JPH10170677A - Structure of grid spacer of fast reactor fuel assembly - Google Patents

Structure of grid spacer of fast reactor fuel assembly

Info

Publication number
JPH10170677A
JPH10170677A JP8327178A JP32717896A JPH10170677A JP H10170677 A JPH10170677 A JP H10170677A JP 8327178 A JP8327178 A JP 8327178A JP 32717896 A JP32717896 A JP 32717896A JP H10170677 A JPH10170677 A JP H10170677A
Authority
JP
Japan
Prior art keywords
fuel assembly
fuel
bimetal
grid spacer
fast reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8327178A
Other languages
Japanese (ja)
Inventor
Michihiko Nakaoji
道彦 中大路
Ryogo Minami
了悟 南
Katsuhiko Shimizu
克彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP8327178A priority Critical patent/JPH10170677A/en
Publication of JPH10170677A publication Critical patent/JPH10170677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a structure avoiding wasteful flow of a coolant in gaps among fuel assemblies and allowing the fuel assemblies to be drawn out or inserted easily when a nuclear reactor is stopped, for use at the core of a fast breeder reactor. SOLUTION: In grid spacers 1, mounted on at least one part or more along the direction of the axis of each fuel assembly placed in a fast breeder reactor core, and restraining the movement of each fuel assembly in the direction of its axis and in the vertical direction, plates made of a bimetal 2 or shape memory alloy, in which a metal on the outside has a higher coefficient of thermal expansion than the fuel- assembly-side metal, are arranged circumferentially on the outer peripheries of at least those grid spacers 1 which are located at the top of a heating part. During power generation, the plates made of the bimetal 2 or shapememory alloy are each most deformed at its center in such a way as to project outwards, and the expanded plates made of the bimetal 2 or shape-memory alloy, mounted on the grid spacers 1 of adjacent fuel assemblies, make contact with one another to stop circulation of a coolant in gaps among the fuel assemblies, and are restored to their flat shapes during the stop of the fast breeder reactor, allowing the fuel assemblies to be freely drawn out or inserted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速炉の炉心部を
構成する燃料集合体の拘束機構に係り、発電時には冷却
材を燃料集合体の発熱部に効率的に流通させて効果的に
冷却させ、休止時には燃料集合体の抜脱、挿入を容易に
行わせ得るグリッドスペーサの構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a restraining mechanism for a fuel assembly constituting a core portion of a fast reactor, and efficiently circulates a coolant through a heat generating portion of the fuel assembly during power generation to effectively cool the fuel assembly. The present invention relates to a structure of a grid spacer capable of easily removing and inserting a fuel assembly at rest.

【0002】[0002]

【従来の技術】図6は従来の燃料集合体の構成を示す一
部破断斜視図で、51は燃料ピン、52はラッパ管、5
3はエントランスノズル、54はハンドリングヘッドで
ある。図6に示すように、従来は燃料ピン51の集合体
の外周部にラッパ管52と呼ばれるダクトを配設し、燃
料ピン51を格納して保持するとともに、冷却材をその
内側に流通させることが考えられていたが、当該ラッパ
管52が放射性を帯びていることから燃料交換後にそれ
を安全に処理することが容易でないという課題を有する
ものであった。
2. Description of the Related Art FIG. 6 is a partially cutaway perspective view showing the structure of a conventional fuel assembly.
3 is an entrance nozzle and 54 is a handling head. As shown in FIG. 6, conventionally, a duct called a wrapper tube 52 is disposed on the outer peripheral portion of the assembly of the fuel pins 51 to store and hold the fuel pins 51 and to distribute the coolant inside the duct. However, since the wrapper tube 52 is radioactive, it has a problem that it is not easy to safely process it after refueling.

【0003】それを解決するために従来のラッパ管に代
えて燃料集合体の軸方向に間隔をおいて設けられ、燃料
集合体を挿通させあるいは緊縛するグリッドスペーサと
いわれる複数の板状の形状のものにすることによって廃
棄物の総量を低減させることが考えられたが、その際、
従前はラッパ管によって流通領域を制約されて的確に燃
料集合体の除熱を行っていた冷却材が、流動抵抗の小さ
い各燃料集合体間間隙部を自由に流通することにより、
燃料の除熱が十分に行われなくなるという不具合を生ず
る虞れがあった。
In order to solve the above problem, a plurality of plate-like shapes called grid spacers are provided at intervals in the axial direction of the fuel assembly in place of the conventional wrapper tube and allow the fuel assembly to be inserted or tightened. Was thought to reduce the total amount of waste,
In the past, the coolant that had been used to accurately remove heat from the fuel assemblies by restricting the flow area by the wrapper pipe was allowed to freely flow through the gaps between the fuel assemblies with low flow resistance,
There is a possibility that a problem that the heat removal of the fuel is not sufficiently performed may occur.

【0004】この不具合を解決する第1の手段として、
例えば炉心構成要素を炉心部に装荷後、炉心拘束枠を利
用してくさびを打ち込むなどして炉心構成要素を炉心中
心側に引き寄せ、各燃料集合体間の間隙を減少させるこ
とによって冷却材の無駄流れを防止することが考えられ
る。
[0004] As a first means for solving this problem,
For example, after loading the core components into the core, the core components are pulled toward the center of the core by driving in a wedge using a core restraint frame, and the gap between the fuel assemblies is reduced, so that the coolant is wasted. It is conceivable to prevent the flow.

【0005】また第2の手段として、単位燃料集合体を
構成する燃料管等の数を増加して炉心構成要素を大型化
し、それによって炉心構成要素回りの隙間を減少する方
法が考えられる。
[0005] As a second means, a method of increasing the number of fuel tubes and the like constituting a unit fuel assembly to increase the size of core components and thereby reducing the clearance around the core components can be considered.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記第1
の手段においては、各燃料集合体間間隙を流れる冷却材
の流量を低減することは可能になるが、所定期間使用後
に燃料等の交換を行う際に、炉心構成要素全体が緊縛さ
れているために交換対象燃料等の抜き出しあるいは再挿
入を行うことが極めて困難であるという不具合を有して
いる。
However, the first problem is to be solved.
In the means, it is possible to reduce the flow rate of the coolant flowing through the gaps between the fuel assemblies.However, when the fuel and the like are exchanged after use for a predetermined period, the entire core components are tied up. However, there is a problem that it is extremely difficult to extract or reinsert the fuel to be replaced.

【0007】また上記第2の手段においては、確かに冷
却材の無駄流れは抑止し得るが、炉心構成要素が大型に
なり過ぎた場合、単位炉心構成要素当たりの発熱率が大
きくなり、燃料等の交換を行う際に、その的確な除熱が
不可能といえるほど困難であるという不都合を伴うもの
であった。
In the above-mentioned second means, wasteful flow of the coolant can certainly be suppressed, but when the core components become too large, the heat generation rate per unit core component becomes large, and the fuel and the like become large. When performing the replacement, there is a disadvantage that it is difficult to accurately remove the heat.

【0008】本発明はこのような現状に鑑みてなされた
もので、簡潔な構成によって燃料ピン等の炉心構成要素
を確実に保持し、発電時には隣接する各燃料集合体間の
間隙を閉止して該間隙部を冷却材が流通するのを阻止し
て燃料管部に冷却材を流通させ、休止時には各燃料集合
体間に十分な間隙を形成させて、燃料集合体の抜脱、挿
入を容易に行わせ得る高速炉燃料集合体のグリッドスペ
ーサを提供することを目的としている。
The present invention has been made in view of the above situation, and has a simple structure that securely holds a core component such as a fuel pin and closes a gap between adjacent fuel assemblies during power generation. The coolant is prevented from flowing through the gap to allow the coolant to flow through the fuel pipe portion, and a sufficient gap is formed between the fuel assemblies when the fuel is stopped so that the fuel assembly can be easily removed and inserted. It is an object of the present invention to provide a grid spacer of a fast reactor fuel assembly that can be performed by a fuel cell.

【0009】[0009]

【課題を解決するための手段】上記の目的は前記特許請
求の範囲に記載された高速炉燃料集合体のグリッドスペ
ーサの構造によって達成される。すなわち (1) 高速炉炉心部に配設される燃料集合体の軸方向に少
なくとも1箇所以上取り付けられ、燃料集合体の軸と垂
直方向の動きを拘束するグリッドスペーサにおいて、少
なくとも発熱部最上部に位置するグリッドスペーサの外
周側に、外側の金属の熱膨張率を、燃料集合体側の金属
の熱膨張率よりも大きくしたバイメタルからなる板材を
周方向に配設し、上記バイメタルからなる板材は、発電
時には板材の中央部が最も大きく外側に凸状に変形し、
隣接する各燃料集合体のグリッドスペーサに取り付けら
れ膨張したバイメタル板材同士が接触して、各燃料集合
体間の間隙を冷却材が流通するのを阻止させ、高速炉休
止時には平らな形状に復帰して燃料集合体の抜脱、挿入
を自在に行わせる高速炉燃料集合体のグリッドスペーサ
の構造。
The above object is achieved by a structure of a grid spacer of a fast reactor fuel assembly according to the present invention. That is, (1) at least one or more grid spacers attached in the axial direction of the fuel assembly provided in the fast reactor core and restraining movement in the direction perpendicular to the axis of the fuel assembly; On the outer peripheral side of the located grid spacer, a plate material made of a bimetal, in which the coefficient of thermal expansion of the outer metal is larger than the coefficient of thermal expansion of the metal on the fuel assembly side, is disposed in the circumferential direction. At the time of power generation, the central part of the plate material is deformed most convexly outward,
The expanded bimetal plates attached to the grid spacers of the adjacent fuel assemblies come into contact with each other, preventing the coolant from flowing through the gaps between the fuel assemblies, and returning to a flat shape when the fast reactor is stopped. The grid spacer structure of the fast reactor fuel assembly allows the fuel assembly to be pulled out and inserted freely.

【0010】(2) バイメタルからなる板材のうち熱膨張
率の大きい板材は、燃料集合体の軸方向に長く、燃料集
合体の外周方向に短い複数の板材からなる(1) 記載の高
速炉燃料集合体のグリッドスペーサの構造。
(2) The plate material having a high coefficient of thermal expansion among the plate materials made of bimetal is composed of a plurality of plate materials which are long in the axial direction of the fuel assembly and short in the outer circumferential direction of the fuel assembly. Aggregate grid spacer structure.

【0011】(3) バイメタルからなる板材は、該板材の
長手方向端部において膨張、収縮自在に保持されている
(1) 〜(2) のいずれか1項に記載の高速炉燃料集合体の
グリッドスペーサの構造。
(3) The plate made of bimetal is held at the longitudinal end of the plate so as to expand and contract.
The structure of the grid spacer of the fast reactor fuel assembly according to any one of (1) to (2).

【0012】(4) バイメタルからなる板材は、熱膨張率
の小さい板材がマルテンサイト系ステンレス鋼かなり、
熱膨張率の大きい板材がオーステナイト系ステンレス鋼
からなる(1) 〜(3) のいずれか1項に記載の高速炉燃料
集合体のグリッドスペーサの構造。である。
(4) As for the plate material made of bimetal, a plate material having a small coefficient of thermal expansion is considerably martensitic stainless steel.
The grid spacer structure of a fast reactor fuel assembly according to any one of (1) to (3), wherein the plate material having a high coefficient of thermal expansion is made of austenitic stainless steel. It is.

【0013】(5) 高速炉炉心部に配設される燃料集合体
の軸方向に少なくとも1箇所以上取り付けられ、燃料集
合体の軸と垂直方向の動きを拘束するグリッドスペーサ
において、少なくとも発熱部最上部に位置するグリッド
スペーサの外周側に、形状記憶合金からなる板材を周方
向に配設し、上記形状記憶合金からなる板材は、発電時
には板材の中央部が最も大きく外側に凸状に変形し、隣
接する各燃料集合体のグリッドスペーサに取り付けられ
変形した形状記憶合金板材同士が接触して、各燃料集合
体間の間隙を冷却材が流通するのを阻止させ、高速炉休
止時には平らな形状に復帰して燃料集合体の抜脱、挿入
を自在に行わせる高速炉燃料集合体のグリッドスペーサ
の構造。
(5) In a grid spacer which is attached at at least one position in the axial direction of the fuel assembly provided in the fast reactor core and restrains movement in the direction perpendicular to the axis of the fuel assembly, at least On the outer peripheral side of the grid spacer located at the top, a plate material made of a shape memory alloy is arranged in the circumferential direction, and the plate material made of the shape memory alloy is deformed so that the central portion of the plate material becomes the largest outwardly convex during power generation. The deformed shape memory alloy plates attached to the grid spacers of the adjacent fuel assemblies come into contact with each other, preventing the coolant from flowing through the gaps between the fuel assemblies, and having a flat shape when the fast reactor is stopped. The structure of the grid spacer of the fast reactor fuel assembly that allows the fuel assembly to be freely pulled out and inserted back into the fuel assembly.

【0014】(6) 形状記憶合金からなる板材は、燃料集
合体の軸方向に長く、燃料集合体の外周方向に短い複数
の板材からなる(5) 記載の高速炉燃料集合体のグリッド
スペーサの構造。
(6) The plate member made of a shape memory alloy is composed of a plurality of plate members that are long in the axial direction of the fuel assembly and short in the outer peripheral direction of the fuel assembly. Construction.

【0015】(7) 形状記憶合金からなる板材は、該板材
の長手方向端部において変形自在に保持されている(5)
〜(6) のいずれか1項に記載の高速炉燃料集合体のグリ
ッドスペーサの構造。
(7) The plate made of a shape memory alloy is held at the longitudinal end of the plate so as to be deformable (5).
The structure of the grid spacer of the fast reactor fuel assembly according to any one of (1) to (6).

【0016】[0016]

【発明の実施の形態】図1〜4は本発明の実施の形態を
説明する図で、原子炉運転時には凸状に変形し、原子炉
停止時には平板状に復帰する板材にバイメタルを使用し
た場合を示し、図1は外周部にバイメタルを有するグリ
ッドスペーサを取り付けた燃料集合体の部分斜視図、図
2はバイメタルを有するグリッドスペーサの斜視図で、
(a) は原子炉停止時、(b) は原子炉運転時のバイメタル
の形状を示す図、図3はバイメタル自体の形状および構
成を説明する図、図4は原子炉停止時および原子炉運転
時のバイメタルの形状と作用を模式的に説明する図で、
(a) は原子炉停止時、(b) は原子炉運転時を示してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 4 are views for explaining an embodiment of the present invention, in which a bimetal is used as a plate material which is deformed to be convex when the reactor is in operation and returns to a flat shape when the reactor is stopped. FIG. 1 is a partial perspective view of a fuel assembly in which a grid spacer having a bimetal is attached to an outer peripheral portion, and FIG. 2 is a perspective view of a grid spacer having a bimetal.
(a) is a diagram illustrating the shape of the bimetal during reactor shutdown, (b) is a diagram illustrating the shape of the bimetal during reactor operation, FIG. 3 is a diagram illustrating the shape and configuration of the bimetal itself, and FIG. A diagram schematically illustrating the shape and action of the bimetal at the time,
(a) shows when the reactor is shut down, and (b) shows when the reactor is operating.

【0017】図5は本発明が対象としている、ラッパ管
を有しない燃料集合体の形状を説明する図である。
FIG. 5 is a view for explaining the shape of a fuel assembly having no wrapper tube, which is the object of the present invention.

【0018】図1〜5において、1はグリッドスペー
サ、2はバイメタル、3は燃料ピン、4はハンドリング
ヘッド、5はバイメタルのうち燃料集合体の中心部から
みて内側に位置する板材であるA材、6はバイメタルの
うち燃料集合体の中心部からみて外側に位置する板材で
あるB材、7は蒸発部、8は燃料集合体、9はエントラ
ンスノズル、10はタイロッド、11はバイメタルの保
持部、15は流路開放状態のバイメタル、16は流路閉
塞状態のバイメタルである。
1 to 5, reference numeral 1 denotes a grid spacer, 2 denotes a bimetal, 3 denotes a fuel pin, 4 denotes a handling head, and 5 denotes a plate material of the bimetal, which is a plate material located inside from the center of the fuel assembly. , 6 is a B material which is a plate material of the bimetal which is located outside when viewed from the center of the fuel assembly, 7 is an evaporating portion, 8 is a fuel assembly, 9 is an entrance nozzle, 10 is a tie rod, and 11 is a bimetal holding portion. , 15 are bimetals in a flow path open state, and 16 is a bimetal in a flow path closed state.

【0019】図6に示すように、燃料集合体の外周部に
ラッパ管(ダクト)52が設けられている場合は、プル
トニウムあるいはウラン等の発熱部を冷却するためのナ
トリウム等の冷却材は、該ラッパ管内を流れ、的確な冷
却・除熱が行われるが、図5に示すようにラッパ管の代
わりに燃料集合体の軸方向の外周部複数箇所に燃料管を
挿通させる板状のグリッドスペーサ1を配設して保持し
た場合には、燃料集合体を冷却するナトリウム等の冷却
材が流動抵抗の小さい、隣接する燃料集合体間の間隙部
を流れるため、燃料管が十分冷却されなくなる。
As shown in FIG. 6, when a wrapper pipe (duct) 52 is provided on the outer peripheral portion of the fuel assembly, a coolant such as sodium for cooling a heat generating portion such as plutonium or uranium includes: A plate-like grid spacer that flows through the inside of the wrapper pipe and performs accurate cooling and heat removal, but instead of the wrapper pipe, the fuel pipe is inserted into a plurality of axially outer peripheral portions of the fuel assembly as shown in FIG. When 1 is disposed and held, the coolant such as sodium for cooling the fuel assembly flows through the gap between adjacent fuel assemblies having low flow resistance, so that the fuel pipe is not sufficiently cooled.

【0020】本発明者等はこの不具合を解消するために
種々検討した結果、原子炉運転時と原子炉停止時とにお
ける燃料集合体の温度変化に着目し、その温度差を利用
して、原子炉運転時には前記各燃料集合体間の間隙を閉
止して冷却材の無駄流れを防止し、原子炉停止時には逆
に各燃料集合体間の間隙を十分に確保することにより、
燃料の取り替え作業時に任意の燃料集合体の抜脱および
再挿入を容易かつ確実に行わせる構造を発明した。
As a result of various studies to solve this problem, the present inventors focused on the temperature change of the fuel assembly between the operation of the reactor and the shutdown of the reactor, and utilized the temperature difference to make use of the temperature difference. During reactor operation, the gap between the fuel assemblies is closed to prevent waste flow of the coolant, and when the reactor is stopped, the gap between the fuel assemblies is sufficiently secured.
A structure has been invented that allows easy and reliable removal and reinsertion of an arbitrary fuel assembly during a fuel replacement operation.

【0021】すなわち、各グリッドスペーサ1の内、少
なくとも発熱部の最上部に位置するグリッドスペーサ1
の外周部にバイメタルからなる板材を周方向に並設する
構造である。
That is, of the grid spacers 1, at least the grid spacer 1 located at the uppermost part of the heat generating portion
This is a structure in which plate members made of a bimetal are arranged side by side in the circumferential direction on the outer peripheral portion.

【0022】まずバイメタルは図3に示すように、熱膨
張率の小さい材料からなるA材5と、熱膨張率の大きい
材料からなるB材6とを拡散接合等によって接合して製
作する。A材5およびB材6として種々の材料が考えら
れるが、本発明者等の研究によれば、組み合わせの一例
としてA材5としてマルテンサイト系ステンレス鋼(例
えば、C:0.13%,Cr:13%,Ni:0.14
%)、B材としてオーステナイト系ステンレス鋼(例え
ば、Cr:18%,Ni:8%)等が適している。
First, as shown in FIG. 3, the bimetal is manufactured by joining an A material 5 made of a material having a small coefficient of thermal expansion and a B material 6 made of a material having a large coefficient of thermal expansion by diffusion bonding or the like. Although various materials can be considered as the A material 5 and the B material 6, according to the study of the present inventors, as an example of the combination, the A material 5 is a martensitic stainless steel (for example, C: 0.13%, Cr : 13%, Ni: 0.14
%), And austenitic stainless steel (for example, Cr: 18%, Ni: 8%) or the like is suitable as the B material.

【0023】グリッドスペーサ1の外周部にバイメタル
2の保持部を形成し、バイメタル2を装着する。その
際、熱膨張率の小さいA材5が燃料集合体8側に、熱膨
張率の大きいB材6が外側になるように位置させる。
A holding portion for the bimetal 2 is formed on the outer periphery of the grid spacer 1, and the bimetal 2 is mounted. At this time, the material A 5 having a small coefficient of thermal expansion is positioned on the fuel assembly 8 side such that the material B 6 having a large coefficient of thermal expansion is located outside.

【0024】A材5およびB材6が前記のような材質か
らなる場合、バイメタル2は原子炉の停止時にはバイメ
タル2の雰囲気温度が約200℃であることにり、図2
(a)に示すようにグリッドスペーサ1の保持部11内に
格納された状態にあるから、各燃料集合体8間は、図4
(a) の流路開放状態のバイメタル部15に示すように十
分な間隙が形成され、燃料交換等の必要に応じて所定の
燃料集合体8を自在に抜脱させ或いは新しい燃料集合体
8を容易に挿入することが可能になる。
When the A material 5 and the B material 6 are made of the above-mentioned materials, the bimetal 2 is set to have an ambient temperature of about 200 ° C. when the nuclear reactor is stopped.
As shown in FIG. 4A, since it is stored in the holding portion 11 of the grid spacer 1, the space between the fuel assemblies 8 is as shown in FIG.
A sufficient gap is formed as shown in the bimetal portion 15 in the open channel state of (a), and a predetermined fuel assembly 8 can be freely removed or a new fuel assembly 8 can be removed as required for fuel exchange or the like. It can be easily inserted.

【0025】一方原子炉運転時にはバイメタル2の雰囲
気温度が約500℃まで上昇することにより、バイメタ
ル2は熱膨張率の大きいB材6側に凸状に変形し、図2
(b)に示すように、その凸部の頂部はバイメタル2の支
持部11よりも外側に張り出して、図4(b) の流路閉塞
状態のバイメタル部16に示すように隣接する燃料集合
体8のグリッドスペーサ1に取り付けられたバイメタル
2の頂部と接触し、燃料集合体8間の間隙を閉止した状
態にする。
On the other hand, during the operation of the reactor, the ambient temperature of the bimetal 2 rises to about 500 ° C., so that the bimetal 2 is deformed in a convex shape toward the B material 6 having a large coefficient of thermal expansion.
As shown in FIG. 4 (b), the top of the protrusion protrudes outward from the supporting portion 11 of the bimetal 2, and as shown in the bimetal portion 16 in the closed state of the flow path in FIG. 8 makes contact with the tops of the bimetals 2 attached to the grid spacers 1 to close the gaps between the fuel assemblies 8.

【0026】これによって原子炉運転時においては、冷
却材が各燃料集合体8間間隙を流れることによる発熱部
の冷却不足を生ずることなく、的確な冷却を行うことが
可能になる。図1におけるバイメタル2は原子炉運転時
の変形した状態にある様子を示している。
Thus, during the operation of the nuclear reactor, accurate cooling can be performed without causing insufficient cooling of the heat generating portion due to the coolant flowing through the gaps between the fuel assemblies 8. FIG. 1 shows a state in which the bimetal 2 is deformed during the operation of the reactor.

【0027】原子炉運転時の炉心部の温度分布は必ずし
も一様でなく、また各燃料集合体8間の間隔も微妙に相
違するため、昇温によるバイメタル2の変形量或いは隣
接する燃料集合体8のバイメタル2同士が接触して作用
し合う力もまた一様ではない。
During the operation of the reactor, the temperature distribution in the core portion is not always uniform, and the interval between the fuel assemblies 8 is slightly different. The forces acting on the bimetals 8 in contact with each other are not uniform.

【0028】これに対処するためには、例えば図2(a)
,(b) に示すグリッドスペーサ1のバイメタル2の保
持部11の寸法を、バイメタル2が原子炉運転時に膨張
し、隣接する燃料集合体8のバイメタル2と接触して押
し戻された場合でも、当該バイメタル2が十分保持部1
1内に格納され得るようにバイメタル2の伸び方向に余
裕を持たせた構造としている。
To cope with this, for example, as shown in FIG.
The dimensions of the holding portion 11 of the bimetal 2 of the grid spacer 1 shown in FIGS. 1 and 2 (b) can be adjusted even if the bimetal 2 expands during the operation of the reactor and comes into contact with the bimetal 2 of the adjacent fuel assembly 8 and is pushed back. Bimetal 2 is sufficient for holding part 1
The structure is such that a margin is provided in the direction in which the bimetal 2 extends so that the bimetal 2 can be stored in the bimetal 2.

【0029】上記発明の実施の形態においては、少なく
とも発熱部最上部に位置するグリッドスペーサの外周部
に配設する板状部材をバイメタルによって構成した場合
について説明したが、上記バイメタルに代えて、形状記
憶合金からなる板材を配設し、発電時には形状記憶合金
からなる板材の中央部が最も大きく外側に凸状に変形
し、隣接する各燃料集合体のグリッドスペーサに取り付
けられ変形した形状記憶合金板材同士が接触して、各燃
料集合体間の間隙を冷却材が流通するのを阻止させ、高
速炉休止時には平らな形状に復帰して燃料集合体の抜
脱、挿入を自在に行わせるようにしても、バイメタルか
らなる板材と同様の効果を得ることが可能になる。
In the embodiment of the present invention, a case has been described where at least the plate-shaped member disposed on the outer peripheral portion of the grid spacer located at the uppermost portion of the heat generating portion is made of a bimetal. A plate material made of a memory alloy is arranged, and the central portion of the plate material made of a shape memory alloy is deformed most protrudingly outward during power generation, and is attached to a grid spacer of each adjacent fuel assembly and deformed. The contact between the fuel assemblies prevents the coolant from flowing through the gap between the fuel assemblies, and when the fast reactor is stopped, it returns to a flat shape so that the fuel assemblies can be freely removed and inserted. However, it is possible to obtain the same effect as a plate material made of a bimetal.

【0030】[0030]

【発明の効果】このように本発明によれば下記に示すよ
うな効果を奏する。燃料集合体の外周部にバイメタルあ
るいは形状記憶合金からなる板材を配設し、原子炉運転
時および停止時の燃料集合体部の温度変化を利用して直
動的に動作させるのみという極めて簡潔な構成でありな
がら、原子炉運転時は各燃料集合体間間隙を閉止して冷
却材の無駄流れを防止して発熱部を的確に冷却し、また
原子炉停止時には各燃料集合体間に間隙を十分に形成さ
せて各燃料集合体の抜脱・挿入を容易に行わしめ得ると
いう優れた効果を奏する。
As described above, according to the present invention, the following effects can be obtained. A plate made of bimetal or shape memory alloy is arranged on the outer periphery of the fuel assembly, and it operates only linearly using the temperature change of the fuel assembly during reactor operation and shutdown. Despite the configuration, the gap between each fuel assembly is closed during operation of the reactor to prevent the coolant from flowing unnecessarily, and the heating section is accurately cooled. There is an excellent effect that the fuel assemblies can be formed sufficiently to easily remove and insert each fuel assembly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく、外周部にバイメタルを有する
グリッドスペーサを取り付けた燃料集合体の部分斜視図
である。
FIG. 1 is a partial perspective view of a fuel assembly according to the present invention with a grid spacer having a bimetal on its outer periphery.

【図2】本発明に基づくバイメタルを有するグリッドス
ペーサの斜視図で、(a) は原子炉停止時、(b) は原子炉
運転時のバイメタルの形状を説明する図である。
FIGS. 2A and 2B are perspective views of a grid spacer having a bimetal according to the present invention, in which FIG. 2A illustrates the shape of the bimetal during reactor shutdown and FIG. 2B illustrates the shape of the bimetal during reactor operation.

【図3】本発明の実施の形態を説明するバイメタル自体
の形状および構成を説明する図である。
FIG. 3 is a diagram illustrating a shape and a configuration of a bimetal itself for describing an embodiment of the present invention.

【図4】本発明の実施の形態を説明する原子炉停止時お
よび原子炉運転時のバイメタルの形状と作用を模式的に
説明する図で、(a) は原子炉停止時、(b) は原子炉運転
時である。
FIGS. 4A and 4B are diagrams schematically illustrating the shape and operation of a bimetal during a reactor shutdown and a reactor operation according to an embodiment of the present invention, wherein FIG. 4A illustrates a reactor shutdown, and FIG. The reactor is in operation.

【図5】本発明が対象としている、ラッパ管を有しない
燃料集合体の形状を説明する図である。
FIG. 5 is a view for explaining the shape of a fuel assembly having no trumpet tube to which the present invention is directed.

【図6】従来の技術の例を示す図である。FIG. 6 is a diagram showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 グリッドスペーサ 2 バイメタル 3 燃料ピン 4 ハンドリングヘッド 5 バイメタルを構成する板材のA材 6 バイメタルを構成する板材のB材 7 発熱部 8 燃料集合体 9 エントランスノズル 10 タイロッド 11 バイメタルの保持部 15 流路開放状態のバイメタル部 16 流路閉塞状態のバイメタル部 DESCRIPTION OF SYMBOLS 1 Grid spacer 2 Bimetal 3 Fuel pin 4 Handling head 5 A material of plate material which constitutes bimetal 6 B material of plate material which constitutes bimetal 7 Heat generation part 8 Fuel assembly 9 Entrance nozzle 10 Tie rod 11 Bimetal holding part 15 Flow path opening Bimetal part in the state 16 Bimetal part in the flow path closed state

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高速炉炉心部に配設される燃料集合体の
軸方向に少なくとも1箇所以上取り付けられ、燃料集合
体の軸と垂直方向の動きを拘束するグリッドスペーサに
おいて、 少なくとも発熱部最上部に位置するグリッドスペーサの
外周側に、 外側の金属の熱膨張率を、燃料集合体側の金属の熱膨張
率よりも大きくしたバイメタルからなる板材を周方向に
配設し、 上記バイメタルからなる板材は、発電時には板材の中央
部が最も大きく外側に凸状に変形し、隣接する各燃料集
合体のグリッドスペーサに取り付けられ膨張したバイメ
タル板材同士が接触して、各燃料集合体間の間隙を冷却
材が流通するのを阻止させ、 高速炉休止時には平らな形状に復帰して燃料集合体の抜
脱、挿入を自在に行わせることを特徴とする高速炉燃料
集合体のグリッドスペーサの構造。
1. A grid spacer, which is attached to at least one position in the axial direction of a fuel assembly provided in a fast reactor core and restrains movement of the fuel assembly in a direction perpendicular to the axis of the fuel assembly, comprises: On the outer peripheral side of the grid spacer located at a position, a plate material made of a bimetal in which the coefficient of thermal expansion of the outer metal is larger than the coefficient of thermal expansion of the metal on the fuel assembly side is disposed in the circumferential direction. At the time of power generation, the central portion of the plate material is deformed to the largest convex shape outward, and the expanded bimetal plates attached to the grid spacers of the adjacent fuel assemblies come into contact with each other, and the gap between the fuel assemblies is cooled by the coolant. The fuel grid of the fast reactor fuel assembly is characterized in that the fuel assembly is prevented from flowing, and when the fast reactor is stopped, it returns to a flat shape so that the fuel assembly can be freely removed and inserted. Structure of Dosupesa.
【請求項2】 バイメタルからなる板材のうち熱膨張率
の大きい板材は、燃料集合体の軸方向に長く、燃料集合
体の外周方向に短い複数の板材からなることを特徴とす
る請求項1記載の高速炉燃料集合体のグリッドスペーサ
の構造。
2. A plate material having a high coefficient of thermal expansion among plate materials made of bimetals is composed of a plurality of plate materials which are long in the axial direction of the fuel assembly and short in the outer circumferential direction of the fuel assembly. Of the grid spacer of the fast reactor fuel assembly in Japan.
【請求項3】 バイメタルからなる板材は、該板材の長
手方向端部において膨張、収縮自在に保持されているこ
とを特徴とする請求項1〜2のいずれか1項に記載の高
速炉燃料集合体のグリッドスペーサの構造。
3. The fast reactor fuel assembly according to claim 1, wherein the plate made of bimetal is held so as to be able to expand and contract at a longitudinal end of the plate. The structure of the body grid spacer.
【請求項4】 バイメタルからなる板材は、熱膨張率の
小さい板材がマルテンサイト系ステンレス鋼かなり、熱
膨張率の大きい板材がオーステナイト系ステンレス鋼か
らなることを特徴とする請求項1〜3のいずれか1項に
記載の高速炉燃料集合体のグリッドスペーサの構造。
4. A plate material made of a bimetal, wherein a plate material having a small coefficient of thermal expansion is considerably martensitic stainless steel, and a sheet material having a large coefficient of thermal expansion is made of austenitic stainless steel. 2. The structure of the grid spacer of the fast reactor fuel assembly according to claim 1.
【請求項5】 高速炉炉心部に配設される燃料集合体の
軸方向に少なくとも1箇所以上取り付けられ、燃料集合
体の軸と垂直方向の動きを拘束するグリッドスペーサに
おいて、 少なくとも発熱部最上部に位置するグリッドスペーサの
外周側に、 形状記憶合金からなる板材を周方向に配設し、 上記形状記憶合金からなる板材は、発電時には板材の中
央部が最も大きく外側に凸状に変形し、隣接する各燃料
集合体のグリッドスペーサに取り付けられ変形した形状
記憶合金板材同士が接触して、各燃料集合体間の間隙を
冷却材が流通するのを阻止させ、 高速炉休止時には平らな形状に復帰して燃料集合体の抜
脱、挿入を自在に行わせることを特徴とする高速炉燃料
集合体のグリッドスペーサの構造。
5. A grid spacer, which is attached to at least one location in the axial direction of a fuel assembly disposed in a fast reactor core and restrains movement in a direction perpendicular to the axis of the fuel assembly, wherein at least the uppermost portion of the heat generating portion A plate material made of a shape memory alloy is arranged in the circumferential direction on the outer peripheral side of the grid spacer located at the position of the grid spacer. In the plate material made of the shape memory alloy, the central portion of the plate material is most greatly deformed outwardly during power generation, The deformed shape memory alloy plates attached to the grid spacers of adjacent fuel assemblies come into contact with each other, preventing the coolant from flowing through the gaps between the fuel assemblies, and forming a flat shape when the fast reactor is stopped. A grid structure of a fuel assembly for a fast reactor, wherein the grid spacer is capable of returning and allowing the fuel assembly to be freely removed and inserted.
【請求項6】 形状記憶合金からなる板材は、燃料集合
体の軸方向に長く、燃料集合体の外周方向に短い複数の
板材からなることを特徴とする請求項5記載の高速炉燃
料集合体のグリッドスペーサの構造。
6. The fast reactor fuel assembly according to claim 5, wherein the plate material made of the shape memory alloy is composed of a plurality of plate materials that are long in the axial direction of the fuel assembly and short in the outer circumferential direction of the fuel assembly. Grid spacer structure.
【請求項7】 形状記憶合金からなる板材は、該板材の
長手方向端部において変形自在に保持されていることを
特徴とする請求項5〜6のいずれか1項に記載の高速炉
燃料集合体のグリッドスペーサの構造。
7. The fuel assembly for a fast reactor according to claim 5, wherein the plate made of a shape memory alloy is held so as to be deformable at a longitudinal end of the plate. The structure of the body grid spacer.
JP8327178A 1996-12-06 1996-12-06 Structure of grid spacer of fast reactor fuel assembly Pending JPH10170677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8327178A JPH10170677A (en) 1996-12-06 1996-12-06 Structure of grid spacer of fast reactor fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8327178A JPH10170677A (en) 1996-12-06 1996-12-06 Structure of grid spacer of fast reactor fuel assembly

Publications (1)

Publication Number Publication Date
JPH10170677A true JPH10170677A (en) 1998-06-26

Family

ID=18196189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8327178A Pending JPH10170677A (en) 1996-12-06 1996-12-06 Structure of grid spacer of fast reactor fuel assembly

Country Status (1)

Country Link
JP (1) JPH10170677A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520657A (en) * 2010-02-22 2013-06-06 アドバンスト・リアクター・コンセプツ・エルエルシー Small fast neutron spectrum nuclear power plant with long refueling intervals
WO2016105678A1 (en) * 2014-12-23 2016-06-30 Westinghouse Electric Company Llc A nuclear fuel assembly support feature
CN106875984A (en) * 2016-12-28 2017-06-20 中国科学院合肥物质科学研究院 A kind of new accident fault tolerant fuel component
US10424415B2 (en) 2014-04-14 2019-09-24 Advanced Reactor Concepts LLC Ceramic nuclear fuel dispersed in a metallic alloy matrix
JP2022031925A (en) * 2018-02-22 2022-02-22 三菱重工業株式会社 Core component of nuclear reactor and nuclear reactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640283B2 (en) 2010-01-29 2017-05-02 Advanced Reactor Concepts LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval
JP2013520657A (en) * 2010-02-22 2013-06-06 アドバンスト・リアクター・コンセプツ・エルエルシー Small fast neutron spectrum nuclear power plant with long refueling intervals
US10424415B2 (en) 2014-04-14 2019-09-24 Advanced Reactor Concepts LLC Ceramic nuclear fuel dispersed in a metallic alloy matrix
WO2016105678A1 (en) * 2014-12-23 2016-06-30 Westinghouse Electric Company Llc A nuclear fuel assembly support feature
US10438704B2 (en) 2014-12-23 2019-10-08 Westinghouse Electric Company Llc Nuclear fuel assembly support feature
US11404176B2 (en) 2014-12-23 2022-08-02 Westinghouse Electric Company Llc Nuclear fuel assembly support feature
CN106875984A (en) * 2016-12-28 2017-06-20 中国科学院合肥物质科学研究院 A kind of new accident fault tolerant fuel component
JP2022031925A (en) * 2018-02-22 2022-02-22 三菱重工業株式会社 Core component of nuclear reactor and nuclear reactor

Similar Documents

Publication Publication Date Title
US4325786A (en) Spacer grid for reducing bowing in a nuclear fuel assembly
JPH10170677A (en) Structure of grid spacer of fast reactor fuel assembly
US5263072A (en) Thermohydraulic grid and nuclear fuel assembly
JPH01308994A (en) Fuel assembly, fuel spacer and initial loading reactor core
JP5469074B2 (en) Support device for nuclear fuel plate for fissionable bundle of GFR nuclear reactor with high-temperature heat conduction gas, fissionable bundle including the support device, and nuclear fuel core assembly including the fissionable bundle
KR20030091654A (en) Pressurized water reactor fuel assembly spacer grid
US4110160A (en) Fuel assembly spacer within the coolant duct
US4294660A (en) Spacer assembly retainer arrangement
EP0270883A2 (en) BWR fuel assembly having hybrid fuel design
EP0319744A2 (en) Fuel-rod mini-bundle for use in a BWR fuel assembly
US3753856A (en) Core clamping system for a nuclear reactor
KR20180041223A (en) An assembly for an FNR-NA-type reactor having a housing provided with a spacer plate with improved rigidity
US4070241A (en) Nuclear reactor removable radial shielding assembly having a self-bowing feature
JPH0584876B2 (en)
JPH08170995A (en) Method for operating nuclear fuel bundle,spacer for nuclear fuel bundle and boiling water reactor and method for operating simulated nuclear fuel bundle and simulated boiling water reactor
JPH05323073A (en) Fuel assembly and spacer for fuel assembly
JP3599835B2 (en) Fuel assemblies for boiling water reactors
JP2018526621A (en) Nuclear fuel assemblies with earthquake / LOCA resistant grids
JP2005274555A (en) Axially segregated part-length fuel rod in reactor fuel assembly
JPH06214073A (en) Nuclear fuel spacer
JPH06174876A (en) Fuel assembly
JPH0827368B2 (en) Fast breeder reactor
JP2958859B2 (en) Fuel assembly for boiling water reactor
JP2001194480A (en) Fuel spacer
Walter Comparison of Two Fuel-Element Shapes