JPH10170250A - Oscillating mechanism of measuring flame is simple measuring car - Google Patents

Oscillating mechanism of measuring flame is simple measuring car

Info

Publication number
JPH10170250A
JPH10170250A JP34666496A JP34666496A JPH10170250A JP H10170250 A JPH10170250 A JP H10170250A JP 34666496 A JP34666496 A JP 34666496A JP 34666496 A JP34666496 A JP 34666496A JP H10170250 A JPH10170250 A JP H10170250A
Authority
JP
Japan
Prior art keywords
beams
rotating
measuring
point
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34666496A
Other languages
Japanese (ja)
Inventor
Hideo Hirokawa
英夫 廣川
Yoshiaki Ueno
善旦 上野
Tetsuo Yamada
徹夫 山田
Minoru Kohitsu
実 小櫃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP34666496A priority Critical patent/JPH10170250A/en
Publication of JPH10170250A publication Critical patent/JPH10170250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent variable running directions of a simple measuring car from generating data mismatch of passing distance, by journalling the center parts of a reference beam and a rotating beam to both ends of the connection beam, respectively, enabling the both beams to oscillate, and oscillating both beams in the same direction to be parallel each other when the measuring car passes through curve part of an orbit. SOLUTION: By changing a fixed reference beam to a rotating beam which can oscillate, and journalling combining blocks 132a, 132b at both ends of a combining beam 13' to combining plates 121 on the central areas of both rotating beams 12A, 12B, respectively, both rotating beams 12A, 12B can oscillate. When a simple measuring car comes into linear part and passes through curve part, both rotating beams 12A, 12B oscillate in the same direction to be parallel each other, one rotating beam 12A measures passing distance of a rail RL1, and another rotating beam 12B measures the point of a rail RL2 in the point. When the car comes from the opposite direction, rotating beams 12A, 12B also measures them and both data is coincided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、簡易検測車の測
定フレームの首振り機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a swing mechanism for a measuring frame of a simple inspection vehicle.

【0002】[0002]

【従来の技術】軌道を構成する左右のレールは、種々の
要因により基準位置に対して変位していわゆる軌道狂い
が生ずる。軌道狂いには、左右のレールのそれぞれの高
低と通りの狂いや、両レールの軌間狂い、水準面に対す
る傾斜角の狂いなどがある。この場合高低と通りの変位
量は、10mの測定弦(単に10m弦という)により測
定するものと規定されており、測定された変位量が基準
値を越えるとき狂い量が不良と判定されている。これに
対して主要線区においては、大型の軌道検測車により営
業列車と同一の高速度で走行中に、10m弦の各軌道狂
い量が検測されている。しかし大型軌道検測車は支線区
や側線などの検測には不向きであるため、これに代わり
手押しで低速度で走行し、各軌道狂い量を測定する簡易
な軌道検測車がこの出願人により、「特開平7−223
539,簡易型軌道検測車およびその分割方法」として
特許出願されている。この簡易型軌道検測車(以下簡易
検測車)は、小型軽量とするために直径の小さい車輪
と、長さの短い台車を使用し、規定の測定弦長10mの
1/8の1.25m弦を構成して、その測定データをデ
ータ処理により10m弦のデータに変換することが特徴
である。
2. Description of the Related Art Left and right rails constituting a track are displaced from a reference position due to various factors, causing a so-called track deviation. Track deviations include deviations in the height and streets of the left and right rails, deviations between the rails, and deviations in the inclination angle with respect to the level surface. In this case, it is defined that the displacement amount as the height is measured by a 10-meter measuring string (simply referred to as a 10-m string), and when the measured displacement amount exceeds a reference value, the deviation amount is determined to be defective. . On the other hand, in the main line section, the track deviation of each 10-m string is detected by a large track inspection vehicle while traveling at the same high speed as the commercial train. However, since large track inspection vehicles are not suitable for inspection of branch sections and side lines, a simple track inspection vehicle that runs at low speed by hand and measures each track deviation is used instead of this applicant. As described in “Japanese Patent Laid-Open
539, a simplified track inspection vehicle and a method of dividing the same. " This simplified track inspection car (hereinafter referred to as a simple inspection car) uses small diameter wheels and a short bogie to reduce the size and weight. It is characterized in that a 25 m string is formed, and the measured data is converted into 10 m string data by data processing.

【0003】図3は、上記の簡易検測車1の要部の斜視
図を示し、以下この発明に関係する要点を説明する。簡
易検測車1は、左右のレールRL1,RL2 にそれぞれ対
応する基準梁11,回動梁12と、これらの中心部を結合す
る結合梁13とを有し、結合梁13の一端は基準梁11に固定
され、他端には弾性結合用のスプリング131 が嵌挿さ
れ、結合梁13の先端の結合ブロック132 が回動梁12に固
定された結合板121 に軸支されて、回動梁12はリミット
機構133 により数度の範囲内で首振り動作が可能とされ
る。基準梁11と回動梁12の両端には、レールの踏面に接
触する走行車輪14a,14b と、頭部の内側面(以下単に頭
側面という)に接触する案内車輪15a,15b が、支持具14
1により測定弦長Lを1.25mとしてそれぞれ取付け
られ、また両梁11,12 のそれぞれの中心部には踏面と頭
側面に接触し、これらの変位に追従して昇降する高低検
出車輪14c と、左右に移動する通り検出車輪15c とが、
昇降板142 などに取付られてH型の測定フレームが構成
されている。両案内車輪15a,15b には円弧状に配列され
た複数の補助ローラー151 が付加されて、この補助ロー
ラー151 群と、上記の回動梁12の首振り動作とにより、
測定フレームはレールの曲線部や分岐部を円滑に通過で
きる。
FIG. 3 is a perspective view of a main part of the simple inspection vehicle 1, and the main points related to the present invention will be described below. Simple Kensokusha 1, left and right rails RL 1, the reference beam 11 respectively corresponding to the RL 2, the swing beam 12, and a coupling beam 13 for coupling these center one end of the coupling beam 13 A spring 131 for elastic connection is fitted to the other end of the reference beam 11, and a connection block 132 at the tip of the connection beam 13 is pivotally supported by a connection plate 121 fixed to the rotation beam 12. The motion beam 12 can be swung by a limit mechanism 133 within a range of several degrees. At both ends of the reference beam 11 and the pivot beam 12, traveling wheels 14a and 14b that contact the tread surface of the rail, and guide wheels 15a and 15b that contact the inner side surface of the head (hereinafter simply referred to as the head side surface) are provided with support members. 14
The height and height detection wheels 14c which are attached to the center of each of the beams 11 and 12 in contact with the tread surface and the head side and rise and fall following these displacements are attached to the center of each of the beams 11 and 12, respectively. , The detection wheel 15c moving left and right,
An H-shaped measurement frame is configured by being attached to the elevating plate 142 and the like. A plurality of auxiliary rollers 151 arranged in an arc shape are added to the two guide wheels 15a and 15b, and the auxiliary rollers 151 and the swinging operation of the rotating beam 12 described above
The measuring frame can pass smoothly through the curved part and the branch part of the rail.

【0004】簡易検測車1の走行方向は、例えば矢印C
の一定方向とされ、これを手押しにより低速度で走行す
ると、レールRL1,RL2 の変位に追従する高低検出車
輪14c の高低変位量と、通り検出車輪15c の左右変位量
は、それぞれの光センサ16により検出される。また結合
梁13に固定された水準センサ17により、水準面に対する
両レールRL1,RL2 の傾斜角が測定される。
[0004] The traveling direction of the simple inspection car 1 is indicated by an arrow C, for example.
A fixed direction and is, when this is running at a low speed by the hand, and the height displacement of the height detecting wheel 14c to follow the displacement of the rail RL 1, RL 2, the left and right displacement amount of the street detection wheel 15c, each light Detected by sensor 16. Further, the inclination angle of both rails RL 1 and RL 2 with respect to the level surface is measured by the level sensor 17 fixed to the connecting beam 13.

【0005】簡易検測車1には、MPU181 とプリンタ
182 などよりなるデータ処理部18が搭載され、MPU18
1 に対して両光センサ16,16の検出信号が入力して、
1.25m弦の高低狂い量と通り狂い量が算出され、つ
いで両狂い量のデータは10m弦に変換される。また、
両側の光センサ16の検出信号を合成して軌間Gの狂い量
が算出され、水準センサ17の傾斜角データを基準値に比
較して傾斜角の狂い量が算出される。以上により、簡易
検測車1の走行中に算出された1.25m弦と、10m
弦に変換された左右のレールの高低と通り狂い量、およ
び軌間Gと傾斜角の狂い量の各データは、その位置座標
が付加されてプリンタ182 によりプリントされる。
[0005] The simple inspection vehicle 1 includes an MPU 181 and a printer.
182 etc., and the MPU 18
The detection signals of both optical sensors 16 and 16 are input to 1 and
The height deviation amount and the deviation amount of the 1.25 m string are calculated, and then the data of the deviation amount is converted to a 10 m string. Also,
The detection signals of the optical sensors 16 on both sides are combined to calculate the deviation of the gauge G, and the inclination angle data of the level sensor 17 is compared with a reference value to calculate the deviation of the inclination angle. As described above, the 1.25 m string calculated while the simple inspection car 1 is traveling and the 10 m
The data of the height and the amount of deviation of the left and right rails converted into strings and the amount of deviation of the gauge G and the inclination angle are printed by the printer 182 with their position coordinates added.

【0006】さて、軌道には曲線部があり、簡易検測車
1がこれを通過するとき、通り変位量の測定データの再
現性に問題があることが知見されている。すなわち、曲
線部に対して一方の側から侵入して測定した場合と、そ
の反対側から侵入して測定した場合では、両者の通り変
位量の測定データが一致しない現象である。このような
不一致現象を理解するために、図4により曲線部におけ
る通り変位量の本来の測定方法を一応説明し、ついで図
5により、この不一致現象の原因を考察する。
Now, it has been found that there is a curved portion on the track, and there is a problem in the reproducibility of the measured data of the amount of displacement when the simple inspection car 1 passes through the curved portion. That is, the measured data of the displacement amount does not match between the case where the measurement is performed by entering the curved portion from one side and the case where the measurement is performed by entering the opposite side. In order to understand such a discrepancy phenomenon, an original measuring method of the amount of displacement in a curved portion will be described with reference to FIG. 4 and then the cause of the discrepancy phenomenon will be considered with reference to FIG.

【0007】図4(a) は、通り変位量の定義を説明する
もので、レールRL1 の2点pa,pb 間に測定弦Gを展
長し, Gの中点とレールRL1 の間隔Δd1 が変位量で
あり、レールRL2 の場合も同様に、2点pa', pb'間
に展長したGの中点とレールRL2 の間隔Δd2 が変位
量である。図4(b) において、軌道には直線部につづい
て曲線部があるとし、簡易検測車1が図示左側から矢印
1 の方向に直線部を経て曲線部を通過し、基準梁11が
レールRL1 の通り変位量を、回動梁12がレールRL2
の通り変位量をそれぞれ測定するものとする。測定にお
いては、両梁11, 12は、互いに平行とし、かつ結合梁13
に対して直角とすることが条件である。この両測定条件
を満たすかぎり、直線部または曲線部において、基準梁
11が点pc を測定するときは、回動梁12は軌道の直角断
面上で点pc に対応する点pc'を測定し、これが本来で
あり理想である。また矢印C2 の方向から侵入して曲線
部を通過するときも同様である(ただしこの場合は、回
動梁12がRL1 を、基準梁11がRL2 を測定する)。こ
のように走行方向にかかわらず上記の両測定条件を満足
して両レールRL1,RL2 の対応点を測定すれば、測定
データの不一致は生じないはずである。しかし、曲線部
の両レールRL1,RL2 は長さが異なり、外側のレール
(図の場合はRL2)の方が長いので、これを測定する梁
はその分だけ余分に走行することが必要であり、このた
めに簡易検測車1は上記の両測定条件を満たしていな
い。
[0007] FIGS. 4 (a) is for explaining the definition of street displacement, two points p a rail RL 1, the measurement chord G between p b Exhibition poured, the midpoint of the G and the rail RL 1 a weight interval [Delta] d 1 of the displacement, as in the case of rail RL 2, 2 points p a ', p b' distance [Delta] d 2 of G that Tencho between the midpoint and the rail RL 2 is a displacement . In FIG. 4 (b), and the track is curved portions following the straight portion, simple Kensokusha 1 passes through the curved portion through the straight portion in the direction of the arrow C 1 from the left side, the reference beam 11 street displacement of the rail RL 1, swing beam 12 rail RL 2
It is assumed that the displacement is measured as shown in FIG. In the measurement, both beams 11, 12 are parallel to each other and
Is a condition that the right angle to As long as both of these measurement conditions are satisfied, the reference beam should be
When 11 to measure the point p c is swing beam 12 measures the p c 'point corresponding to the point p c on a cross section perpendicular to the track, which is is ideal in nature. The same is true when passing through the curved portion to penetrate in the direction of the arrow C 2 (In this case, however, the swing beam 12 RL 1, the reference beam 11 to measure the RL 2). As described above, if the corresponding points of the two rails RL 1 and RL 2 are measured while satisfying the above both measurement conditions regardless of the traveling direction, no inconsistency in the measured data should occur. However, since the two rails RL 1 and RL 2 of the curved portion have different lengths and the outer rail (RL 2 in the case of the figure) is longer, the beam for measuring this can travel extra by that amount. Therefore, the simple inspection vehicle 1 does not satisfy the above both measurement conditions.

【0008】すなわち、簡易検測車1のH型の測定フレ
ームは、前記したように曲線部を円滑に通過するため
に、回動梁12が首振り動作をし、一方基準梁11は結合梁
13に対して直角に固定されて不動であるため、両梁11と
12の平行条件と直角条件が失われる。図5において、
(a) は簡易検測車1が左側から直線部を経て曲線部に侵
入する場合の通り変位量を示し、直線部においては基準
梁11と回動梁12は平行しているが、曲線部に侵入する
と、回動梁12は曲線に追従しながら余分に走行するた
め、角度δθ内側に首振りし、基準梁11が点p1 を測定
するとき、対応点p1'より先の点p2 を測定する。同様
に点p3 を測定するときも、対応点p3'より先の点p4
が測定される。測定された変位量は、図の右側に示すよ
うに、レールRL1 の点p1(またはp3)に対する変位量
Δd1 は正当であるが、レールRL2 の点p2(またはp
4)に対して測定された変位量Δd2'は正しくない。
That is, in the H-shaped measuring frame of the simple inspection car 1, the turning beam 12 swings while the reference beam 11 is connected to the connecting beam in order to smoothly pass through the curved portion as described above.
Since it is fixed at a right angle to 13 and immovable,
Twelve parallel and right-angle conditions are lost. In FIG.
(a) shows the amount of displacement as when the simple inspection car 1 enters the curved part from the left through the straight part. In the straight part, the reference beam 11 and the rotating beam 12 are parallel, but the curved part is When the reference beam 11 measures the point p 1 , the turning beam 12 travels extra while following the curve, and the reference beam 11 moves to the point p 1 ′ before the corresponding point p 1 ′. Measure 2 . Similarly, when measuring the point p 3 , the point p 4 ahead of the corresponding point p 3
Is measured. The measured amount of displacement, as shown on the right side of figure, the displacement amount [Delta] d 1 with respect to the point p 1 of the rail RL 1 (or p 3) is valid, the point p 2 of the rail RL 2 (or p
The displacement Δd 2 ′ measured for 4 ) is incorrect.

【0009】図5(b) は右側から曲線部に侵入する場合
の通り変位量を示し、この場合は、前記したように基準
梁11はRL2 を、回動梁12はRL1 をそれぞれ測定す
る。回動梁12は基準梁11より少なく走行するため、やは
り内側に角度δθ' 首振りし、基準梁11が点p3'を測定
するとき、対応点p3 より後の点p5 が測定され、同様
に点p1'を測定するときも、対応点p1 より後の点p6
が測定される。測定された変位量は、図の左側に示すよ
うに、レールRL2 の点p1'(またはp3')に対する変
位量Δd2 は正当であるが、レールRL1 の点p5(また
はp6)に対する変位量Δd2'は正しくない。以上により
回動梁12の曲線部における測定点は、簡易検測車1が左
側から侵入する場合は、回動梁12の測定点は基準梁11の
測定点より先方となり、右側からの場合は後方となるの
で、両者の位置と測定値は一致せず、すなわち再現性が
無いわけである。
[0009] FIG. 5 (b) shows the street displacement amount when entering the curve section from the right, in this case, the reference beam 11 is RL 2 as described above, swing beam 12 is measured RL 1 respectively I do. Since the turning beam 12 travels less than the reference beam 11, the angle δθ ′ is also swung inward, and when the reference beam 11 measures the point p 3 ′, the point p 5 after the corresponding point p 3 is measured. Similarly, when measuring the point p 1 ′, the point p 6 after the corresponding point p 1
Is measured. The measured amount of displacement, as shown on the left side of the figure, the displacement amount [Delta] d 2 for a point p 1 of the rail RL 2 '(or p 3') is legal, the point p 5 of the rail RL 1 (or p the displacement amount with respect to 6) Δd 2 'is not correct. As described above, the measurement point on the curved portion of the rotating beam 12 is such that when the simple inspection car 1 enters from the left side, the measuring point on the rotating beam 12 is ahead of the measuring point on the reference beam 11, and when from the right side, Since it is rearward, the positions and the measured values do not match, that is, there is no reproducibility.

【0010】[0010]

【発明が解決しようとする課題】以上に述べた曲線部に
おける通り変位の測定データの不一致の現象は、簡易検
測車1の信頼性を著しく損なうもので、このような現象
の発生は是非とも防止することが必要である。この発明
は以上に鑑みてなされたもので、簡易検測車1の走行方
向により発生する、曲線部の通り変位量の測定データの
不一致を解消し、その再現性を良好とすることを課題と
する。
The above-described phenomenon of the inconsistency of the measured data of the displacement in the curved section described above significantly impairs the reliability of the simple inspection vehicle 1, and the occurrence of such a phenomenon is inevitable. It is necessary to prevent it. The present invention has been made in view of the above, and it is an object of the present invention to eliminate the inconsistency of the measurement data of the displacement amount along the curved portion, which is caused by the traveling direction of the simple inspection vehicle 1, and to improve the reproducibility thereof. I do.

【0011】[0011]

【課題を解決するための手段】前記の図5による考察に
より、走行方向による通り変位の測定データの不一致の
原因の一つは、回動梁12のみが首振り動作して、基準梁
11に対して不平行となることにあることは明らかであ
る。そこで、この不一致を防止するには基準梁11も首振
りを可能として、直線部と同様に、曲線部でも両者を平
行とさせることが有効な手段と考えられる。この発明は
この手段を実現した測定フレームの首振り機構であっ
て、結合梁の両端に、基準梁と回動梁との中心部をそれ
ぞれ軸支して、両梁をともに首振り可能な回動梁とし、
簡易検測車が軌道の曲線部を通過する際、両回動梁を同
一方向に首振りさせて互いに平行とし、簡易検測車の走
行方向の相違により発生する、通り変位の測定データの
不一致を防止するものである。
According to FIG. 5 described above, one of the causes of the inconsistency in the measured data of the displacement according to the traveling direction is that only the turning beam 12 swings and the reference beam.
It is clear that there is an antiparallel to 11. Therefore, in order to prevent the inconsistency, it is considered to be an effective means to enable the reference beam 11 to swing, and to make the reference beam 11 parallel to the curved portion as well as the straight portion. The present invention relates to a swing mechanism of a measuring frame which realizes this means, wherein a center portion of a reference beam and a center portion of a pivoting beam are supported at both ends of a connecting beam, respectively, so that both beams can swing. As a moving beam,
When the simple inspection vehicle passes through the curved part of the track, the two turning beams are swung in the same direction to make them parallel to each other, and the measurement data of the street displacement generated due to the difference in the traveling direction of the simple inspection vehicle It is to prevent.

【0012】[0012]

【発明の実施の形態】上記の測定フレームの首振り機構
は、結合梁の両端に、基準梁と回動梁との中心部をそれ
ぞれ軸支して、両梁をともに首振り可能な回動梁として
構成され、簡易検測車が軌道の曲線部を通過する際、両
回動梁は同一方向に首振りして互いに平行となるので、
走行方向の相違により発生する通り変位の測定データの
不一致が防止される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-mentioned swinging mechanism of a measuring frame has a pivoting mechanism which pivotally supports the center portions of a reference beam and a pivoting beam at both ends of a connecting beam, and can swing both beams together. It is configured as a beam, and when the simple inspection car passes through the curved part of the track, since both rotating beams swing in the same direction and become parallel to each other,
Inconsistency in displacement measurement data as is caused by differences in running directions is prevented.

【0013】[0013]

【実施例】図1は、この発明の一実施例における首振り
機構2の構成図を示し、図2は、首振り機構2の曲線部
における動作の説明図である。図1において、従来(図
4参照)の測定フレームの回動梁12を12A とし、固定的
な基準梁11を首振り可能な回動梁12B に変更し、両回動
梁12a,12B の中心部に設けた結合板121 に、結合梁13'
の両端の結合ブロック132a,132b をそれぞれ軸支して、
両回動梁12a,12B をともに首振り可能とする。なお、両
結合ブロック132a,132b にはリミット機構133a,133b を
設け、両回動梁12A,12B の首振り動作を数度の範囲内に
限定する。また結合梁13' にはスプリング131 を嵌挿し
て、両回動梁12A,12B の通り検出車輪15c,15c を両レー
ルRL1 とRL2 の頭側面に均等に押圧する。
FIG. 1 is a block diagram of a swing mechanism 2 according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of an operation of the swing mechanism 2 at a curved portion. In FIG. 1, the rotation beam 12 of the conventional measurement frame (see FIG. 4) is set to 12A, and the fixed reference beam 11 is changed to a rotation beam 12B that can swing, and the center of both rotation beams 12a and 12B is changed. The connecting beam 121 is attached to the connecting plate 121 provided in the section.
The connecting blocks 132a and 132b at both ends of the
Both swing beams 12a and 12B can be swung. In addition, limit mechanisms 133a and 133b are provided in the two connecting blocks 132a and 132b to limit the swinging motion of the two rotating beams 12A and 12B within a range of several degrees. Also the coupling beam 13 'by fitted spring 131, both times Dohari 12A, as detected wheel 15c of 12B, evenly pressing the 15c on the head side of the rails RL 1 and RL 2.

【0014】図2において、簡易検測車1が図示左側か
ら矢印C1 の方向に直線部に侵入して曲線部を通過する
ときは、両回動梁12A,12B は同一方向に首振りして互い
に平行となり、回動梁12A がレールRL1 の、例えば点
7,p9 の通り変位量を測定するときは、これらに対す
るレールRL2 の点p8,p10が回動梁12B によりそれぞ
れ測定される。図示右側から矢印C2 の方向に曲線部を
通過するときも、両回動梁12A,12B が互いに平行とな
り、回動梁12B により点p9,p7 が、回動梁12Aにより
点p10, p8 がそれぞれ測定される。このように、走行
方向にかかわらず同一の各点が測定されるので、両者の
測定データは一致して再現性が認められている。ただし
この場合、曲線部においては、両回動梁12A,12B は結合
梁13' に対して直角でないため、前記した直角条件は満
たされず、点p7,p9 と点p8,p10とは、軌道断面上の
本来の対応点ではないが、前記した両測定条件を満足し
た理想的な測定方法による測定データに比較して、誤差
がほとんど無いことが確認されている。
[0014] In FIG. 2, when the simple Kensokusha 1 passes through the curved portion from entering the straight portion in the direction of the arrow C 1 from the left side are both times Dohari 12A, 12B are Shi swing head in the same direction mutually become parallel Te, swing beam 12A is rail RL 1, for example, when measuring the street displacement of the point p 7, p 9 is the point of the rail RL 2 for these p 8, p 10 is the swing beam 12B Each is measured. Even when passing through the curved portion in the direction of the arrow C 2 from the right side, both times Dohari 12A, 12B are parallel to each other, the point p 9 by swing beam 12B, p 7 is the point p 10 by swing beam 12A , p 8 are measured respectively. As described above, since the same points are measured regardless of the traveling direction, the measured data of the two points agree with each other and reproducibility is recognized. However, in this case, in the curved section, the two times Dohari 12A, because 12B is not at right angles to the coupling beam 13 ', the above-described right-angle condition is not satisfied, the point p 7, p 9 and the point p 8, p 10 Is not the original corresponding point on the track cross section, but it has been confirmed that there is almost no error as compared with the measurement data obtained by the ideal measurement method satisfying the above both measurement conditions.

【0015】[0015]

【発明の効果】以上の説明のとおり、この発明の首振り
機構によれば、測定フレームの両回動梁は、軌道の曲線
部において同一方向に首振りして互いに平行となるの
で、走行方向にかかわらず左右のレールの同一点がそれ
ぞれ測定されて、走行方向の相違による通り変位の測定
データの不一致が生じないもので、簡易検測車の測定の
信頼性の向上に寄与する効果には、優れたものがある。
As described above, according to the swinging mechanism of the present invention, the two turning beams of the measuring frame are swung in the same direction in the curved portion of the track so that they are parallel to each other. Irrespective of the same point on the left and right rails are measured respectively, so that there is no discrepancy in the measurement data of the displacement due to the difference in the running direction, and the effect that contributes to the improvement of the measurement reliability of the simple inspection car is There is something excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、この発明の首振り機構の一実施例の
構成図である。
FIG. 1 is a configuration diagram of an embodiment of a swing mechanism according to the present invention.

【図2】 図2は、首振り機構の曲線部における動作説
明図である。
FIG. 2 is an explanatory diagram of an operation in a curved portion of the swing mechanism.

【図3】 図3は、簡易検測車の要部の斜視図である。FIG. 3 is a perspective view of a main part of the simple inspection vehicle.

【図4】 図4は、曲線部における通り変位の本来の測
定方法の説明図で、(a) は通り変位の定義の説明図、
(b)は通り変位の測定条件の説明図である。
FIG. 4 is an explanatory view of an original method of measuring a street displacement in a curved portion, and (a) is an explanatory view of a definition of a street displacement,
(b) is an explanatory view of the measurement conditions of the street displacement.

【図5】 図5は、通り変位測定データの不一致原因の
考察図で、(a)は検測車が左側から曲線部に侵入した場
合の通り変位量を、(b)は右側から侵入した場合の通り
変位量をそれぞれ示す。
FIGS. 5A and 5B are diagrams illustrating the cause of mismatch of the measured data of the displacement, wherein FIG. 5A shows the displacement amount when the inspection vehicle enters the curved portion from the left side, and FIG. 5B shows the displacement amount from the right side. The displacement amount is shown as in each case.

【符号の説明】[Explanation of symbols]

1…簡易検測車、11…基準梁、12,12A,12B …回動梁、12
1 …結合板、13…従来の結合梁、13' …この発明の結合
梁、131 …スプリング、132 …結合ブロック、133 …リ
ミット機構、14a,14b …走行車輪、14c …高低検出車
輪、15a,15b …案内車輪、15c …通り検出車輪、151 …
補助ローラー、16…光センサ、17…水準センサ、18…デ
ータ処理部、181 …MPU、182 …プリンタ、2…この
発明の首振り機構、RL1,RL2 …左右のレール、C,
1,C2 …簡易検測車の走行方向、G…測定弦、F…測
定フレーム、(pc,pc') …両レールの対応点、p1
10…測定点、δθ, δθ' …首振り角度、Δd…通り
変位量。
1: Simple inspection vehicle, 11: Reference beam, 12, 12A, 12B: Rotating beam, 12
1 ... connecting plate, 13 ... conventional connecting beam, 13 '... connecting beam of the present invention, 131 ... spring, 132 ... connecting block, 133 ... limit mechanism, 14a, 14b ... running wheel, 14c ... height detecting wheel, 15a, 15b ... guide wheel, 15c ... street detection wheel, 151 ...
Auxiliary roller, 16 ... optical sensor, 17 ... level sensor, 18 ... data processing unit, 181 ... MPU, 182 ... printer, 2 ... swing mechanism of the present invention, RL 1, RL 2 ... left and right rails, C,
C 1, C 2 ... running direction of the simple Kensokusha, G ... measuring chord, F ... measurement frame, (p c, p c ' ) ... in the rails corresponding points, p 1 ~
p 10 ... the measurement point, δθ, δθ '... swing angle, Δd ... as the amount of displacement.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小櫃 実 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Minoru Obitsu Hitachi Electronics Engineering Co., Ltd., 3-16-3 Higashi, Shibuya-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】左右のレールの直上に平行に設けられ、そ
れぞれの両端部に配設され、1.25mの測定弦を構成
する走行車輪と案内車輪、および、それぞれの中心部に
配設された高低検出車輪と通り検出車輪とを有する基準
梁および回動梁と、該基準梁と回動梁のそれぞれの中心
部を結合する結合梁とにより構成されたH型の測定フレ
ームと具備し、軌道上を走行して軌道狂いを検測する簡
易検測車において、 前記結合梁の両端に、前記基準梁と回動梁との中心部を
それぞれ軸支して、該両梁をともに首振り可能な回動梁
とし、該簡易検測車が軌道の曲線部を通過する際、該両
回動梁を同一方向に首振りさせて互いに平行とし、該簡
易検測車の走行方向の相違により発生する、通り変位量
の測定データの不一致を防止することを特徴とする、簡
易検測車の測定フレームの首振り機構。
1. A traveling wheel and a guide wheel which are provided in parallel at right above the left and right rails and are disposed at both ends thereof and constitute a 1.25 m measuring string, and are disposed at respective central portions. A reference beam and a pivot beam having a height detection wheel and a street detection wheel, and an H-shaped measurement frame configured by a coupling beam that couples the respective center portions of the reference beam and the pivot beam, In a simple inspection vehicle for measuring track deviation by running on a track, the center of the reference beam and the pivot beam are supported at both ends of the connecting beam, and both beams are swung. When the simple inspection vehicle passes through the curved part of the track, the two rotation beams are swung in the same direction so that they are parallel to each other when the simple inspection vehicle passes through the curved part of the track, and due to the difference in the traveling direction of the simple inspection vehicle, Preventing occurrence of inconsistency of the measured data of the displacement amount, A swing mechanism for the measuring frame of a simple inspection car.
JP34666496A 1996-12-10 1996-12-10 Oscillating mechanism of measuring flame is simple measuring car Pending JPH10170250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34666496A JPH10170250A (en) 1996-12-10 1996-12-10 Oscillating mechanism of measuring flame is simple measuring car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34666496A JPH10170250A (en) 1996-12-10 1996-12-10 Oscillating mechanism of measuring flame is simple measuring car

Publications (1)

Publication Number Publication Date
JPH10170250A true JPH10170250A (en) 1998-06-26

Family

ID=18384983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34666496A Pending JPH10170250A (en) 1996-12-10 1996-12-10 Oscillating mechanism of measuring flame is simple measuring car

Country Status (1)

Country Link
JP (1) JPH10170250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171695A1 (en) * 2013-04-15 2014-10-23 Lee Keun Ho Apparatus for measuring displacement of railroad
CN109879169A (en) * 2019-01-08 2019-06-14 上海海事大学 Crane runway detects trolley
CN113428182A (en) * 2021-05-25 2021-09-24 杭州申昊科技股份有限公司 Detection robot based on curved track

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171695A1 (en) * 2013-04-15 2014-10-23 Lee Keun Ho Apparatus for measuring displacement of railroad
US9857207B2 (en) 2013-04-15 2018-01-02 Hoseung E&C Co., Ltd Apparatus for measuring displacement of railroad
CN109879169A (en) * 2019-01-08 2019-06-14 上海海事大学 Crane runway detects trolley
CN113428182A (en) * 2021-05-25 2021-09-24 杭州申昊科技股份有限公司 Detection robot based on curved track
CN113428182B (en) * 2021-05-25 2022-09-13 杭州申昊科技股份有限公司 Detection robot based on curved track

Similar Documents

Publication Publication Date Title
CN100376444C (en) Device for measuring the roundness of a railroad wheel
JP4676980B2 (en) Measuring method of road
ES2870777T3 (en) Rail vehicle and method for non-contact detection of a track geometry
JPH08122042A (en) Device and method for detecting relative position between tracks of rolling stock
JPH0249136A (en) Apparatus for measuring effect of transverse window on vehicle, especially automobile or the like
JP2014240262A (en) Track inspection apparatus
JP3706976B2 (en) Dynamic deviation correction method for trolley wire
JP3666707B2 (en) Rail displacement detection mechanism of simple inspection vehicle
JPH10170250A (en) Oscillating mechanism of measuring flame is simple measuring car
JP2002187550A (en) Simplified track measuring car
JPH07208992A (en) Apparatus for measuring alignment and of track of railroad
JPH1030919A (en) Device and method for measuring road longitudinal profile
JP6644598B2 (en) Method and apparatus for measuring the angle of attack between a wheel and a rail of a railway vehicle
JP2004251842A (en) Track irregularity measuring instrument
JPH10167055A (en) Rail joint fall-in preventive method for simplified inspection and measurement car
JP3854330B2 (en) Guide wheel for simple track inspection car
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
JP2556421B2 (en) Track deviation measurement method and measuring device
JPH052165B2 (en)
CN113447285B (en) Straddle type single-track tire detection device
CN214747817U (en) Curvature radius measuring device for small-curvature rail
CN114061493B (en) Axle and frame vertical relation detection system, detection method and adjustment method
RU2276216C2 (en) Method of measuring horizontal irregularities (levering) and curvature in plan of rail lines
KR100999652B1 (en) Sensing device for ruggedness of the road surface
JPH10185550A (en) Method for detecting attitude of wheel set and truck of rolling stock