JPH10165956A - Method and apparatus for removing organic component - Google Patents

Method and apparatus for removing organic component

Info

Publication number
JPH10165956A
JPH10165956A JP8335925A JP33592596A JPH10165956A JP H10165956 A JPH10165956 A JP H10165956A JP 8335925 A JP8335925 A JP 8335925A JP 33592596 A JP33592596 A JP 33592596A JP H10165956 A JPH10165956 A JP H10165956A
Authority
JP
Japan
Prior art keywords
electrolytic oxidation
water
electric field
toc
organic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8335925A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yagi
康之 八木
Futoshi Hayashi
太 林
Yasunari Uchitomi
康成 内富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP8335925A priority Critical patent/JPH10165956A/en
Publication of JPH10165956A publication Critical patent/JPH10165956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose and remove TOC in nonionic water with high capacity in low cost even if an electric conductor is not added. SOLUTION: Each of electrodes 24, 26 is formed by coating the surface of a titanium plate with a titanium oxide membrane. A DC power supply device 32 is disposed outside an electrolytic oxidation apparatus 20 and the cathode and anode terminals thereof are connected to the respective electrodes 24, 26 through the connector boxes 33, 33 of both end parts of a casing 22. The DC power supply device 32 can apply voltage generating an electric field with electric field intensity of 200V/cm or more between the electrodes 24, 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機成分の除去方
法及び装置に係り、特に純水や超純水等の非イオン性水
中に含有される有機成分の除去方法及び装置に関する。
The present invention relates to a method and an apparatus for removing organic components, and more particularly to a method and an apparatus for removing organic components contained in nonionic water such as pure water or ultrapure water.

【0002】[0002]

【従来の技術】非イオン性水は、半導体製造工場を代表
とする各種精密電子産業の分野に用いられているもの
で、極めて高レベルな純度が要求されている。例えば、
半導体製造工場に設備される非イオン性水中の有機成分
は全有機物炭素(以下TOCと称す)が指標とされ、現
在その濃度は数ppb以下のレベルに管理されている。
非イオン性水とは、純水や超純水などであり、比抵抗値
で表した場合、10MΩ・cm以上程度のものを言う。
2. Description of the Related Art Non-ionic water is used in various fields of the precision electronic industry represented by semiconductor manufacturing plants, and is required to have a very high level of purity. For example,
The total organic carbon (hereinafter referred to as TOC) is used as an index for organic components in nonionic water installed in a semiconductor manufacturing plant, and its concentration is currently controlled to a level of several ppb or less.
Non-ionic water is pure water, ultrapure water, or the like, and refers to water having a specific resistance of about 10 MΩ · cm or more.

【0003】従来から、非イオン性水中に存在する微量
TOC成分の除去には、紫外線を利用した紫外線酸化法
が採用されている。紫外線酸化法は、波長185nmの
短波長紫外線を利用して原水中にOHラジカル等の酸化
種を生成させ、この酸化種の酸化力により、TOCを分
解除去するものである。この紫外線酸化法は紫外光のみ
でTOCを酸化分解できることから、クリーンなTOC
除去装置として利用価値が高く、現在の超純水製造シス
テムには必要不可欠な装置となっている。
[0003] Conventionally, an ultraviolet oxidation method using ultraviolet light has been employed to remove trace TOC components present in nonionic water. In the ultraviolet oxidation method, oxidized species such as OH radicals are generated in raw water using short-wave ultraviolet light having a wavelength of 185 nm, and TOC is decomposed and removed by the oxidizing power of the oxidized species. Since this ultraviolet oxidation method can oxidize and decompose TOC only by ultraviolet light, clean TOC
It has a high utility value as a removal device and is an indispensable device for the current ultrapure water production system.

【0004】また、水中に存在する微量有機成分を分解
する方法として、上記紫外線による紫外線酸化法の他
に、水の電気分解反応で生成する活性酸素を利用する電
解酸化法があげられる。この電解酸化法は数ボルト〜数
十ボルトの電解電圧を電極間に印加して、有機成分を分
解しようというもので、電解酸化の電気代以外の費用は
殆どかからないため安価な方法と言える。
As a method for decomposing trace organic components existing in water, there is an electrolytic oxidation method using active oxygen generated by an electrolysis reaction of water, in addition to the above-mentioned ultraviolet oxidation method using ultraviolet rays. This electrolytic oxidation method is intended to decompose organic components by applying an electrolytic voltage of several volts to several tens of volts between electrodes, and it can be said to be an inexpensive method because there is almost no cost other than the electricity cost of electrolytic oxidation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
ような紫外線酸化法による微量有機成分の除去方法にあ
っては、紫外線酸化装置に使用する短波長ランプが高価
であること、また短波長ランプの寿命がおよそ一年と短
いことから、装置の維持管理費用が極めて高くなるとい
う問題がある。さらに、構成部材であるランプが石英ガ
ラス製であるため、石英ガラスのシリカ成分が水中に溶
け出す懸念もある。この様に、従来から使用されている
紫外線酸化法は、TOC除去効果は優れているが、設備
コストや維持管理コストが高く、経済性などの問題があ
る。
However, in the former method for removing trace organic components by the ultraviolet oxidation method, the short wavelength lamp used in the ultraviolet oxidation apparatus is expensive, Since the life is as short as about one year, there is a problem that the maintenance cost of the apparatus is extremely high. Furthermore, since the lamp as a constituent member is made of quartz glass, there is a concern that the silica component of the quartz glass may be dissolved in water. As described above, the conventionally used ultraviolet oxidation method is excellent in the effect of removing TOC, but has high equipment cost and maintenance cost, and has problems such as economy.

【0006】また、後者の電解酸化法による方法では、
原水中に電気伝導体(各種イオン類や導電性固形物な
ど)が含有されていないと電解反応が生じないため、電
気伝導体の濃度の極めて低い非イオン性水に対して適用
することはできない。従って、この様なイオンなどの電
気伝導体が低濃度な非イオン性水に電解酸化法を適用す
る場合には、非イオン性水にわざわざ塩酸や硫酸などの
電解質を注入添加し、電気伝導体を補うなどの工夫が必
要となる(特公昭56−37874公報)。しかし、本
発明の処理対象とする純水や超純水の分野では、微量イ
オンの存在も大きな問題となるため、電解質などを添加
するのは得策ではない。仮に、電解質などを添加して電
解酸化処理する場合には、その後段にイオン除去装置の
設置が必要となり、設備コストが大幅に増加するととも
にシステムが繁雑となる。さらに塩酸などの電解質によ
って原水のpHを低下させると、電極や触媒または装置
構成部材から数〜数百pptレベルの金属不純物が溶出
する問題もあり好ましくない。上記に示す様に、極微量
不純物を除去対象とした純水や超純水製造システムに電
解酸化方式を適用することは困難であった。
In the latter method using the electrolytic oxidation method,
If the raw water does not contain an electric conductor (various ions, conductive solids, etc.), the electrolytic reaction does not occur, so it cannot be applied to nonionic water with extremely low electric conductor concentration. . Therefore, when applying the electrolytic oxidation method to non-ionic water having a low concentration of electric conductors such as ions, an electrolyte such as hydrochloric acid or sulfuric acid is added to the non-ionic water, and the electric conductor is added. (Eg, Japanese Patent Publication No. 56-37874). However, in the field of pure water or ultrapure water to be treated in the present invention, the presence of trace ions is also a serious problem, and it is not advisable to add an electrolyte or the like. If an electrolytic oxidation treatment is performed by adding an electrolyte or the like, an ion removing device must be provided at a subsequent stage, which greatly increases equipment costs and complicates the system. Further, if the pH of the raw water is lowered by an electrolyte such as hydrochloric acid, there is a problem that metal impurities at a level of several to several hundreds of ppt are eluted from the electrodes, the catalyst or the constituent members of the apparatus, which is not preferable. As described above, it has been difficult to apply the electrolytic oxidation method to a pure water or ultrapure water production system for removing trace amounts of impurities.

【0007】本発明は、このような事情を鑑みてなされ
たもので、電気伝導体を添加しなくとも、非イオン性水
中のTOCを高性能で酸化除去でき、かつコストのかか
らない有機成分の除去方法及び装置を提供することを目
的とする。
The present invention has been made in view of such circumstances, and it is possible to remove TOC in nonionic water with high performance without adding an electric conductor, and to remove organic components at low cost. It is an object to provide a method and an apparatus.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するために、電解酸化装置によって非イオン性水に含
まれる有機物を酸化除去する有機成分の除去方法におい
て、前記電解酸化装置の陽極と陰極の表面に二酸化チタ
ン膜を形成させると共に、前記電極間に電界強度200
V/cm以上の電界を生じさせることを特徴とする。
In order to achieve the above object, the present invention provides a method for removing an organic component contained in non-ionic water by oxidation using an electrolytic oxidation apparatus. And a titanium dioxide film on the surface of the cathode, and an electric field strength of 200 between the electrodes.
It is characterized by generating an electric field of V / cm or more.

【0009】また、本発明は、前記目的を達成するため
に、電解酸化装置によって非イオン性水に含まれる有機
物を酸化除去する有機成分の除去装置において、前記電
解酸化装置の陽極と陰極の表面に二酸化チタン膜を形成
すると共に、前記電極間に電界強度200V/cm以上
の電界を生じさせる電圧を印加可能な電源装置を設けた
ことを特徴とする。
In order to achieve the above object, the present invention provides an apparatus for removing an organic component contained in non-ionic water by oxidation using an electrolytic oxidation apparatus. And a power supply device capable of applying a voltage for generating an electric field having an electric field strength of 200 V / cm or more between the electrodes.

【0010】本発明によれば、電解酸化装置の陰極と陽
極の表面に二酸化チタン膜を形成させると共に、電極間
に電界強度200V/cm以上の電界を生じさせるよう
にした。これにより、非イオン性水に電気伝導体を添加
することなく、非イオン性水に含まれる有機成分を酸化
除去することができる。
According to the present invention, a titanium dioxide film is formed on the surfaces of a cathode and an anode of an electrolytic oxidation apparatus, and an electric field having an electric field strength of 200 V / cm or more is generated between the electrodes. Thereby, the organic component contained in the nonionic water can be oxidized and removed without adding the electric conductor to the nonionic water.

【0011】[0011]

【発明の実施の形態】以下添付図面に従って、本発明に
係る有機成分の除去方法及び装置の好ましい実施の形態
について詳説する。図1は、本発明の有機成分の除去方
法及び装置の適用例であり、半導体製造用の超純水の製
造工程である。工程は、前処理工程、純水製造工程、超
純水製造工程の3つに大別できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method and apparatus for removing organic components according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows an application example of the method and apparatus for removing an organic component according to the present invention, which is a process for producing ultrapure water for semiconductor production. The steps can be broadly divided into three steps: a pretreatment step, a pure water production step, and an ultrapure water production step.

【0012】原水は先ず前処理工程で、前処理設備と活
性炭塔によって前処理が行われ、原水を純水製造工程に
送り込む準備がなされる。前処理が行われた原水は、純
水製造工程に送り込まれ、RO(逆浸透膜)ユニット、
膜脱気ユニット、純水貯槽、混床式イオン交換塔、フィ
ルタを順に通過し、純水が製造される。純水製造工程で
製造された純水は、一般に比抵抗10MΩ・cm以上で
あり、イオン性物質がほとんどない状態で超純水製造工
程に送り込まれ、超純水貯槽、有機成分の除去装置、イ
オン交換膜、UF(精密濾過)モジュールを順に通過
し、純水が超純水に仕上げられる。
First, raw water is pretreated in a pretreatment step by a pretreatment facility and an activated carbon tower, and preparations are made to feed the raw water to a pure water production step. The raw water that has been subjected to the pretreatment is sent to a pure water production process, and an RO (reverse osmosis membrane) unit,
Pure water is produced by passing through a membrane deaeration unit, a pure water storage tank, a mixed-bed ion exchange tower, and a filter in this order. Pure water produced in the pure water production process is generally at least 10 MΩ · cm in specific resistance, sent to the ultrapure water production process in a state where there is almost no ionic substance, an ultrapure water storage tank, an organic component removal device, Pure water passes through an ion exchange membrane and a UF (microfiltration) module in that order, and the pure water is turned into ultrapure water.

【0013】次に、本発明の有機成分の除去装置の構成
に先立って、本発明に係る有機成分の除去方法の実験的
根拠を説明する。図2は、本発明の有機成分の除去装置
の基本構成である電解酸化装置の電極間に生じさせた電
界強度と、電解酸化される非イオン性水中のTOC分解
速度との関係を示したものである。
Next, prior to the configuration of the organic component removing apparatus of the present invention, the experimental basis of the organic component removing method according to the present invention will be described. FIG. 2 shows the relationship between the electric field strength generated between the electrodes of the electrolytic oxidation apparatus, which is the basic configuration of the organic component removing apparatus of the present invention, and the TOC decomposition rate in non-ionic water to be electrolytically oxidized. It is.

【0014】図2中、線Aは電極としてチタン板の表面
に二酸化チタン膜を被覆した場合であり、線Bは電極と
してチタン板単独の場合である。非イオン性水の非抵抗
は17.6MΩ・cm、TOC濃度は10.2μg/l
であった。この非イオン性水をセル容積が1リットルの
電解酸化槽に入れ、電極間距離を10mmとした。この
結果、同図の線Aに示すように非イオン性水の場合でも
電界強度が200V/cm付近から300V/cm付近
の間でTOC分解速度の大幅な上昇が認められた。ちな
みに、電界強度が100V/cmではTOC分解速度が
0.5μg/l・分、200V/cmではTOC分解速
度が2μg/l・分、300V/cmではTOC分解速
度が4μg/l・分となり、1000V/cmではTO
C分解速度が5μg/l・分まで上昇した。
In FIG. 2, line A is a case where the surface of a titanium plate is coated with a titanium dioxide film as an electrode, and line B is a case where a titanium plate is used alone as an electrode. Non-ionic water has a non-resistance of 17.6 MΩ · cm and a TOC concentration of 10.2 μg / l.
Met. This nonionic water was put into an electrolytic oxidation tank having a cell volume of 1 liter, and the distance between the electrodes was set to 10 mm. As a result, as shown by the line A in the figure, even in the case of non-ionic water, a significant increase in the TOC decomposition rate was observed when the electric field intensity was around 200 V / cm to around 300 V / cm. Incidentally, when the electric field intensity is 100 V / cm, the TOC decomposition rate is 0.5 μg / l · min, at 200 V / cm, the TOC decomposition rate is 2 μg / l · min, and when the electric field strength is 300 V / cm, the TOC decomposition rate is 4 μg / l · min. TO at 1000V / cm
The C decomposition rate increased to 5 μg / l · min.

【0015】これに対し、線Bの場合には、電界強度を
大きくしてもTOC分解速度が殆ど上昇せずに0.4付
近の低レベルで推移し、実用化可能なTOC分解速度に
はならない。本発明は、前記実験的根拠に基づいて非イ
オン性水中の有機成分の除去を行うように構成されたも
のであり、電解酸化装置の後段にイオン交換装置を組み
込んだ例で以下に説明する。図3は、本発明に係る有機
成分の除去装置の全体構成図を示す一例である。同図に
示すように、有機成分の除去装置10は、主に電解酸化
装置20とイオン交換装置34とから構成される。
On the other hand, in the case of the line B, even when the electric field intensity is increased, the TOC decomposition rate hardly increases, and the TOC decomposition rate changes at a low level of about 0.4. No. The present invention is configured to remove organic components from non-ionic water based on the above experimental basis, and will be described below by way of an example in which an ion exchange device is incorporated in a stage subsequent to an electrolytic oxidation device. FIG. 3 is an example showing an overall configuration diagram of an organic component removing apparatus according to the present invention. As shown in FIG. 1, the organic component removing device 10 mainly includes an electrolytic oxidation device 20 and an ion exchange device 34.

【0016】この例では、電解酸化装置20は、直方体
をした箱状のケーシング22内に、平板状をした陰極2
4、24…と、平板状をした陽極26、26…とが等間
隔で交互に上下方向に配列されている。各電極24、2
6は、チタン板の表面に二酸化チタン薄膜を被覆して形
成される。二酸化チタン薄膜は、電解酸化時の電極2
4、26から不純物が溶出するのを防止すると同時に、
二酸化チタンの触媒効果で有機成分の分解効果を向上さ
せる。この電極24、26は、少なくとも3年ないし5
年の寿命があり、かつ材料コストも紫外線ランプに比べ
て1/2と安価であるため、全体のコストを紫外線酸化
法の1/5から1/10とすることが可能となる。
In this example, the electrolytic oxidation apparatus 20 includes a flat plate-shaped cathode 2 in a box-shaped casing 22 having a rectangular parallelepiped shape.
, And plate-shaped anodes 26 are alternately arranged at equal intervals in the vertical direction. Each electrode 24, 2
6 is formed by coating the surface of a titanium plate with a titanium dioxide thin film. The titanium dioxide thin film is used as the electrode 2 during electrolytic oxidation.
While preventing impurities from being eluted from 4, 26,
The catalytic effect of titanium dioxide improves the effect of decomposing organic components. The electrodes 24, 26 have at least three to five years.
Since the lamp has a life of one year and the material cost is half as low as that of an ultraviolet lamp, the total cost can be reduced from 1/5 to 1/10 of that of the ultraviolet oxidation method.

【0017】前記ケーシング22の長手方向一方端には
原水供給管28が、長手方向他方端には処理水流出管3
0が取り付けられている。非イオン性水は、原水供給管
28から電解酸化装置20内に流入し、各電極24、2
6間を電気分解されながら通過し、TOCが除去された
処理水が処理水流出管30から電解酸化装置20外に流
出する。
A raw water supply pipe 28 is provided at one longitudinal end of the casing 22, and a treated water outflow pipe 3 is provided at the other longitudinal end.
0 is attached. Non-ionic water flows into the electrolytic oxidation device 20 from the raw water supply pipe 28, and the electrodes 24, 2
The treated water from which TOC is removed flows through the treated water outflow pipe 30 to the outside of the electrolytic oxidation device 20 while being electrolyzed through the space 6.

【0018】電解酸化装置20の外部には、高電圧を発
生可能な直流電源装置32が設けられ、その陰極端子と
陽極端子とは、ケーシング22両端部のコネクタボック
ス33、33を介して各電極24、26に連結され、各
電極24、26間に電圧を印加可能とされる。この直流
電源装置32は各電極24、26間に200V/cm以
上の電界を発生しうる高電圧を供給することができる。
A DC power supply 32 capable of generating a high voltage is provided outside the electrolytic oxidation apparatus 20, and its cathode terminal and anode terminal are connected to each electrode via connector boxes 33 at both ends of the casing 22. 24, 26, and a voltage can be applied between the electrodes 24, 26. The DC power supply 32 can supply a high voltage that can generate an electric field of 200 V / cm or more between the electrodes 24 and 26.

【0019】電解酸化装置20外に流出した処理水は、
イオン交換装置34に導かれ、処理水中の不純物イオン
がイオン交換作用によって除去される。前記イオン交換
装置34は、陽イオン交換樹脂と陰イオン交換樹脂とが
混合された混床式イオン交換樹脂を内部に有するため、
陽イオンにも陰イオンにも対応することができる。イオ
ン交換装置34を通過した超純水は、TOC分析計36
に導かれ、有機成分濃度が連続的に測定分析される。
The treated water flowing out of the electrolytic oxidation device 20 is
It is led to the ion exchange device 34 and impurity ions in the treated water are removed by the ion exchange action. Since the ion exchange device 34 has a mixed bed type ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed,
Both cations and anions can be accommodated. The ultrapure water that has passed through the ion exchanger 34 is converted into a TOC analyzer 36
The organic component concentration is continuously measured and analyzed.

【0020】ちなみに、電極24、26の表面に二酸化
チタン薄膜を形成させるには、TiO2 ゾルの液槽内に
チタンの電極板を浸漬した後、自然乾燥する。浸漬と自
然乾燥を数回繰り返し、最後に、高温度で焼き付けを行
う。浸漬と自然乾燥を繰り返すことにより、1回につき
0.2μm程度の二酸化チタン薄膜が形成される。次
に、上記の如く構成された有機成分の除去装置の作用を
説明する。
Incidentally, in order to form a titanium dioxide thin film on the surfaces of the electrodes 24 and 26, a titanium electrode plate is immersed in a TiO 2 sol liquid tank and then naturally dried. Immersion and natural drying are repeated several times, and finally baking is performed at a high temperature. By repeating immersion and natural drying, a titanium dioxide thin film of about 0.2 μm is formed each time. Next, the operation of the organic component removing apparatus configured as described above will be described.

【0021】電解酸化装置20の電極24、26間には
直流電源装置32から数百〜数千ボルトの高電圧が印加
され、電極24、26間に200V/cm以上の電界強
度が生じた状態に維持される。そして、この電解酸化装
置20内に原水供給管28を介して非イオン性水が供給
されて非イオン性水中のTOCの酸化除去が行われる。
即ち、前記の如く大きな電界強度においては、二酸化チ
タン膜の表面から電子が放出されると同時に陰極面にホ
ールが形成される。この電子やホールは荷電子体といわ
れ、荷電子体が非イオン性水中にOHラジカル等の様々
な酸化種を形成し、この酸化種により非イオン性水中の
TOCが酸化分解される。本発明の有機成分の除去方法
は、二酸化チタン材に光を照射して電子とホールを生成
させる光触媒反応と同じ作用を、電極24、26に二酸
化チタン膜を被覆し電極24、26間に200V/cm
以上の電界強度を生じさせることにより行うものであ
る。
A state in which a high voltage of several hundred to several thousand volts is applied from the DC power supply 32 between the electrodes 24 and 26 of the electrolytic oxidation apparatus 20 and an electric field strength of 200 V / cm or more is generated between the electrodes 24 and 26. Is maintained. Then, nonionic water is supplied into the electrolytic oxidation device 20 via the raw water supply pipe 28, and the TOC in the nonionic water is oxidized and removed.
That is, when the electric field strength is large as described above, electrons are emitted from the surface of the titanium dioxide film and holes are formed on the cathode surface at the same time. These electrons and holes are called valence bodies, and the valence bodies form various oxidizing species such as OH radicals in the nonionic water, and TOC in the nonionic water is oxidized and decomposed by the oxidizing species. The method for removing an organic component according to the present invention has the same effect as the photocatalytic reaction of irradiating titanium dioxide material with light to generate electrons and holes, by covering the electrodes 24 and 26 with a titanium dioxide film and applying 200 V between the electrodes 24 and 26. / Cm
This is performed by generating the above electric field strength.

【0022】これにより、非イオン性水であっても、非
イオン性水中にイオン性物質を添加することなく非イオ
ン性水中の微量有機成分の酸化除去を行うことができ
る。図4は、本発明の有機成分の除去方法において、二
酸化チタン膜の膜厚とTOC分解速度の関係を、電解酸
化時間ごとに経時的に示したものである。具体的には、
二酸化チタン膜の膜厚としては、TiO2 ゾルを1回塗
布しTiO2 平均膜厚が0.18μmの電極と、TiO
2 ゾルを5回塗布しTiO2 平均膜厚が0.51μmの
電極と、TiO2 ゾルを10回塗布しTiO2 平均膜厚
が0.95μmの電極とについて行った。尚、比較例と
して、チタン板単独の電極についても行った。非イオン
性水は、比抵抗が17.6MΩ・cmのものを用いた。
Thus, even in the case of non-ionic water, trace amounts of organic components in the non-ionic water can be oxidized and removed without adding an ionic substance to the non-ionic water. FIG. 4 shows the relationship between the thickness of the titanium dioxide film and the TOC decomposition rate over time for each electrolytic oxidation time in the method for removing an organic component of the present invention. In particular,
As for the thickness of the titanium dioxide film, an electrode having a TiO 2 sol applied once and an average TiO 2 thickness of 0.18 μm;
Two sols were applied 5 times and the average TiO 2 film thickness was 0.51 μm. The other TiO 2 sol was applied 10 times and the average TiO 2 film thickness was 0.95 μm. In addition, as a comparative example, an experiment was performed on an electrode made of a titanium plate alone. Non-ionic water having a specific resistance of 17.6 MΩ · cm was used.

【0023】この結果、それぞれ1000μg/lであ
ったTOC濃度が、4時間電解酸化を行うと、チタン板
単独の電極では850μg/lに、TiO2 平均膜厚が
0.18μmの電極では730μg/lに、TiO2
均膜厚が0.51μmの電極では250μg/lに、T
iO2 平均膜厚が0.95μmの電極では80μg/l
になる。この結果から、TiO2 膜厚が厚い程、TOC
分解速度が速く分解性能が高いことがわかる。
As a result, when the TOC concentration, which was 1000 μg / l each, was subjected to electrolytic oxidation for 4 hours, the electrode of the titanium plate alone became 850 μg / l, and the electrode having an average TiO 2 film thickness of 0.18 μm was 730 μg / l. and 250 μg / l for an electrode having an average TiO 2 film thickness of 0.51 μm.
80 μg / l for an electrode having an average iO 2 film thickness of 0.95 μm
become. From this result, as the TiO 2 film thickness increases, the TOC increases.
It can be seen that the decomposition rate is high and the decomposition performance is high.

【0024】図5は図4をもとに、TiO2 薄膜の膜厚
に対するTOC分解速度を示した図である。同図から、
TiO2 の膜厚が0.5μm付近でTOC分解速度が急
激に上昇する。従って、電極のTiO2 膜厚は0.5μ
m以上が好ましい。図6は、同じ膜厚のTiO2 薄膜が
形成された電極において、電解酸化のみを行った場合
と、電解酸化を行い更にイオン交換を行った場合とのT
OC分解速度の関係を電解酸化時間ごとに経時的に示し
たものである。尚、使用される電極のTiO2 平均膜厚
は0.62μmである。
FIG. 5 is a graph showing the TOC decomposition rate with respect to the thickness of the TiO 2 thin film based on FIG. From the figure,
When the thickness of TiO 2 is around 0.5 μm, the TOC decomposition rate sharply increases. Therefore, the TiO 2 film thickness of the electrode is 0.5 μm.
m or more is preferable. Figure 6 is the electrode TiO 2 thin film is formed of the same thickness, T of the case of performing the case where only electrolytic oxidation, a further ion exchange carried out electrolytic oxidation
It shows the relationship of the OC decomposition rate over time for each electrolytic oxidation time. The average thickness of the TiO 2 film used is 0.62 μm.

【0025】この結果、1000μg/lであったTO
C濃度が、4時間電解酸化のみを行った場合は300μ
g/lに、4時間電解酸化を行い更にイオン交換を行っ
た場合は100μg/lになる。この結果から、同じ膜
厚ではイオン交換を行った場合のほうがTOC分解効果
が高いことがわかる。従って、本発明の電界酸化を行っ
た後にイオン交換を行うことにより、TOC除去効果を
より向上させることができる。
As a result, the TO of 1000 μg / l
C concentration is 300μ when only electrolytic oxidation is performed for 4 hours.
g / l for 4 hours of electrolytic oxidation followed by ion exchange to 100 μg / l. From this result, it can be seen that the TOC decomposition effect is higher when ion exchange is performed at the same film thickness. Therefore, by performing ion exchange after performing the field oxidation of the present invention, the TOC removal effect can be further improved.

【0026】図7は、TOC分解結果をもとに、10m
3 /h処理規模の有機成分の除去装置を製作し、超純水
製造システムに適用した例である。TOC濃度10.2
ppbの原水を印加電圧1000Vにおいて電解酸化法
によりTOC除去を行なう。さらに、処理槽20の後段
にイオン交換樹脂装置34を配置し、約120日にわた
りTOCを測定した。その結果、電界酸化装置20から
流出する処理液のTOC濃度は4〜6ppbであり、さ
らに後段のイオン交換樹脂装置34を通過させることで
1ppb以下となった。ここで、イオン交換樹脂装置3
4でTOC成分が除去される現象は、電解酸化装置20
内でイオン性の有機成分が形成されたことを意味してい
る。いずれにしても、従来の紫外線酸化法によるTOC
の残存濃度が1ppb程度であることを考えると、本発
明の電解酸化法を採用することで、従来法と同等もしく
はそれ以上のTOC除去性能が得られることがわかる。
FIG. 7 shows a graph of 10 m based on the TOC decomposition result.
This is an example in which an apparatus for removing organic components on a 3 / h treatment scale is manufactured and applied to an ultrapure water production system. TOC concentration 10.2
The TOC is removed from the ppb raw water at an applied voltage of 1000 V by electrolytic oxidation. Further, an ion exchange resin device 34 was disposed at a subsequent stage of the processing tank 20, and TOC was measured over about 120 days. As a result, the TOC concentration of the treatment liquid flowing out of the electric field oxidation device 20 was 4 to 6 ppb, and was reduced to 1 ppb or less by passing through the ion exchange resin device 34 in the subsequent stage. Here, the ion exchange resin device 3
The phenomenon in which the TOC component is removed in Step 4
Means that an ionic organic component was formed therein. In any case, TOC by the conventional ultraviolet oxidation method
Considering that the residual concentration of is approximately 1 ppb, it can be seen that TOC removal performance equivalent to or higher than the conventional method can be obtained by employing the electrolytic oxidation method of the present invention.

【0027】尚、本発明の微量有機成分の除去方法及び
装置に使用する電極24、26は、予めチタン材の表面
処理を行って二酸化チタン膜を形成したが、チタン材そ
のものを直接電極24、26として使用しても良い。こ
の場合は、電解が進むに伴って、徐々に二酸化チタンの
膜が電極24、26表面に形成されることになるが、そ
れに要する時間は比較的短い。
The electrodes 24 and 26 used in the method and apparatus for removing a trace amount of organic components according to the present invention were previously subjected to a surface treatment of a titanium material to form a titanium dioxide film. 26 may be used. In this case, a film of titanium dioxide is gradually formed on the surfaces of the electrodes 24 and 26 as the electrolysis proceeds, but the time required for the film is relatively short.

【0028】[0028]

【発明の効果】以上説明したように、本発明の有機成分
の除去方法及び装置によれば、従来の電解酸化法におい
ては困難であった有機成分の除去が、電極の表面に二酸
化チタン膜を形成させると共に、前記電極間に電界強度
200V/cm以上の電界を生じさせることにより、原
水に電気伝導体を添加しなくとも高いレベルでの有機成
分の除去が可能である。また、コストも紫外線酸化法の
1/5から1/10のコストであり、経済的である。
As described above, according to the method and apparatus for removing an organic component of the present invention, the removal of the organic component, which was difficult in the conventional electrolytic oxidation method, is achieved by forming a titanium dioxide film on the surface of the electrode. By forming an electric field having an electric field strength of 200 V / cm or more between the electrodes, it is possible to remove organic components at a high level without adding an electric conductor to raw water. In addition, the cost is 1/5 to 1/10 that of the ultraviolet oxidation method, which is economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機成分の除去方法及び装置の適用例
であり、半導体製造用の超純水の製造工程を説明する図
FIG. 1 is an application example of a method and an apparatus for removing an organic component according to the present invention, and is a view illustrating a process of producing ultrapure water for producing a semiconductor.

【図2】本発明の有機成分の除去装置の基本構成である
電解酸化装置の電極間に生じさせた電界強度と、電解酸
化される非イオン性水中のTOC分解速度との関係を示
す図
FIG. 2 is a diagram showing the relationship between the electric field strength generated between electrodes of an electrolytic oxidation device, which is a basic configuration of the organic component removing device of the present invention, and the TOC decomposition rate in non-ionic water to be electrolytically oxidized.

【図3】本発明に係る有機成分の除去装置の全体構成図FIG. 3 is an overall configuration diagram of an organic component removing apparatus according to the present invention.

【図4】本発明の有機成分の除去方法において、二酸化
チタン膜の膜厚とTOC分解速度の関係を、電解酸化時
間ごとに経時的に示す図
FIG. 4 is a diagram showing the relationship between the thickness of a titanium dioxide film and the TOC decomposition rate over time for each electrolytic oxidation time in the method for removing an organic component according to the present invention.

【図5】図4をもとに、TiO2 薄膜の膜厚に対するT
OC分解速度を示した図
FIG. 5 is a graph showing the relationship between the thickness of a TiO 2 thin film and T
Diagram showing OC decomposition rate

【図6】同じ膜厚のTiO2 薄膜が形成された電極にお
いて、電解酸化のみを行った場合と、電解酸化を行い更
にイオン交換を行った場合とのTOC分解速度の関係を
電解酸化時間ごとに経時的に示す図
FIG. 6 is a graph showing the relationship between the TOC decomposition rate in the case where only the electrolytic oxidation is performed and the case where the electrolytic oxidation is performed and the ion exchange is further performed on the electrode on which the TiO 2 thin film having the same thickness is formed, for each electrolytic oxidation time Fig.

【図7】約120日にわたる連続処理結果を示す図FIG. 7 is a diagram showing a result of continuous processing over about 120 days.

【符号の説明】[Explanation of symbols]

10…有機成分の除去装置 20…電解酸化装置 24…陰極 26…陽極 28…原水供給管 30…処理水流出管 32…直流電源装置 34…イオン交換装置 36…TOC分析計 DESCRIPTION OF SYMBOLS 10 ... Organic component removal apparatus 20 ... Electrolytic oxidation apparatus 24 ... Cathode 26 ... Anode 28 ... Raw water supply pipe 30 ... Treated water outflow pipe 32 ... DC power supply apparatus 34 ... Ion exchange apparatus 36 ... TOC analyzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解酸化装置によって非イオン性水に含ま
れる有機物を酸化除去する有機成分の除去方法におい
て、 前記電解酸化装置の陽極と陰極の表面に二酸化チタン膜
を形成させると共に、前記電極間に電界強度200V/
cm以上の電界を生じさせることを特徴とする有機成分
の除去方法。
1. A method for removing organic components by oxidizing and removing organic substances contained in nonionic water by an electrolytic oxidation apparatus, comprising: forming a titanium dioxide film on surfaces of an anode and a cathode of the electrolytic oxidation apparatus; Electric field strength 200V /
A method for removing an organic component, which comprises generating an electric field of not less than 1 cm.
【請求項2】電解酸化装置によって非イオン性水に含ま
れる有機物を酸化除去する有機成分の除去装置におい
て、 前記電解酸化装置の陽極と陰極の表面に二酸化チタン膜
を形成すると共に、 前記電極間に電界強度200V/cm以上の電界を生じ
させる電圧を印加可能な電源装置を設けたことを特徴と
する有機成分の除去装置。
2. An organic component removing device for oxidizing and removing organic substances contained in nonionic water by an electrolytic oxidizing device, wherein a titanium dioxide film is formed on the surfaces of an anode and a cathode of the electrolytic oxidizing device. A device for applying a voltage for generating an electric field having an electric field strength of 200 V / cm or more.
【請求項3】前記二酸化チタン膜の膜厚を0.5μm以
上とすることを特徴とする請求項2記載の有機成分の除
去装置。
3. The organic component removing apparatus according to claim 2, wherein said titanium dioxide film has a thickness of 0.5 μm or more.
【請求項4】前記電解酸化装置の後段にイオン交換樹脂
装置を設け、前記電解酸化装置で処理した処理水を前記
イオン交換樹脂装置に通水するようにしたことを特徴と
する請求項2又は3記載の有機成分の除去装置。
4. The apparatus according to claim 2, wherein an ion exchange resin device is provided at a stage subsequent to said electrolytic oxidation device, and the treated water treated by said electrolytic oxidation device is passed through said ion exchange resin device. 3. The organic component removing device according to 3.
JP8335925A 1996-12-16 1996-12-16 Method and apparatus for removing organic component Pending JPH10165956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8335925A JPH10165956A (en) 1996-12-16 1996-12-16 Method and apparatus for removing organic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8335925A JPH10165956A (en) 1996-12-16 1996-12-16 Method and apparatus for removing organic component

Publications (1)

Publication Number Publication Date
JPH10165956A true JPH10165956A (en) 1998-06-23

Family

ID=18293893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8335925A Pending JPH10165956A (en) 1996-12-16 1996-12-16 Method and apparatus for removing organic component

Country Status (1)

Country Link
JP (1) JPH10165956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038155A1 (en) * 2001-10-10 2003-05-08 Oro As Arrangement of an electrode, method for making same, and use thereof
KR101051454B1 (en) * 2010-09-30 2011-07-25 (주)엘라이저테크놀로지 The removal method of toc from waste water
JP2014031587A (en) * 2008-12-10 2014-02-20 Dowa Holdings Co Ltd Electrolytic cell for electrolytic reduction of oxygen acid ion
JPWO2013111788A1 (en) * 2012-01-23 2015-05-11 シャープ株式会社 Water purification device and disinfectant production device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038155A1 (en) * 2001-10-10 2003-05-08 Oro As Arrangement of an electrode, method for making same, and use thereof
JP2014031587A (en) * 2008-12-10 2014-02-20 Dowa Holdings Co Ltd Electrolytic cell for electrolytic reduction of oxygen acid ion
KR101051454B1 (en) * 2010-09-30 2011-07-25 (주)엘라이저테크놀로지 The removal method of toc from waste water
JPWO2013111788A1 (en) * 2012-01-23 2015-05-11 シャープ株式会社 Water purification device and disinfectant production device

Similar Documents

Publication Publication Date Title
AU673584B2 (en) Apparatus for removal of organic material from water
CN1083403C (en) Method and apparatus for wet treatment of solid surfaces
EP0068522B1 (en) Process and apparatus for the synthetic preparation of ozone by electrolysis, and its application
US5894077A (en) Radioactive effluent treatment
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
US5516972A (en) Mediated electrochemical oxidation of organic wastes without electrode separators
JP5093801B2 (en) Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
CN110636990A (en) Water treatment, desalination and chemical substance production combined system
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
WO2001061075A1 (en) Electrode pair comprising an anode having a semiconductor coating and a method linked thereto for electrolytically separating water
Nyongesa et al. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems
CN106673276A (en) Apparatus for treating high-salinity wastewater jointly by photoelectric catalytic oxidation and electric adsorption
KR100886906B1 (en) Manufacturing method of titanium membrane having nano-porous photocatalytic titania surface
JPH10165956A (en) Method and apparatus for removing organic component
CN112225382A (en) Method for removing traditional Chinese medicine and personal care product in wastewater
Hori et al. Electrochemical Investigation of Photocatalytic Oxidation of NO 2− at TiO2 (Anatase) in the Presence of O 2
WO2020099370A1 (en) Electrolytic cell and method for obtaining graphene by means of electrochemical exfoliation
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
DE10219688A1 (en) Process for the oxidative treatment of surfaces using an electrolyte fluid containing an oxidant used in the microelectronics industry comprises pumping the electrolyte in a cycle
JP5496629B2 (en) Organic substance decomposition apparatus and organic substance decomposition method in pure water
JPH11659A (en) Pure water producing apparatus
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
JP2001259665A (en) Hydrosulfite production waste liquid treating method
CN215249747U (en) Corrosion-resistant water treatment coating anode structure
JPH08276187A (en) Method for electrochemical processing of sulfite-containing solution

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050323