JPH06214073A - Nuclear fuel spacer - Google Patents

Nuclear fuel spacer

Info

Publication number
JPH06214073A
JPH06214073A JP50A JP655893A JPH06214073A JP H06214073 A JPH06214073 A JP H06214073A JP 50 A JP50 A JP 50A JP 655893 A JP655893 A JP 655893A JP H06214073 A JPH06214073 A JP H06214073A
Authority
JP
Japan
Prior art keywords
cell
spacer
fuel
nuclear fuel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Akihiko Hoshiide
明彦 星出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP50A priority Critical patent/JPH06214073A/en
Publication of JPH06214073A publication Critical patent/JPH06214073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a nuclear fuel spacer with low pressure loss capable of reducing flow resistance. CONSTITUTION:A nuclear fuel spacer has cylindrical cells 24 arranged in 8 rows and 8 columns in a spacer band, circumscribing parts 25 protruded outward are uniformly formed on the cell body part 34 of the cylindrical cell 24, two fixed support parts 26 protruded inward for supporting fuel rods 2 are formed between the circumscribing parts 25, 25, and one elastic support part 27 is also formed. The curvature R of the body part of the cylindrical cell 24 is set smaller than 1/2 of the pitch P between the fuel rods 2, 2. On the circumscribing part 25, projection parts with sharp top ends are formed over the whole length of the cylindrical cell 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉燃料集合体に組み
込まれ燃料棒を等間隔に維持するためのセル型核燃料ス
ペーサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell type nuclear fuel spacer incorporated in a reactor fuel assembly for maintaining fuel rods at regular intervals.

【0002】[0002]

【従来の技術】原子炉の燃料集合体のうち、沸騰水型原
子炉(BWR)に使用されている燃料集合体について図
14を参照し、核燃料スペーサについて図15(a)および
図15(b)を参照しながら説明する。
2. Description of the Related Art Among fuel assemblies of a nuclear reactor, a fuel assembly used in a boiling water reactor (BWR) is illustrated.
14, the nuclear fuel spacer will be described with reference to FIGS. 15 (a) and 15 (b).

【0003】BWR燃料集合体1は燃料棒2を8行8列
に配列し、上部タイプレート3、下部タイプレート4お
よび格子型核燃料スペーサ5をもって組立てられてい
る。燃料棒2は低濃縮ウランをペレット状に焼き固め、
燃料被覆管に挿入したものであり、燃料被覆管にはジル
コニウムライナ被覆管が用いられている。
A BWR fuel assembly 1 is constructed by arranging fuel rods 2 in 8 rows and 8 columns, an upper tie plate 3, a lower tie plate 4 and a lattice type nuclear fuel spacer 5. Fuel rod 2 is made by burning low-enriched uranium into pellets,
It is inserted into a fuel cladding tube, and a zirconium liner cladding tube is used as the fuel cladding tube.

【0004】格子型核燃料スペーサ5は複数本の燃料棒
2の間隔を規定幅に保つためのものであり、上部タイプ
レート3および下部タイプレート4は燃料棒2の上下部
を支持し、チャンネルボックス6内に挿入される。複数
本の燃料棒2のうち1本ないし2本はウォータロッド7
で置き換えられている。
The lattice type nuclear fuel spacer 5 is for keeping the interval between the plurality of fuel rods 2 at a specified width, and the upper tie plate 3 and the lower tie plate 4 support the upper and lower portions of the fuel rods 2 and a channel box. 6 is inserted. One or two of the plurality of fuel rods 2 are water rods 7.
Has been replaced by.

【0005】格子型核燃料スペーサ5は図15(a)及び
図15(b)に示したように正方形状スペーサバンド8
と、このスペーサバンド8内に縦横に組み合わせた格子
板9からなっている。格子板9には正方形状区画空間10
内に挿入する燃料棒2を保持するための固定支持部11
と、燃料棒2を固定支持部11に押し付ける弾性支持部材
12が格子板9の交点に取り付けられている。
The lattice type nuclear fuel spacer 5 has a square spacer band 8 as shown in FIGS. 15 (a) and 15 (b).
And a grid plate 9 vertically and horizontally combined in the spacer band 8. The grid plate 9 has a square compartment 10
Fixed support 11 for holding fuel rod 2 to be inserted therein
And an elastic support member for pressing the fuel rod 2 against the fixed support portion 11.
12 are attached to the intersections of the grid plates 9.

【0006】スペーサバンド8にはチャンネルボックス
6と、最外周の燃料棒2の間隔を確保するために、チャ
ンネルボックス6側に外方に突出した葉状突起13が複数
個設けられている。この葉状突起13は一般にスペーサバ
ンド8を塑性変形して形成した高さが一定の固定部とな
っている。
The spacer band 8 is provided with a plurality of leaf-shaped projections 13 projecting outward on the channel box 6 side in order to secure a space between the channel box 6 and the outermost fuel rod 2. The leaf-shaped projection 13 is generally a fixed portion having a constant height formed by plastically deforming the spacer band 8.

【0007】一方、燃料集合体1の組立時には最後にチ
ャンネルボックス6を挿入して組み立てる関係から、チ
ャンネルボックス6の内幅は葉状突起13の外幅よりも広
くなっており、組立後の燃料集合体1内で燃料棒2に若
干(〜約 0.5mm)の間隙がある。
On the other hand, at the time of assembling the fuel assembly 1, since the channel box 6 is inserted and assembled at the end, the inner width of the channel box 6 is wider than the outer width of the leaf-shaped projections 13, and the fuel assembly after assembling is completed. Within the body 1 there is a small (~ 0.5 mm) gap in the fuel rod 2.

【0008】したがって、原子炉運転時に燃料集合体の
最外周の燃料棒2とチャンネルボックス6との設計上の
間隙(4mm)、すなわち、最外周の冷却材流路面積は製
作誤差も含めると冷却材流量を変化し得る。冷却材流路
面積が狭くなると、冷却材が流れ難くなり、その流路に
面した燃料棒2を除熱するための冷却材量が減少し、熱
的に厳しくなる。
Therefore, when the reactor is operating, the designed gap (4 mm) between the fuel rods 2 and the channel box 6 at the outermost periphery of the fuel assembly, that is, the coolant passage area at the outermost periphery is cooled if manufacturing errors are included. The material flow rate can be changed. When the area of the coolant passage becomes narrow, it becomes difficult for the coolant to flow, the amount of coolant for removing heat from the fuel rods 2 facing the passage decreases, and the heat becomes severe.

【0009】一方、図16および図17に示したような丸セ
ル型核燃料スペーサ14が知られている。この丸セル型核
燃料スペーサ14はスペーサバンド8内に直径が燃料棒2
の配列ピッチと等しい金属製管状セル15を正方格子状に
配列し接合したものである。
On the other hand, a round cell type nuclear fuel spacer 14 as shown in FIGS. 16 and 17 is known. This round cell type nuclear fuel spacer 14 has a diameter within the spacer band 8 of the fuel rods 2.
The metal tubular cells 15 having the same arrangement pitch as the above are arranged and joined in a square lattice.

【0010】この金属製管状セル15には固定支持部11と
板ばね16が設けられて燃料棒2を弾性的に支持してい
る。また、スペーサバンド8の周囲にはスペーサタブ17
が突設されている。
The metal tubular cell 15 is provided with a fixed support portion 11 and a leaf spring 16 to elastically support the fuel rod 2. In addition, a spacer tab 17 is provided around the spacer band 8.
Is projected.

【0011】この丸セル型核燃料スペーサ14は格子型核
燃料スペーサ5の部材、とくに格子板9の交差した部分
が燃料棒2空間の中央に位置しているのに比較して、ス
ペーサ部材が燃料棒2に近く、燃料棒2空間中央には部
材が存在していない。
In this round cell type nuclear fuel spacer 14, the spacer member is a fuel rod, as compared with the member of the lattice type nuclear fuel spacer 5, especially the intersection of the lattice plates 9 is located at the center of the fuel rod 2 space. 2, there is no member at the center of the fuel rod 2 space.

【0012】丸セル型核燃料スペーサ14における金属製
管状セル15の他の例として図18(a),(b)に示した
丸形セル18,18aが知られている。この丸形セル18,18
aは特公平3-035640号公報の図10A,図10Bから引用し
たものである。この丸形セル18,18aはフェルールと称
しており、上下両側端部19,20は主要本体21部分よりも
横断面の寸法、例えば直径が大きくなっている。
As another example of the metallic tubular cell 15 in the round cell type nuclear fuel spacer 14, the round cells 18 and 18a shown in FIGS. 18 (a) and 18 (b) are known. This round cell 18,18
The letter a is quoted from FIGS. 10A and 10B of Japanese Examined Patent Publication No. 3-035640. The round cells 18 and 18a are called ferrules, and the upper and lower end portions 19 and 20 are larger in cross-sectional dimension, for example, diameter, than the main body 21 portion.

【0013】これによって一方の丸形セル18と隣接した
丸形セル18aの間に空間または隙間22が得られ、この隙
間22によって丸形セル18,18aの間によごれが溜まらな
いように或る程度冷却材が循環できるようにしている。
なお、図中符号23は外接部を示している。
This creates a space or gap 22 between one round cell 18 and the adjacent round cell 18a, which gap 22 prevents dirt from collecting between the round cells 18, 18a. The coolant is allowed to circulate.
Note that reference numeral 23 in the drawing indicates a circumscribed portion.

【0014】[0014]

【発明が解決しようとする課題】核燃料スペーサは前述
したように燃料集合体内に複数個配置され、燃料棒2を
所定の間隔に保ち、冷却材の流れで励起されて起こる燃
料棒の流体振動を抑制する機能がある。
As described above, a plurality of nuclear fuel spacers are arranged in the fuel assembly, the fuel rods 2 are kept at a predetermined interval, and the fluid vibration of the fuel rods caused by being excited by the flow of the coolant is generated. There is a function to suppress.

【0015】一方、スペーサ部材は冷却材流路となる燃
料棒間隙に位置し、流路を狭める障害物となるため、冷
却材の流動抵抗となっている。流体中の流動抵抗は水単
相流に比較して、蒸気と水とが混合し高速で流れる二相
流条件下では数10倍大きくなるため、蒸気、水が混合し
て流れるBWR燃料集合体ではスペーサが集合体の流動
抵抗に占める割合が大きい。
On the other hand, the spacer member is located in the gap between the fuel rods serving as the coolant flow passage and serves as an obstacle for narrowing the flow passage, thus providing flow resistance of the coolant. The flow resistance in the fluid is several tens of times higher than that of the water single-phase flow under the two-phase flow condition in which steam and water are mixed and flows at high speed. Therefore, the BWR fuel assembly in which steam and water are mixed and flow In that case, the spacer accounts for a large proportion of the flow resistance of the aggregate.

【0016】燃料集合体の圧損低減は冷却材を炉心に循
環させる循環ポンプの小容量化設計に重要であるため、
スペーサの圧損低減が課題となっている。また、スペー
サ流動抵抗の増加は自然循環のような低流量時の冷却材
流動の安定性に悪影響をおよぼす。さらに、燃料集合体
の限界出力にも影響する。
Since reduction of pressure loss of the fuel assembly is important for designing a small capacity of the circulation pump for circulating the coolant in the core,
Reduction of the pressure loss of the spacer has been an issue. In addition, the increase in spacer flow resistance adversely affects the stability of coolant flow at low flow rates such as natural circulation. Further, it also affects the limit output of the fuel assembly.

【0017】以上のように燃料集合体構成部品のうち燃
料スペーサは燃料集合体内冷却材流動時の圧力損失特性
に影響が大きく、燃料の安定性、冷却特性の面でも重要
な部品である。特に、通常の原子炉運転時には燃料集合
体に冷却材を送る循環ポンプの電力低減、すなわち、燃
料スペーサの圧損特性を改善させることが、直接、プラ
ントの発電効率改善につながるため、スペーサ圧損低減
に係る提案が従来よりなされている。
As described above, among the fuel assembly constituent parts, the fuel spacer has a great influence on the pressure loss characteristics when the coolant in the fuel assembly flows, and is an important part in terms of fuel stability and cooling characteristics. In particular, during normal reactor operation, reducing the power of the circulation pump that sends the coolant to the fuel assembly, that is, improving the pressure loss characteristics of the fuel spacers, directly leads to the improvement of the power generation efficiency of the plant, thus reducing the spacer pressure loss. Such a proposal has been made conventionally.

【0018】ところで、図示していない格子型核燃料ス
ペーサであるが、流速の速い燃料棒空間中央の部材を冷
却材の流動方向に山型に突出させることによりスペーサ
部材による流路面積の急激な変化をなくし流動抵抗を緩
和、スペーサ圧力損失を低減させている。
By the way, in the case of a lattice type nuclear fuel spacer (not shown), a member at the center of the fuel rod space having a high flow velocity is projected in a mountain shape in the flow direction of the coolant, so that the flow passage area is rapidly changed by the spacer member. To reduce flow resistance and reduce spacer pressure loss.

【0019】その他、スペーサの流動抵抗を低減する方
法としてスペーサ部材の厚みを薄くしたり、部材を部分
的に削除して冷却材流れに垂直な方向のスペーサ部材投
影面積を減少させることによる流動抵抗を低減した例が
ある。
In addition, as a method of reducing the flow resistance of the spacer, the flow resistance can be reduced by thinning the spacer member or by partially removing the member to reduce the spacer member projected area in the direction perpendicular to the coolant flow. There is an example in which

【0020】以上のようにスペーサ圧損低減の工夫が出
されているが、丸セル型核燃料スペーサでは燃料棒ピッ
チに相当する直径一定の円管状のセルを外接させてスペ
ーサを形成したものであるため、スペーサ部材を蒸気流
速の低い燃料棒近傍に近付けることができない。
As described above, the device for reducing the spacer pressure loss has been devised. However, in the round cell type nuclear fuel spacer, the spacer is formed by circumscribing a cylindrical cell having a constant diameter corresponding to the fuel rod pitch. , The spacer member cannot be brought close to the vicinity of the fuel rod where the steam velocity is low.

【0021】また、特公平3-035640号公報に開示された
セルではセル内に設置される連続ループばねの取り付け
に際して形状変更をしなければならないだけでなく、ば
ねのストロークが十分確保できなくなる等の不具合を生
じることになる。突起付き格子スペーサでは突起による
流路面積変化率の緩和により、丸セル型,格子型を含め
た他のスペーサと比較しても圧損低減の効果は顕著であ
る。
Further, in the cell disclosed in Japanese Patent Publication No. 3-035640, not only must the shape be changed when the continuous loop spring installed in the cell is mounted, but also the stroke of the spring cannot be secured sufficiently. It will cause the trouble of. In the lattice spacer with protrusions, the effect of reducing pressure loss is remarkable even when compared with other spacers including the round cell type and the lattice type due to the relaxation of the flow passage area change rate due to the protrusions.

【0022】しかしながら、部材が蒸気流速の最も速い
燃料棒空間中央にあるため、低圧損化の余地を残してい
る。このように従来の流動抵抗を低減する核燃料スペー
サでは十分な圧力損失低減効果が得られていない課題が
ある。
However, since the member is located in the center of the fuel rod space where the flow velocity of steam is highest, there is room for low pressure loss. As described above, there is a problem in that the conventional nuclear fuel spacer that reduces the flow resistance cannot obtain a sufficient pressure loss reduction effect.

【0023】本発明は上記課題を解決するためになされ
たもので、流動抵抗が減少でき、低圧力損失の核燃料ス
ペーサを提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a nuclear fuel spacer having a reduced flow resistance and a low pressure loss.

【0024】[0024]

【課題を解決するための手段】第1の発明はスペーサバ
ンドと、このスペーサバンド内に複数配置された筒状セ
ルとを備え、格子状に配列された複数本の燃料棒を支持
するセル型核燃料スペーサにおいて、前記セルの一方が
隣接する他方のセルとの外接部分を除いた残りのセル胴
部の曲率が前記燃料棒間ピッチの1/2よりも小さく、
かつ前記隣接するセルとの外接部分は前記セルを該セル
全長にわたって外側に突出するように塑性変形させたセ
ル突起部を有することを特徴とする。
A first aspect of the present invention is a cell type which includes a spacer band and a plurality of cylindrical cells arranged in the spacer band, and which supports a plurality of fuel rods arranged in a grid pattern. In the nuclear fuel spacer, the curvature of the remaining cell body excluding the circumscribing portion of one of the cells and the adjacent other cell is smaller than 1/2 of the fuel rod pitch,
In addition, the circumscribed portion with the adjacent cell has a cell projection portion obtained by plastically deforming the cell so as to project outward over the entire cell length.

【0025】第2の発明はスペーサバンドと、このスペ
ーサバンド内に複数配置された筒状セルとを備え、格子
状に配列された複数本の燃料棒を支持するセル型核燃料
スペーサにおいて、前記セルのセル胴部の長さよりも前
記セル外接部の方が長く、かつ冷却材の流れと平行にセ
ル外接部両端が突出した突起部を有し、この突起部は隣
接するセルとの接合面を頂点とし、冷却材の流れに垂直
な断面の面積が前記突起部の先端に向うに従い滑らかに
減少するように形成されていることを特徴とする。
A second aspect of the present invention is a cell-type nuclear fuel spacer that includes a spacer band and a plurality of cylindrical cells arranged in the spacer band, and supports a plurality of fuel rods arranged in a grid pattern. The cell circumscribed portion is longer than the length of the cell body of the cell, and has a protrusion protruding from both ends of the cell circumscribed portion in parallel with the flow of the coolant, and the protrusion has a joint surface with an adjacent cell. It is characterized in that the apex is formed so that the area of a cross section perpendicular to the flow of the coolant smoothly decreases toward the tip of the projection.

【0026】第3の発明はスペーサバンドと、このスペ
ーサバンド内に複数配置された筒状セルとを備え、格子
状に配列された複数本の燃料棒を支持するセル型核燃料
スペーサにおいて、前記セルのセル胴部の外径を不均一
に形成したことを特徴とする。
A third aspect of the present invention is a cell-type nuclear fuel spacer that includes a spacer band and a plurality of cylindrical cells arranged in the spacer band, and supports a plurality of fuel rods arranged in a grid pattern. It is characterized in that the outer diameter of the cell body is formed non-uniformly.

【0027】[0027]

【作用】本発明の核燃料スペーサは、セル同士の接合部
分のみが突出し、接合部以外のセル部材は燃料棒に密着
するまで近付けることが可能なセル形状である。
The nuclear fuel spacer of the present invention has a cell shape in which only the joints between the cells project, and the cell members other than the joints can be brought close to the fuel rods until they come into close contact.

【0028】図5(a),(b)に示すように蒸気流速
の遅い燃料棒近くにセル部材を位置させることができ
る。スペーサ部材に衝突する蒸気速度が遅くなれば前述
の流動抵抗Rと流速Vとの関係からスペーサの流動抵抗
は減少し、スペーサの圧力損失を低減できる。
As shown in FIGS. 5 (a) and 5 (b), the cell member can be positioned near the fuel rod having a slow vapor velocity. If the vapor velocity impinging on the spacer member becomes slow, the flow resistance of the spacer decreases due to the above-mentioned relationship between the flow resistance R and the flow velocity V, and the pressure loss of the spacer can be reduced.

【0029】また、セルの小径化により、セル部材の投
影面積が10%程度削減でき、さらに圧力損失が低減され
る。一方、セルの小径化に伴い、燃料棒近傍の蒸気や液
膜の流れが停滞することが懸念されるが、表面の液膜は
平均厚さで 0.2〜 0.6mm程度であるため、従来の丸セル
型核燃料スペーサよりも間隙を狭くしても十分通過でき
る。
Further, by reducing the diameter of the cell, the projected area of the cell member can be reduced by about 10% and the pressure loss can be further reduced. On the other hand, there is a concern that the flow of vapor and liquid film near the fuel rod will be stagnant as the cell diameter becomes smaller, but the average thickness of the liquid film on the surface is about 0.2 to 0.6 mm. Even if the gap is narrower than that of the cell-type nuclear fuel spacer, it can sufficiently pass through.

【0030】図5(b)に示すように流路壁(燃料棒)
と障害物(obstacle)(スペーサ)との間隔を0.75mm程
度にしてもセル〜燃料棒間隙を気相は通過しており、セ
ルを燃料棒表面に現行スペーサよりも近付けても冷却材
が閉塞し、冷却性能が著しく損なわれないことがわか
る。
As shown in FIG. 5B, the flow path wall (fuel rod)
The gas phase passes through the cell-fuel rod gap even if the distance between the fuel cell and the obstacle (spacer) is about 0.75 mm, and the coolant is blocked even if the cell is brought closer to the fuel rod surface than the current spacer. However, it can be seen that the cooling performance is not significantly impaired.

【0031】燃料棒間隙の最も狭い部分に位置する外接
部分は部材が重なっていたり、また、弾性支持部が配置
されたりして、スペーサが流路面積を塞ぐようになる
が、外接部分に山型突起部を設けることによりスペーサ
に流入,流出するときの冷却材流路面積の変化を緩和す
ることにより圧力損失増加を抑制している。
The circumscribed portion located in the narrowest portion of the fuel rod gap overlaps members and the elastic support portion is arranged, so that the spacer blocks the flow passage area. By providing the mold protrusions, the change in the coolant flow passage area when flowing into and out of the spacer is mitigated, thereby suppressing an increase in pressure loss.

【0032】さらに、スペーサセルの冷却材上流端内面
にテーパ加工を施すことによりスペーサセルと燃料棒と
の間隙よりも厚さの厚い液膜を燃料棒側に取り込む形状
としている。
Further, the inner surface of the coolant upstream end of the spacer cell is tapered so that a liquid film thicker than the gap between the spacer cell and the fuel rod is taken into the fuel rod side.

【0033】[0033]

【実施例】図1から図6を参照しながら、本発明に係る
核燃料スペーサの第1の実施例を説明する。なお、図
中、図16と同一部分には同一符号を付している。図2は
図1における要部拡大図である。
EXAMPLE A first example of a nuclear fuel spacer according to the present invention will be described with reference to FIGS. In the figure, the same parts as those in FIG. 16 are designated by the same reference numerals. FIG. 2 is an enlarged view of a main part in FIG.

【0034】図1において、スペーサバンド8内にはイ
ンコネル製筒状セル24が8行8列格子状に配列されてい
る。ただし、ウォータロッド7が挿入される中央部は4
個削除されている。
In FIG. 1, inconel tubular cells 24 are arranged in a spacer band 8 in a grid pattern of 8 rows and 8 columns. However, the central part where the water rod 7 is inserted is 4
It has been deleted.

【0035】この筒状セル24は図2に示したようにその
セル胴部34に外方向に突出した4個の外接部分25が均等
に形成されており、また燃料棒2を支持する内方向へ突
出した固定支持部26が外接部分25,25間に2個形成され
ており、さらに弾性支持部27が1個設けられている。
As shown in FIG. 2, the tubular cell 24 has four outer contact portions 25 projecting outwardly evenly formed on the cell body 34 thereof, and an inward direction for supporting the fuel rod 2 is formed. Two fixed support portions 26 projecting inward are formed between the circumscribed portions 25, 25, and one elastic support portion 27 is further provided.

【0036】筒状セル24のセル胴部34の曲率Rは図2中
破線28で示したように燃料棒2,2間のピッチPの1/
2よりも小さくなっており、図3および図4に示したよ
うに外接部分25は筒状セル24のセル胴部34の全長にわた
ってセル突起部29が塑性変形により形成されている。セ
ル突起部29は先端が鋭利に仕上げられ、筒状セル24の冷
却材上流内面にはテーパ加工31が施されている。
The curvature R of the cell body portion 34 of the tubular cell 24 is 1 / the pitch P between the fuel rods 2 and 2 as indicated by the broken line 28 in FIG.
2 is smaller than 2, and in the circumscribed portion 25, the cell protrusions 29 are formed by plastic deformation over the entire length of the cell body 34 of the tubular cell 24 as shown in FIGS. The cell projection 29 has a sharp tip, and the inner surface of the cylindrical cell 24 upstream of the coolant is tapered 31.

【0037】スペーサバンド8は例えば帯状の矩形枠
で、スペーサバンド8にはチャンネルボックスとスペー
サとのクリアランスを確保するためにスペーサタブ17が
各面に2個ずつ設けられている。
The spacer band 8 is, for example, a strip-shaped rectangular frame, and the spacer band 8 is provided with two spacer tabs 17 on each surface for ensuring a clearance between the channel box and the spacer.

【0038】次に上記実施例の作用を説明する。本実施
例においてはスペーサ部材が燃料棒2に近く、燃料部
2,2間中央には部材が存在していない。これに対し
て、図15(a),(b)に示す従来例の格子型核燃料ス
ペーサ5では特に部材の交差した部分が燃料棒2の空間
中央に位置している。
Next, the operation of the above embodiment will be described. In this embodiment, the spacer member is close to the fuel rod 2, and no member is present in the center between the fuel portions 2 and 2. On the other hand, in the lattice type nuclear fuel spacer 5 of the conventional example shown in FIGS. 15 (a) and 15 (b), the intersection of the members is located at the center of the space of the fuel rod 2.

【0039】燃料集合体内の冷却材の流れは燃料棒間を
蒸気が高速で流れ、水は燃料棒表面を平均厚さで 0.2mm
〜 0.6mm程度の薄い液膜となって流れている。燃料棒空
間の蒸気流速は図5(a),(b)のように燃料棒表面
で流速が最も遅く、燃料棒空間中央で最も速くなるよう
な分布になっている。
In the flow of the coolant in the fuel assembly, steam flows at high speed between the fuel rods, and water has an average thickness of 0.2 mm on the surface of the fuel rods.
It flows as a thin liquid film of about 0.6 mm. As shown in FIGS. 5A and 5B, the vapor flow velocity in the fuel rod space is such that the flow velocity is the slowest on the fuel rod surface and the highest in the fuel rod space center.

【0040】図5(b)は常温常圧で空気を流して矩形
流路内の径方向の流速分布を測定した研究報告であり、
矩形断面の流路に空気を通じ流路断面内の流速分布を測
定し、流路に障害物のないときの流速分布を実線で、板
状の障害物を流れに平行に置いた場合の流速分布を○印
等の記号で示したものである。
FIG. 5 (b) is a research report in which the flow velocity distribution in the radial direction in the rectangular channel was measured by flowing air at room temperature and normal pressure.
Air is passed through the rectangular cross section to measure the flow velocity distribution inside the flow passage, and the flow velocity distribution when there is no obstacle in the flow passage is indicated by the solid line, and the flow velocity distribution when a plate-like obstacle is placed parallel to the flow Is indicated by a symbol such as a circle.

【0041】流路に障害物のない場合を例にとると、実
線のように壁面(y=0)で流速が遅くなっている。流
動抵抗Rは通常R=(抵抗係数CD )×(流れに垂直な
面に対する投影面積S)×(流体の密度ρ)×(流体の
速度V)2 /2で表され、流速Vは流動抵抗に二乗で効
く。
Taking the case where there is no obstacle in the flow path as an example, the flow velocity is slow on the wall surface (y = 0) as indicated by the solid line. Flow resistance R is expressed by normal R = (resistance coefficient C D) × (the speed V of the fluid) (projected area S with respect to a plane perpendicular to the flow) × (density of the fluid ρ) × 2/2, the flow velocity V flow Squares resistance.

【0042】したがって、蒸気流速が最も速い燃料棒2
の空間中央にスペーサ部材がない丸セル型核燃料スペー
サ14では流速の遅い燃料棒近傍の蒸気がスペーサ部材と
衝突するため燃料棒空間中央にスペーサ部材がある格子
型核燃料スペーサ5に比較して、流動抵抗が小さくな
る。
Therefore, the fuel rod 2 having the highest vapor velocity is
In the round-cell type nuclear fuel spacer 14 having no spacer member in the center of the space, since the vapor near the fuel rod having a slow flow velocity collides with the spacer member, compared with the lattice type nuclear fuel spacer 5 having the spacer member in the center of the fuel rod space, The resistance decreases.

【0043】なお、図5(b)は深野ほか3名による
“高速気流に伴われて流動する薄い水膜の流れに与える
障害物の影響”混相流,3.4.(1989) p389 〜p404から引
用したものである。
FIG. 5 (b) is quoted from Fukano et al., “Effect of obstacles on the flow of thin water film flowing with high-speed air flow”, multiphase flow, 3.4. (1989) p389-p404. It was done.

【0044】沸騰水型原子炉(BWR)運転時の冷却材
の流れは燃料棒表面に液膜流れがあり、燃料棒空間を蒸
気が流れるような流動様式となっている。液膜の厚さは
最大1〜2mm程度であるが平均的には 0.2mm〜 0.6mm程
度(最小厚さは数10μm)の薄い液膜である。
The flow of the coolant during the operation of a boiling water reactor (BWR) is such that there is a liquid film flow on the surface of the fuel rod and steam flows in the fuel rod space. The maximum thickness of the liquid film is about 1 to 2 mm, but on average it is a thin liquid film of about 0.2 mm to 0.6 mm (the minimum thickness is several tens of μm).

【0045】したがって、燃料棒2とスペーサセルの距
離yを従来の丸セル型核燃料スペーサ14に相当する約
1.5mm程度から半分の0.75mm程度まで近付けたとしても
セル胴部34の入口で冷却材液膜が閉塞し、燃料棒の冷却
性能を著しく低下させることはない。
Therefore, the distance y between the fuel rods 2 and the spacer cells is approximately equivalent to that of the conventional round cell type nuclear fuel spacer 14.
Even if the distance from about 1.5 mm to about 0.75 mm, which is half of the distance, is approached, the coolant liquid film is not blocked at the inlet of the cell body 34, and the cooling performance of the fuel rod is not significantly deteriorated.

【0046】BWR条件とは異なるが空気−水実験(図
5(b))では0.75mm程度まで近付けた場合にも空気の
流れは、スペーサ部材のない場合と同程度に通過するこ
とが示されており、本実施例の筒状セル24に流入した液
膜も蒸気に引っ張られて流れ、筒状セル24内においても
液膜は滞ることなく燃料棒を十分に冷却可能である。
Although different from the BWR condition, the air-water experiment (FIG. 5 (b)) shows that the air flow passes to the same extent as when there is no spacer member even when brought close to 0.75 mm. Therefore, the liquid film that has flowed into the tubular cell 24 of this embodiment is also pulled by the vapor and flows, and the fuel film can be sufficiently cooled in the tubular cell 24 without the liquid film remaining behind.

【0047】一方、セル胴部34に衝突する蒸気は図5
(a)に示すように燃料棒空間中央で速度が最大とな
り、液膜表面では液膜流れの速度にほぼ等しくなるよう
な速度分布をもっている。
On the other hand, the vapor colliding with the cell body 34 is shown in FIG.
As shown in (a), the velocity distribution is such that the velocity becomes maximum at the center of the fuel rod space and becomes almost equal to the velocity of the liquid film flow on the surface of the liquid film.

【0048】なお、図5(a)中、符号5は格子型核燃
料スペーサのセルの例、15は丸セル型核燃料スペーサの
管状セル、24は本発明の実施例における筒状セルをそれ
ぞれ示している。燃料部ピッチをPとすると、 ya=√2P/2 yb=P/2 yc<P/2 の関係になる。
In FIG. 5 (a), reference numeral 5 is an example of a lattice type nuclear fuel spacer cell, 15 is a round cell type nuclear fuel spacer tubular cell, and 24 is a tubular cell in the embodiment of the present invention. There is. When the fuel portion pitch is P, the relation of ya = √2P / 2 yb = P / 2 yc <P / 2 is satisfied.

【0049】ちなみに、定格運転時の燃料集合体出口付
近の蒸気速度は約12m/s、そこから約5mmはなれた液
膜表面の移動速度は2〜3m/s程度であり、その速度
分布は液膜表面に近付くにつれて急激に小さくなる。
Incidentally, the vapor velocity near the outlet of the fuel assembly during rated operation is about 12 m / s, the moving velocity of the liquid film surface about 5 mm away from it is about 2 to 3 m / s, and its velocity distribution is It rapidly decreases as it approaches the film surface.

【0050】流動抵抗Rは通常R=(抵抗係数CD )×
(流れに垂直な面に対する投影面積S)×(流体の密度
ρ)×(流体の速度V)2 /2で表される。したがっ
て、流速Vは流動抵抗に二乗で効くので、圧損低減の効
果は大きい。
The flow resistance R is usually R = (resistance coefficient C D ) ×
(The projected area to the plane perpendicular to the flow S) × (density of fluid [rho) × (the speed V of the fluid) is expressed by 2/2. Therefore, since the flow velocity V squares on the flow resistance, the pressure loss reduction effect is great.

【0051】また、セル材質をインコネル製とし、従来
スペーサの材質であるジルカロイよりも材料強度を増す
ことにより薄肉化すれば、スペーサ投影面積が減少でき
るためさらに圧損が低減できる。
Further, if the cell material is made of Inconel and the material strength is made higher than that of zircaloy which is the material of the conventional spacer to reduce the wall thickness, the projected area of the spacer can be reduced, so that the pressure loss can be further reduced.

【0052】従来と同様に中性子経済の優れたジルカロ
イを材料に使用し、従来と同じセル肉厚としてもセルの
外径を小径化した寸法効果により約10%投影面積が減少
できるので、材料をインコネルとしさらにセル厚みを減
少させた場合では10%を超える投影面積減少ができ、セ
ル胴部34の小径化による衝突蒸気の流速低減とあわせて
スペーサの流動抵抗を大幅に減少できる。
Zircaloy, which has excellent neutron economy as well as the conventional one, is used as the material. Even if the cell thickness is the same as the conventional one, the projected area can be reduced by about 10% due to the size effect of reducing the outer diameter of the cell. In the case of using Inconel and further reducing the cell thickness, the projected area can be reduced by more than 10%, and the flow resistance of the spacer can be greatly reduced together with the reduction of the flow velocity of the impinging vapor due to the reduction of the diameter of the cell body 34.

【0053】燃料棒間隙の最も狭い部分に位置する外接
部分25は部材が重なったり、また、弾性支持部が配置さ
れていたりしてスペーサの投影面積が大きく圧損増の要
因となるが、外接部分25に山型突起部を設けることによ
り、冷却材流路面積の変化を緩和し、流れの変化を緩や
かにすることにより圧力損失増加を抑制している。
In the circumscribing portion 25 located at the narrowest portion of the fuel rod gap, members overlap and elastic supporting portions are arranged, which causes a large projected area of the spacer and causes a pressure loss increase. By providing a mountain-shaped protrusion on 25, the change in the coolant flow passage area is alleviated, and the change in the flow is moderated to suppress an increase in pressure loss.

【0054】また、外接部分25に弾性支持部を塑性変形
により形成することにより弾性部材とセルを別材料で作
った場合よりもスペーサの断面積を低減できる。
Further, by forming the elastic support portion on the circumscribed portion 25 by plastic deformation, the cross-sectional area of the spacer can be reduced as compared with the case where the elastic member and the cell are made of different materials.

【0055】図6(a)に示したように、筒状セル24の
外径を小さくし、燃料棒2の外径に近付けることにより
燃料棒2の表面を波だちながら流れる液膜30を筒状セル
24の部材で剥離し、スペーサの筒状セル24内の燃料棒2
の冷却に使われなくなることを抑制するためにスペーサ
の筒状セル24の冷却材上流端内面にテーパ加工31を施し
ている。
As shown in FIG. 6 (a), the outer diameter of the tubular cell 24 is reduced so that it is close to the outer diameter of the fuel rod 2 so that the liquid film 30 flowing on the surface of the fuel rod 2 while undulating. Cylindrical cell
The fuel rod 2 in the cylindrical cell 24 of the spacer is peeled off by the member of 24
In order to prevent the spacers from being used for cooling, the inner surface of the coolant upstream end of the cylindrical cell 24 of the spacer is tapered 31.

【0056】このテーパ加工31により筒状セル24と燃料
棒2との間隙よりも厚さの厚い液膜30の波はカットされ
るが、本来、スペーサセル内ではスペーサ部材による流
路面積の縮小から蒸気流速の増加と、それに伴う液膜流
速の増加が生じるため液膜流量が減少してもスペーサの
ない集合体管束部分よりも冷却性能は増加しており蒸気
が通過可能な直径であれば筒状セル24内での冷却性能が
燃料集合体の限界出力を制限することはない。なお、図
6(b)は従来の丸セル型核燃料スペーサ14の金属製管
状セル15を対比して示している。
By this taper processing 31, the wave of the liquid film 30 thicker than the gap between the tubular cell 24 and the fuel rod 2 is cut, but originally, the flow passage area is reduced by the spacer member in the spacer cell. Therefore, even if the liquid film flow rate decreases, the cooling performance is higher than that of the assembly tube bundle part without spacers as long as the vapor flow rate increases and the liquid film flow rate increases accordingly. The cooling performance in the tubular cell 24 does not limit the limit output of the fuel assembly. Note that FIG. 6B shows a metal tubular cell 15 of the conventional round cell type nuclear fuel spacer 14 in comparison.

【0057】図7(a)は本実施例の筒状セル24をルー
プばね32によって隣接する筒状セル24と結合した状態を
示しており、図7(b)は従来の特公平3-035640号公報
記載の丸形セル18を対比して示している。
FIG. 7 (a) shows a state in which the tubular cell 24 of this embodiment is connected to an adjacent tubular cell 24 by a loop spring 32, and FIG. 7 (b) shows a conventional Japanese Patent Publication No. 3-035640. The round cell 18 described in the publication is shown in contrast.

【0058】この両図から明らかなように燃料棒2と筒
状セル24または丸形セル18とを結合するループばね32は
図7(a)では中央部が突出したランタン形を使用でき
るため、ばねストローク33を大きくできるのに対して、
図7(b)では円筒状であるため、ばねストローク33が
小さい。
As is apparent from both of these figures, the loop spring 32 connecting the fuel rod 2 and the tubular cell 24 or the round cell 18 can be a lantern type with the central portion protruding in FIG. 7 (a). While the spring stroke 33 can be increased,
In FIG. 7B, the spring stroke 33 is small because it is cylindrical.

【0059】したがって、本実施例では燃料棒2と筒状
セル24との間隔を大きくとることができ、スペーサの圧
力損失を低減することができる。
Therefore, in this embodiment, the distance between the fuel rod 2 and the tubular cell 24 can be increased, and the pressure loss of the spacer can be reduced.

【0060】次に、図8から図13を参照しながら第1の
実施例で示した丸セル型核燃料スペーサにおける筒状セ
ル24のセル胴部34の他の例を説明する。なお、図2から
図4と同一部分には同一符号を付して重複する部分の説
明は省略し、その異なっている部分の説明にとどめる。
Next, another example of the cell body 34 of the tubular cell 24 in the round cell type nuclear fuel spacer shown in the first embodiment will be described with reference to FIGS. 8 to 13. The same parts as those in FIGS. 2 to 4 are designated by the same reference numerals, and the description of the overlapping parts will be omitted. Only the different parts will be described.

【0061】図8は燃料スペーサを構成するセル胴部34
の外径が不均一なものである。図9は筒状セル24のセル
胴部34の外接部分25の突出高さがセル周方向で異なるよ
うに組み合わせた例である。例えば不均等ピッチ配列の
燃料集合体を支持する場合、スペーサピッチの大きな部
分に直径の大きなセルを配置し、外接部突起の高さを一
定とした不均等ピッチ用スペーサを構成したり、逆にセ
ル直径を一定として外接部突出高さを変えることにより
不均等ピッチ用スペーサが構成可能となる。
FIG. 8 shows the cell body 34 which constitutes the fuel spacer.
Has an uneven outer diameter. FIG. 9 shows an example in which the protruding heights of the circumscribing portions 25 of the cell body 34 of the tubular cell 24 are different in the cell circumferential direction. For example, when supporting a fuel assembly with an uneven pitch arrangement, cells with a large diameter are arranged in a portion with a large spacer pitch to form an uneven pitch spacer in which the height of the circumscribing protrusion is constant, or conversely. A spacer for non-uniform pitch can be constructed by changing the protruding height of the circumscribing portion while keeping the cell diameter constant.

【0062】また、燃料集合体の出力分布に応じて燃料
集合体内の相対出力が大きく、熱的に厳しい燃料棒2で
はセルにより液膜が剥離され難いようにセル胴部34の直
径を大きくし、外接部高さを小さくしたスペーサ構成と
することにより燃料集合体の圧力損失低減と、限界出力
低下の抑制をはかることが可能である。
Further, the relative output in the fuel assembly is large in accordance with the output distribution of the fuel assembly, and the diameter of the cell body 34 is increased so that the liquid film is not easily separated by the cells in the fuel rod 2 which is thermally severe. It is possible to reduce the pressure loss of the fuel assembly and suppress the lowering of the limit output by adopting the spacer configuration in which the height of the circumscribed portion is reduced.

【0063】とくに燃料の経済性を高めた高燃焼度燃料
では核的設計の都合から燃料集合体の最外周および2列
目の燃料棒に高出力燃料棒が配置され熱的に厳しくなる
傾向がある。
In particular, in the case of a high burnup fuel that has improved fuel economy, due to the nuclear design, there is a tendency that high power fuel rods are arranged at the outermost periphery of the fuel assembly and the fuel rods in the second row, and become thermally strict. is there.

【0064】この場合、燃料集合体の最外周および2列
目よりも3列目以内でセル胴部外径が小さい燃料スペー
サとすることにより、熱的に厳しい燃料棒の限界出力低
下を抑え、集合体内部の相対出力の小さい燃料棒のセル
外径を小さくし圧力損失低減効果を高め、限界出力低減
を抑制し、圧損を低減したスペーサ設計ができる。
In this case, by using a fuel spacer having a small outer diameter of the cell body in the outermost periphery of the fuel assembly and in the third column rather than the second column, it is possible to suppress the thermal power from severely lowering the limit output of the fuel rod. It is possible to reduce the outer diameter of the fuel rod having a small relative output inside the assembly to enhance the pressure loss reduction effect, suppress the limit output reduction, and reduce the pressure loss.

【0065】図10は外接部分25を除くセル胴部34に窓35
を設けてセル胴部34での圧力損失をさらに削減した例で
ある。円筒状の丸セルの場合、同様にセル胴部34を肉抜
きすれば、セル胴部34は細い板状部分のみが残ることに
なり強度低下は避けられない。
FIG. 10 shows a window 35 in the cell body 34 excluding the circumscribing portion 25.
Is provided to further reduce the pressure loss at the cell body 34. In the case of a cylindrical round cell, if the cell body portion 34 is similarly thinned out, only a thin plate-like portion remains in the cell body portion 34, and a decrease in strength cannot be avoided.

【0066】これに対して、本実施例のスペーサの筒状
セルは外接部分25をコの字状に塑性変形させているため
曲げ剛性が高く、肉抜き後のセル強度は円管状の丸セル
に比較して高まる効果がある。
On the other hand, in the cylindrical cell of the spacer of this embodiment, since the circumscribing portion 25 is plastically deformed into a U-shape, the bending rigidity is high, and the cell strength after thinning is a circular tubular round cell. Has the effect of increasing compared to.

【0067】図11は図10と同様にセル胴部34に窓35を設
け、かつ、残ったセル両端を塑性変形させ、固定弾性支
持部36をセル胴部34の周方向に複数個設けた例で、図12
はセル胴部34の平面図、図13はセル胴部34のA−A断面
図である。図12における固定弾性支持部36は弾性変形範
囲において燃料棒を支持する弾性支持を兼ねている。
In FIG. 11, as in FIG. 10, a window 35 is provided in the cell body 34, and both ends of the remaining cell are plastically deformed, and a plurality of fixed elastic support portions 36 are provided in the circumferential direction of the cell body 34. As an example, Figure 12
Is a plan view of the cell body 34, and FIG. 13 is a sectional view of the cell body 34 taken along the line AA. The fixed elastic support portion 36 in FIG. 12 also serves as elastic support for supporting the fuel rod in the elastic deformation range.

【0068】燃料棒の挿入をスムーズにするため燃料棒
の固定弾性支持部36は図13に示すようにくの字になって
いる。くの字の高さδは固定弾性支持部36の弾性変形の
変位よりも大きくとってある。
In order to make the insertion of the fuel rod smooth, the fixed elastic support portion 36 of the fuel rod has a dogleg shape as shown in FIG. The height δ of the dogleg is set to be larger than the displacement of the elastic deformation of the fixed elastic support portion 36.

【0069】また、セル胴部34の外接部分25と外接部分
25とで挟まれた部分に少なくとも1個以上の固定弾性支
持部36を設けることにより、燃料棒2とセル胴部34の部
材間の距離が偏り、液膜流れがセル胴部34の周方向で局
所的に停滞することがないよう距離を均等に保つように
なっている。
Further, the circumscribed portion 25 and the circumscribed portion of the cell body 34
By providing at least one fixed elastic support portion 36 in the portion sandwiched by 25 and 25, the distance between the members of the fuel rod 2 and the cell body 34 is biased, and the liquid film flow is in the circumferential direction of the cell body 34. It is designed to keep the distance even so that there is no local stagnation.

【0070】なお、図3に示したものにおいて、筒状セ
ル24の外接部分25をセル胴部34と同じ長さに形成して、
外接部分25のセル胴部34の内面側にテーパ加工31を施す
ことができる。このように形成した場合には外接部分25
に突起を設けたのと同様にスペーサ部材の断面積変化を
緩和する効果がある。
In the structure shown in FIG. 3, the circumscribed portion 25 of the tubular cell 24 is formed to have the same length as the cell body 34,
A taper process 31 can be applied to the inner surface side of the cell body portion 34 of the circumscribed portion 25. When formed in this way, the circumscribed portion 25
As in the case where the protrusion is provided on the substrate, it has the effect of alleviating the change in the cross-sectional area of the spacer member.

【0071】次に本発明に係る核燃料スペーサの実施態
様を要約して次に列記する。 (1) 燃料集合体内に設置され、複数個の細長い燃料棒、
減速材管その他の構成部品を横方向の所定位置に保持す
るための核燃料スペーサで、燃料棒を囲む筒状セルを外
接させて形成したセル型核燃料スペーサにおいて、前記
隣接するセルとの外接部分を除いた残りのセル胴部の曲
率が、燃料棒間ピッチの1/2よりも小さく、かつ前記
隣接するセルとの外接部分は筒状セルをセル全長にわっ
て外側に突出するよう塑性変形させて形成したこと。
Next, the embodiments of the nuclear fuel spacer according to the present invention will be summarized and listed below. (1) A plurality of elongated fuel rods installed in the fuel assembly,
A nuclear fuel spacer for holding a moderator tube and other components in a predetermined lateral position.In a cell-type nuclear fuel spacer formed by circumscribing a tubular cell surrounding a fuel rod, the circumscribing portion with the adjacent cell is The curvature of the remaining cell body is less than 1/2 of the fuel rod pitch, and the circumscribing portion with the adjacent cells plastically deforms the tubular cell so that it projects outward over the entire cell length. Formed.

【0072】(2) セル胴部の長さよりも外接部分の長さ
の方が長く、かつ冷却材の流れと平行に筒状セルの外接
部分の両端が突出しており、かつ、この突起部は隣接す
る筒状セルとの接合面を頂点とし、冷却材の流れに垂直
な断面の面積が突起先端に向うに従い滑らかに減少する
ように仕上げられていること。
(2) The length of the circumscribed portion is longer than the length of the cell body, both ends of the circumscribed portion of the cylindrical cell project in parallel with the flow of the coolant, and the protrusion is It should be finished so that the area of the cross section perpendicular to the flow of the coolant decreases smoothly toward the tip of the protrusion, with the joint surface between adjacent cylindrical cells as the apex.

【0073】(3) スペーサセルの冷却材上流端内面にテ
ーパ加工が施されていること。 (4) 燃料スペーサを構成する筒状セルのセル胴部の外径
が不均一であること。 (5) 核燃料スペーサを構成する複数の筒状セルのうち、
燃料集合体の最外周と2列目の筒状セルのセル胴部の外
径よりも3列目以内のセル胴部外径を小さくすること。
(3) The inner surface of the coolant upstream end of the spacer cell is tapered. (4) The outer diameter of the cell body of the tubular cell forming the fuel spacer is not uniform. (5) Of the multiple cylindrical cells that make up the nuclear fuel spacer,
The outer diameter of the cell body within the third row is smaller than the outer diameter of the outermost circumference of the fuel assembly and the cell body of the tubular cells in the second row.

【0074】(6) 流れに垂直な方向の前記外接部分の突
出高さが筒状セルの周方向で異なること。 (7) 外接部分の1箇所以上に筒状セルを塑性変形させて
形成した弾性支持部を設けていること。
(6) The protruding height of the circumscribed portion in the direction perpendicular to the flow is different in the circumferential direction of the tubular cell. (7) An elastic support portion formed by plastically deforming the tubular cell is provided at one or more places of the circumscribed portion.

【0075】(8) セル胴部には外接部分を除く部分に窓
が設けられ、かつ、筒状セルの両端に近い部分に筒状セ
ルを塑性変形させた固定弾性支持部がセル周方向に複数
個設けられており、この固定弾性支持部はセルの弾性変
形により燃料棒を支持するようになっていること。
(8) A window is provided in the cell body except for the circumscribed portion, and a fixed elastic support portion obtained by plastically deforming the tubular cell is provided in a portion near both ends of the tubular cell in the circumferential direction of the cell. A plurality of fixed elastic support portions are provided to support the fuel rods by elastic deformation of the cells.

【0076】(9) セル胴部の外接部分と他の外接部分と
で挟まれた部分に少なくとも1個以上の固定弾性支持部
が設けられたこと。 (10)外接部分の長さとセル胴部の長さとが同じであり、
かつ外接部分のセル両端内側にテーパ加工が施されてい
ること。
(9) At least one fixed elastic support portion is provided in the portion sandwiched between the circumscribed portion of the cell body and the other circumscribed portion. (10) The length of the circumscribed portion and the length of the cell body are the same,
In addition, the inside of both ends of the cell in the circumscribing part must be tapered.

【0077】[0077]

【発明の効果】本発明によれば、燃料棒空間の蒸気速度
の遅い燃料棒近傍にスペーサ部材を配置でき、スペーサ
部材に衝突する蒸気速度が低減され、セル胴部の半径を
小さくしたことにより流れに垂直な面のスペーサ投影面
積が減少できる。この衝突蒸気速度の減少と、投影面積
の減少の相乗効果により流動抵抗が減少でき、低圧力損
失の核燃料スペーサを得ることができる。
According to the present invention, the spacer member can be arranged in the vicinity of the fuel rod having a low vapor velocity in the fuel rod space, the vapor velocity colliding with the spacer member can be reduced, and the radius of the cell body can be reduced. The projected area of the spacer in the plane perpendicular to the flow can be reduced. Due to the synergistic effect of the reduction of the impinging vapor velocity and the reduction of the projected area, the flow resistance can be reduced and a nuclear fuel spacer with a low pressure loss can be obtained.

【0078】さらにスペーサセル外接部とスペーサ胴部
直径を独立して設定できることから不均一燃料棒ピッチ
の燃料集合体の適応が容易である。また、燃料集合体の
出力分布に合わせてセル胴部直径を適当に選択すること
により燃料集合体の冷却への影響を少なくして低圧損化
がはかれる。
Further, since the outer diameter of the spacer cell and the diameter of the spacer body can be set independently, it is easy to adapt the fuel assembly having a non-uniform fuel rod pitch. Further, by appropriately selecting the cell body diameter according to the output distribution of the fuel assembly, it is possible to reduce the influence on the cooling of the fuel assembly and reduce the pressure loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る核燃料スペーサの第1の実施例を
示す平面図。
FIG. 1 is a plan view showing a first embodiment of a nuclear fuel spacer according to the present invention.

【図2】図1における要部を拡大して示す平面図。FIG. 2 is an enlarged plan view showing a main part of FIG.

【図3】図2におけるA−A矢視方向を示す立面図。FIG. 3 is an elevation view showing a direction of arrow AA in FIG.

【図4】図3におけるセルの外接部分を拡大して示す見
取り図。
4 is an enlarged schematic view of a circumscribed portion of the cell in FIG.

【図5】(a)は本発明と従来例の核燃料スペーサの燃
料棒近傍の蒸気速度分布を比較して示す模式図、(b)
は矩形流路に板状障害物を置いた場合と置かない場合を
示す空気流速分布図。
FIG. 5 (a) is a schematic diagram showing a comparison of vapor velocity distributions near fuel rods of a nuclear fuel spacer of the present invention and a conventional example, and FIG. 5 (b).
Is an air flow velocity distribution diagram showing a case where a plate-shaped obstacle is placed in a rectangular flow path and a case where it is not placed.

【図6】燃料棒と液膜、蒸気速度分布およびスペーサ部
材の関係を示す側面図で、(a)は本発明の実施例を、
(b)は従来例をそれぞれ示す。
FIG. 6 is a side view showing the relationship between a fuel rod, a liquid film, a vapor velocity distribution, and a spacer member, (a) showing an embodiment of the present invention,
(B) shows a conventional example, respectively.

【図7】燃料棒とセルのばねストロークを一部側面で示
す縦断面図で、(a)は本発明の実施例を、(b)は従
来例をそれぞれ示す。
FIG. 7 is a vertical cross-sectional view showing a partial side view of a spring stroke of a fuel rod and a cell, (a) showing an embodiment of the present invention and (b) showing a conventional example.

【図8】図1における核燃料スペーサのセル胴部の直径
が異なるセルの配置例を示す平面図。
FIG. 8 is a plan view showing an arrangement example of cells in which the diameter of the cell body of the nuclear fuel spacer in FIG. 1 is different.

【図9】図8における外接部高さが異なるセルの配置を
示す平面図。
9 is a plan view showing an arrangement of cells having different circumscribed portion heights in FIG. 8. FIG.

【図10】図1における核燃料スペーサのセル胴部を肉
抜きして窓を設けたセルを示す見取り図。
10 is a sketch drawing showing a cell in which the cell body of the nuclear fuel spacer in FIG. 1 is lightened to provide a window. FIG.

【図11】図10において固定支持部を弾性支持部と兼用
したセルを示す見取り図。
FIG. 11 is a sketch drawing showing a cell in which a fixed support portion also serves as an elastic support portion in FIG.

【図12】図11における平面図。FIG. 12 is a plan view of FIG.

【図13】図12におけるA−A矢視方向を切断して示す
縦断面図。
FIG. 13 is a vertical cross-sectional view taken along the line AA in FIG.

【図14】沸騰水型原子炉用燃料集合体を一部断面で示
す立面図。
FIG. 14 is an elevational view showing a partial cross section of a fuel assembly for a boiling water reactor.

【図15】(a)は図14で使用されている従来の格子型
核燃料スペーサを示す平面図、(b)は(a)における
一部断面で示す側面図。
15A is a plan view showing a conventional lattice type nuclear fuel spacer used in FIG. 14, and FIG. 15B is a side view showing a partial cross section of FIG.

【図16】図14で使用されている従来の丸セル型核燃料
スペーサを示す平面図。
16 is a plan view showing a conventional round cell type nuclear fuel spacer used in FIG.

【図17】図16における要部を拡大して示す平面図。FIG. 17 is a plan view showing an enlarged main part in FIG.

【図18】(a)は従来の丸セル型核燃料スペーサのセ
ルの他の例を示す平面図、(b)は(a)の側面図。
18 (a) is a plan view showing another example of a cell of a conventional round cell type nuclear fuel spacer, and FIG. 18 (b) is a side view of FIG. 18 (a).

【符号の説明】[Explanation of symbols]

1…BWR燃料集合体、2…燃料棒、3…上部タイプレ
ート、4…下部タイプレート、5…格子型核燃料スペー
サ、6…チャンネルボックス、7…ウォータロッド、8
…スペーサバンド、9…格子板、10…正方形状区画空
間、11…固定支持部、12…弾性支持部材、13…葉状突
起、14…丸セル型核燃料スペーサ、15…金属製管状セ
ル、16…板ばね、17…スペーサタブ、18…丸形セル、19
…上側端部、20…下側端部、21…主要本体、22…隙間、
23…外接部、24…筒状セル、25…外接部分、26…固定支
持部、27…弾性支持部、28…破線、29…セル突起部、30
…液膜、31…テーパ加工、32…ループばね、33…ばねス
トローク、34…セル胴部、35…窓、36…固定弾性支持
部。
DESCRIPTION OF SYMBOLS 1 ... BWR fuel assembly, 2 ... Fuel rod, 3 ... Upper tie plate, 4 ... Lower tie plate, 5 ... Lattice type nuclear fuel spacer, 6 ... Channel box, 7 ... Water rod, 8
... Spacer band, 9 ... Lattice plate, 10 ... Square partition space, 11 ... Fixed support part, 12 ... Elastic support member, 13 ... Leaf-like protrusion, 14 ... Round cell type nuclear fuel spacer, 15 ... Metal tubular cell, 16 ... Leaf spring, 17 ... spacer tab, 18 ... round cell, 19
... upper end, 20 ... lower end, 21 ... main body, 22 ... gap,
23 ... circumscribed portion, 24 ... tubular cell, 25 ... circumscribed portion, 26 ... fixed support portion, 27 ... elastic support portion, 28 ... broken line, 29 ... cell projection portion, 30
… Liquid film, 31… Tapering, 32… Loop spring, 33… Spring stroke, 34… Cell body, 35… Window, 36… Fixed elastic support.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スペーサバンドと、このスペーサバンド
内に複数配置された筒状セルとを備え、格子状に配列さ
れた複数本の燃料棒を支持するセル型核燃料スペーサに
おいて、前記セルの一方が隣接する他方のセルとの外接
部分を除いた残りのセル胴部の曲率が前記燃料棒間ピッ
チの1/2よりも小さく、かつ前記隣接するセルとの外
接部分は前記セルを該セル全長にわたって外側に突出す
るように塑性変形させたセル突起部を有することを特徴
とする核燃料スペーサ。
1. A cell-type nuclear fuel spacer comprising a spacer band and a plurality of tubular cells arranged in the spacer band, and supporting a plurality of fuel rods arranged in a lattice, wherein one of the cells is The curvature of the remaining cell body excluding the circumscribed portion with the other adjacent cell is less than 1/2 of the fuel rod pitch, and the circumscribed portion with the adjacent cell extends the cell over the entire length of the cell. A nuclear fuel spacer having a cell protrusion that is plastically deformed so as to protrude to the outside.
【請求項2】 スペーサバンドと、このスペーサバンド
内に複数配置された筒状セルとを備え、格子状に配列さ
れた複数本の燃料棒を支持するセル型核燃料スペーサに
おいて、前記セルのセル胴部の長さよりも前記セル外接
部の方が長く、かつ冷却材の流れと平行にセル外接部両
端が突出した突起部を有し、この突起部は隣接するセル
との接合面を頂点とし、冷却材の流れに垂直な断面の面
積が前記突起部の先端に向うに従い滑らかに減少するよ
うに形成されていることを特徴とする核燃料スペーサ。
2. A cell-type nuclear fuel spacer comprising a spacer band and a plurality of cylindrical cells arranged in the spacer band, and supporting a plurality of fuel rods arranged in a grid pattern, wherein the cell shell of the cell is The cell circumscribing portion is longer than the length of the portion, and has a protruding portion projecting both ends of the cell circumscribing portion in parallel with the flow of the coolant, and this protruding portion has a junction surface with an adjacent cell as an apex, A nuclear fuel spacer, characterized in that the area of a cross section perpendicular to the flow of the coolant is formed so as to decrease smoothly toward the tip of the protrusion.
【請求項3】 スペーサバンドと、このスペーサバンド
内に複数配置された筒状セルとを備え、格子状に配列さ
れた複数本の燃料棒を支持するセル型核燃料スペーサに
おいて、前記セルのセル胴部の外径を不均一に形成した
ことを特徴とする核燃料スペーサ。
3. A cell-type nuclear fuel spacer comprising a spacer band and a plurality of tubular cells arranged in the spacer band and supporting a plurality of fuel rods arranged in a grid pattern, wherein the cell shell of the cell is A nuclear fuel spacer having a non-uniform outer diameter.
JP50A 1993-01-19 1993-01-19 Nuclear fuel spacer Pending JPH06214073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06214073A (en) 1993-01-19 1993-01-19 Nuclear fuel spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06214073A (en) 1993-01-19 1993-01-19 Nuclear fuel spacer

Publications (1)

Publication Number Publication Date
JPH06214073A true JPH06214073A (en) 1994-08-05

Family

ID=11641666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06214073A (en) 1993-01-19 1993-01-19 Nuclear fuel spacer

Country Status (1)

Country Link
JP (1) JPH06214073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160015484A (en) * 2014-07-30 2016-02-15 울산과학기술원 산학협력단 Fuel ammembly with spacer pads in a fast breeder reactor
KR20210020195A (en) * 2019-08-13 2021-02-24 한전원자력연료 주식회사 Spacer grid of a nuclear fuel assembly
KR20210028621A (en) * 2019-08-13 2021-03-12 한전원자력연료 주식회사 Spacer grid of a nuclear fuel assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160015484A (en) * 2014-07-30 2016-02-15 울산과학기술원 산학협력단 Fuel ammembly with spacer pads in a fast breeder reactor
KR20210020195A (en) * 2019-08-13 2021-02-24 한전원자력연료 주식회사 Spacer grid of a nuclear fuel assembly
KR20210028621A (en) * 2019-08-13 2021-03-12 한전원자력연료 주식회사 Spacer grid of a nuclear fuel assembly

Similar Documents

Publication Publication Date Title
US4692302A (en) Coolant flow mixer grid for a nuclear reactor fuel assembly
US6393087B1 (en) Duct-type spacer grid with swirl flow vanes for nuclear fuel assemblies
JP2503026B2 (en) Flow mixing intermediate grids for fuel assemblies
US4576786A (en) Partial grid for a nuclear reactor fuel assembly
KR20010011647A (en) Spacer grid with multi-spring and embossed vane for PWR fuel assembly
JP3328364B2 (en) Low pressure drop spacer for nuclear fuel assemblies
JPH05157871A (en) Fuel spacer
US4775510A (en) Nuclear fuel assembly hollow flow deflector
EP4386776A1 (en) Fuel assembly grid, fuel assembly, and pressurized water reactor core
US5272741A (en) Nuclear fuel assembly
US5263072A (en) Thermohydraulic grid and nuclear fuel assembly
US6385271B2 (en) Nuclear fuel assembly
EP1706875B1 (en) A spacer and a fuel unit for a nuclear plant
US6714619B2 (en) Spacer grid with double deflected vanes for nuclear fuel assemblies
JPH06214073A (en) Nuclear fuel spacer
US3798125A (en) Nuclear fuel subassembly
JPH0114556B2 (en)
KR101017318B1 (en) Nuclear Fuel Grid Assembly with Hydraulically Balanced Mixing Vane Pattern
EP0769784B1 (en) A nuclear fuel assembly and a spacer for a nuclear fuel assembly
JP3761290B2 (en) Fuel assembly
KR100844883B1 (en) Anti-fretting wear spacer grid with wing shape spring and dimple
JPH06249987A (en) Fuel spacer and fuel assembly
JPH08122474A (en) Fuel spacer and fuel assembly
JP3217511B2 (en) Reactor fuel assembly
JPH09304569A (en) Fuel spacer, lower tie-plate, and fuel assembly