected because it has the strongest structure in terms of strength, compared to a perforated plate, net, etc.
The hollow tubular plastic microbial carrier has a larger apparent outer size than the solid plastic microbial carrier, so it can be easily separated by a separator such as a slit, and has excellent fluidity and microorganisms can propagate on the inner surface of the tube. Therefore, there is an advantage that the effective surface area per weight increases and the processing efficiency is excellent. When there is a relationship of outer diameter ≧ tube length between the outer diameter and tube length of the hollow tubular plastic microorganism carrier,
Not only does the water to be treated easily flow through the inner surface of the pipe, but also the pipe end hits the slit or the like to clean the slit face, remove slime or the like, and exert the effect of cleaning the slit face. If the outer diameter is smaller than the pipe length, the outer circumference of the pipe will hit the slits, etc. (because the rounded outer circumference will hit the slits instead of the pipe end with the edge), the effect of cleaning the slit surface is not so good. Can't expect. The aerobic fluidized bed biological treatment method in which oxidizing gas such as air is blown is the most common, while gas agitation is frequently used for the floating flow of the carrier, but such methods as denitrification treatment that reduces nitrogen oxides and methane fermentation are used. An anaerobic fluidized bed biological treatment method can be applied by a method of blowing anaerobic gas, and the carrier can be floated and flown by mechanical stirring using a paddle or the like in addition to gas stirring. Although the floating flow of the carrier is generally performed continuously continuously, it is also possible to perform the floating flow intermittently with a time interval. Even if the cross-sectional shape of the hollow tube is not only a circle but also an ellipse or a square shape, it does not essentially hinder the practice of the present invention.

【0022】本発明の微生物担体は前記廃水処理方法等
に用いられる、外径と管長の間に外径≧管長の関係があ
る中空管状プラスチック製微生物担体である。 前述の
スリット面を清浄にする効果は該関係によりもたらされ
る。 内径と管長の間に内径≧管長の関係がある中空管
状プラスチック製微生物担体は管内面に被処理水が流通
し易くなる表面積増加効果が、より優れたものと成り、
当然外径>管長と成る為、スリット面を清浄にする効果
も期待でき、前述の限定をよりシビアにしたものであ
る。 中空管状プラスチック製微生物担体の材質は強度
の高いプラスチック材料が選ばれ、具体的にはポリエチ
レン、ポリプロピレン、ポリスチレン、ポリ塩化ビニ
ル、ポリエチレンテレフタレート等が望ましく、これら
を含有する廃プラスチック製であってもよい。 スリッ
ト等による分離性および流動性の二点を勘案して中空管
状プラスチック製微生物担体のサイズは外径・管長とも
に1mm〜10mmであることが望ましく、1mm未満
ではスリットによる分離が困難と成り、10mmを超え
ると流動性が悪くなる。 中空管状プラスチック製微生
物担体の真比重は水の比重に近い程流動性がよく、0.
8未満あるいは1.5を超える場合は流動性が悪くな
る。 特に流動性の良い範囲は0.95〜1.05の真
比重である。中空管状プラスチック製微生物担体の表面
は凹凸の有るほど微生物が付着固定し易く、凹凸を付け
る方法としては請求項15に規定した様な非プラスチッ
ク製物質を共存させることにより表面のざらついた状態
をつくることができる。 破裂気泡は成形前のプラスチ
ックに気泡を混入させ成形射出すると表面付近の気泡が
破裂して成形されるものであり、気泡を形成するガスの
種類は任意に選ぶことができる。 破裂気泡以外に表面
をざらつかせる混入物としてはガラス粉末、微砂、粘土
等の鉱物質あるいはパルプ、おがくず、石炭末等の有機
質を挙げることができる。
The microbial carrier of the present invention is a microbial carrier made of a hollow tubular plastic having a relation of outer diameter ≧ tube length between outer diameter and tube length, which is used in the wastewater treatment method and the like. The aforementioned effect of cleaning the slit surface is brought about by the relationship. The microbial carrier made of hollow tubular plastic having a relationship of inner diameter ≧ pipe length between the inner diameter and the pipe length has a more excellent surface area increasing effect in which the water to be treated easily flows on the inner surface of the pipe,
Of course, since the outer diameter is larger than the pipe length, an effect of cleaning the slit surface can be expected, and the above-mentioned limitation is made more severe. The material of the microbial carrier made of hollow tubular plastic is selected from high-strength plastic materials. Specifically, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, and the like are desirable, and waste plastic containing these may be used. . Considering the two points of separation and fluidity by a slit or the like, the size of the microbial carrier made of hollow tubular plastic is preferably 1 mm to 10 mm for both the outer diameter and the tube length. If it exceeds, the fluidity deteriorates. The true specific gravity of the microbial carrier made of hollow tubular plastic is closer to the specific gravity of water, the better the fluidity is.
If it is less than 8 or more than 1.5, the fluidity will be poor. In particular, a range with good fluidity is a true specific gravity of 0.95 to 1.05. The surface of the microbial carrier made of a hollow tubular plastic is more easily adhered and fixed by microbes as it has irregularities. As a method for forming irregularities, a rough surface is created by coexisting a non-plastic material as defined in claim 15. be able to. Ruptured air bubbles are formed by mixing air bubbles into plastic before molding and molding and injecting the air bubbles near the surface to be exploded, and the type of gas forming the air bubbles can be arbitrarily selected. Examples of the contaminants other than the burst bubbles that roughen the surface include mineral substances such as glass powder, fine sand and clay, and organic substances such as pulp, sawdust and coal powder.

【0023】(実施例)以下、図面を参照して、この発
明による廃水処理方法に用いられる生物処理装置におけ
る発明の実施例を詳述する。 図1はこの発明による廃
水の生物処理装置の実施例を示す断面図、図2は図1の
廃水の生物処理装置の平面図、図3は図1の生物処理装
置に取り付けたスリット等のセパレーターの1実施例を
示す断面図、図4はスリットの1実施例を示す断面図で
ある。
(Embodiment) An embodiment of the present invention in a biological treatment apparatus used in the wastewater treatment method according to the present invention will be described below in detail with reference to the drawings. 1 is a sectional view showing an embodiment of a biological treatment apparatus for wastewater according to the present invention, FIG. 2 is a plan view of the biological treatment apparatus for wastewater shown in FIG. 1, and FIG. 3 is a separator such as a slit attached to the biological treatment apparatus shown in FIG. FIG. 4 is a cross-sectional view showing one embodiment of the slit.

【0024】この廃水の生物処理装置は、FRP、鉄
鋼、ステンレス鋼、コンクリート等の材料から作られて
いる曝気槽1を有している。 曝気槽1は曝気室2を構
成し、廃水14を曝気室2内に供給する廃水流入口3
と、曝気室2から処理水15を排出させる流出口5を有
し、曝気室2内で微生物担体(中空管状プラスチック
製)13と共に廃水14を浄化して処理水15にするも
のである。 曝気室2内には、廃水14および微生物担
体13を曝気室2内で流動させるため、ガス供給ブロワ
12からガス管11およびガスチューブ6を通じてガス
が送り込まれるディフューザーとしての散気管4が設置
されている。 散気管4はガスチューブ6の先端に取り
付けられ、ガスチューブ6を曝気室2内に垂下させるこ
とによって最適位置に設置できる。 曝気室2に隣接し
て流出トラフ8が設けられている。 流出トラフ8に
は、越流隔壁9が設けられていると共に、排水管10が
設けられている。 流出トラフ8は、流出口5を通過し
た処理水15を受入れ、越流隔壁9を越流した処理水1
5を排水管10を通じて排出する。
This wastewater biological treatment apparatus has an aeration tank 1 made of a material such as FRP, steel, stainless steel, concrete and the like. The aeration tank 1 forms an aeration chamber 2, and a wastewater inlet 3 for supplying wastewater 14 into the aeration chamber 2.
And an outlet 5 for discharging the treated water 15 from the aeration chamber 2. The wastewater 14 is purified together with the microorganism carrier (made of hollow tubular plastic) 13 into the treated water 15 in the aeration chamber 2. In the aeration chamber 2, an aeration pipe 4 as a diffuser through which gas is sent from a gas supply blower 12 through a gas pipe 11 and a gas tube 6 is provided to flow the wastewater 14 and the microorganism carrier 13 in the aeration chamber 2. I have. The air diffuser 4 is attached to the tip of the gas tube 6, and can be installed at an optimum position by hanging the gas tube 6 into the aeration chamber 2. An outflow trough 8 is provided adjacent to the aeration chamber 2. The outflow trough 8 is provided with an overflow partition 9 and a drain pipe 10. The outflow trough 8 receives the treated water 15 that has passed through the outlet 5, and the treated water 1 that has overflowed the overflow partition 9.
5 is discharged through a drain pipe 10.

【0025】この廃水の生物処理装置は、特に、流出口
5に微生物担体13と処理水15を分離するスリット
(セパレーターの代表である)7が設けられていること
を特徴とする。 スリット7は微生物担体13と処理水
15とを分離し、微生物担体13を曝気室2に滞留さ
せ、処理水15を流出口5から排出する機能を有する。
また流出トラフ8は、スリット7を通過した処理水15
を受入れ、越流隔壁9を流出した処理水15を排水管1
0を通じて排出する。 また、曝気室2内には、散気管
4から噴射される水泡の流動作用により流出口5のスリ
ット7の領域では廃水14と微生物担体13がスリット
7に衝突する状態で曝気室2内を流動する。 散気管4
から曝気室2内へ散気されるガスは、空気、N2 ガス、
メタンガス等であり、好気性処理、嫌気性脱窒処理、嫌
気性消化処理等の廃水の処理形態によって選定されるも
のである。
The wastewater biological treatment apparatus is characterized in that a slit (representative of a separator) 7 for separating the microorganism carrier 13 and the treated water 15 is provided at the outlet 5. The slit 7 has a function of separating the microorganism carrier 13 and the treated water 15, keeping the microorganism carrier 13 in the aeration chamber 2, and discharging the treated water 15 from the outlet 5.
Further, the outflow trough 8 is composed of the treated water 15 passing through the slit 7.
And the treated water 15 flowing out of the overflow bulkhead 9 is drained into the drain pipe 1.
Discharge through 0. In the aeration chamber 2, the wastewater 14 and the microorganism carrier 13 flow through the aeration chamber 2 in a state where the wastewater 14 and the microorganism carrier 13 collide with the slit 7 in the area of the slit 7 of the outlet 5 due to the flow action of water bubbles injected from the diffusion pipe 4. I do. Diffuser 4
The gas diffused into the aeration chamber 2 from the air is air, N 2 gas,
It is methane gas or the like, and is selected depending on the type of wastewater treatment such as aerobic treatment, anaerobic denitrification treatment, and anaerobic digestion treatment.

【0026】この廃水の生物処理装置では、スリット7
は、流出口5の縁部にネジ、ボルト等の固着手段21で
取付け取外し可能に固定されている。 スリット7は、
特に、微生物担体13と処理水15との分離効果を高め
るため、曝気室2内の液面に対して垂直方向に順次並列
に配置されている。 また、スリット7は図4に示すよ
うに、曝気槽1内側すなわち曝気室2側が鋭角ΘE のエ
ッジ18に形成され、曝気室2側から外側の流出トラフ
8側へ通路断面積が大きくなるような断面台形の格子1
7に形成されている。 ここに述べた生物処理装置は単
独で使用してもよく、複数を直列に配して処理効率を上
げることもでき、複数を直列に配する場合は各曝気室間
にセパレーターを有する仕切り板を設けるだけでもよ
い。
In the wastewater biological treatment apparatus, the slit 7
Is detachably attached to the edge of the outlet 5 by fixing means 21 such as screws and bolts. The slit 7
In particular, in order to enhance the separation effect between the microorganism carrier 13 and the treated water 15, they are sequentially arranged in parallel in the direction perpendicular to the liquid level in the aeration chamber 2. The slit 7 as shown in FIG. 4, so that the aeration tank 1 inner or aeration chamber 2 side is formed in the edge 18 of the acute angle theta E, cross-sectional area increases from the aeration chamber 2 side to the outside of the outlet trough 8 side Lattice with trapezoidal cross section 1
7 is formed. The biological treatment device described here may be used alone, or a plurality of treatment units may be arranged in series to increase the treatment efficiency. It may just be provided.

【0027】この廃水の生物処理装置を用いて製紙会社
の凝集処理水を用いて下水道放流前のBODカットを好
気性生物処理を行なった結果を次に示す。スリット間隙
が2mmのスリット7をセパレーターとし、微生物担体
として破裂気泡により表面をざらつかせたポリプロピレ
ン製中空管状の2種の微生物担体を試験に供した。 微
生物担体1は外径4mm内径3mm管長3mmの円筒状
である。 微生物担体2は外径4mm内径3mm管長5
mmの円筒状である。 両者の真比重は0.97であっ
た。 比較例として内部に独立気泡とガラス粉末を含有
するポリプロピレン製の真比重0.99、外径4mm管
長5mmの円柱状の微生物担体3を合わせて試験に供し
た。評価は前記凝集処理水(BOD100ppm近傍)
のBODカット率が60%を維持できるBOD容積負荷
を試験開始1ケ月後および3ケ月後において各担体につ
いて求めた。担体添加量の曝気槽に対するに対する見掛
け容積率は15%である。1ケ月後のBOD容積負荷
は、微生物担体1で4Kg/m3 、微生物担体2で3.
2Kg/m3 、微生物担体3で2Kg/m3 であった。
1ケ月後の状態ではスリット7にスライムの付着は認
められなかった。3ケ月後のBOD容積負荷は、微生物
担体1で4Kg/m3 、微生物担体2で2.5Kg/m
3 、微生物担体3で2Kg/m3 であった。 3ケ月後
の状態で微生物担体1ではスリット7にスライムの付着
は認められなかったが微生物担体2および微生物担体3
の装置ではスリット7にスライムが付着し定期的な洗浄
が必要であった。
The results of aerobic biological treatment of the BOD cut before discharge into the sewer using the wastewater treatment equipment of the paper company using this wastewater biological treatment apparatus are shown below. Two types of polypropylene hollow tubular microbial carriers whose surfaces were roughened by bursting bubbles were used as the microbial carriers as the microbial carriers, with the slit 7 having a slit gap of 2 mm as a separator. The microorganism carrier 1 has a cylindrical shape with an outer diameter of 4 mm, an inner diameter of 3 mm, and a tube length of 3 mm. Microbial carrier 2 has an outer diameter of 4 mm, an inner diameter of 3 mm, and a tube length of 5
mm. The true specific gravity of both was 0.97. As a comparative example, a test was conducted by combining a column-shaped microorganism carrier 3 having a true specific gravity of 0.99 made of polypropylene containing closed cells and glass powder and having an outer diameter of 4 mm and a tube length of 5 mm. Evaluation is based on the agglomerated water (around 100 ppm BOD)
The BOD volume load that can maintain the BOD cut ratio of 60% was determined for each carrier 1 month and 3 months after the start of the test. The apparent volume ratio of the added amount of the carrier to the aeration tank is 15%. The BOD volume load after one month was 4 kg / m 3 for the microorganism carrier 1 and 3 kg for the microorganism carrier 2.
It was 2 kg / m 3 for the microorganism carrier 3 and 2 kg / m 3 .
One month later, no slime was attached to the slit 7. The BOD volume load after 3 months was 4 kg / m 3 for microorganism carrier 1 and 2.5 kg / m 3 for microorganism carrier 2.
3. The microbial carrier 3 had a weight of 2 kg / m 3 . Three months later, no slime was adhered to the slit 7 in the microbial carrier 1 but the microbial carrier 2 and the microbial carrier 3
In the apparatus described above, slime adhered to the slit 7 and periodic cleaning was required.

【0028】[0028]

【発明の効果】中空管状微生物担体はスリットによりき
れいに分離され、長期使用においても損傷は認められ
ず、特に外径≧管長の微生物担体1においては3ケ月後
も高度の浄化能力を維持すると共にスリットに対するス
ライム付着の防止にも有効であった。 中空管状微生物
担体は材料費が安く経済的であるうえに、その比表面積
が大きなことから真比重が水より離れた状態であっても
ペレット状品にくらべて流動性の確保が容易である利点
を持つ。 本発明に掲げた中空管状微生物担体は、それ
を利用した廃水処理方法を効率よく維持し、その費用も
安価であることから経済的効果が大きい。
According to the present invention, the hollow tubular microbial carrier is clearly separated by the slit, and no damage is observed even during long-term use. Particularly, in the case of the microbial carrier 1 having an outer diameter ≧ tube length, a high purification ability is maintained even after 3 months and the slit is maintained. It was also effective in preventing slime from adhering. Hollow tubular microbial carriers are economical because of their low material costs, and their large specific surface area makes it easier to ensure fluidity than pellets even when the true specific gravity is farther from water. have. The hollow tubular microbial carrier according to the present invention has a great economic effect because it efficiently maintains a wastewater treatment method using the same and is inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による廃水の生物処理装置の一実施例
を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a biological treatment apparatus for wastewater according to the present invention.

【図2】図1の廃水の生物処理装置の上面図である。FIG. 2 is a top view of the biological treatment apparatus for wastewater shown in FIG. 1;

【図3】図1の廃水の生物処理装置に組み込んだスリッ
トを示す断面図である。
FIG. 3 is a sectional view showing a slit incorporated in the wastewater biological treatment apparatus of FIG. 1;

【図4】図1の廃水の生物処理装置におけるスリットの
一実施例を示す断面図である。
FIG. 4 is a cross-sectional view showing one embodiment of a slit in the wastewater biological treatment apparatus of FIG.

【符号の説明】[Explanation of symbols]

1.曝気槽 2.曝気室 3.廃水供給口 4.散気管 5.流出口 6.ガスチューブ 7.スリット 8.流出トラフ 9.越流隔壁 10.排水管 11.ガス管 12.ガス供給ブロワ 13.微生物担体 14.廃水 15.処理水 17.格子 18.エッジ 1. Aeration tank 2. Aeration chamber 3. Wastewater supply port 4. Air diffuser 5. Outlet 6. Gas tube 7. Slit 8. Spill trough 9. Overflow bulkhead 10. Drain pipe 11. Gas pipe 12. Gas supply blower 13. Microbial carrier 14. Wastewater 15. Treated water 17. Lattice 18. Edge

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 微生物の付着した中空管状プラスチック
製微生物担体を被処理水に接触させ、プラスチック製微
生物担体表面の微生物にて被処理水中の汚染物質を除去
したのち、該プラスチック製微生物担体と処理水をスリ
ット、多孔板あるいは網のいずれかより選ばれるセパレ
ーターにより分離することを特徴とする廃水の処理方
法。
1. A microbial carrier made of hollow tubular plastic having microorganisms attached thereto is brought into contact with water to be treated, and microorganisms on the surface of the microbial carrier made of plastic remove contaminants in the water to be treated. A method for treating wastewater, wherein water is separated by a separator selected from a slit, a perforated plate and a net.
【請求項2】 微生物の付着した中空管状プラスチック
製微生物担体を被処理水に接触させ、プラスチック製微
生物担体表面の微生物にて被処理水中の汚染物成分を除
去したのち、該プラスチック製微生物担体と処理水をス
リットにより分離することを特徴とする請求項1に記載
の廃水の処理方法。
2. A microbial carrier made of hollow tubular plastic to which microorganisms have adhered is brought into contact with water to be treated, and microorganisms on the surface of the microbial carrier made of plastic remove contaminant components in the water to be treated. The method for treating wastewater according to claim 1, wherein the treated water is separated by a slit.
【請求項3】 中空管状プラスチック製微生物担体が廃
水処理槽内で浮遊流動する構造の流動床式生物処理方法
に用いることを特徴とする請求項1ないし請求項2に記
載の廃水の処理方法。
3. The method for treating wastewater according to claim 1, wherein the microorganism support made of hollow tubular plastic is used in a fluidized bed biological treatment method having a structure in which the microorganism carrier floats and flows in a wastewater treatment tank.
【請求項4】 前記中空管状プラスチック製微生物担体
を、好気性流動床式生物処理方法に用いることを特徴と
する請求項1ないし請求項3に記載の廃水の処理方法。
4. The method for treating wastewater according to claim 1, wherein the microbial carrier made of hollow tubular plastic is used in an aerobic fluidized bed biological treatment method.
【請求項5】 前記中空管状プラスチック製微生物担体
を、嫌気性流動床式生物処理方法に用いることを特徴と
する請求項1ないし請求項3に記載の廃水の処理方法。
5. The method for treating wastewater according to claim 1, wherein the microbial carrier made of hollow tubular plastic is used for an anaerobic fluidized bed biological treatment method.
【請求項6】 中空管状プラスチック製微生物担体の外
径と管長のサイズの関係が外径≧管長である中空管状プ
ラスチック製微生物担体を用いることを特徴とする請求
項1ないし請求項5に記載の廃水の処理方法。
6. The microbial carrier made of hollow tubular plastic according to claim 1, wherein the relationship between the outer diameter of the microbial carrier made of hollow tubular plastic and the size of the tube length is such that outer diameter ≧ tube length. Wastewater treatment method.
【請求項7】 中空管状プラスチック製微生物担体の外
径と管長のサイズの関係が外径≧管長であることを特徴
とする微生物担体。
7. A microbial carrier characterized in that the relationship between the outer diameter and the tube length of the hollow tubular plastic microbial carrier is such that outer diameter ≧ tube length.
【請求項8】 中空管状プラスチック製微生物担体の内
径と管長のサイズの関係が内径≧管長であることを特徴
とする請求項7に記載の微生物担体。
8. The microorganism carrier according to claim 7, wherein the relationship between the inner diameter of the hollow tubular plastic microorganism carrier and the size of the tube length is: inner diameter ≧ tube length.
【請求項9】 中空管状プラスチック製微生物担体の材
質がポリエチレン、ポリプロピレン、ポリスチレン、ポ
リ塩化ビニル、ポリエチレンテレフタレートあるいはこ
れらの誘導体から成る事を特徴とする請求項7ないし請
求項8に記載の微生物担体。
9. The microbial carrier according to claim 7, wherein the material of the microbial carrier made of hollow tubular plastic is made of polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate or a derivative thereof.
【請求項10】 中空管状プラスチック製微生物担体の
外径と管長のサイズがともに1mm〜10mmであるこ
とを特徴とする請求項7ないし請求項9に記載の微生物
担体。
10. The microorganism carrier according to claim 7, wherein both the outer diameter and the tube length of the microbial carrier made of hollow tubular plastic are 1 mm to 10 mm.
【請求項11】 中空管状プラスチック製微生物担体の
真比重が0.8〜1.5であることを特徴とする請求項
7ないし請求項10に記載の微生物担体。
11. The microorganism carrier according to claim 7, wherein the true specific gravity of the microorganism carrier made of a hollow tubular plastic is 0.8 to 1.5.
【請求項12】 中空管状プラスチック製微生物担体の
真比重が0.95〜1.05であることを特徴とする請
求項7ないし請求項11に記載の微生物担体。
12. The microorganism carrier according to claim 7, wherein the true specific gravity of the microorganism carrier made of hollow tubular plastic is 0.95 to 1.05.
【請求項13】 中空管状プラスチック製微生物担体が
流動床式生物処理用微生物担体であることを特徴とする
請求項7ないし請求項12に記載の微生物担体。
13. The microbial carrier according to claim 7, wherein the microbial carrier made of a hollow tubular plastic is a microbial carrier for a fluidized bed type biological treatment.
【請求項14】 中空管状プラスチック製微生物担体の
表面に凹凸があることを特徴とする請求項7ないし請求
項13に記載の微生物担体。
14. The microorganism carrier according to claim 7, wherein the surface of the microorganism carrier made of a hollow tubular plastic has irregularities.
【請求項15】 中空管状プラスチック製微生物担体中
に破裂気泡、鉱物質粉末あるいは有機質粉末から選ばれ
る非プラスチック製物質を有することにより担体表面に
凹凸があることを特徴とする請求項7ないし請求項14
に記載の微生物担体。
15. The surface of the hollow tubular plastic microbial carrier having irregularities due to the presence of a non-plastic material selected from the group consisting of bursting bubbles, mineral powder, and organic powder. 14
A microorganism carrier according to item 1.
JP35371696A 1996-12-18 1996-12-18 Wastewater treatment method and microbe carrier Pending JPH10174989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35371696A JPH10174989A (en) 1996-12-18 1996-12-18 Wastewater treatment method and microbe carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35371696A JPH10174989A (en) 1996-12-18 1996-12-18 Wastewater treatment method and microbe carrier

Publications (1)

Publication Number Publication Date
JPH10174989A true JPH10174989A (en) 1998-06-30

Family

ID=18432746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35371696A Pending JPH10174989A (en) 1996-12-18 1996-12-18 Wastewater treatment method and microbe carrier

Country Status (1)

Country Link
JP (1) JPH10174989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202481A (en) * 1999-01-12 2000-07-25 Kurita Water Ind Ltd Toc component removing device at ultrapure water production device
JP2002113480A (en) * 2000-10-04 2002-04-16 Shinko Pantec Co Ltd Water treatment method and its device
WO2015137386A1 (en) * 2014-03-13 2015-09-17 栗田工業株式会社 Apparatus and method for biologically treating organic effluent
CN107082495A (en) * 2017-06-26 2017-08-22 河南泽衡环保科技股份有限公司 Ecological floating island sewage disposal Aerobic Pond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202481A (en) * 1999-01-12 2000-07-25 Kurita Water Ind Ltd Toc component removing device at ultrapure water production device
JP4696326B2 (en) * 1999-01-12 2011-06-08 栗田工業株式会社 TOC component removal equipment in ultrapure water production equipment
JP2002113480A (en) * 2000-10-04 2002-04-16 Shinko Pantec Co Ltd Water treatment method and its device
WO2015137386A1 (en) * 2014-03-13 2015-09-17 栗田工業株式会社 Apparatus and method for biologically treating organic effluent
CN106103357A (en) * 2014-03-13 2016-11-09 栗田工业株式会社 The biological treatment device of organic drainage and processing method
CN107082495A (en) * 2017-06-26 2017-08-22 河南泽衡环保科技股份有限公司 Ecological floating island sewage disposal Aerobic Pond

Similar Documents

Publication Publication Date Title
RU2377191C2 (en) Reactor and method for anaerobic treatment of waste water
JP6545717B2 (en) Biofilm material, processing system, and method of processing
US20110163022A1 (en) Integrated sewage treatment plant
PL167645B1 (en) Method of and reactor for treating water
WO2011065520A1 (en) Organic wastewater treatment device and organic wastewater treatment method
KR101884448B1 (en) advanced water treating apparatus using ozone
AU2010224357A1 (en) Integrated sewage treatment plant
CN109205789A (en) A kind of biological aerated filter sewage-treatment plant and sewage disposal system
KR101892276B1 (en) advanced water treating apparatus using media filtering
KR100937482B1 (en) Method and device for sewage disposal using the submersible hollow media
US8226828B2 (en) SAF system and method involving specific treatments at respective stages
JP2008246483A (en) Apparatus for biological treatment of waste water
TW442443B (en) Carrier separating screen and waste water treatment facility having the screen
US8163174B2 (en) Submerged biofiltration purifying apparatus
EP2307323B1 (en) Plant and process for the purification of wastewaters
JP5158523B2 (en) Denitrification processing equipment
JPH10174989A (en) Wastewater treatment method and microbe carrier
KR102289941B1 (en) water treating apparatus for sewage and wastewater
US4160723A (en) Method and apparatus for removal of pollutants from waste water
JP3136900B2 (en) Wastewater treatment method
JPH10314783A (en) Microbial carrier
JP2000246272A (en) Method for removing nitrogen of sewage
JP3894606B2 (en) Aeration apparatus for sewage aerobic treatment tank and aerobic treatment tank of sewage equipped with the aeration apparatus
CN114702202B (en) Microorganism water quality purifying filter tank
JPH10128366A (en) Method for treating waste water using microorganism-immobilized carrier