JPH10168554A - Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler - Google Patents

Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler

Info

Publication number
JPH10168554A
JPH10168554A JP24532497A JP24532497A JPH10168554A JP H10168554 A JPH10168554 A JP H10168554A JP 24532497 A JP24532497 A JP 24532497A JP 24532497 A JP24532497 A JP 24532497A JP H10168554 A JPH10168554 A JP H10168554A
Authority
JP
Japan
Prior art keywords
self
fluxing alloy
corrosion
boiler
erosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24532497A
Other languages
Japanese (ja)
Inventor
Toshihiko Kashiwai
俊彦 柏井
Masaharu Nakamori
正治 中森
Yoshio Harada
良夫 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP24532497A priority Critical patent/JPH10168554A/en
Publication of JPH10168554A publication Critical patent/JPH10168554A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating the surface of a steel tube making available a boiler steel tube excellent in sulfication corrosion resistance and erosion resistance. SOLUTION: The outer surface of a steel tube tube is thermally sprayed with the one obtd. by incorporating 0.3 to 8wt.% Al into a self-fluxing alloy composed of No-Cr-B-Si-C-Fe-Co, a self-fluxing alloy of Ni-Cr-B-Si-C-Fe-Co-Cu, a self-fluxing alloy of No-Cr-B-Si-C-Fe-Co-Mo-Cu or a self-fluxing alloy composed of Ni-Cr-B-Si-C-Fe-Co-Mo-W, and, fusing treatment is executed or, after the thermal spraying, it is thermally sprayed with a self-fluxing alloy contg. no Al, and fusing treatment is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐硫化腐食性・耐
エロージョン性を有するボイラ用鋼管の表面処理方法に
関し、石炭流動床ボイラ、コークスの乾式冷却システム
の排ガス回収ボイラ、セメントキルンの排熱回収ボイ
ラ、石炭燃焼ボイラ及び製鉄用焼結装置排熱回収ボイラ
などの伝熱管に有利に適用することができるボイラ用鋼
管の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a steel pipe for a boiler having resistance to sulfidation corrosion and erosion, and relates to a coal fluidized bed boiler, an exhaust gas recovery boiler of a coke dry cooling system, and a waste heat of a cement kiln. The present invention relates to a surface treatment method for a steel pipe for a boiler which can be advantageously applied to a heat transfer pipe such as a recovery boiler, a coal combustion boiler, and a sintering apparatus for heat recovery of an iron making.

【0002】[0002]

【従来の技術】昭和48年の石油危機以来、エネルギー
源としての石炭が見直される一方、エネルギーの有効利
用が一段と促進されるようになった。流動床ボイラは世
界的に見て大量に埋蔵されている低品位炭(例えば、亜
瀝青炭)を有効に利用できる上、熱効率がよく、炉内で
脱硫できる利点があるため低公害石炭燃焼プラントとし
ての価値が高く、多数運転されるようになってきた。
2. Description of the Related Art Since the oil crisis in 1973, coal has been reviewed as an energy source, while effective use of energy has been further promoted. Fluid bed boilers can effectively utilize low-grade coal (for example, sub-bituminous coal) that has been buried in large quantities worldwide, and have the advantage of being highly efficient and desulfurizing in furnaces. Is high value, and many vehicles are being driven.

【0003】流動床ボイラは通常第1図に示すように、
流動媒体粒子(例えば石灰石)1を炉内に適当量充填
し、下部の空気分散板2から上方へ空気を送り、空塔速
度を流動開始速度より早くして媒体粒子1を分散板2上
から塔内に浮上させて流動状態をつくり出し、この中に
石炭供給ノズル3から粉炭等を投入して流動媒体粒子1
と接触させながら燃焼させるもので、この流動床中には
蒸気を発生させるボイラ鋼管ときには過熱水蒸気管など
の層内管4が設置されている。なお、図中、5は灰の排
出口、6は対流部の伝熱管、7は起動用バーナ、8は空
気ダクトである。
[0003] A fluidized bed boiler usually has a structure as shown in FIG.
Fluid medium particles (for example, limestone) 1 are charged into a furnace in an appropriate amount, air is sent upward from the lower air dispersion plate 2, and the superficial velocity is made faster than the flow start speed so that the medium particles 1 are discharged from the dispersion plate 2. Floating in the tower to create a fluidized state, into which pulverized coal or the like is fed from a coal supply nozzle 3 to make the fluidized medium particles 1
In the fluidized bed, an in-layer pipe 4 such as a boiler steel pipe for generating steam and a superheated steam pipe is installed in the fluidized bed. In the figure, 5 is an ash discharge port, 6 is a convection section heat transfer tube, 7 is a starter burner, and 8 is an air duct.

【0004】これらの流動床中のボイラ鋼管(層内管)
4は、粉炭の流動媒体粒子の運動作用の流れに対しほぼ
水平に設置されているため、粉炭、媒体粒子などの固形
物が層内管4に激しく衝突し、その表面を著しく摩耗さ
せる。このため層内管4の下面部にステンレス製のプロ
テクターを取付けているが、これらは熱伝達率を低下さ
せる一方、多額の費用を要す欠点がある。
[0004] Boiler steel pipes (in-layer pipes) in these fluidized beds
4 is installed substantially horizontally with respect to the flow of the kinetic action of the fluidized media particles of the pulverized coal, so that solids such as pulverized coal and medium particles collide violently with the in-layer tube 4 and significantly wear the surface thereof. For this reason, stainless steel protectors are attached to the lower surface of the inner tube 4, but these have the drawback that the heat transfer coefficient is lowered and the cost is large.

【0005】このような状況に鑑み、特開昭61−41
756号公報では層内管に対し、Ni−Cr合金を溶射
するか、又はCo−Ni−Cr−W−B−Si自溶合金
を溶射することを提案している。しかしながら、前者の
合金は耐食性に優れているものの耐摩耗性に乏しい。ま
た、後者の自溶合金は硬質ではあるが溶射皮膜をフュー
ジング処理する際微細な亀裂が多数発生する欠点があ
る。このため、後者の自溶合金は耐摩耗性に優れていて
も、溶射皮膜の亀裂部から腐食性ガス(石炭中に含まれ
ているS化合物の分解ガス、例えばH2 S,COS,S
x など)が内部へ侵入し鋼管そのものを腐食損傷させ
る欠点がある。
In view of such circumstances, Japanese Patent Application Laid-Open No. 61-41 / 1986
No. 756 proposes spraying a Ni—Cr alloy or a Co—Ni—Cr—W—B—Si self-fluxing alloy on the inner tube. However, the former alloy is excellent in corrosion resistance but poor in wear resistance. Although the latter self-fluxing alloy is hard, it has a drawback that many fine cracks are generated when the sprayed coating is subjected to the fusing treatment. For this reason, even though the latter self-fluxing alloy has excellent wear resistance, a corrosive gas (a decomposition gas of an S compound contained in coal, for example, H 2 S, COS, S
O x, etc.) there is a drawback to corrosion damage to the steel pipe itself penetrate into the interior.

【0006】一方、製鉄所では製鉄用のコークスを製造
するため、実用上の無酸素環境下で石炭を赤熱した後、
これを急冷するプロセスを採用している。従来は赤熱状
態のコークスに対し水を直接投入して冷却していたが、
最近では多量のN2 ガスを送り込んで赤熱コークスを消
化する一方、その顕熱を奪った高温のN2 ガスをボイラ
へ導いてその熱を回収する方法が採用されるようになっ
てきた。この排熱回収ボイラは Coke Dry Quenching Bo
iler(CDQボイラ)と呼ばれ、エネルギー回収ボイラ
として多用されつつある。このプロセスから分かるよう
にボイラに導く高温のN2 ガス中にはO2 が含まれてい
ないため、石炭中に含まれているS化合物がH2 S,C
OSなどの腐食反応性に富んだ化合物として存在し、厳
しい高温硫化腐食を発生させる原因となっている。
On the other hand, in a steel mill, in order to produce coke for iron making, the coal is glowed under a practically oxygen-free environment.
The process of quenching this is adopted. Conventionally, water was directly injected into red hot coke to cool it,
Recently, a method has been adopted in which a large amount of N 2 gas is fed to digest red-hot coke, while high-temperature N 2 gas whose sensible heat has been taken is led to a boiler to recover the heat. This waste heat recovery boiler is Coke Dry Quenching Bo
It is called iler (CDQ boiler), and is being widely used as an energy recovery boiler. As can be seen from this process, since the high-temperature N 2 gas led to the boiler does not contain O 2, the S compound contained in the coal is H 2 S, C
It exists as a compound having a high corrosion reactivity such as OS and causes severe high-temperature sulfurization corrosion.

【0007】硫化腐食は加速酸化腐食に比べ一般に低温
側で発生するため、腐食の発生温度範囲が広く、その上
腐食生成物(硫化物)が多孔質であって金属面から剥離
しやすい性質を有し、酸化物皮膜のような腐食反応の障
壁としての機能をもっていない。このため硫化腐食によ
るボイラ鋼管の損耗速度は非常に大きくなる特徴があ
る。さらに高温のN2 ガス中には硬質の微細なコークス
粉が多量に含まれているため、摩耗による損耗が加味さ
れる結果、CDQボイラでは流動床ボイラ同様硫化腐食
と摩耗損傷対策が重要な課題となっている。
[0007] Sulfidation corrosion generally occurs at a lower temperature than accelerated oxidation corrosion, so the temperature range of corrosion occurrence is wide, and the corrosion products (sulfides) are porous and easily peel off from the metal surface. And does not have a function as a barrier for a corrosion reaction like an oxide film. For this reason, the rate of wear of the boiler steel pipe due to sulfidation corrosion is very large. Furthermore, since high-temperature N 2 gas contains a large amount of hard fine coke powder, wear due to abrasion is added. As a result, in CDQ boilers, measures against sulfidation corrosion and abrasion damage are as important as fluidized bed boilers. It has become.

【0008】現在、この対策としても前述の特開昭61
−41756号公報が提案したNi−Cr合金溶射法及
び自溶合金溶射法が適用されているが、先に述べたよう
に、この環境においてもNi−Cr合金皮膜は耐摩耗性
に乏しく、また自溶合金皮膜は亀裂の発生による局部硫
化腐食損傷に弱い欠点がある。
At present, as a countermeasure against this, the aforementioned Japanese Patent Laid-Open No.
Although the Ni-Cr alloy spraying method and the self-fluxing alloy spraying method proposed in Japanese Patent No. 41756 are applied, as described above, even in this environment, the Ni-Cr alloy film has poor wear resistance, and The self-fluxing alloy film has a disadvantage that it is vulnerable to local sulfidation corrosion damage due to crack generation.

【0009】また、特開昭60−142103号公報で
は、JIS H8303で規定しているMSFNi1〜
5、MSFCo1、2及びMSFWC1、2などの自溶
合金を被覆したボイラ用伝熱管の製造方法を提案してい
る。しかしこの方法はボイラ用鋼管の表面に、硬質で溶
融することにより密着性のよい溶射皮膜を得るために制
定された既知の自溶合金を単に溶射したものに過ぎず、
このような自溶合金を被覆させても合金皮膜には亀裂が
発生し、亀裂部を通しての腐食性ガスの侵入とこれによ
る母材鋼管の腐食の発生は防止することはできない。
In Japanese Patent Application Laid-Open No. Sho 60-142103, MSFNi1 specified in JIS H8303 is used.
5, a method of manufacturing a heat transfer tube for a boiler coated with a self-fluxing alloy such as MSFCo1,2 and MSFWC1,2 is proposed. However, this method is simply spraying a known self-fluxing alloy established in order to obtain a spray coating with good adhesion by hard and melting on the surface of the boiler steel pipe,
Even if such a self-fluxing alloy is coated, a crack is generated in the alloy film, and it is impossible to prevent the invasion of corrosive gas through the crack and the corrosion of the base steel pipe due to the crack.

【0010】[0010]

【発明が解決しようとする課題】上述した硫化腐食の発
生機構から明らかなように、硬質の自溶合金皮膜が形成
されていても腐食性のH2 S,COSなどの硫化物ガス
が亀裂部を通って内部へ侵入し、鋼管を腐食させる。こ
の腐食反応は自溶合金皮膜自体でも発生するが、多くの
場合、皮膜中には耐食性元素としてのCrが鋼管より多
く含まれているため比較的緩やかである。このため運転
時間の経過に伴い自溶合金溶射皮膜直下の鋼管が腐食損
耗し腐食面積が拡大するにつれて溶射皮膜が鋼管との接
触面から剥離脱落する現象が屡々経験されている。本発
明は、上記従来の欠点を解消し、耐硫化腐食性・耐エロ
ージョン性に優れたボイラ用鋼管の提供を可能にする表
面処理方法に関する。
As is apparent from the above-described mechanism of the occurrence of sulfide corrosion, even when a hard self-fluxing alloy film is formed, corrosive sulfide gas such as H 2 S or COS is generated in the crack. Penetrates into the interior through the water and corrodes the steel pipe. Although this corrosion reaction occurs even in the self-fluxing alloy film itself, in many cases, the film contains Cr as a corrosion-resistant element in a larger amount than that of the steel pipe, so that the corrosion reaction is relatively slow. For this reason, a phenomenon has often been experienced in which the steel pipe immediately below the self-fluxing alloy spray coating is corroded and worn with the elapse of the operation time and the thermal spray coating is peeled off from the contact surface with the steel pipe as the corrosion area increases. The present invention relates to a surface treatment method which solves the above-mentioned conventional drawbacks and makes it possible to provide a steel pipe for a boiler having excellent resistance to sulfidation corrosion and erosion.

【0011】[0011]

【課題を解決するための手段】本発明は、次の構成から
なる耐硫化腐食性・耐エロージョン性に優れたボイラ用
鋼管の表面処理方法である。 (1) 鋼管外表面に、Ni−Cr−B−Si−C−Fe−
Coからなる自溶合金、又は、Ni−Cr−B−Si−
C−Fe−Co−Cuからなる自溶合金、又は、Ni−
Cr−B−Si−C−Fe−Co−Mo−Cuからなる
自溶合金、又は、Ni−Cr−B−Si−C−Fe−C
o−Mo−Wからなる自溶合金に対して重量比でAlを
0.3〜8%含有させたものを溶射し、フュージング処
理を施すことを特徴とする耐硫化腐食性・耐エロージョ
ン性ボイラ鋼管の表面処理方法。
SUMMARY OF THE INVENTION The present invention is a surface treatment method for a steel pipe for a boiler having the following constitution and having excellent resistance to sulfidation corrosion and erosion. (1) Ni-Cr-B-Si-C-Fe-
Self-fluxing alloy made of Co or Ni-Cr-B-Si-
Self-fluxing alloy consisting of C-Fe-Co-Cu or Ni-
Self-fluxing alloy consisting of Cr-B-Si-C-Fe-Co-Mo-Cu or Ni-Cr-B-Si-C-Fe-C
A sulphidation-resistant and erosion-resistant boiler characterized in that a self-fluxing alloy of o-Mo-W containing 0.3 to 8% of Al by weight is sprayed and subjected to fusing treatment. Surface treatment method for steel pipe.

【0012】(2) 鋼管外表面に、Ni−Cr−B−Si
−C−Fe−Coからなる自溶合金、又は、Ni−Cr
−B−Si−C−Fe−Co−Cuからなる自溶合金、
又は、Ni−Cr−B−Si−C−Fe−Co−Mo−
Cuからなる自溶合金、又は、Ni−Cr−B−Si−
C−Fe−Co−Mo−Wからなる自溶合金に対して重
量比でAlを0.3〜8%含有させたものを溶射した
後、その上に、Ni−Cr−B−Si−C−Fe−Co
からなる自溶合金、又は、Ni−Cr−B−Si−C−
Fe−Co−Cuからなる自溶合金、又は、Ni−Cr
−B−Si−C−Fe−Co−Mo−Cuからなる自溶
合金、又は、Ni−Cr−B−Si−C−Fe−Co−
Mo−Wからなる自溶合金を溶射し、フュージング処理
を施すことを特徴とする耐硫化腐食性・耐エロージョン
性ボイラ鋼管の表面処理方法。
(2) Ni-Cr-B-Si on the outer surface of the steel pipe
-C-Fe-Co self-fluxing alloy or Ni-Cr
A self-fluxing alloy comprising -B-Si-C-Fe-Co-Cu;
Or Ni-Cr-B-Si-C-Fe-Co-Mo-
Self-fluxing alloy made of Cu or Ni-Cr-B-Si-
After spraying an alloy containing 0.3 to 8% by weight of Al with respect to a self-fluxing alloy made of C-Fe-Co-Mo-W, Ni-Cr-B-Si-C is further sprayed thereon. -Fe-Co
Or a Ni-Cr-B-Si-C-
Self-fluxing alloy consisting of Fe-Co-Cu or Ni-Cr
-B-Si-C-Fe-Co-Mo-Cu self-fluxing alloy or Ni-Cr-B-Si-C-Fe-Co-
A surface treatment method for a boiler steel pipe having resistance to sulfidation corrosion and erosion, wherein a self-fluxing alloy made of Mo-W is sprayed and subjected to fusing treatment.

【0013】[0013]

【発明の実施の形態】石炭の還元燃焼過程で発生するH
2 S,COSなどのガス状S化合物の腐食に耐える金属
元素としてCrが最もよく知られている。このCrは耐
熱、耐酸化元素としても有名であり、耐熱合金中には必
ず含まれている有用な元素であり、ボイラ用鋼管や多く
の自溶合金中にも含まれている。
BEST MODE FOR CARRYING OUT THE INVENTION H generated in the reduction combustion process of coal
Cr is best known as a metal element that resists corrosion of gaseous S compounds such as 2 S and COS. This Cr is also famous as a heat-resistant and oxidation-resistant element, is a useful element that is always contained in heat-resistant alloys, and is also contained in steel tubes for boilers and many self-fluxing alloys.

【0014】一方、本発明の特徴的な成分であるAlに
関しては、Cr以上の耐硫化、耐酸化性能を保有してい
るにも拘らず、JIS H8303記載の自溶合金類に
は一切添加されていない。これは自溶合金の目的が元来
その優れた硬さ、密着性、緻密性などの物理的性質のみ
に主眼がおかれていたからであり、したがって、耐酸化
性、耐硫化特性などの化学的性質は、Crが含有されて
いない自溶合金は極めて乏しく、またCrを含んでいる
自溶合金でも本来含まれている程度の含有量では本発明
の目的としているH2 S,COSなどによる硫化腐食作
用には自ら限界があり、寿命が短い。
On the other hand, Al, which is a characteristic component of the present invention, is completely added to the self-fluxing alloys described in JIS H8303, despite having sulfuration resistance and oxidation resistance higher than Cr. Not. This is because the purpose of the self-fluxing alloy was originally focused only on its physical properties such as its excellent hardness, adhesion, and denseness, and therefore, its chemical properties such as oxidation resistance and sulfidation resistance. The reason is that the self-fluxing alloy containing no Cr is extremely scarce, and even if the content of the self-fluxing alloy containing Cr is such that it is originally contained, the sulfide corrosion caused by H 2 S, COS, etc. which is the object of the present invention is intended. The action has its own limits and its life is short.

【0015】本発明は、上記の欠点を補うため、自溶合
金中にAlを含ませることにより、自溶合金中のCrと
相乗効果を発揮させて耐酸化性と耐硫化性を一段と向上
させ、在来の耐摩耗性に加え耐酸化性、耐硫化性に対し
ても優れた自溶合金皮膜を形成することが可能になっ
た。
According to the present invention, in order to compensate for the above-mentioned drawbacks, Al is contained in the self-fluxing alloy, thereby exhibiting a synergistic effect with Cr in the self-fluxing alloy to further improve oxidation resistance and sulfidation resistance. In addition, it became possible to form a self-fluxing alloy film having excellent oxidation resistance and sulfidation resistance in addition to conventional wear resistance.

【0016】本発明で採用する自溶合金の溶射法の概要
は、例えば自溶合金の線を電気アーク、可燃ガス炎、プ
ラズマアークによって溶融しつつ圧縮空気で噴射する極
く一般的な方法である。また、本発明で採用するフュー
ジング処理条件は、一般的に電気炉、高周波誘導加熱、
又は、天然ガス、プロパン、アセチレンなどの燃焼炎に
よって溶射皮膜を大気中で1000〜1300℃に加熱
することによって行われる。本発明において使用される
自溶合金としては、JIS H8303(1976)で
規定されているMSFi1、MSFi2、MSFi4及
びMSFCo1が使用し得る。その化学組成を表1に示
す。
An outline of the spraying method of the self-fluxing alloy used in the present invention is, for example, a very general method of injecting a wire of the self-fluxing alloy with compressed air while melting the wire by an electric arc, a combustible gas flame or a plasma arc. is there. Further, the fusing treatment conditions adopted in the present invention are generally an electric furnace, high-frequency induction heating,
Alternatively, the thermal spraying is performed by heating the sprayed coating to 1000 to 1300 ° C. in the atmosphere by a combustion flame of natural gas, propane, acetylene or the like. As the self-fluxing alloy used in the present invention, MSFi1, MSFi2, MSFi4 and MSFCol specified in JIS H8303 (1976) can be used. The chemical composition is shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【実施例】【Example】

〔実施例1〕供試ボイラ鋼管としてSTB42及びST
BA24の外径54mm、厚さ3.2mmを用い、これ
にMSFNi2に属するCr:10.1、B:1.3、
Si:2.5、C:0.35、Fe:2.5、Co:
0.2、Ni:残なる組成(いずれも重量%)の自溶合
金、及び、MSFNi4に属する合金に属するCr:1
4.8、B:3.2、Si:3.9、C:0.7、F
e:3.6、Co:0.6、Mo:3.4、Cu:3.
0、Ni:残なる組成(いずれも重量%)の自溶合金、
及び、MSFCo1に属するNi:17.5、Cr:1
7.2、B:2.5、Si:3.3、C:1.1、F
e:4.0、Mo:5.2、W:6.1、Co:残なる
組成(いずれも重量%)の自溶合金の3種に、それぞれ
アルミニウム粉末を0.05〜8%(重量%)添加して
自溶合金を調製し、これを上記の供試ボイラ鋼管にそれ
ぞれ300μm溶射し、次いで、1100〜1200℃
に加熱フュージング処理を施した。なお、アルミニウム
粉末0.05%及び0.1%添加した自溶合金の例は比
較例である。また、比較のために、実施例1の溶射用自
溶合金のアルミニウム粉末添加を省略した以外は、実施
例1と同様にして供試ボイラ鋼管に自溶合金を溶射し、
加熱フュージング処理を施した。
[Example 1] STB42 and ST were used as test boiler steel tubes.
BA24 having an outer diameter of 54 mm and a thickness of 3.2 mm was used, and Cr: 10.1, B: 1.3, belonging to MSFNi2,
Si: 2.5, C: 0.35, Fe: 2.5, Co:
0.2, Ni: a self-fluxing alloy having the remaining composition (all by weight) and Cr belonging to an alloy belonging to MSFNi4: 1
4.8, B: 3.2, Si: 3.9, C: 0.7, F
e: 3.6, Co: 0.6, Mo: 3.4, Cu: 3.
0, Ni: a self-fluxing alloy having a remaining composition (all by weight),
And Ni: 17.5, Cr: 1 belonging to MSFCol.
7.2, B: 2.5, Si: 3.3, C: 1.1, F
e: 4.0, Mo: 5.2, W: 6.1, Co: 0.05 to 8% (by weight) of each of the three types of self-fluxing alloys having the remaining composition (all by weight). %) To prepare a self-fluxing alloy, which is sprayed 300 μm onto each of the test boiler steel pipes described above, and then from 1100 to 1200 ° C.
Was subjected to a heat fusing treatment. The example of the self-fluxing alloy containing 0.05% and 0.1% of aluminum powder is a comparative example. Also, for comparison, the self-fluxing alloy was sprayed on the test boiler steel pipe in the same manner as in Example 1 except that the addition of aluminum powder to the self-fluxing alloy for thermal spraying of Example 1 was omitted.
Heat fusing treatment was performed.

【0019】(評価)実施例1の供試ボイラ鋼管の自溶
合金皮膜には、いずれも亀裂の発生が認められたが、亀
裂部を含まない皮膜を選択して試験片を切出し(50m
m長)、これを600℃のH2 S:1%、COS:0.
3%、H2 :2%、N2 :残り(何れも容量%)のガス
雰囲気中に300時間暴露した後、自溶合金皮膜の断面
を光学顕微鏡で調査し、皮膜断面の腐食層の発生状況を
観察した。表2は、この結果を示したもので、本発明の
Al含有量0.05%自溶合金皮膜の腐食生成物層の厚
さを1とし、腐食量比をその比で示した。
(Evaluation) Cracks were observed in all of the self-fluxing alloy films of the test boiler steel tube of Example 1. However, a film containing no crack was selected and a test piece was cut out (50 m).
m length), and this was subjected to 600 ° C. H 2 S: 1%, COS: 0.
After exposure to a gas atmosphere of 3%, H 2 : 2%, N 2 : residual (all by volume%) for 300 hours, the cross section of the self-fluxing alloy film is examined with an optical microscope, and the formation of a corrosion layer on the film cross section The situation was observed. Table 2 shows the results. The thickness of the corrosion product layer of the 0.05% Al content self-fluxing alloy film of the present invention was set to 1, and the corrosion amount ratio was shown by the ratio.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、Al含有量0.
05%自溶合金皮膜を基準にして、Al含有量0%自溶
合金皮膜は、表層部がかなり腐食されていた。また、A
lを0.1%含有する自溶合金皮膜も腐食量比が0.0
5%Al含有のものに対して0.9と高い値を示した
が、本発明の実施例である0.3%以上の含有量のもの
は腐食量比が0.5以下と腐食層の生成が極めて薄いこ
とが分かる。このように、自溶合金の種類(組成)にか
かわらず、Alを添加することによって、耐食性、特に
耐高温硫化腐食性が向上することが認められた。
As is clear from Table 2, the Al content is 0.1.
Based on the 05% self-fluxing alloy film, the surface portion of the 0% self-fluxing alloy film with Al content was considerably corroded. Also, A
The corrosion amount ratio of a self-fluxing alloy film containing 0.1%
The value of 0.9 was higher than that of 5% Al content, but the content of 0.3% or more, which is an example of the present invention, has a corrosion amount ratio of 0.5 or less and the corrosion layer has a corrosion rate of 0.5 or less. It can be seen that the formation is very thin. Thus, regardless of the type (composition) of the self-fluxing alloy, it was recognized that the addition of Al improves the corrosion resistance, particularly the high-temperature sulfidation corrosion resistance.

【0022】〔実施例2〕供試ボイラ鋼管としてSTB
42及びSTBA24の外径54mm、厚さ3.2mm
を用い、これにMSFNi1に属するCr:8.2、
B:1.2、Si:2.2、C:0.18、Fe:2.
8、Co:0.3、Cu:2.9、Ni:残なる組成
(いずれも重量%)の自溶合金にAlを3%添加したも
のを100μmの厚さに溶射した後、その上にMSFC
o1に属するNi:17.5、Cr:17.2、B:
2.5、Si:3.3、C:1.1、Fe:4.0、M
o:5.2、W:6.1、Co:残なる組成(いずれも
重量%)の自溶合金を200μm溶射し、全溶射層の厚
みを300μmとした後1100〜1200℃に加熱フ
ュージングした。その表面をカラーチェックで検査した
ところ表面に多数の亀裂が発生していた。
Example 2 STB was used as a test boiler steel pipe.
42 and STBA24 outer diameter 54 mm, thickness 3.2 mm
Using Cr belonging to MSFNi1, 8.2;
B: 1.2, Si: 2.2, C: 0.18, Fe: 2.
8, Co: 0.3, Cu: 2.9, Ni: A self-fluxing alloy having the remaining composition (all in weight%) added with 3% of Al was sprayed to a thickness of 100 μm and then sprayed thereon. MSFC
Ni belonging to o1: 17.5, Cr: 17.2, B:
2.5, Si: 3.3, C: 1.1, Fe: 4.0, M
o: 5.2, W: 6.1, Co: A self-fluxing alloy having a remaining composition (all by weight) was sprayed at 200 μm, the thickness of the entire sprayed layer was set at 300 μm, and then heated to 1100 to 1200 ° C. . When the surface was inspected by color check, many cracks were generated on the surface.

【0023】比較のために、下層に上記のMSFNi1
自溶合金(Alを含有せず)を100μm、上層に上記
のMSFCo1自溶合金(Alを含有せず)を200μ
m溶射し、実施例2と同様に加熱フュージング処理した
ものを製作した。以上の鋼管からそれぞれ長さ100m
mの試験管を切出し、実施例1と同じ方法及び条件で腐
食試験を行った。表4は試験後の自溶合金皮膜の断面を
光学顕微鏡により観察した結果を示したものである。
For comparison, the above MSFNi1
100 μm of self-fluxing alloy (without Al), 200 μm of the above-mentioned MSFCo1 self-fluxing alloy (without Al) in the upper layer
m, and subjected to a heat fusing treatment in the same manner as in Example 2. 100m length from the above steel pipes
m test tube was cut out and subjected to a corrosion test in the same manner and under the same conditions as in Example 1. Table 4 shows the results of observing the cross section of the self-fluxing alloy film after the test using an optical microscope.

【0024】[0024]

【表3】 [Table 3]

【0025】上記の実施例及び比較例は、ともに下層部
の皮膜(MSFNi1)には亀裂は認められないが、上
層皮膜(MSFCo1)には多数の亀裂が発生してい
た。このため腐食性のガスが亀裂部を通って内部へ侵入
し、下層皮膜を腐食しつつある状況が観察されたが、実
施例のAlを添加した下層皮膜は全く腐食されず、腐食
発生領域は上層皮膜のみに限定されていた。これに対
し、比較例の皮膜はAlを含んでいないため、上、下層
皮膜とも腐食され、耐食性に乏しいことが確認された。
In the above Examples and Comparative Examples, cracks were not observed in the lower layer coating (MSFNi1), but a number of cracks were generated in the upper layer coating (MSFCo1). For this reason, it was observed that corrosive gas penetrated into the inside through the cracks and corroded the lower layer coating. However, the lower layer coating to which Al was added in Example was not corroded at all, and the corrosion generation area was It was limited to the upper coating only. On the other hand, since the film of the comparative example did not contain Al, both the upper and lower films were corroded, and it was confirmed that the corrosion resistance was poor.

【0026】(実施例3)STB42、STBA24及
びSUS321HTB鋼管(直径54×厚3.2mm)
を用い、実施例1及び2と同様に自溶合金溶射及びフュ
ージング処理を行い、高温環境下及び高温腐食環境下に
おける耐ブラストエロージョン性(以下、エロージョ
ン)を調査した。
(Embodiment 3) STB42, STBA24 and SUS321HTB steel pipes (diameter 54 x thickness 3.2 mm)
, A self-fluxing alloy spraying and fusing treatment were performed in the same manner as in Examples 1 and 2, and blast erosion resistance (hereinafter, erosion) under a high temperature environment and a high temperature corrosion environment was investigated.

【0027】図2は、エロージョン試験装置の概要を示
したものである。試験鋼管9を高温炉10の中に設置
し、その前面に設けられた噴射ノズル11から珪砂(平
均粒径100μm)を鋼管に向け、加温された圧縮空気
(3kgf/cm2 )により鋼管表面へ噴射した。高温
炉10へ導入する空気は予熱炉12によってほぼ試験温
度迄上昇させ、高温炉10から出た空気サイクロン13
を通して珪砂を分離した後、再循環させている。腐食性
のガスは、あらかじめ所定の組成に調整済のボンベ14
から流量計15によって流量を調整し、高温炉中へ注入
できるようになっている。
FIG. 2 shows an outline of the erosion test apparatus. The test steel pipe 9 is placed in a high-temperature furnace 10, and silica sand (average particle size: 100 μm) is directed to the steel pipe from an injection nozzle 11 provided on the front face thereof, and heated by compressed air (3 kgf / cm 2 ). Sprayed. The air introduced into the high-temperature furnace 10 is raised to almost the test temperature by the preheating furnace 12 and the air cyclone 13
After the silica sand is separated through, it is recycled. The corrosive gas is supplied to a cylinder 14 which has been adjusted to a predetermined composition in advance.
The flow rate can be adjusted by the flow meter 15 from above, and can be injected into the high-temperature furnace.

【0028】高温の空気環境下におけるエロージョン試
験の評価は、600℃の温度で10時間珪砂を吹付け、
試験後の自溶合金皮膜の減少程度を顕微鏡により観察す
ることによって実施した。表4はこの結果を示したもの
で、本発明の皮膜は比較例とほぼ同等の耐エロージョン
性を有しており、自溶合金中のAl添加による悪影響は
認められない。
The erosion test in a high-temperature air environment was evaluated by spraying silica sand at a temperature of 600 ° C. for 10 hours.
The test was performed by observing the degree of reduction of the self-fluxing alloy film after the test with a microscope. Table 4 shows the results. The film of the present invention has almost the same erosion resistance as the comparative example, and no adverse effect due to the addition of Al in the self-fluxing alloy is observed.

【0029】[0029]

【表4】 [Table 4]

【0030】次に、高温炉中にH2 S:1%、COS:
0.5%、H2 :2%、残:N2 の腐食性ガスを2.5
時間通した後、2.5時間珪砂を吹付ける試験を2回繰
返した。表5はこの結果を示したもので、腐食作用とエ
ロージョン作用が繰返される環境では、本発明の皮膜は
卓越した性能を発揮した。この原因は、比較例の皮膜が
腐食性のガスにより浸食され、その表面に多孔質で、密
着性に乏しい腐食生成物(硫化物)が形成された後、珪
砂の吹付けによりこの腐食生成物が除去されるのに対
し、本発明の皮膜は耐食性に優れているため腐食生成物
層の形成が極めて薄く、良好なエロージョン性を発揮し
たものと考えられる。
Next, H 2 S: 1%, COS:
0.5%, H 2 : 2%, balance: N 2 corrosive gas of 2.5
After passing the time, the test of spraying silica sand for 2.5 hours was repeated twice. Table 5 shows the results. In an environment where the corrosion action and the erosion action are repeated, the coating of the present invention exhibited excellent performance. The reason for this is that the film of the comparative example is eroded by corrosive gas, and a porous, poorly adherent corrosion product (sulfide) is formed on the surface thereof, and then this corrosion product is sprayed with silica sand. On the other hand, it is considered that the film of the present invention is excellent in corrosion resistance, so that the formation of a corrosion product layer is extremely thin, and good erosion was exhibited.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【発明の効果】本発明は、上記の構成を採用し、ボイラ
用鋼管の表面にAlを0.3〜8%含有する自溶合金の
溶射皮膜を形成し、フュージング処理を施すことによ
り、耐硫化性及び耐エロージョン性にすぐれたボイラ用
鋼管を得ることができるようになった。また、ボイラ用
鋼管の表面にAl含有合金を溶射した後、その上にさら
にAlを含まない自溶合金を溶射して、これをフュージ
ング処理することにより耐硫化性と耐エロージョン性に
すぐれたボイラ用鋼管を得ることができるようになっ
た。
According to the present invention, a thermal spray coating of a self-fluxing alloy containing 0.3 to 8% of Al is formed on the surface of a steel pipe for a boiler by adopting the above-mentioned structure, and a fusing treatment is performed. It has become possible to obtain a boiler steel pipe having excellent sulphidation and erosion resistance. In addition, after spraying an Al-containing alloy on the surface of a steel pipe for a boiler, a self-fluxing alloy containing no Al is further sprayed thereon, and this is subjected to a fusing treatment to thereby provide a boiler having excellent sulfidation resistance and erosion resistance. Steel pipes can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は一般的な石炭流動床ボイラの例の断面図
である。
FIG. 1 is a sectional view of an example of a general coal fluidized bed boiler.

【図2】図2は本発明の実施例としてのボイラ用鋼管の
耐ブラストエロージョン性を試験するための腐食エロー
ジョン用試験装置の概略図である。
FIG. 2 is a schematic view of a corrosion erosion test apparatus for testing blast erosion resistance of a steel pipe for a boiler as an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 流動媒体粒子、 2 空気分散板、 3 石炭供給
ノズル、 4 層内管(ボイラ鋼管等)、 5 灰の排
出口、 6 対流部の伝熱管、 7 起動用バーナ、
8 空気ダクト、 9 試験鋼管、 10 高温炉、
12 予熱炉、13 空気サイクロン、 14 腐食性
ガスボンベ、 15 流量計。
1 Fluid medium particles, 2 Air distribution plate, 3 Coal supply nozzle, 4 Inner layer pipe (boiler steel pipe, etc.), 5 Ash discharge port, 6 Heat transfer tube in convection section, 7 Starter burner,
8 air duct, 9 test steel pipe, 10 high temperature furnace,
12 Preheating furnace, 13 Air cyclone, 14 Corrosive gas cylinder, 15 Flow meter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼管外表面に、Ni−Cr−B−Si−
C−Fe−Coからなる自溶合金、又は、Ni−Cr−
B−Si−C−Fe−Co−Cuからなる自溶合金、又
は、Ni−Cr−B−Si−C−Fe−Co−Mo−C
uからなる自溶合金、又は、Ni−Cr−B−Si−C
−Fe−Co−Mo−Wからなる自溶合金に対して重量
比でAlを0.3〜8%含有させたものを溶射し、フュ
ージング処理を施すことを特徴とする耐硫化腐食性・耐
エロージョン性ボイラ鋼管の表面処理方法。
1. The steel pipe outer surface has Ni-Cr-B-Si-
Self-fluxing alloy consisting of C-Fe-Co or Ni-Cr-
B-Si-C-Fe-Co-Cu self-fluxing alloy or Ni-Cr-B-Si-C-Fe-Co-Mo-C
Self-fluxing alloy consisting of u or Ni-Cr-B-Si-C
-Fe-Co-Mo-W self-fluxing alloy containing 0.3 to 8% by weight of Al is sprayed and subjected to fusing treatment, which is characterized by resistance to sulfidation and corrosion. Surface treatment method for erosion boiler steel pipe.
【請求項2】 鋼管外表面に、Ni−Cr−B−Si−
C−Fe−Coからなる自溶合金、又は、Ni−Cr−
B−Si−C−Fe−Co−Cuからなる自溶合金、又
は、Ni−Cr−B−Si−C−Fe−Co−Mo−C
uからなる自溶合金、又は、Ni−Cr−B−Si−C
−Fe−Co−Mo−Wからなる自溶合金に対して重量
比でAlを0.3〜8%含有させたものを溶射した後、
その上に、Ni−Cr−B−Si−C−Fe−Coから
なる自溶合金、又は、Ni−Cr−B−Si−C−Fe
−Co−Cuからなる自溶合金、又は、Ni−Cr−B
−Si−C−Fe−Co−Mo−Cuからなる自溶合
金、又は、Ni−Cr−B−Si−C−Fe−Co−M
o−Wからなる自溶合金を溶射し、フュージング処理を
施すことを特徴とする耐硫化腐食性・耐エロージョン性
ボイラ鋼管の表面処理方法。
2. The steel pipe outer surface has Ni-Cr-B-Si-
Self-fluxing alloy consisting of C-Fe-Co or Ni-Cr-
B-Si-C-Fe-Co-Cu self-fluxing alloy or Ni-Cr-B-Si-C-Fe-Co-Mo-C
Self-fluxing alloy consisting of u or Ni-Cr-B-Si-C
After spraying the alloy containing 0.3 to 8% by weight of Al with respect to the self-fluxing alloy composed of -Fe-Co-Mo-W,
A self-fluxing alloy composed of Ni-Cr-B-Si-C-Fe-Co or Ni-Cr-B-Si-C-Fe
-Co-Cu self-fluxing alloy or Ni-Cr-B
-Si-C-Fe-Co-Mo-Cu self-fluxing alloy or Ni-Cr-B-Si-C-Fe-Co-M
A surface treatment method for a boiler steel tube having resistance to sulfidation corrosion and erosion, which comprises spraying a self-fluxing alloy made of oW and performing a fusing treatment.
JP24532497A 1997-09-10 1997-09-10 Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler Withdrawn JPH10168554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24532497A JPH10168554A (en) 1997-09-10 1997-09-10 Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24532497A JPH10168554A (en) 1997-09-10 1997-09-10 Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1004605A Division JP2718734B2 (en) 1989-01-13 1989-01-13 Steel pipe for boiler which is resistant to sulfidation corrosion and erosion

Publications (1)

Publication Number Publication Date
JPH10168554A true JPH10168554A (en) 1998-06-23

Family

ID=17131975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24532497A Withdrawn JPH10168554A (en) 1997-09-10 1997-09-10 Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler

Country Status (1)

Country Link
JP (1) JPH10168554A (en)

Similar Documents

Publication Publication Date Title
Szymański et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers-A review
CN107034427B (en) The alloy coat and preparation method thereof of boiler heating surface high-temperature corrosion resistance
CN110819929A (en) Spraying material for heating surface of boiler tube of garbage incinerator and construction process of spraying material
CN111944334A (en) Nano metal ceramic coating
JP2718734B2 (en) Steel pipe for boiler which is resistant to sulfidation corrosion and erosion
JP4451885B2 (en) Thermal spray coating forming method and high-speed flame spraying apparatus
CN114196238A (en) Anti-coking coating and preparation process thereof
CN106435450A (en) Preparation method of high-temperature-resistant anti-abrasion coating of circulating fluidized bed boiler
Alroy et al. Tailoring microstructural features of Cr3C2-25NiCr coatings through diverse spray variants and understanding the high-temperature erosion behavior
CN113718253A (en) High-temperature-resistant anti-corrosion anti-coking coating with composite structure and spraying method
US20110165334A1 (en) Coating material for metallic base material surface
CN108611588B (en) High-temperature oxidation resistant and sulfur and chlorine corrosion resistant alloy coating and preparation method thereof
JPH10168554A (en) Method for treating surface of steel tube for sulfodation corrosion resistant and erosion-resistant boiler
JP4602998B2 (en) Thermal spray coating formation method
JPH0975832A (en) Boiler tube with corrosion-resistant and wear-resistant surface flame-sprayed layer
JP5584161B2 (en) Thermal spray material
US5066523A (en) Process for producing corrosion-resistant layers
JP6802042B2 (en) Boiler water pipe of waste incinerator and its manufacturing method
JP3032341B2 (en) Manufacturing method of wear-resistant heat transfer tube
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
CN1045635C (en) Cermet coating preventing liquid sludge-removing furnace from iron-separating corrosion
CN1274767A (en) Metal carbide coating to prevent hot corrosion of boiler overheater in power station
JP5171176B2 (en) Thermal spraying material coated on metal substrate surface and high temperature corrosion resistant member coated with the material
CN209292304U (en) A kind of anticorrosion suitable for fluidized-bed gasification furnace, anti-wear distributor
Yu et al. Failure Mechanism of Water Wall Coating Prepared by Supersonic Arc Spraying

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514