JPH10173149A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH10173149A
JPH10173149A JP8333373A JP33337396A JPH10173149A JP H10173149 A JPH10173149 A JP H10173149A JP 8333373 A JP8333373 A JP 8333373A JP 33337396 A JP33337396 A JP 33337396A JP H10173149 A JPH10173149 A JP H10173149A
Authority
JP
Japan
Prior art keywords
film
lower electrode
semiconductor device
thickness
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8333373A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
裕一 松井
Mitsuo Suga
三雄 須賀
Kazunari Torii
和功 鳥居
Masahiko Hiratani
正彦 平谷
Yoshihisa Fujisaki
芳久 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8333373A priority Critical patent/JPH10173149A/en
Publication of JPH10173149A publication Critical patent/JPH10173149A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a Pt film which has such a high oxygen barrier property that does not allow oxygen to reach a barrier layer through the Pt film by making the lengths of Pt crystal grains in the Pt film in the thickness direction of the film shorter than the thickness of the film and the length of intercrystalline boundaries longer than the thickness of the film. SOLUTION: After a TiN film 2 is formed on an Si substrate 1 as a barrier layer by sputtering, a Pt film 3 is formed on the film 2 by sputtering and the sputtering is temporarily stopped by lowering the power. Thereafter, the formation of the film 3 is restarted under the same condition. When the film 3 is formed in two stages in such a way, the lengths of Pt crystal grains in the thickness direction of the film 3 becomes shorter than the thickness of the film 3 and intercrystalline boundaries which are the permeating paths of oxygen can be made longer. Consequently, the oxygen barrier property of the film 3 can be improved and the thickness of the film 3 which is formed as the lower electrode of a capacitor can be reduced to 100nm. Therefore, the capacitance element of a DRAM can be made smaller in size and increased in degree of integration when capacitance and storage elements are formed by using this film 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の中の、
特に容量記憶素子の形成方法に関するものである。
[0001] The present invention relates to a semiconductor device,
In particular, the present invention relates to a method for forming a capacitive storage element.

【0002】[0002]

【従来の技術】ダイナミックランダムアクセスメモリ
(DRAM)はおよそ3年で4倍の高集積化が行なわれてい
る。セル面積が縮小化しても必要な蓄積電荷量を確保す
るために、キャパシタ絶縁膜の薄膜化や立体構造電極に
よるキャパシタ面積の増大等が行なわれてきた。現在ま
でに量産化されたDRAMのキャパシタ絶縁膜は比誘電率3.
82のシリコン酸化膜(SiO2)や比誘電率7〜8のシリコン
窒化膜(Si3N4)が用いられてきた。しかし、256メガビ
ット以降のDRAMを考えると、キャパシタ絶縁膜を実効膜
厚1nm以下に薄膜化する必要があり、薄膜化に伴って増
大するリ−ク電流が許容限界を越える。比誘電率が22〜
25のタンタル酸化膜(Ta2O5)の採用が検討されている
が、それでも実効膜厚1.5nmが限界である。このTa2O5を
用いて256メガビットおよびギガビットスケ−ルのDRAM
を実現するためには、比誘電率が100を越える高誘電体
材料であるチタン酸ストロンチウムすなわちSrTiO3、ス
トロンチウムチタン酸バリウムすなわち(Ba、Sr)TiO
3、チタン酸鉛すなわちPbTiO3、チタン酸ジルコン酸鉛
すなわちPb(Ti、Zr)O3に代表されるようなペロブスカ
イト系絶縁膜の採用が必要である。また、DRAMだけでな
く、強誘電体の自発分極を利用した強誘電体不揮発性メ
モリのための強誘電体絶縁膜として利用する場合、強誘
電性を持つPbTiO3、Pb(Ti、Zr)O3、Bi系層状強誘電体
が採用される。ペロブスカイト系絶縁膜を採用する場
合、下部電極はスパッタ法によって形成されるPt膜が用
いられる。メモリの構造上、下部電極はトランジスタの
拡散層から引き上げられたプラグ(Si)とコンタクトを
取る必要がある。Pt膜は直接Siと接していると、熱工程
によりシリサイド化反応を起こす。するとSiが絶縁膜へ
拡散して膜質の低下を引き起こすため、Siとの間にTiN
膜等の反応防止としてのバリア層が必要である。特性の
良い(例えば比誘電率が大きい、残留分極が大きい)ペ
ロブスカイト系絶縁膜を得るためには、通常600℃以上
の成膜温度または酸化性雰囲気中でのポストアニ−ルが
必要である。しかし、下部電極Pt膜は酸素を透過させや
すい材料であるため、Pt膜厚が薄いと酸素がPtの結晶粒
界を透過してバリア層のTiN膜まで到達し、TiN膜が酸化
されて電気的な導電性が失われるという問題点があっ
た。それを防ぐため、従来はPt膜厚を厚くして酸素透過
パス(結晶粒界)を長くすることで対処していた。
2. Description of the Related Art Dynamic random access memory (DRAM) has been highly integrated four times in about three years. In order to secure a necessary amount of accumulated charge even when the cell area is reduced, the capacitor insulating film is made thinner, and the capacitor area is increased by a three-dimensional structure electrode. The capacitor insulating film of DRAM mass-produced to date has a relative dielectric constant of 3.
A silicon oxide film (SiO2) of 82 and a silicon nitride film (Si3N4) having a relative dielectric constant of 7 to 8 have been used. However, considering a DRAM of 256 megabits or more, it is necessary to reduce the thickness of the capacitor insulating film to an effective film thickness of 1 nm or less, and the leakage current that increases with the thinning exceeds the allowable limit. Relative permittivity is 22 ~
The use of 25 tantalum oxide films (Ta2O5) is being considered, but the effective film thickness is still 1.5 nm. 256-megabit and gigabit-scale DRAM using this Ta2O5
In order to realize the above, strontium titanate, ie, SrTiO3, and strontium barium titanate, ie, (Ba, Sr) TiO, which are high dielectric materials having a relative dielectric constant exceeding 100
3. It is necessary to use a perovskite-based insulating film typified by lead titanate, that is, PbTiO3, and lead zirconate titanate, that is, Pb (Ti, Zr) O3. In addition, when used as a ferroelectric insulating film for a ferroelectric nonvolatile memory using spontaneous polarization of a ferroelectric as well as a DRAM, PbTiO3, Pb (Ti, Zr) O3 having ferroelectricity, A Bi-based layered ferroelectric is used. When a perovskite-based insulating film is employed, a Pt film formed by a sputtering method is used for the lower electrode. Due to the structure of the memory, the lower electrode must be in contact with the plug (Si) pulled up from the diffusion layer of the transistor. When the Pt film is in direct contact with Si, a silicidation reaction is caused by a thermal process. Then, Si diffuses into the insulating film and causes deterioration of the film quality.
A barrier layer for preventing reaction of a film or the like is required. In order to obtain a perovskite-based insulating film having good characteristics (for example, having a large relative dielectric constant and a large remanent polarization), a post-anneal is usually required at a film forming temperature of 600 ° C. or higher or in an oxidizing atmosphere. However, since the lower electrode Pt film is a material that easily allows oxygen to permeate, if the Pt film thickness is small, oxygen passes through the Pt crystal grain boundary to reach the TiN film of the barrier layer, and the TiN film is oxidized and becomes electrically conductive. There is a problem that the electrical conductivity is lost. In order to prevent this, conventionally, the Pt film thickness is increased and the oxygen transmission path (crystal grain boundary) is lengthened to cope with the problem.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の技術で述
べたように、バリア層の酸化を防ぐためにはPtの膜厚を
厚くする必要があるが、Ptは蒸気圧の高い安定なハロゲ
ン化合物が存在しないため化学的なドライエッチングが
困難であり、Pt膜厚が厚くなると微細加工が困難にな
る。そのため高集積のメモリ実現のためには、酸素バリ
ア性が高く、薄膜化してもバリア層まで酸素が透過しな
いPt膜が必要である。
As described in the above prior art, in order to prevent oxidation of the barrier layer, it is necessary to increase the thickness of Pt, but Pt is a stable halogen compound having a high vapor pressure. The dry etching is difficult due to the absence of Pt, and the fine processing becomes difficult when the Pt film thickness is large. Therefore, in order to realize a highly integrated memory, a Pt film that has high oxygen barrier properties and does not transmit oxygen to the barrier layer even when thinned is required.

【0004】[0004]

【課題を解決するための手段】Pt膜の酸素透過はPt結晶
粒界によって生じる。つまり酸素バリア性の高いPt膜を
得るためには、結晶粒界の長いPt膜を得ればよい。そう
することによって、Ptの膜厚が薄くなっても酸素の透過
パスが長くなり、バリア層まで酸素が拡散することを防
ぐことができる。従来技術によればPt膜は柱状に成長
し、結晶粒が膜厚方向に連続的につながる。そのため、
Ptの結晶粒界は膜厚方向に直線的になり酸素の透過パス
は短くなる。酸素の透過パスを長くするためには、Ptの
膜厚方向の結晶粒の長さが膜厚よりも小さく、結晶粒界
の長さが、少なくともPt膜厚よりも長くなるようにする
必要がある。具体的には、Pt形成を途中で停止し、その
後残りの膜厚を形成すればよい。また、停止時に一時大
気中に曝す、表面をスパッタエッチする、あるいは加熱
する等の処理を行った後にさらにPt形成を続けてもよ
い。また、Pt成膜途中で成膜条件を変化させることによ
っても粒成長を連続的でなくなるように形成することが
できる。
SUMMARY OF THE INVENTION Oxygen permeation through a Pt film is caused by Pt grain boundaries. That is, in order to obtain a Pt film having high oxygen barrier properties, a Pt film having a long crystal grain boundary may be obtained. By doing so, even if the film thickness of Pt becomes thin, the oxygen transmission path becomes long, so that diffusion of oxygen to the barrier layer can be prevented. According to the prior art, the Pt film grows in a columnar shape, and the crystal grains are continuously connected in the film thickness direction. for that reason,
The grain boundary of Pt becomes linear in the film thickness direction, and the oxygen transmission path becomes shorter. In order to lengthen the oxygen transmission path, it is necessary that the length of the crystal grains in the thickness direction of Pt be smaller than the film thickness, and that the length of the crystal grain boundary be longer than at least the Pt film thickness. is there. Specifically, Pt formation may be stopped halfway, and the remaining film thickness may be formed thereafter. In addition, Pt formation may be further continued after performing processing such as temporarily exposing to the atmosphere, sputter etching the surface, or heating at the time of stop. Also, by changing the film formation conditions during the Pt film formation, the film can be formed so that the grain growth is not continuous.

【0005】[0005]

【発明の実施の形態】まずバリア層としてTiN膜をスパ
ッタ法によってSi基板上に形成した。基板温度300℃、N
2流量28sccm、Ar流量4sccm、圧力0.6mTorr、DCパワ−12
kWにて行なった。スパッタ時間は60秒で、TiN膜は50nm
形成した。次にTiN膜上にPt膜をスパッタ法により形成
した。まず基板温度300℃、Ar流量100scccm、圧力3mTor
r、DCパワ−12kWでPtを50nm形成し、一時パワ−を落と
してスパッタを停止した。その後同条件でPtをさらに50
nm形成した。図1に合計100nm形成したPtの断面構造を
示す。Pt膜を2段階形成することによって、結晶粒の膜
厚方向の長さが膜厚よりも小さくなり、酸素の透過パス
である結晶粒界を長くすることができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a TiN film was formed on a Si substrate as a barrier layer by a sputtering method. Substrate temperature 300 ℃, N
2 flow rate 28sccm, Ar flow rate 4sccm, pressure 0.6mTorr, DC power-12
Performed in kW. Sputtering time is 60 seconds, TiN film is 50nm
Formed. Next, a Pt film was formed on the TiN film by a sputtering method. First, substrate temperature 300 ° C, Ar flow rate 100scccm, pressure 3mTor
r, Pt was formed at 50 nm with DC power of 12 kW, and the power was temporarily dropped to stop the sputtering. Then, Pt was further increased under the same conditions by 50
nm formed. FIG. 1 shows a cross-sectional structure of Pt formed to a total of 100 nm. By forming the Pt film in two stages, the length of the crystal grain in the thickness direction became smaller than the film thickness, and the crystal grain boundary, which is an oxygen transmission path, could be lengthened.

【0006】比較のために、Ptを連続して100nm形成し
た場合の断面構造を図3に示す。形成条件は基板温度30
0℃、Ar流量100scccm、圧力3mTorr、DCパワ−12kWであ
る。この場合、結晶粒の膜厚方向の長さが膜厚と同じに
なっており、酸素の透過パスとなる結晶粒界が短くなっ
ていることがわかる。
For comparison, FIG. 3 shows a cross-sectional structure in the case where Pt is continuously formed to 100 nm. Forming condition is substrate temperature 30
The temperature was 0 ° C, the flow rate of Ar was 100 sccm, the pressure was 3 mTorr, and the DC power was 12 kW. In this case, the length of the crystal grain in the thickness direction is the same as the film thickness, and it can be seen that the crystal grain boundary serving as the oxygen transmission path is short.

【0007】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である連続形成したものと、本発明によるPt膜
厚の半分を形成した時点で一時パワ−を落としてスパッ
タを停止したものを用意した。それらのPt上にPZTをゾ
ルゲル法で100nm形成し、650℃、2分の酸素雰囲気結晶
化アニ−ルを行なった試料を作成した。それらの試料を
SIMSによって深さ方向元素分析を行ない、TiN酸化膜厚
の下部電極Pt膜厚依存性を求めた。結果を図4に示す。
従来技術の連続形成Ptの場合、150nm以下に薄膜化する
と酸素の透過量が多くなり、TiN膜が酸化してしまう。
それに対し、本発明による2段階形成Pt膜の場合、Pt膜
厚100nm以下でも酸化されないことがわかる。
Next, oxygen barrier properties were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
Two types were prepared: a conventional one which was continuously formed, and a one in which sputtering was stopped by temporarily lowering the power when a half of the Pt film thickness was formed according to the present invention. PZT was formed on the Pt by a sol-gel method to a thickness of 100 nm, and a sample was formed by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. Those samples
Elemental analysis in the depth direction was performed by SIMS, and the dependency of the TiN oxide film thickness on the Pt film thickness of the lower electrode was obtained. FIG. 4 shows the results.
In the case of the continuously formed Pt according to the prior art, when the thickness is reduced to 150 nm or less, the amount of transmitted oxygen increases, and the TiN film is oxidized.
On the other hand, in the case of the two-step formed Pt film according to the present invention, it is understood that the Pt film is not oxidized even if the Pt film thickness is 100 nm or less.

【0008】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図を図5に示す。膜厚
100nmのPtを用いた。従来方法の連続形成Pt膜ではTiN膜
が酸化され、メモリ特性がとれなかったが、本発明を用
いればDRAMに適用しても強誘電体不揮発性メモリに適用
しても容量記憶素子としての動作が確認された。
[0008] A capacitance storage element was formed using a Pt film formed according to the present invention. FIG. 5 is a cross-sectional view of a main part. Film thickness
100 nm Pt was used. In the conventional method, the TiN film was oxidized in the continuously formed Pt film, and the memory characteristics could not be obtained. However, when the present invention is used, it can operate as a capacitive storage element whether applied to a DRAM or a ferroelectric nonvolatile memory. Was confirmed.

【0009】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中で形成を停止させたPt表
面を一時大気開放する方法がある。具体的には、発明の
実施の形態1で示した条件で形成したTiN膜上に基板温
度300℃、Ar流量100scccm、圧力3mTorr、DCパワ−12kW
でPtを50nm形成し、一時間の大気開放を行った。その後
同条件でPtをさらに50nm形成した。Ptの断面構造は図1
に示したものと同様であった。
As a method of reducing the length of the Pt crystal grains in the thickness direction to be smaller than the film thickness, there is a method of temporarily exposing the Pt surface whose formation has been stopped halfway to the atmosphere. Specifically, a substrate temperature of 300 ° C., an Ar flow rate of 100 sccm, a pressure of 3 mTorr, and a DC power of −12 kW were formed on the TiN film formed under the conditions described in Embodiment 1 of the present invention.
To form a 50 nm Pt, and opened to the atmosphere for one hour. Thereafter, 50 nm of Pt was further formed under the same conditions. Figure 1 shows the cross-sectional structure of Pt
The results were the same as those shown in FIG.

【0010】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である連続形成したものと、本発明によるPt膜
厚の半分を形成した時点で大気開放を行ったものを用意
した。それらのPt上にPZTをゾルゲル法で100nm形成し、
650℃、2分の酸素雰囲気結晶化アニ−ルを行なった試
料を作成した。それらの試料をSIMSによって深さ方向元
素分析を行ない、TiN酸化膜厚の下部電極Pt膜厚依存性
を求めた。本発明による大気開放Pt膜の場合、発明の実
施の形態1の場合と同様にPt膜厚100nm以下でも酸化さ
れないことがわかった。
Next, the barrier properties of oxygen were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
Two types were prepared: a conventional one formed continuously, and one that was opened to the atmosphere when a half of the Pt film thickness was formed according to the present invention. Form PZT on those Pt by sol-gel method to 100nm,
A sample was prepared by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. These samples were subjected to elemental analysis in the depth direction by SIMS to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. In the case of the Pt film open to the atmosphere according to the present invention, it was found that it was not oxidized even when the Pt film thickness was 100 nm or less, as in the case of the first embodiment of the present invention.

【0011】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の連続形成Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
A capacitance storage element was formed using a Pt film formed according to the present invention. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. In the conventional method, the TiN film was oxidized in the continuously formed Pt film, and the memory characteristics could not be obtained. However, when the present invention is used, it can operate as a capacitive storage element whether applied to a DRAM or a ferroelectric nonvolatile memory. Was confirmed.

【0012】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中で形成を停止させたPt表
面をスパッタエッチする方法がある。具体的には、発明
の実施の形態1で示した条件で形成したTiN膜上に基板
温度300℃、Ar流量100scccm、圧力3mTorr、DCパワ−12k
WでPtを50nm形成し、室温でAr流量100scccm、圧力3mTor
r、DCパワ−200Wで1分間のスパッタエッチを行った。
その後同条件でPtをさらに50nm形成した。Ptの断面構造
は図1に示したものと同様であった。
As a method of making the length of the Pt crystal grain in the thickness direction smaller than the film thickness, there is a method of sputter etching the Pt surface which has been stopped halfway. Specifically, a substrate temperature of 300 ° C., an Ar flow rate of 100 sccm, a pressure of 3 mTorr, and a DC power of 12 k were formed on the TiN film formed under the conditions described in the first embodiment of the invention.
Pt is formed to 50 nm by W, Ar flow rate is 100 sccm at room temperature, pressure is 3 mTor.
r, Sputter etching was performed at DC power of 200 W for 1 minute.
Thereafter, 50 nm of Pt was further formed under the same conditions. The cross-sectional structure of Pt was the same as that shown in FIG.

【0013】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である連続形成したものと、本発明によるPt膜
厚の半分を形成した時点でPt表面のスパッタエッチング
を行ったものを用意した。それらのPt上にPZTをゾルゲ
ル法で100nm形成し、650℃、2分の酸素雰囲気結晶化ア
ニ−ルを行なった試料を作成した。それらの試料をSIMS
によって深さ方向元素分析を行ない、TiN酸化膜厚の下
部電極Pt膜厚依存性を求めた。本発明によるスパッタエ
ッチングPt膜の場合、発明の実施の形態1の場合と同様
にPt膜厚100nm以下でも酸化されないことがわかった。
Next, the oxygen barrier properties were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
There were prepared a prior art continuously formed one and a Pt surface sputter-etched when a half of the Pt film thickness was formed according to the present invention. PZT was formed on the Pt by a sol-gel method to a thickness of 100 nm, and a sample was formed by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. SIMS these samples
In the depth direction, elemental analysis was performed to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. It was found that the sputter-etched Pt film according to the present invention was not oxidized even if the Pt film thickness was 100 nm or less, as in the case of the first embodiment of the present invention.

【0014】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の連続形成Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
Using the Pt film formed according to the present invention, a capacitance storage element was formed. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. In the conventional method, the TiN film was oxidized in the continuously formed Pt film, and the memory characteristics could not be obtained. However, when the present invention is used, it can operate as a capacitive storage element whether applied to a DRAM or a ferroelectric nonvolatile memory. Was confirmed.

【0015】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中で形成を停止させたPtを
加熱処理する方法がある。具体的には、発明の実施の形
態1で示した条件で形成したTiN膜上に基板温度300℃、
Ar流量100scccm、圧力3mTorr、DCパワ−12kWでPtを50nm
形成した後にプラズマを停止し、基板温度を600℃まで
昇温して10分間加熱処理した。その後同条件でPtをさら
に50nm形成した。Ptの断面構造は図1に示したものと同
様であった。
As a method of making the length of the Pt crystal grain in the thickness direction smaller than the film thickness, there is a method of heat-treating Pt whose formation has been stopped halfway. Specifically, a substrate temperature of 300 ° C. was formed on a TiN film formed under the conditions described in Embodiment 1 of the present invention.
Ar flow rate 100scccm, pressure 3mTorr, DC power 12kW, Pt 50nm
After the formation, the plasma was stopped, the substrate temperature was raised to 600 ° C., and a heat treatment was performed for 10 minutes. Thereafter, 50 nm of Pt was further formed under the same conditions. The cross-sectional structure of Pt was the same as that shown in FIG.

【0016】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術による連続形成したものと、本発明によるPt膜
厚の半分を形成した時点で加熱処理を行ったものを用意
した。それらのPt上にPZTをゾルゲル法で100nm形成し、
650℃、2分の酸素雰囲気結晶化アニ−ルを行なった試
料を作成した。それらの試料をSIMSによって深さ方向元
素分析を行ない、TiN酸化膜厚の下部電極Pt膜厚依存性
を求めた。本発明による加熱処理Pt膜の場合、発明の実
施の形態1の場合と同様にPt膜厚100nm以下でも酸化さ
れないことがわかった。
Next, the barrier properties of oxygen were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
There were prepared those continuously formed according to the prior art and those subjected to a heat treatment at the time when half of the Pt film thickness according to the present invention was formed. Form PZT on those Pt by sol-gel method to 100nm,
A sample was prepared by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. These samples were subjected to elemental analysis in the depth direction by SIMS to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. It was found that the heat-treated Pt film according to the present invention was not oxidized even when the Pt film thickness was 100 nm or less, as in the case of the first embodiment of the present invention.

【0017】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の連続形成Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
Using the Pt film formed according to the present invention, a capacitance storage element was prepared. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. In the conventional method, the TiN film was oxidized in the continuously formed Pt film, and the memory characteristics could not be obtained. However, when the present invention is used, it can operate as a capacitive storage element whether applied to a DRAM or a ferroelectric nonvolatile memory. Was confirmed.

【0018】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中でPtのスパッタ条件を変
える方法がある。具体的には、発明の実施の形態1で示
した条件で形成したTiN膜上に基板温度300℃、Ar流量10
0scccm、圧力3mTorr、DCパワ−12kWでPtを50nm形成した
後に基板温度を200℃まで降温して、Ar流量100sc
ccm、圧力3mTorr、DCパワ−12kWでPtをさらに
50nm形成した。図2に合計100nm形成したPtの断面構造
を示す。Pt形成途中に基板温度を下げることによって、
結晶粒径の異なる2層構造にすることができ、酸素の透
過パスである結晶粒界を長くすることができた。逆に形
成途中で基板温度を上げることによっても結晶粒径の異
なる2層構造にすることができる。基板温度については
ここで示した条件に限ったものではなく、2層の基板温
度条件が少なくとも50℃以上異なっていればよい。
As a method of making the length of the Pt crystal grain in the thickness direction smaller than the film thickness, there is a method of changing Pt sputtering conditions on the way. Specifically, a substrate temperature of 300 ° C. and an Ar flow rate of 10 ° C. were formed on a TiN film formed under the conditions described in the first embodiment of the present invention.
After forming Pt with a thickness of 50 nm at 0 scccm, a pressure of 3 mTorr, and a DC power of 12 kW, the substrate temperature was lowered to 200 ° C., and the Ar flow rate was 100 sc.
Ct, pressure 3mTorr, DC power-12kW, Pt further
50 nm was formed. FIG. 2 shows a cross-sectional structure of Pt formed in a total of 100 nm. By lowering the substrate temperature during Pt formation,
A two-layer structure having different crystal grain sizes can be obtained, and the crystal grain boundaries, which are oxygen transmission paths, can be lengthened. Conversely, by increasing the substrate temperature during the formation, a two-layer structure having different crystal grain sizes can be obtained. The substrate temperature is not limited to the conditions shown here, and it is sufficient that the substrate temperature conditions of the two layers differ by at least 50 ° C. or more.

【0019】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である同一基板温度で連続形成したものと、本
発明によるPt膜厚の半分で基板温度を変化させたものを
用意した。それらのPt上にPZTをゾルゲル法で100nm形成
し、650℃、2分の酸素雰囲気結晶化アニ−ルを行なっ
た試料を作成した。それらの試料をSIMSによって深さ方
向元素分析を行ない、TiN酸化膜厚の下部電極Pt膜厚依
存性を求めた。本発明による基板温度を変化させたPt膜
の場合、発明の実施の形態1の場合と同様にPt膜厚100n
m以下でも酸化されないことがわかった。
Next, oxygen barrier properties were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
There were prepared a conventional technology in which the substrate was continuously formed at the same substrate temperature and a technology in which the substrate temperature was changed by half the Pt film thickness according to the present invention. PZT was formed on the Pt by a sol-gel method to a thickness of 100 nm, and a sample was formed by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. These samples were subjected to elemental analysis in the depth direction by SIMS to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. In the case of the Pt film with the substrate temperature changed according to the present invention, as in the case of the first embodiment of the present invention, the Pt film thickness is 100 nm.
It was found that it was not oxidized even below m.

【0020】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の同一条件Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
Using the Pt film formed according to the present invention, a capacitance storage element was formed. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. Under the same conditions of the conventional method, the TiN film was oxidized in the Pt film under the same conditions, and the memory characteristics could not be obtained. However, when the present invention is used, the operation as a capacitance storage element can be applied to both a DRAM and a ferroelectric nonvolatile memory. Was confirmed.

【0021】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中でPtのスパッタ条件を変
える方法がある。具体的には、発明の実施の形態1で示
した条件で形成したTiN膜上に基板温度300℃、Ar流量10
0scccm、圧力3mTorr、DCパワ−12kWでPtを50nm形成した
後に圧力を5mTorrまで増やして、基板温度300℃、Ar流
量100scccm、DCパワ−12kWでPtをさらに50nm形成した。
Ptの断面構造は図2に示したものと同様であった。逆に
形成途中で圧力を下げることによっても結晶粒径の異な
る2層構造にすることができる。圧力についてはここで
示した条件に限ったものではなく、2層の圧力条件が少
なくとも1mTorr以上異なっていればよい。
As a method for making the length of the Pt crystal grain in the thickness direction smaller than the film thickness, there is a method of changing the sputtering conditions of Pt on the way. Specifically, a substrate temperature of 300 ° C. and an Ar flow rate of 10 ° C. were formed on a TiN film formed under the conditions described in the first embodiment of the present invention.
After forming Pt with a thickness of 50 nm at 0 scccm, a pressure of 3 mTorr, and a DC power of 12 kW, the pressure was increased to 5 mTorr, and Pt was further formed with a substrate temperature of 300 ° C., an Ar flow rate of 100 scccm, and a DC power of 12 kW.
The cross-sectional structure of Pt was similar to that shown in FIG. Conversely, a two-layer structure with different crystal grain sizes can be obtained by lowering the pressure during the formation. The pressure is not limited to the conditions shown here, and it is sufficient that the pressure conditions of the two layers differ by at least 1 mTorr or more.

【0022】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である同一圧力で連続形成したものと、本発明
によるPt膜厚の半分で圧力を変化させたものを用意し
た。それらのPt上にPZTをゾルゲル法で100nm形成し、65
0℃、2分の酸素雰囲気結晶化アニ−ルを行なった試料
を作成した。それらの試料をSIMSによって深さ方向元素
分析を行ない、TiN酸化膜厚の下部電極Pt膜厚依存性を
求めた。本発明による圧力を変化させたPt膜の場合、発
明の実施の形態1の場合と同様にPt膜厚100nm以下でも
酸化されないことがわかった。
Next, the barrier properties of oxygen were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
There were prepared a prior art that was continuously formed under the same pressure and a Pt according to the present invention in which the pressure was changed at half the Pt film thickness. PZT was formed 100 nm on those Pt by sol-gel method,
A sample was prepared by annealing at 0 ° C. for 2 minutes in an oxygen atmosphere. These samples were subjected to elemental analysis in the depth direction by SIMS to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. In the case of the Pt film with the changed pressure according to the present invention, it was found that the Pt film was not oxidized even when the Pt film thickness was 100 nm or less, as in the case of the first embodiment of the present invention.

【0023】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の同一条件Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
Using the Pt film formed according to the present invention, a capacitance storage element was formed. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. Under the same conditions of the conventional method, the TiN film was oxidized in the Pt film under the same conditions, and the memory characteristics could not be obtained. However, when the present invention is used, the operation as a capacitance storage element can be applied to both a DRAM and a ferroelectric nonvolatile memory. Was confirmed.

【0024】Ptの結晶粒の膜厚方向の長さを膜厚よりも
小さくする方法としては、途中でPtのスパッタ条件を変
える方法がある。具体的には、発明の実施の形態1で示
した条件で形成したTiN膜上に基板温度300℃、Ar流量10
0scccm、圧力3mTorr、DCパワ−12kWで成長速度20nm/秒
でPtを50nm形成した後にDCパワ−を8kWまで落として、
基板温度300℃、Ar流量100scccm、圧力3mTorrで成長速
度を15nm/秒まで下げてPtをさらに50nm形成した。Ptの
断面構造は図2に示したものと同様であった。逆に形成
途中で成長速度を上げることによっても結晶粒径の異な
る2層構造にすることができる。成長速度についてはこ
こで示した条件に限ったものではなく、2層の成長速度
が少なくとも1nm/秒以上異なっていればよい。
As a method of making the length of the Pt crystal grain in the thickness direction smaller than the film thickness, there is a method of changing Pt sputtering conditions on the way. Specifically, a substrate temperature of 300 ° C. and an Ar flow rate of 10 ° C. were formed on a TiN film formed under the conditions described in the first embodiment of the present invention.
0 scccm, pressure 3 mTorr, DC power-12 kW, growth rate of 20 nm / sec, Pt was formed at 50 nm, and then DC power was reduced to 8 kW.
At a substrate temperature of 300 ° C., an Ar flow rate of 100 sccm, and a pressure of 3 mTorr, the growth rate was reduced to 15 nm / sec, and Pt was further formed to a thickness of 50 nm. The cross-sectional structure of Pt was similar to that shown in FIG. Conversely, a two-layer structure having different crystal grain sizes can be obtained by increasing the growth rate during the formation. The growth rate is not limited to the conditions shown here, and it is sufficient that the growth rates of the two layers differ by at least 1 nm / sec or more.

【0025】次に酸素のバリア性を比較した。TiN膜上
に50nmから200nmのPtをスパッタ法によって形成した。
従来技術である同一成長速度で連続形成したものと、本
発明によるPt膜厚の半分で成長速度を変化させたものを
用意した。それらのPt上にPZTをゾルゲル法で100nm形成
し、650℃、2分の酸素雰囲気結晶化アニ−ルを行なっ
た試料を作成した。その試料をSIMSによって深さ方向元
素分析を行ない、TiN酸化膜厚の下部電極Pt膜厚依存性
を求めた。本発明による成長速度を変化させたPt膜の場
合、発明の実施の形態1の場合と同様にPt膜厚100nm以
下でも酸化されないことがわかった。
Next, the barrier properties of oxygen were compared. Pt of 50 nm to 200 nm was formed on the TiN film by a sputtering method.
There were prepared a conventional technique in which the film was continuously formed at the same growth rate, and a technique in which the growth rate was changed by half the Pt film thickness according to the present invention. PZT was formed on the Pt by a sol-gel method to a thickness of 100 nm, and a sample was formed by crystallization at 650 ° C. for 2 minutes in an oxygen atmosphere. The sample was subjected to elemental analysis in the depth direction by SIMS to determine the dependency of the TiN oxide film thickness on the lower electrode Pt film thickness. In the case of the Pt film with the growth rate changed according to the present invention, it was found that the Pt film was not oxidized even when the Pt film thickness was 100 nm or less as in the case of the first embodiment of the present invention.

【0026】本発明を用いて形成したPt膜を用いて、容
量記憶素子を作成した。要部断面図は発明の実施の形態
1で示した図5と同様である。膜厚100nmのPtを用い
た。従来方法の同一条件Pt膜ではTiN膜が酸化され、メ
モリ特性がとれなかったが、本発明を用いればDRAMに適
用しても強誘電体不揮発性メモリに適用しても容量記憶
素子としての動作が確認された。
Using the Pt film formed according to the present invention, a capacitance storage element was prepared. The cross-sectional view of the main part is the same as FIG. 5 shown in the first embodiment of the present invention. Pt with a thickness of 100 nm was used. Under the same conditions of the conventional method, the TiN film was oxidized in the Pt film under the same conditions, and the memory characteristics could not be obtained. However, when the present invention is used, the operation as a capacitance storage element can be applied to both a DRAM and a ferroelectric nonvolatile memory. Was confirmed.

【0027】[0027]

【発明の効果】本発明を用いることにより、酸素バリア
性の高いPt膜を得ることができるため、キャパシタの下
部電極Pt膜厚を100nmまで薄膜化できる。そのため、DRA
Mや強誘電体不揮発性メモリ等の容量記憶素子の微細
化、高集積化が可能となった。
According to the present invention, since a Pt film having a high oxygen barrier property can be obtained, the Pt film thickness of the lower electrode of the capacitor can be reduced to 100 nm. Therefore, DRA
Capacitive storage elements such as M and ferroelectric nonvolatile memories can be miniaturized and highly integrated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による2段階形成Pt膜の断面構造を示す
図。
FIG. 1 is a diagram showing a cross-sectional structure of a two-stage formed Pt film according to the present invention.

【図2】本発明による結晶粒径の異なる2層構造からな
るPt膜の断面構造を示す図。
FIG. 2 is a diagram showing a cross-sectional structure of a Pt film having a two-layer structure with different crystal grain sizes according to the present invention.

【図3】従来技術による連続形成Pt膜の断面構造を示す
図。
FIG. 3 is a diagram showing a cross-sectional structure of a continuously formed Pt film according to a conventional technique.

【図4】バリア層TiN膜の酸化膜厚の、Pt膜厚依存性。FIG. 4 shows the dependency of the oxide film thickness of the barrier layer TiN film on the Pt film thickness.

【図5】本発明によるPt膜を用いた容量記憶素子の要部
断面図。
FIG. 5 is a sectional view of a main part of a capacitance storage element using a Pt film according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・Si 基板 2・・・TiN 膜 3・・・Pt 膜 4・・・SiO2 膜 5・・・n+Si(ソ−ス・ドレイン領域) 6・・・Wポリサイド(ワ−ド線) 7・・・Wポリサイド(下部ビット線) 8・・・多結晶 Si プラグ 9・・・バリア層 TiN 膜 10・・・下部電極(Pt) 11・・・PZT 膜 12・・・上部電極(Pt) 13・・・上部ビット線(W) 14・・・BPSG。 DESCRIPTION OF SYMBOLS 1 ... Si board | substrate 2 ... TiN film 3 ... Pt film 4 ... SiO2 film 5 ... n + Si (source / drain region) 6 ... W polycide (word line) 7: W polycide (lower bit line) 8: polycrystalline Si plug 9: barrier layer TiN film 10: lower electrode (Pt) 11: PZT film 12: upper electrode ( Pt) 13 ... Upper bit line (W) 14 ... BPSG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/8247 29/788 29/792 (72)発明者 平谷 正彦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 藤崎 芳久 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01L 21/8247 29/788 29/792 (72) Inventor Masahiko Hiratani 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo Central Research Laboratory, Hitachi, Ltd. In-house (72) Inventor Yoshihisa Fujisaki 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】第一の下部電極、第二の下部電極、絶縁
膜、上部電極の順に積層されるキャパシタを備えた半導
体装置において、該キャパシタの第二の下部電極の結晶
粒の膜厚方向の大きさが、該第二の下部電極の膜厚より
も小さいことを特徴とする半導体装置。
1. A semiconductor device having a capacitor laminated in the order of a first lower electrode, a second lower electrode, an insulating film, and an upper electrode, in a thickness direction of crystal grains of the second lower electrode of the capacitor. The size of the second lower electrode is smaller than the thickness of the second lower electrode.
【請求項2】第一の下部電極、第二の下部電極、絶縁
膜、上部電極の順に積層されるキャパシタを備えた半導
体装置おいて、該キャパシタの第二の下部電極の結晶粒
界の長さが、少なくとも該第二の下部電極の膜厚よりも
長いことを特徴とする半導体装置。
2. A semiconductor device comprising a capacitor laminated in the order of a first lower electrode, a second lower electrode, an insulating film and an upper electrode, wherein a length of a crystal grain boundary of the second lower electrode of the capacitor is set. Wherein the thickness of the semiconductor device is longer than at least the thickness of the second lower electrode.
【請求項3】第一の下部電極、第二の下部電極、絶縁
膜、上部電極の順に積層されるキャパシタを備えた半導
体装置おいて、該キャパシタの第二の下部電極が、結晶
粒の膜厚方向の大きさが該第二の下部電極の膜厚よりも
小さい層が少なくとも2層以上ある積層構造となってい
ることを特徴とする半導体装置。
3. A semiconductor device having a capacitor laminated in the order of a first lower electrode, a second lower electrode, an insulating film, and an upper electrode, wherein the second lower electrode of the capacitor is a film of crystal grains. A semiconductor device having a stacked structure including at least two layers whose thickness in the thickness direction is smaller than the thickness of the second lower electrode.
【請求項4】第一の下部電極、第二の下部電極、絶縁
膜、上部電極の順に積層されるキャパシタを備えた半導
体装置おいて、該キャパシタの第二の下部電極が、平均
結晶粒径の異なる層が少なくとも2層以上ある積層構造
となっていることを特徴とする半導体装置。
4. In a semiconductor device having a capacitor laminated in the order of a first lower electrode, a second lower electrode, an insulating film and an upper electrode, the second lower electrode of the capacitor has an average crystal grain size. A semiconductor device having a laminated structure having at least two layers different from each other.
【請求項5】請求項1から4のいずれかに記載の第二の
下部電極は、所望の膜厚以下の任意の膜厚を形成後、一
時成膜を停止した後に上部の層を形成することを少なく
とも1回以上繰り返すことによって形成することを特徴
とする半導体装置の製造方法。
5. The second lower electrode according to any one of claims 1 to 4, wherein an upper layer is formed after forming an arbitrary film thickness equal to or less than a desired film thickness, temporarily stopping film formation. Forming a semiconductor device by repeating the above at least once.
【請求項6】請求項1から4のいずれかに記載の第二の
下部電極は、所望の膜厚以下の任意の膜厚を形成後、一
時大気中に曝した後に上部の層を形成することを少なく
とも1回以上繰り返すことによって形成することを特徴
とする半導体装置の製造方法。
6. The second lower electrode according to any one of claims 1 to 4, wherein an upper layer is formed after forming an arbitrary film thickness equal to or less than a desired film thickness and temporarily exposing it to the atmosphere. Forming a semiconductor device by repeating the above at least once.
【請求項7】請求項1から4のいずれかに記載の第二の
下部電極は、所望の膜厚以下の任意の膜厚を形成後、膜
表面のスパッタエッチングを行った後に上部の層を形成
することを少なくとも1回以上繰り返すことによって形
成することを特徴とする半導体装置の製造方法。
7. The second lower electrode according to any one of claims 1 to 4, wherein after forming an arbitrary thickness equal to or less than a desired thickness, the upper layer is formed after performing sputter etching on the film surface. A method for manufacturing a semiconductor device, characterized by forming by repeating forming at least once.
【請求項8】請求項1から4のいずれかに記載の第二の
下部電極は、所望の膜厚以下の任意の膜厚を形成後、少
なくとも成膜温度以上の加熱処理を行った後に上部の層
を形成することを少なくとも1回以上繰り返すことによ
って形成することを特徴とする半導体装置の製造方法。
8. The second lower electrode according to any one of claims 1 to 4, wherein after forming an arbitrary film thickness equal to or less than a desired film thickness, the second lower electrode is subjected to a heat treatment at least at a film formation temperature or higher. Forming a layer by repeating at least once at least one layer.
【請求項9】請求項1から4のいずれかに記載の第二の
下部電極は、所望の膜厚以下の任意の膜厚を形成後、成
膜条件を変えて上部の層を形成することを少なくとも1
回以上繰り返すことによって形成することを特徴とする
半導体装置の製造方法。
9. The second lower electrode according to claim 1, wherein an upper layer is formed by changing a film forming condition after forming an arbitrary film thickness less than or equal to a desired film thickness. At least one
A method for manufacturing a semiconductor device, wherein the method is repeated at least twice.
【請求項10】請求項9に記載の、変化させる成膜条件
は基板温度であり、下層よりも上層の方が基板温度が低
い条件で形成されることを特徴とする半導体装置の製造
方法。
10. The method of manufacturing a semiconductor device according to claim 9, wherein the film forming condition to be changed is a substrate temperature, and the upper layer is formed at a lower substrate temperature than a lower layer.
【請求項11】請求項9に記載の、変化させる成膜条件
は成膜圧力であり、下層よりも上層の方が成膜圧力が高
い条件で形成されることを特徴とする半導体装置の製造
方法。
11. A method of manufacturing a semiconductor device according to claim 9, wherein the film forming condition to be changed is a film forming pressure, and the upper layer is formed at a higher film forming pressure than the lower layer. Method.
【請求項12】請求項9に記載の、変化させる成膜条件
は成膜速度であり、下層よりも上層の方が成膜速度が低
い条件で形成されることを特徴とする半導体装置の製造
方法。
12. The method of manufacturing a semiconductor device according to claim 9, wherein the film forming condition to be changed is a film forming rate, and the upper layer is formed at a lower film forming rate than the lower layer. Method.
【請求項13】請求項9に記載の、変化させる成膜条件
は基板温度であり、下層よりも上層の方が基板温度が高
い条件で形成されることを特徴とする半導体装置の製造
方法。
13. The method of manufacturing a semiconductor device according to claim 9, wherein the film forming condition to be changed is a substrate temperature, and the upper layer is formed at a higher substrate temperature than a lower layer.
【請求項14】請求項9に記載の、変化させる成膜条件
は成膜圧力であり、下層よりも上層の方が成膜圧力が低
い条件で形成されることを特徴とする半導体装置の製造
方法。
14. A method of manufacturing a semiconductor device according to claim 9, wherein the film forming condition to be changed is a film forming pressure, and the upper layer is formed at a lower film forming pressure than the lower layer. Method.
【請求項15】請求項9に記載の、変化させる成膜条件
は成膜速度であり、下層よりも上層の方が成膜速度が高
い条件で形成されることを特徴とする半導体装置の製造
方法。
15. The manufacturing method of a semiconductor device according to claim 9, wherein the film forming conditions to be changed are a film forming rate, and the upper layer is formed at a higher film forming rate than the lower layer. Method.
【請求項16】請求項1から15のいずれかに記載の第
二の下部電極は白金であることを特徴とする半導体装
置。
16. The semiconductor device according to claim 1, wherein the second lower electrode is made of platinum.
【請求項17】請求項16に記載の第二の下部電極白金
は、スパッタ法によって形成されることを特徴とする半
導体装置。
17. The semiconductor device according to claim 16, wherein the second lower electrode platinum is formed by a sputtering method.
【請求項18】請求項1から17のいずれかに記載の第
二の下部電極を用いた半導体装置。
18. A semiconductor device using the second lower electrode according to claim 1.
JP8333373A 1996-12-13 1996-12-13 Semiconductor device and its manufacture Pending JPH10173149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333373A JPH10173149A (en) 1996-12-13 1996-12-13 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333373A JPH10173149A (en) 1996-12-13 1996-12-13 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH10173149A true JPH10173149A (en) 1998-06-26

Family

ID=18265392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333373A Pending JPH10173149A (en) 1996-12-13 1996-12-13 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH10173149A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437968B1 (en) 1999-07-02 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Capacitive element
US6504228B1 (en) 1999-07-09 2003-01-07 Nec Corporation Semiconductor device and method for manufacturing the same
KR100431820B1 (en) * 1999-12-28 2004-05-20 주식회사 하이닉스반도체 Manufacturing method for storage node of semiconductor device
JP2004311922A (en) * 2002-12-24 2004-11-04 Seiko Epson Corp Electrode film and its forming method, and ferroelectric memory and semiconductor device
US7060615B2 (en) 1998-08-27 2006-06-13 Micron Technology, Inc. Methods of forming roughened layers of platinum
KR100798509B1 (en) 2000-05-02 2008-01-28 인터내셔널 비지네스 머신즈 코포레이션 Capacitor stack structure and method of fabricating
JP2008135698A (en) * 2006-10-27 2008-06-12 Seiko Epson Corp Method of manufacturing dielectric capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060615B2 (en) 1998-08-27 2006-06-13 Micron Technology, Inc. Methods of forming roughened layers of platinum
US7098503B1 (en) 1998-08-27 2006-08-29 Micron Technology, Inc. Circuitry and capacitors comprising roughened platinum layers
US7291920B2 (en) 1998-08-27 2007-11-06 Micron Technology, Inc. Semiconductor structures
US7719044B2 (en) 1998-08-27 2010-05-18 Micron Technology, Inc. Platinum-containing integrated circuits and capacitor constructions
US6437968B1 (en) 1999-07-02 2002-08-20 Mitsubishi Denki Kabushiki Kaisha Capacitive element
US6504228B1 (en) 1999-07-09 2003-01-07 Nec Corporation Semiconductor device and method for manufacturing the same
KR100431820B1 (en) * 1999-12-28 2004-05-20 주식회사 하이닉스반도체 Manufacturing method for storage node of semiconductor device
KR100798509B1 (en) 2000-05-02 2008-01-28 인터내셔널 비지네스 머신즈 코포레이션 Capacitor stack structure and method of fabricating
JP2004311922A (en) * 2002-12-24 2004-11-04 Seiko Epson Corp Electrode film and its forming method, and ferroelectric memory and semiconductor device
JP4586956B2 (en) * 2002-12-24 2010-11-24 セイコーエプソン株式会社 Electrode film manufacturing method
JP2008135698A (en) * 2006-10-27 2008-06-12 Seiko Epson Corp Method of manufacturing dielectric capacitor

Similar Documents

Publication Publication Date Title
JP3319994B2 (en) Semiconductor storage element
US5605858A (en) Method of forming high-dielectric-constant material electrodes comprising conductive sidewall spacers of same material as electrodes
US6096597A (en) Method for fabricating an integrated circuit structure
JP4428500B2 (en) Capacitor element and manufacturing method thereof
US6165834A (en) Method of forming capacitors, method of processing dielectric layers, method of forming a DRAM cell
US6144060A (en) Integrated circuit devices having buffer layers therein which contain metal oxide stabilized by heat treatment under low temperature
US6180974B1 (en) Semiconductor storage device having a capacitor electrode formed of at least a platinum-rhodium oxide
US6352898B2 (en) Method of manufacturing a semiconductor memory device incorporating a capacitor therein
JPH09293869A (en) Semiconductor device and manufacture thereof
US6291292B1 (en) Method for fabricating a semiconductor memory device
JPH10173149A (en) Semiconductor device and its manufacture
US6503792B2 (en) Method for fabricating a patterned metal-oxide-containing layer
KR20010083237A (en) Semiconductor memory device
JP3684059B2 (en) Semiconductor device
US6762476B2 (en) Dielectric element including oxide dielectric film and method of manufacturing the same
JPH11307736A (en) Manufacture of semiconductor memory element
JP3444124B2 (en) Semiconductor device
JP2000503725A (en) Method for producing dielectric layer or ferroelectric layer having high dielectric constant ε
JP2002289810A (en) Semiconductor device and its manufacturing method
JPH0982915A (en) Manufacture of semiconductor device
JP2004023086A (en) Method of manufacturing semiconductor device
JP2000156473A (en) Semiconductor device, fabrication thereof and fabrication of capacitor
US6455328B2 (en) Method of manufacture of a capacitor with a dielectric on the basis of strontium-bismuth-tantalum
JP3225913B2 (en) Method for manufacturing semiconductor device
JP2007081443A (en) Semiconductor device and method of manufacturing the same