JPH10174850A - Treatment of hollow-fiber membrane - Google Patents

Treatment of hollow-fiber membrane

Info

Publication number
JPH10174850A
JPH10174850A JP33673396A JP33673396A JPH10174850A JP H10174850 A JPH10174850 A JP H10174850A JP 33673396 A JP33673396 A JP 33673396A JP 33673396 A JP33673396 A JP 33673396A JP H10174850 A JPH10174850 A JP H10174850A
Authority
JP
Japan
Prior art keywords
heat treatment
fiber membrane
membrane
hollow fiber
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33673396A
Other languages
Japanese (ja)
Inventor
Tomoki Kakiuchi
智樹 垣内
Ichiro Kawada
一郎 河田
Takehiko Okamoto
健彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP33673396A priority Critical patent/JPH10174850A/en
Publication of JPH10174850A publication Critical patent/JPH10174850A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the shrinkage of a hollow-fiber membrane when heated by forming the hollow-fiber membrane by spinning, applying underwater constant-length wet heat treatment to the membrane, then removing the remaining solvent and drying the membrane under the conditions shown by specified inequalities. SOLUTION: When a hydrophobic membrane or the one made hydrophilic for treating body fluids is produced, the membrane is formed by wet or dry-wet solidification, and then underwater constant-length wet heat treatment and further constant-length wet heat treatment are applied under the conditions shown by inequalities I, II and III, where RH is the relative humidity (%) of the treating atmospher. T is the dry heat treating temp. ( deg.C), Tg is the glass- transition temp. ( deg.C) of the membrane, and (t) is the dry heat treating time (min). The under water constant-length wet heat treatment and constant-length wet heat treatment are perfoemed at 80-90 deg.C for >=2min. The material of the membrane is not specially limited, a high molecular compd. used in the medical field can be used, and a material consisting essentially of polysulfone, for example, is preferably used. Further, the hollow-fiber membrane contg. a hydrophilic polymer is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中空繊維膜の処理
方法に関する。さらに詳しくは、製膜時の中空繊維膜を
特定の湿熱処理及び乾熱処理の条件下に処理する加熱時
の収縮率が小さい中空繊維膜の処理方法に関する。
[0001] The present invention relates to a method for treating a hollow fiber membrane. More specifically, the present invention relates to a method for treating a hollow fiber membrane having a small shrinkage rate during heating, in which the hollow fiber membrane at the time of membrane formation is treated under specific conditions of wet heat treatment and dry heat treatment.

【0002】[0002]

【従来の技術】近年、膜式人工臓器の広範な発達によ
り、人工腎臓、血漿分離、血液濾過等の血液浄化分野,
腹水処理等の治療分野において、各種の膜を用いた人工
臓器が広く用いられ、延命、治療の点で大きな効果をあ
げている。特に中空繊維膜を用いた人工臓器は、コンパ
クトで血液充填量が少ないこと、使用する際の操作が簡
単なことなどから人工臓器の主流となっている。これら
の人工臓器は滅菌処理が必要であり、エチレンオキサイ
ドガス(EOG)滅菌、高圧蒸気滅菌、γ線照射による
滅菌などが行われている。
2. Description of the Related Art In recent years, with the widespread development of membrane-type artificial organs, artificial kidneys, plasma separation, blood filtration such as blood filtration, etc.
Artificial organs using various membranes are widely used in the field of treatment such as ascites treatment, and have a great effect in terms of prolonging life and treatment. In particular, artificial organs using hollow fiber membranes have become the mainstream of artificial organs because of their compactness, low blood filling, and easy operation when used. These artificial organs need to be sterilized, and are subjected to ethylene oxide gas (EOG) sterilization, high-pressure steam sterilization, sterilization by γ-ray irradiation, and the like.

【0003】これらの滅菌法のうち、EOG滅菌はこれ
まで広く使われてきたが、残留したEOGに起因すると
思われる症例が認められたため、一部を除いて他の滅菌
法に代わりつつある。γ線滅菌は、照射による素材の変
性の懸念があり、最初は限定されたものであったが、確
認が進むにつれて広く使用されるようになってきてい
る。しかし、長期に亘っての安全性の確認は使用素材毎
に必要であり、採用には慎重な検討が必要である。
[0003] Among these sterilization methods, EOG sterilization has been widely used until now, but some cases considered to be caused by residual EOG have been recognized. Gamma-ray sterilization was limited at first due to concerns about denaturation of the material due to irradiation, but has been widely used as confirmation has progressed. However, long-term safety confirmation is necessary for each material used, and careful consideration is required for adoption.

【0004】高圧蒸気滅菌は古くから医療分野において
採用されている滅菌法であり、安全性の面で問題になる
点はないが、湿った状態で121℃×20分間の滅菌を
行うと中空繊維膜が収縮し、膜欠陥の発生、接着部分の
破損等のトラブルが起こることがあった。従って、これ
らの問題を回避すべく前もって高温・高湿の雰囲気下で
膜を処理してあらかじめ膜に2〜6%の収縮を起こさせ
る方法が特公平3−62431号で提案されている。
[0004] High-pressure steam sterilization is a sterilization method that has been used in the medical field for a long time, and there is no problem in terms of safety. However, if sterilization is performed at 121 ° C for 20 minutes in a wet state, hollow fibers are not removed. In some cases, the film shrinks, causing troubles such as generation of a film defect and breakage of a bonded portion. Therefore, in order to avoid these problems, Japanese Patent Publication No. 3-62431 proposes a method in which the film is previously treated in a high-temperature and high-humidity atmosphere to cause the film to shrink by 2 to 6% in advance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法によれば、膜に2〜6%もの大きな収縮が起こるた
め、膜の物性、透過性能が変化するという問題点があっ
た。又高温・高湿条件での処理のため、特殊な熱処理器
が必要であり、作業性、生産コストの点で必ずしも満足
できる方法とはいい難いものであった。したがって、本
発明の目的は、加熱時に収縮が小さな中空繊維膜の処理
方法を提供することにある。
However, according to this method, a large shrinkage of 2 to 6% occurs in the film, so that there is a problem that the physical properties and the permeability of the film are changed. In addition, a special heat treatment device is required for the treatment under high-temperature and high-humidity conditions, which is not always a satisfactory method in terms of workability and production cost. Therefore, an object of the present invention is to provide a method for treating a hollow fiber membrane that shrinks less when heated.

【0006】[0006]

【課題を解決するための手段】本発明者らは、高圧蒸気
滅菌を行ったときに発生する膜の欠陥、接着部分の破損
の原因を調べた結果、滅菌処理時に発生する中空繊維膜
の収縮が1%以下、さらに好ましくは0.6%以下であ
ればこれらの問題点が発生しないことを認めた。この条
件を満足する中空繊維膜の処理方法を鋭意検討した結
果、先行技術とは全く異なった高温・低湿雰囲気下での
処理により目的を達成することができることを見い出
し、本発明を完成した。すなわち本発明は、中空繊維膜
を紡糸製膜し水中定長湿熱処理を行なった後、残存溶媒
を洗浄除去し、更に定長湿熱処理を行った後乾燥し、
(I)〜(III)の条件で処理を行うことを特徴とす
る中空繊維膜の処理方法である。 RH≦10% (I) Tg−60℃≦T≦Tg−20℃ (II) 10≦t≦90 (III) ここで、RH:処理雰囲気の相対湿度(%RH) T:乾熱処理温度(℃) Tg:中空繊維膜のガラス転移温度(℃) t:乾熱処理時間(分)
The inventors of the present invention have investigated the causes of defects in the membrane and damage to the bonded portion that occur during high-pressure steam sterilization, and found that the hollow fiber membrane shrinks during sterilization. It was found that these problems did not occur if the content was 1% or less, more preferably 0.6% or less. As a result of intensive studies on a method of treating a hollow fiber membrane satisfying these conditions, it has been found that the object can be achieved by treatment in a high-temperature, low-humidity atmosphere completely different from the prior art, and the present invention has been completed. That is, the present invention, after spinning the hollow fiber membrane and performing a constant-humidity heat treatment in water, washing and removing the remaining solvent, further performing a constant-humidity heat treatment, and drying.
A method of treating a hollow fiber membrane, wherein the treatment is performed under the conditions (I) to (III). RH ≦ 10% (I) Tg−60 ° C. ≦ T ≦ Tg−20 ° C. (II) 10 ≦ t ≦ 90 (III) where RH: Relative humidity of processing atmosphere (% RH) T: Dry heat treatment temperature (° C.) ) Tg: Glass transition temperature of hollow fiber membrane (° C) t: Dry heat treatment time (min)

【0007】[0007]

【発明の実施の形態】本発明は、体液処理用の疎水性ま
たは親水化した疎水性膜を製造するに当たって、湿式ま
たは乾湿式凝固により製膜した後、特定の条件下で水中
定長湿熱処理及びさらに定長湿熱処理を行うことに特徴
を有する。水中定長湿熱処理の温度はあまり高すぎると
透水性能が低下する傾向にあり、またエネルギ−的にも
不利になり、あまり低すぎても本発明の効果が少ないの
で、80〜90℃で2分以上行うのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing a hydrophobic or hydrophilized hydrophobic membrane for treating body fluids, which comprises forming the membrane by wet or dry-wet coagulation, and then performing a constant-temperature, constant-humidity heat treatment in water under specific conditions. And further characterized by performing a constant-length wet heat treatment. If the temperature of the underwater constant-humidity heat treatment is too high, the water permeability tends to decrease, and it is disadvantageous in terms of energy, and if it is too low, the effect of the present invention is small. It is preferable to carry out for more than one minute.

【0008】次に、中空繊維膜中に残存する溶媒を洗浄
除去した後、同じ温度のグリセリンなどの可塑剤水溶液
中でさらに定長湿熱処理を行った後、乾燥し、所定の条
件で乾熱処理を行う。この場合の定長湿熱処理も上記と
同じ理由により、80〜90℃で2分以上行うのが望ま
しい。
Next, after the solvent remaining in the hollow fiber membrane is washed and removed, the film is further subjected to a constant-length wet heat treatment in an aqueous solution of a plasticizer such as glycerin at the same temperature, dried, and dried under a predetermined condition. I do. In this case, the constant-length wet heat treatment is preferably performed at 80 to 90 ° C. for 2 minutes or more for the same reason as described above.

【0009】乾熱処理を、製造された中空繊維膜のガラ
ス転移温度(Tg)以上の温度で実施すると膜の変形、
物性、透過性能の低下が激しく、性能に優れた膜を得る
ことができないので、Tgより低温で実施する必要があ
る。本発明においては、Tg−20℃以下、かつTg−
60℃以上の温度を必要とする。
When the dry heat treatment is carried out at a temperature higher than the glass transition temperature (Tg) of the manufactured hollow fiber membrane, deformation of the membrane,
It is necessary to carry out the process at a temperature lower than Tg because the properties and permeation performance are greatly reduced and a film having excellent performance cannot be obtained. In the present invention, Tg-20 ° C or lower, and Tg-
Requires a temperature of 60 ° C. or higher.

【0010】また、熱処理時の相対湿度(RH)も重要
なファクタ−である。湿度が高いと、期待する以上の熱
処理効果が発生し、処理中に膜の収縮が発生し、物性、
透過性能の低下が起こることがある。また、湿度が殆ど
無い絶乾状態ではTg−20℃〜Tg−60℃の熱処理
条件では、必要とする熱処理効果が得られにくく、熱処
理温度を更に上げることになるが、Tgに近づきすぎる
と温度の僅かの変動でもTgを越えてしまい、膜の変
形、物性、透過性能の低下等が発生する。本発明におい
ては、相対湿度は20%以下で実施される。
[0010] The relative humidity (RH) during the heat treatment is also an important factor. If the humidity is high, the heat treatment effect more than expected occurs, and the film shrinks during the processing,
The transmission performance may decrease. In a completely dry state where there is almost no humidity, under the heat treatment conditions of Tg-20 ° C. to Tg-60 ° C., it is difficult to obtain the required heat treatment effect, and the heat treatment temperature is further increased. Even a slight change in T exceeds Tg, causing deformation of the film, deterioration of physical properties, permeation performance, and the like. In the present invention, the operation is performed at a relative humidity of 20% or less.

【0011】以上述べた乾熱処理の条件(I)、(I
I)及び(III)を以下に示す。式中、RHは処理雰
囲気の相対湿度(%)、Tは乾熱処理温度(℃)、Tg
は中空繊維膜のガラス転移温度(℃)、tは乾熱処理時
間(分)である。 RH≦10% (I) Tg−60℃≦T≦Tg−20℃ (II) 10≦t≦90 (III)
The dry heat treatment conditions (I) and (I)
I) and (III) are shown below. In the formula, RH is the relative humidity of the processing atmosphere (%), T is the dry heat treatment temperature (° C.), Tg
Is the glass transition temperature (° C.) of the hollow fiber membrane, and t is the dry heat treatment time (minutes). RH ≦ 10% (I) Tg−60 ° C. ≦ T ≦ Tg−20 ° C. (II) 10 ≦ t ≦ 90 (III)

【0012】本発明で使用される中空繊維膜の素材はと
くに限定されず、例えば、ポリスルホン、ポリアミド、
ポリアクリロニトリル、ポリメチルメタクリレ−ト、酢
酸セルロ−ス及びこれらの誘導体など、医療分野に使用
される高分子化合物が使用可能である。
The material of the hollow fiber membrane used in the present invention is not particularly limited. For example, polysulfone, polyamide,
High molecular compounds used in the medical field, such as polyacrylonitrile, polymethyl methacrylate, cellulose acetate and derivatives thereof can be used.

【0013】本発明に使用される中空繊維膜は、例え
ば、膜素材ポリマー/ポア形成剤及び/又は親水性ポリ
マー/両者の共通溶媒及び必要であれば非溶媒を添加し
た製膜原液を用い、環状オリフィスから芯部の凝固液と
同時に空気中に押し出し、ついで凝固液中に導入するこ
とにより製造される。
[0013] The hollow fiber membrane used in the present invention is prepared, for example, by using a membrane-forming stock solution to which a common solvent for the polymer for the membrane / pore-forming agent and / or hydrophilic polymer / a non-solvent is added if necessary. It is manufactured by extruding into the air simultaneously with the coagulating liquid in the core from the annular orifice, and then introducing into the coagulating liquid.

【0014】次いで、得られた中空繊維膜を洗浄工程に
導き、膜中の共通溶媒を大部分除去した後、好ましくは
80〜98℃の水中で定長で熱処理を行い、更に洗浄を
行って残存する溶媒を、好ましくは完全に除いた後、グ
リセリン、エチレングリコール、PEG等の可塑剤水溶
液中で好ましくは80〜90℃で定長で熱処理すること
により熱固定を行う。その後、枠捲き等通常のバンドル
成型を行った後、乾燥する。
Next, the obtained hollow fiber membrane is led to a washing step, and after removing most of the common solvent in the membrane, heat treatment is preferably performed at a constant length in water, preferably at 80 to 98 ° C., followed by further washing. After completely removing the remaining solvent, heat fixation is carried out by heat treatment in an aqueous solution of a plasticizer such as glycerin, ethylene glycol, PEG or the like, preferably at a constant length of 80 to 90 ° C. Then, after performing normal bundle molding, such as frame winding, it is dried.

【0015】このようにして熱処理した膜バンドルを用
い、当業者が通常行っている方法で透析用モジュール、
または血漿分離用モジュール等の膜型血液処理器を組み
立てる。組み立てたモジュールを滅菌処理するため、洗
浄し、モジュール内に水または生理食塩水等を充填し、
モジュール開口部を密閉し高圧蒸気滅菌を行う。滅菌操
作終了後冷却して製品である膜型血液処理器を得る。
Using the membrane bundle thus heat-treated, a dialysis module,
Alternatively, a membrane blood processor such as a module for plasma separation is assembled. To sterilize the assembled module, wash it, fill the module with water or saline, etc.
Seal the module opening and perform high-pressure steam sterilization. After completion of the sterilization operation, the product is cooled to obtain a product, a membrane-type blood processor.

【0016】[0016]

【実施例】以下本発明を実施例に基づいて説明する。な
お実施例は本発明の代表的な結果を示すものであり、本
発明はこれらに限定されるものではない。なお、透水性
は有効長15cmのモジュールを作製し、25℃の純水
で膜の内側から1Kg/cm2 の水圧をかけ、外側に透
過してきた純水の量を測定し、膜面積単位当たりの透水
量を算出した値である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. The examples show typical results of the present invention, and the present invention is not limited to these examples. For the water permeability, a module with an effective length of 15 cm was prepared, a water pressure of 1 kg / cm 2 was applied from the inside of the membrane with pure water at 25 ° C., and the amount of pure water permeating outside was measured. Is a value obtained by calculating the amount of water permeation.

【0017】分画粒子径は0.1重量%の単分散ポリス
チレン粒子の水分散液を用い、25℃、0.5Kg/c
2 の圧力で濾過を行い、90%以上阻止する粒子の大
きさで示し、分画分子量は0.05重量%の蛋白質を燐
酸緩衝液に溶解した液を用い、同じ条件で濾過を行い、
90%以上阻止する蛋白質の分子量で示す。膜のTgは
示差熱分析計(DSC)により測定した。また、膜組成
の分析は核磁気共鳴スペクトルメーター(NMR)及び
ESCAにより測定した。
The fractionated particle size is 0.1 kg by weight of an aqueous dispersion of monodisperse polystyrene particles, and is used at 25 ° C. and 0.5 kg / c.
Filtration was performed at a pressure of m 2 , and the particle size was determined to be 90% or more, and the molecular weight cut off was performed under the same conditions using a solution in which 0.05% by weight of a protein was dissolved in a phosphate buffer.
Shown by the molecular weight of the protein that blocks 90% or more. The Tg of the film was measured by a differential thermal analyzer (DSC). The analysis of the film composition was measured by a nuclear magnetic resonance spectrometer (NMR) and ESCA.

【0018】製造例1 ポリスルホン(UDEL P−1700 アモコ社製)
20重量%、ポリエチレングリコール(#600 三洋
化成製)36重量%、ジメチルホルムアミド44重量部
%を混合溶解して製膜原液とした。この製膜原液は36
℃以上で相分離を起こす高温相分離型原液であった。3
2℃に保ったこの製膜原液を、外径1.0mm、内径
0.5mmの2重環状ノズルより内部凝固液としてジメ
チルホルムアミド82重量%、水18重量%からなる2
8℃の混合溶液と同時に吐出し、50℃・RH90%の
加湿空気中を10cm空走させた後、凝固浴である50
℃の水に浸漬した。
Production Example 1 Polysulfone (UDEL P-1700, manufactured by Amoko)
20% by weight, 36% by weight of polyethylene glycol (# 600 manufactured by Sanyo Kasei) and 44% by weight of dimethylformamide were mixed and dissolved to prepare a stock solution for film formation. This stock solution is 36
It was a high-temperature phase-separated type undiluted solution that caused phase separation at a temperature of ℃ or higher. 3
The membrane-forming stock solution kept at 2 ° C. was made of 82% by weight of dimethylformamide and 18% by weight of water as an internal coagulation liquid from a double annular nozzle having an outer diameter of 1.0 mm and an inner diameter of 0.5 mm.
The mixed solution was discharged at the same time as the mixed solution at 8 ° C., and was allowed to run for 10 cm in humidified air at 50 ° C. and 90% RH.
It was immersed in water at ℃.

【0019】次いで、50℃の温水洗浄と95℃の熱水
洗浄でジメチルホルムアミド、ポリエチレングリコール
を洗浄・抽出して除き、次いで5重量%のグリセリン水
溶液中に浸漬した後、枠に捲き取った。50℃の温風で
乾燥して外径450μm、内径320μmの中空繊維膜
を得た。この膜3200本を束ね、透湿性のある紙で被
覆し、バンドルを作製した。この膜の透水性は1050
0L/(m2 ・hr・Kg/cm2 )、分画粒子径は
0.15μmであった。またDSCで測定したTgは1
68℃であった。
Next, dimethylformamide and polyethylene glycol were washed and extracted by washing with hot water at 50 ° C. and hot water at 95 ° C., then immersed in a 5% by weight aqueous glycerin solution, and wound up on a frame. Drying with warm air at 50 ° C. yielded a hollow fiber membrane having an outer diameter of 450 μm and an inner diameter of 320 μm. The 3,200 membranes were bundled and covered with moisture-permeable paper to form a bundle. The water permeability of this membrane is 1050
0 L / (m 2 · hr · Kg / cm 2 ), and the particle size of the fraction was 0.15 μm. The Tg measured by DSC is 1
68 ° C.

【0020】製造例2 ポリスルホン(P−1700)17重量%、ポリエチレ
ングリコール(#600)34重量%、ジメチルアセト
アミド49重量%を混合溶解して製膜原液とした。この
製膜原液は10℃〜130℃の間で相分離を起こさない
均一溶液であった。50℃に保ったこの製膜原液を、外
径0.5mm、内径0.25mmの2重環状ノズルより
内部凝固液として、ジメチルアセトアミド50重量%、
水50重量%からなる50℃の混合溶液と同時に吐出
し、50℃・RH90%の加湿空気中を10cm空走さ
せた後に凝固浴である40℃の水に浸漬した。次いで、
50℃の温水洗浄と98℃の熱水洗浄でジメチルアセト
アミド、ポリエチレングリコールを抽出・除去した。
Production Example 2 17% by weight of polysulfone (P-1700), 34% by weight of polyethylene glycol (# 600) and 49% by weight of dimethylacetamide were mixed and dissolved to form a stock solution for film formation. This film forming stock solution was a homogeneous solution that did not cause phase separation between 10 ° C and 130 ° C. This film-forming stock solution kept at 50 ° C. was treated as an internal coagulation liquid from a double annular nozzle having an outer diameter of 0.5 mm and an inner diameter of 0.25 mm as dimethylacetamide 50% by weight,
The mixture was discharged at the same time as a mixed solution of 50% by weight of water at 50 ° C., allowed to run 10 cm in humidified air at 50 ° C. and 90% RH, and then immersed in 40 ° C. water as a coagulation bath. Then
Dimethylacetamide and polyethylene glycol were extracted and removed by washing with 50 ° C. hot water and 98 ° C. hot water.

【0021】次いで8wt%のグリセリン水溶液中に膜
を含浸した後に枠に捲き取り、50℃の温風で膜を乾燥
して外径0. 3mm、内径0. 2mmの中空繊維膜を得
た。この膜9360本を束ね、透湿性のある紙で被覆
し、バンドルを作製した。この膜の透水性は720L/
(m2 ・hr・Kg/cm2 )、分画分子量は3.2万
であり、牛血清アルブミンは透過しない優れた膜であっ
た。またDSCで測定したTgは165℃であった。
Next, the membrane was impregnated with an 8 wt% glycerin aqueous solution, wound up around a frame, and dried with warm air at 50 ° C. to obtain a hollow fiber membrane having an outer diameter of 0.3 mm and an inner diameter of 0.2 mm. 9360 of these films were bundled and covered with moisture-permeable paper to form a bundle. The water permeability of this membrane is 720 L /
(M 2 · hr · Kg / cm 2 ), the molecular weight cut off was 32,000, and it was an excellent membrane that did not transmit bovine serum albumin. The Tg measured by DSC was 165 ° C.

【0022】製造例3 ポリスルホン(P−1700)17重量%、ポリエチレ
ングリコール(#600)20.4重量%、ポリビニル
ピロリドン(K−90 BASF社製))1.0重量
%、ジメチルアセトアミド61.6重量%を混合溶解し
て製膜原液とした。50℃に保ったこの製膜原液を、外
径0. 5mm、内径0. 25mmの2重環状ノズルより
内部凝固液としてポリビニルピロリドン(K−90)
0.3重量%、ジメチルアセトアミド40重量%、水5
9.7重量%からなる50℃の混合溶液と同時に吐出
し、50℃・RH90%の加湿空気中を10cm空走さ
せた後、凝固浴である50℃の水に浸漬した。
Production Example 3 17% by weight of polysulfone (P-1700), 20.4% by weight of polyethylene glycol (# 600), 1.0% by weight of polyvinylpyrrolidone (K-90, manufactured by BASF), 61.6% of dimethylacetamide % By weight was mixed and dissolved to obtain a film forming stock solution. This membrane-forming stock solution kept at 50 ° C. was passed through a double annular nozzle having an outer diameter of 0.5 mm and an inner diameter of 0.25 mm as an internal coagulating liquid, polyvinylpyrrolidone (K-90).
0.3% by weight, dimethylacetamide 40% by weight, water 5
The mixture was discharged at the same time as a mixed solution of 9.7% by weight at 50 ° C., allowed to run 10 cm in humidified air at 50 ° C. and 90% RH, and then immersed in 50 ° C. water as a coagulation bath.

【0023】次いで、50℃の温水洗浄と90℃の熱水
洗浄でジメチルアセトアミド、ポリエチレングリコー
ル、過剰のポリビニルピロリドンを抽出し、次いで8w
t%のグリセリン水溶液中に膜を含浸した後に枠に捲き
取り、50℃の温風で膜を乾燥して外径0.3mm、内
径0.2mmの中空繊維膜を得た。この膜9360本を
束ね、透湿性のある紙で被覆し、バンドルを作製した。
Next, dimethylacetamide, polyethylene glycol and excess polyvinylpyrrolidone were extracted by washing with warm water at 50 ° C. and washing with hot water at 90 ° C.
After impregnating the membrane in a t% aqueous glycerin solution, the membrane was wound up and dried with warm air at 50 ° C. to obtain a hollow fiber membrane having an outer diameter of 0.3 mm and an inner diameter of 0.2 mm. 9360 of these films were bundled and covered with moisture-permeable paper to form a bundle.

【0024】この膜の透水性は300L/(m2 ・hr
・Kg/cm2 )、分画分子量は2.8万であり、牛血
清アルブミンは透過しない優れた膜であった。また、こ
の中空繊維膜中のポリビニルピロリドンの残存量をNM
Rで測定した結果3.8wt%であり、ESCAで測定
した内表面側は22wt%、外表面側は18wt%であ
った。また、DSCで測定したTgは172℃であっ
た。
The water permeability of this membrane is 300 L / (m 2 · hr)
Kg / cm 2 ), the molecular weight cut off was 28,000, and the membrane was an excellent membrane that did not transmit bovine serum albumin. The residual amount of polyvinylpyrrolidone in the hollow fiber membrane was determined by NM.
It was 3.8 wt% as measured by R, and 22 wt% on the inner surface side and 18 wt% on the outer surface side as measured by ESCA. The Tg measured by DSC was 172 ° C.

【0025】実施例1 上記製造例1〜3で得たバンドルを、130℃±3℃に
制御した熱風循環式加熱炉中に5分、10分、20分、
30分、60分、90分及び120分静置し、熱処理を
行った。熱処理機内の相対湿度は0.6%であった。中
空繊維膜束内の温度は束中央部に熱電対を挿入して計測
した。この熱処理時間内の束内最高温度を表1〜3に示
す。また熱処理前後の中空繊維長を測定し、熱処理によ
る中空繊維膜の収縮を算出した。結果を同じく表1〜3
に示す。熱処理後の中空繊維膜の透水性能及び分画性能
をあわせて表1に示す。
Example 1 The bundles obtained in Production Examples 1 to 3 were placed in a hot-air circulation heating furnace controlled at 130 ° C. ± 3 ° C. for 5 minutes, 10 minutes, and 20 minutes.
The pieces were allowed to stand for 30, 60, 90, and 120 minutes to perform heat treatment. The relative humidity in the heat treatment machine was 0.6%. The temperature in the hollow fiber membrane bundle was measured by inserting a thermocouple at the center of the bundle. Tables 1 to 3 show the maximum temperatures in the bundle during the heat treatment time. The length of the hollow fiber before and after the heat treatment was measured, and the shrinkage of the hollow fiber membrane due to the heat treatment was calculated. The results are also shown in Tables 1 to 3.
Shown in Table 1 also shows the water permeability and the fractionation performance of the hollow fiber membrane after the heat treatment.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表1〜3に示すように、130℃×10分
以上の熱処理を行うことにより、高圧蒸気滅菌処理を行
ったときの中空繊維膜の収縮を0.5%以下におさえる
ことができる。90分以上の処理を行うと、処理後の膜
性能が低下しており、10〜90分の範囲の処理が適当
である。
As shown in Tables 1 to 3, shrinkage of the hollow fiber membrane during high-pressure steam sterilization can be suppressed to 0.5% or less by performing a heat treatment at 130 ° C. for 10 minutes or more. . When the processing is performed for 90 minutes or more, the film performance after the processing is reduced, and the processing in the range of 10 to 90 minutes is appropriate.

【0030】実施例2 熱風循環式加熱炉の温度を150±3℃、140±3
℃、120±3℃に制御し、熱処理時間を30分にした
以外は実施例1と同じ実験を行った。結果を表4に示
す。いずれの熱処理条件においても熱処理後の膜性能の
低下は少なく、かつ、高圧蒸気滅菌を行った時の中空繊
維膜の収縮を0.8%以下に保つことができた。
Example 2 The temperature of the hot air circulating heating furnace was set at 150 ± 3 ° C. and 140 ± 3 ° C.
The same experiment as in Example 1 was performed except that the temperature was controlled at 120 ° C. and 120 ± 3 ° C. and the heat treatment time was set at 30 minutes. Table 4 shows the results. Under any of the heat treatment conditions, the decrease in the membrane performance after the heat treatment was small, and the shrinkage of the hollow fiber membrane during high-pressure steam sterilization could be kept at 0.8% or less.

【0031】[0031]

【表4】 [Table 4]

【0032】比較例1〜21 熱風循環式加熱炉の温度を160±3℃、及び110±
3℃に制御し、熱処理時間を10分及び30分にした以
外は実施例1と同じ実験を行った。結果を表5に示す。
110℃の処理では、高圧蒸気滅菌を行った時の中空繊
維膜の収縮が未処理と大差無く、熱処理の効果が認めら
れない。また、160℃の熱処理を行うと、熱処理時の
中空繊維膜の収縮が大きく、膜性能が大幅に低下してお
り、実用に耐えないものであった。
Comparative Examples 1-21 The temperature of the hot air circulating heating furnace was 160 ± 3 ° C. and 110 ± 3 ° C.
The same experiment as in Example 1 was performed except that the temperature was controlled at 3 ° C. and the heat treatment times were set to 10 minutes and 30 minutes. Table 5 shows the results.
In the treatment at 110 ° C., the shrinkage of the hollow fiber membrane during high-pressure steam sterilization is not much different from that of the untreated one, and the effect of the heat treatment is not recognized. Further, when the heat treatment at 160 ° C. was performed, the hollow fiber membrane contracted greatly during the heat treatment, and the membrane performance was significantly reduced, which was not practical.

【0033】[0033]

【表5】 [Table 5]

【0034】比較例22〜33 過熱蒸気を導入することにより、相対湿度72%RH、
121℃に調節した熱処理機中にバンドルをいれ熱処理
を行った。結果を表6に示す。高湿度条件で熱処理を行
った時の中空繊維膜の蒸気滅菌時の収縮は小さく良好で
あるが、比較的低温での処理にもかかわらず熱処理時の
中空繊維膜の収縮が大きく、膜性能が低下しており、実
用に耐えないものであった。
Comparative Examples 22 to 33 By introducing superheated steam, the relative humidity was 72% RH,
The bundle was placed in a heat treatment machine adjusted to 121 ° C. and heat treatment was performed. Table 6 shows the results. Although the hollow fiber membrane shrinks during steam sterilization when heat treatment is performed under high humidity conditions, it is small and good, but the hollow fiber membrane shrinks greatly during heat treatment despite treatment at a relatively low temperature, resulting in poor membrane performance. It was lowered and was not practical.

【0035】相対湿度26%RH、160℃に調節した
熱処理機中で同様の熱処理を行った。結果を表6に示
す。高温・高湿度条件で熱処理を行うことにより性能が
大幅に低下しており、実用に耐えないものであった。
The same heat treatment was performed in a heat treatment machine adjusted to a relative humidity of 26% RH and 160 ° C. Table 6 shows the results. The heat treatment under high temperature and high humidity conditions significantly reduced the performance, and was not practical.

【0036】[0036]

【表6】 [Table 6]

【0037】実施例3 実施例及び比較例で得た熱処理バンドルを用いて、ポリ
カーボネート製ハウジングにウレタンをポッティング樹
脂として用いて遠心接着し、血漿分離用及び透析用モジ
ュールを作製した。常法により洗浄した後、リークチェ
ックを行い、リークの無いモジュールに蒸留水を充填
し、121℃×20分の高圧蒸気滅菌を行った。滅菌後
再度リークチェックを行い、蒸気滅菌によるリークの発
生の有無を確認した。結果を表7に示す。
Example 3 Using the heat-treated bundles obtained in Examples and Comparative Examples, urethane was used as a potting resin and bonded to a polycarbonate housing by centrifugation to produce modules for plasma separation and dialysis. After washing by a conventional method, a leak check was performed, a module having no leak was filled with distilled water, and high-pressure steam sterilization was performed at 121 ° C. for 20 minutes. After sterilization, a leak check was performed again to confirm whether or not a leak occurred due to steam sterilization. Table 7 shows the results.

【0038】[0038]

【表7】 [Table 7]

【0039】実施例で得た中空繊維膜を用いた結果で
は、高圧蒸気滅菌後の欠陥発生は認められず、良好であ
った。一方、処理温度、湿度、時間が不適である比較例
で処理して得た中空繊維膜を用いた結果、高圧蒸気滅菌
後の欠陥発生が認められた。医療用膜モジュールは滅菌
後そのまま使用されるため、欠陥発生は致命的である。
The results obtained using the hollow fiber membranes obtained in the examples were satisfactory without any occurrence of defects after high-pressure steam sterilization. On the other hand, as a result of using a hollow fiber membrane obtained by processing in a comparative example in which the processing temperature, humidity and time were inappropriate, defects were found after high-pressure steam sterilization. Since the medical membrane module is used as it is after sterilization, the occurrence of a defect is fatal.

【0040】[0040]

【発明の効果】本発明により、加熱時の収縮が小さい中
空繊維膜の処理方法を提供することができる。このよう
な処理方法によれば、高圧蒸気滅菌時の欠陥発生を防止
できるので、血液透析器、血液濾過器、血漿分離器、腹
水濾過器など中空繊維膜を用いた医療用膜モジュールの
安全性、商品性を向上することができる。
According to the present invention, it is possible to provide a method for treating a hollow fiber membrane having a small shrinkage upon heating. According to such a treatment method, since the occurrence of defects during high-pressure steam sterilization can be prevented, the safety of a medical membrane module using a hollow fiber membrane, such as a hemodialyzer, a hemofilter, a plasma separator, and an ascites filter, can be prevented. In addition, the merchantability can be improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空繊維膜を紡糸製膜し水中定長湿熱処
理を行なった後、残存溶媒を洗浄除去し、更に定長湿熱
処理を行った後乾燥し、(I)〜(III)の条件で処
理を行うことを特徴とする中空繊維膜の処理方法。 RH≦10% (I) Tg−60℃≦T≦Tg−20℃ (II) 10≦t≦90 (III) ここで、RH:処理雰囲気の相対湿度(%) T:乾熱処理温度(℃) Tg:中空繊維膜のガラス転移温度(℃) t:乾熱処理時間(分)
1. A hollow fiber membrane is spun into a film, subjected to a constant-humidity heat treatment in water, washed and removed of a residual solvent, further subjected to a constant-humidity heat treatment, and dried, and then subjected to any of (I) to (III). A method for treating a hollow fiber membrane, wherein the treatment is performed under conditions. RH ≦ 10% (I) Tg−60 ° C. ≦ T ≦ Tg−20 ° C. (II) 10 ≦ t ≦ 90 (III) where RH: Relative humidity of processing atmosphere (%) T: Dry heat treatment temperature (° C.) Tg: Glass transition temperature of hollow fiber membrane (° C) t: Dry heat treatment time (minute)
【請求項2】 請求項1記載の中空繊維膜の処理方法に
おいて、水中定長湿熱処理又は定長湿熱処理の温度及び
時間が80〜90℃で2分以上である中空繊維膜の処理
方法。
2. The method for treating a hollow fiber membrane according to claim 1, wherein the temperature and time of the constant-temperature and constant-humidity heat treatment in water or the constant-temperature moisture treatment are 80 to 90 ° C. for 2 minutes or more.
【請求項3】 請求項1又は請求項2記載の中空繊維膜
の処理方法において、中空繊維膜がポリスルホンを主成
分とする中空繊維膜である中空繊維膜の処理方法。
3. The method for treating a hollow fiber membrane according to claim 1, wherein the hollow fiber membrane is a hollow fiber membrane containing polysulfone as a main component.
【請求項4】 請求項1〜3いずれか1項記載の中空繊
維膜の処理方法において、中空繊維膜が親水性ポリマ−
を含む中空繊維膜である中空繊維膜の処理方法。
4. The method for treating a hollow fiber membrane according to claim 1, wherein the hollow fiber membrane is a hydrophilic polymer.
A method for treating a hollow fiber membrane which is a hollow fiber membrane containing:
JP33673396A 1996-12-17 1996-12-17 Treatment of hollow-fiber membrane Pending JPH10174850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33673396A JPH10174850A (en) 1996-12-17 1996-12-17 Treatment of hollow-fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33673396A JPH10174850A (en) 1996-12-17 1996-12-17 Treatment of hollow-fiber membrane

Publications (1)

Publication Number Publication Date
JPH10174850A true JPH10174850A (en) 1998-06-30

Family

ID=18302223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33673396A Pending JPH10174850A (en) 1996-12-17 1996-12-17 Treatment of hollow-fiber membrane

Country Status (1)

Country Link
JP (1) JPH10174850A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314736A (en) * 2000-05-12 2001-11-13 Kuraray Co Ltd Membrane molding solution and method for manufacturing hollow fiber membrane
JP2007054470A (en) * 2005-08-26 2007-03-08 Toyobo Co Ltd Hollow fiber membrane for blood purification and its manufacturing method
KR20100022928A (en) * 2008-08-20 2010-03-03 주식회사 코오롱 Porous membrane and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314736A (en) * 2000-05-12 2001-11-13 Kuraray Co Ltd Membrane molding solution and method for manufacturing hollow fiber membrane
JP2007054470A (en) * 2005-08-26 2007-03-08 Toyobo Co Ltd Hollow fiber membrane for blood purification and its manufacturing method
KR20100022928A (en) * 2008-08-20 2010-03-03 주식회사 코오롱 Porous membrane and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0509663B1 (en) Dialysis module with a selectively transmissive polysulfonic hollow fiber membrane and method of manufacture thereof
US6103117A (en) Polysulfone hollow fiber semipermeable membrane
EP1578521B1 (en) Permselective membrane and process for manufacturing thereof
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
US4681713A (en) Method of making a hollow fiber membrane for dialysis
US5641450A (en) Process of making a module including a polysulphonic hollow fiber membrane
US5645778A (en) Process of making a cellulose acetate semipermeable membrane
JP3684676B2 (en) Method for producing polysulfone-based hollow fiber artificial kidney and artificial kidney
JPH10174850A (en) Treatment of hollow-fiber membrane
JP4010523B2 (en) Irradiation sterilization method of blood processing device and irradiation-sterilized blood processing device
US4587168A (en) Hollow fiber membrane for dialysis
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JPH11104235A (en) Polysulfone hollow fiber type artificial kidney and its production
JP3001774B2 (en) Method for producing hollow fiber membrane for blood
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JP2004305997A (en) Drying method for hollow fiber membrane bundle, and hollow fiber membrane bundle
JPS60193504A (en) Hollow fiber membrane for dialysis
CA2222951A1 (en) Improved process for making cellulose acetate semipermeable membranes and medical products therefrom
JP2004353142A (en) Treatment method for drying hollow fiber membrane
JPH0121986B2 (en)
JPS61354A (en) Production of dry polymethylmethacrylate hollow yarn for separating fluid
JPH0121987B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061213