JPH10164876A - Thermoelectric generator - Google Patents

Thermoelectric generator

Info

Publication number
JPH10164876A
JPH10164876A JP8321833A JP32183396A JPH10164876A JP H10164876 A JPH10164876 A JP H10164876A JP 8321833 A JP8321833 A JP 8321833A JP 32183396 A JP32183396 A JP 32183396A JP H10164876 A JPH10164876 A JP H10164876A
Authority
JP
Japan
Prior art keywords
heat
fan
fin
thermoelectric
thermoelectric generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8321833A
Other languages
Japanese (ja)
Inventor
Akiko Miyake
章子 三宅
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8321833A priority Critical patent/JPH10164876A/en
Publication of JPH10164876A publication Critical patent/JPH10164876A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a small thermoelectric generator whose efficiency is high, whose durability is high and which is provided with a heat-dissipating part of an air cooled type. SOLUTION: A thermoelectric element or one pair of face-shaped power generation units 1 in which a plurality of thermoelectric elements are connected in series are sandwiched between heat-dissipating parts 10, which are composed of fin parts 2 and of fans 4 and a heat input part 3, and every heat-dissipating part 10 is formed as an integrated structure in which every fan 4 is buried at the inside of every fin 2. As a result, the area of every heat-dissipating part 10 can be reduced to about 1/2 that in conventional cases, and the resistance of every fin to the flow of a forced wind due to every fan can be reduced. As a result, the quantity of airflow of every fan can be increased without changing the electric power of every fan, and every heat-dissipating part of high performance can be constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電材料内に温度
差を与えたときに生じる熱起電力を利用し、熱と電気の
直接変換を行う熱熱電発電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator for directly converting heat and electricity by utilizing a thermoelectromotive force generated when a temperature difference is applied to a thermoelectric material.

【0002】[0002]

【従来の技術】従来、発電器としては、電池やエンジン
発電機が主流であった。しかし、電池の場合、充電に時
間がかかること、また、ガソリンを燃料とするエンジン
発電機の場合、動作時の音が大きいこと、など用途によ
っては不都合な点もあった。そこで、発電効率に関して
は前二者に及ばないが、低騒音で充電不要な発電手段と
して、熱電発電器に着目した。
2. Description of the Related Art Conventionally, batteries and engine generators have been mainly used as generators. However, in the case of a battery, it takes a long time to charge, and in the case of an engine generator using gasoline as a fuel, the operation noise is loud. Therefore, although the power generation efficiency is not as high as the former two, attention has been paid to a thermoelectric generator as a low-noise, charge-free power generation means.

【0003】熱電材料内に温度差を与えたときに生じる
熱起電力を利用し、熱と電気の直接変換を行う熱電発電
器は、非常用電源、携帯用電源、僻地用電源、廃熱回収
装置などとして注目されている。これらの発電器の性能
は、熱電材料両端に生じる温度差の二乗に比例して向上
する。そのため、特に耐熱温度の比較的低いBi-Te系材
料などを用いる場合は、発電器の性能向上は放熱部の性
能に負うところが大きい。高性能の放熱部は水冷方式な
どで実現できるが、システムが大きくかつ複雑になり、
またポンプなどへの電力供給が必要になるため、かなり
大規模な発電装置向きといえる。特に、出力数100W
以下の発電器であれば、高性能で、軽量・コンパクトな
空冷方式の放熱部が必要である。
A thermoelectric generator for performing direct conversion of heat and electricity by utilizing a thermoelectromotive force generated when a temperature difference is applied to a thermoelectric material is an emergency power supply, a portable power supply, a remote power supply, and waste heat recovery. It is attracting attention as a device. The performance of these generators increases in proportion to the square of the temperature difference across the thermoelectric material. Therefore, especially when a Bi-Te-based material having a relatively low heat-resistant temperature is used, the performance improvement of the power generator largely depends on the performance of the heat radiation part. A high-performance radiator can be realized by a water-cooling method, but the system becomes large and complicated,
In addition, since power supply to a pump or the like is required, it can be said that this is suitable for a considerably large-scale power generator. In particular, the number of outputs is 100W
The following generators require a high-performance, lightweight, compact air-cooled radiator.

【0004】従来、熱電発電器用の空冷方式の放熱部と
しては、特願平8-149239にかかる出願に述べた構成が一
般的であった。その発電器の構成は、図3に示されるよ
うに、発電ユニット1が熱入力部3およびフィン2に狭
持されており、ファン4がフィン2の外表面に設置され
るものである。
Conventionally, the configuration described in the application related to Japanese Patent Application No. 8-149239 has been generally used as an air-cooled radiator for a thermoelectric generator. As shown in FIG. 3, the configuration of the power generator is such that the power generation unit 1 is sandwiched between the heat input unit 3 and the fin 2, and the fan 4 is installed on the outer surface of the fin 2.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図3の
放熱部の構成では、放熱部で発電器全体積の1/2以上を
占めるほど大きくなり、またファン4による強制風の流
れがフィン2で妨げられ、ファン風量が制限されてしま
う課題があった。そこで、ファン駆動電力などは変えず
に、よりコンパクトかつ高性能な放熱部の構成が必要で
あった。
However, in the configuration of the heat radiating portion shown in FIG. 3, the heat radiating portion becomes larger as occupying more than half of the total volume of the generator, and the flow of the forced wind by the fan 4 is reduced by the fins 2. There was a problem that the airflow was hindered and the fan airflow was restricted. Therefore, a configuration of a more compact and high-performance radiator without changing the fan drive power or the like was required.

【0006】本発明は、コンパクトかつ高性能な空冷方
式の放熱部の構成を有する熱電発電器を提供することを
目的とする。
An object of the present invention is to provide a thermoelectric generator having a compact and high-performance air-cooling type heat radiating portion.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明の熱電発電器の放熱部は、ファンをフィン部
内部に埋め込む一体型構造により、体積が従来の1/2程
度とコンパクトにでき、またフィン部による抵抗が減少
するためファン風量が増大できるため、従来より高性能
であることを特徴とする。
Means for Solving the Problems In order to solve this problem, the radiator of the thermoelectric generator of the present invention has a volume as small as about 1/2 of the conventional one due to an integrated structure in which a fan is embedded inside the fin. In addition, since the resistance due to the fin portion is reduced, the fan airflow can be increased, so that the performance is higher than that of the related art.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図2を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】(実施の形態1)図1(a)は、本発明に
かかる実施の形態1の熱電発電器の縦断側面図であり、
図1(b)はその熱電発電器の放熱部10の正面図であ
る。図1(a)において、1は一対の熱電素子または複
数個の熱電素子を直列に接続した面状発電ユニットであ
り、フィン部2と熱入力部3とに狭持され、熱入力部3
の両面に設置されている。フィン部2は、円盤状の基板
の外表面に多数のフィン2cを有するアルミニウム製単
板である。図1(b)に示すように、フィン部2の中央
部2aではフィン2cが円形に低く、あるいは存在せ
ず、そこにDC軸流ファン4が設置されている。フィン
2cは、ファン4の強制風がファン4の中心から放射線
状に流れるように、放射状に形成されている。2bはそ
の隙間である。熱入力部3は、アルミニウム製などの熱
伝導性の燃焼室5と燃焼室5の内部に設置された燃焼部
6よりなる。燃焼室5は内壁にフィン構造を有すること
が望ましい。7は燃料タンクで、ノズル8およびスロー
ト部9を介して燃焼室5に連結している。
(Embodiment 1) FIG. 1A is a vertical sectional side view of a thermoelectric generator according to Embodiment 1 of the present invention.
FIG. 1B is a front view of a radiator 10 of the thermoelectric generator. In FIG. 1A, reference numeral 1 denotes a planar power generation unit in which a pair of thermoelectric elements or a plurality of thermoelectric elements are connected in series, and is sandwiched between a fin portion 2 and a heat input portion 3;
Are installed on both sides. The fin portion 2 is an aluminum single plate having a large number of fins 2c on the outer surface of a disk-shaped substrate. As shown in FIG. 1 (b), a fin 2c is circularly low or absent in a central portion 2a of the fin portion 2, and a DC axial fan 4 is installed there. The fins 2 c are formed radially so that the forced air of the fan 4 flows radially from the center of the fan 4. 2b is the gap. The heat input unit 3 includes a heat conductive combustion chamber 5 made of aluminum or the like and a combustion unit 6 installed inside the combustion chamber 5. The combustion chamber 5 preferably has a fin structure on the inner wall. A fuel tank 7 is connected to the combustion chamber 5 via a nozzle 8 and a throat portion 9.

【0010】以上のように構成された熱電発電器につい
て、以下、その動作を述べる。
The operation of the thermoelectric generator configured as described above will be described below.

【0011】図1では燃料として、市販のブタンガスを
用いた。ノズル8から噴射された燃料ガスは、空気を巻
き込んだ混合ガスとなって、スロート部9を通って燃焼
室5内で燃焼する。生じた排ガスは燃焼室5上部の排気
口より発電器外部に放出される。熱入力部3で得られた
燃焼熱は、面状発電ユニット1の熱電素子高温側表面に
供給され、熱電素子の低温側はフィン部2と接している
ため、熱電素子高温側と低温側との間に温度差が生じ、
熱起電力による発電が行なわれる。発電出力がファン4
駆動に必要な大きさに達すると、ファン4が回転し始
め、熱電素子に生じる温度差とそれに伴う熱起電力が増
大し、やがて定常状態に達する。
In FIG. 1, a commercially available butane gas was used as the fuel. The fuel gas injected from the nozzle 8 becomes a mixed gas containing air and burns in the combustion chamber 5 through the throat portion 9. The generated exhaust gas is discharged to the outside of the generator from the exhaust port at the upper part of the combustion chamber 5. The heat of combustion obtained in the heat input unit 3 is supplied to the surface of the planar power generation unit 1 on the high-temperature side of the thermoelectric element, and the low-temperature side of the thermoelectric element is in contact with the fin unit 2. Temperature difference between
Electric power is generated by thermoelectromotive force. Generation output is fan 4
When the size required for driving is reached, the fan 4 starts to rotate, the temperature difference generated in the thermoelectric element and the resulting thermoelectromotive force increase, and eventually reach a steady state.

【0012】本実施の形態の発電器を駆動させると、フ
ァン2個(DC12V,100mA)駆動まで30秒程度、出力
安定(15W)まで5〜8分を要した。出力安定時の素子表
面温度は高温側210℃、低温側90℃であった。
When the generator of this embodiment was driven, it took about 30 seconds to drive two fans (12 V DC, 100 mA) and 5 to 8 minutes to stabilize the output (15 W). When the output was stable, the element surface temperature was 210 ° C. on the high temperature side and 90 ° C. on the low temperature side.

【0013】本実施の形態によれば、熱交換フィン部2
とファン4が一体型の放熱部10を構成できるため、放
熱部10の体積を大幅に縮小できる。また、ファン4の
強制風がフィン2cの隙間をファン4中心部より放射状
に流れる構成により、フィン2cによる抵抗が減少する
ためファン風量を増大させることができる。その結果、
ファン能力を最大限に生かすことができ、放熱部10の
性能向上が可能となった。同時に、熱交換された空気の
出口温度を低温に抑えることができるため、安全性も確
保できる。
According to this embodiment, the heat exchange fin portion 2
The fan 4 and the fan 4 can form an integrated heat radiating portion 10, so that the volume of the heat radiating portion 10 can be significantly reduced. Further, since the forced wind of the fan 4 flows radially from the center of the fan 4 through the gap between the fins 2c, the resistance due to the fins 2c decreases, so that the fan airflow can be increased. as a result,
The ability of the fan can be utilized to the maximum, and the performance of the heat radiating unit 10 can be improved. At the same time, the outlet temperature of the heat-exchanged air can be kept low, so that safety can be ensured.

【0014】図1では、ガスタンクを発電器底部に設置
し、燃料ガスをフィン部からの熱で予熱する構成とした
が、タンク交換などがしやすいように、タンクを外付け
としてもよい。その場合、ノズルに送り込まれる前に燃
料ガスを燃焼熱または排気熱で予熱できる構成にするこ
とが望ましい。
In FIG. 1, the gas tank is installed at the bottom of the generator and the fuel gas is preheated by the heat from the fins. However, the tank may be externally mounted so that the tank can be easily replaced. In that case, it is desirable that the fuel gas be preheated by combustion heat or exhaust heat before being sent to the nozzle.

【0015】なお、今回はブタンガスを燃料として用い
たが、プロバンガス、天然ガス等を用いることももちろ
ん可能である。また、アルコール類などの液体燃料を用
いる場合は、発電器の取り扱いは不便になるものの、ノ
ズルおよびスロートは不要となり、よりシンプルな構成
が実現できる。
In this case, butane gas is used as the fuel, but it is of course possible to use propane gas, natural gas and the like. Further, when a liquid fuel such as alcohols is used, the handling of the generator becomes inconvenient, but the nozzle and the throat become unnecessary, and a simpler configuration can be realized.

【0016】また、熱入力部の熱源として、触媒燃焼熱
を利用すれば、面状に均一に熱入力できるため、より高
効率な発電器が構成できる。また、燃料電池やエンジン
などの廃熱を熱源として利用し、廃熱の一部を回収する
手段としての発電器を構成してもよい。
Further, if catalytic combustion heat is used as the heat source of the heat input section, heat can be input uniformly in a plane, so that a more efficient power generator can be constructed. Further, a generator as a means for recovering a part of the waste heat by using waste heat of a fuel cell, an engine, or the like may be used.

【0017】(実施の形態2)図2(a)は、本発明の
実施の形態2による熱電発電器の放熱部10の構成を示
した縦断側面図であり、図2(b)はその熱電発電器の
放熱部10の正面図である。図2において、2はアルミ
ニウム製フィン部、4はDC軸流ファンであり、10が
ファンのモーター部である。モーター部11は断熱層1
2を介して、フィン部2の内部に埋め込まれている。断
熱層12には、アルミナウール等のセラミックなどを用
いることができる。また、数ミリ程度の空気層を設け、
断熱層としてもよい。
(Embodiment 2) FIG. 2A is a vertical sectional side view showing a configuration of a heat radiating portion 10 of a thermoelectric generator according to Embodiment 2 of the present invention, and FIG. It is a front view of the heat radiation part 10 of a generator. In FIG. 2, reference numeral 2 denotes an aluminum fin, 4 denotes a DC axial fan, and 10 denotes a motor of the fan. The motor part 11 is a heat insulating layer 1
2, it is embedded inside the fin portion 2. For the heat insulating layer 12, ceramics such as alumina wool can be used. In addition, we provide air layer of several millimeters,
It may be a heat insulating layer.

【0018】以上の放熱部の構成を特徴とする熱電発電
器の動作は、次の点を除き実施の形態1と同様である。
The operation of the thermoelectric generator having the above-described structure of the heat radiator is the same as that of the first embodiment except for the following points.

【0019】すなわち、モーター部11とフィン部2と
の間に断熱層12を設ける構造により、本実施の形態の
場合、フィン部中央部の温度が100℃のときでも、モー
ター部11を70℃以下に保つことができるため、ファン
4の耐久性を向上できる。
That is, the structure in which the heat insulating layer 12 is provided between the motor unit 11 and the fin unit 2 enables the motor unit 11 to be heated to 70 ° C. even when the temperature of the center of the fin unit is 100 ° C. Therefore, the durability of the fan 4 can be improved.

【0020】なお、発電器の大きさや形状が変化して
も、フィン部底板の周辺部と中央部の厚さや、断熱層の
厚さを最適化すれば、本発明を適用することができる。
Even if the size and shape of the power generator change, the present invention can be applied by optimizing the thickness of the peripheral portion and the central portion of the fin bottom plate and the thickness of the heat insulating layer.

【0021】[0021]

【発明の効果】以上のように本発明によれば、触媒燃焼
熱を含む燃焼熱や廃熱を熱源とする熱電発電器におい
て、高効率で耐久性の高い放熱部のコンパクトな構成が
可能となるため、熱電発電器の小型・軽量化または高性
能化を実現することができる。
As described above, according to the present invention, in a thermoelectric generator using combustion heat including catalytic combustion heat or waste heat as a heat source, a compact configuration of a highly efficient and highly durable radiator can be realized. Therefore, the thermoelectric generator can be reduced in size and weight or can have higher performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による熱電発電器の構成
FIG. 1 is a configuration diagram of a thermoelectric generator according to a first embodiment of the present invention.

【図2】本発明の実施の形態2による熱電発電器の構成
FIG. 2 is a configuration diagram of a thermoelectric generator according to a second embodiment of the present invention.

【図3】従来の熱電発電器の構成図FIG. 3 is a configuration diagram of a conventional thermoelectric generator.

【符号の説明】[Explanation of symbols]

1 面状発電ユニット(熱電素子) 2 フィン部 3 熱入力部 4 ファン 5 燃焼室 6 燃焼部 7 燃料タンク 8 ノズル 9 スロート部 10 放熱部 11 モーター部 12 断熱層 DESCRIPTION OF SYMBOLS 1 Surface power generation unit (thermoelectric element) 2 Fin part 3 Heat input part 4 Fan 5 Combustion chamber 6 Burning part 7 Fuel tank 8 Nozzle 9 Throat part 10 Heat radiating part 11 Motor part 12 Heat insulation layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱を入力する熱入力部と、フィン部およ
びファンを有する放熱部と、その放熱部と前記熱入力部
に狭持された、熱電素子を利用して熱電変換を行う発電
ユニットと、燃料を供給する燃料供給手段を備え、熱を
前記熱電素子の高温側に直接供給し、同時に前記熱電素
子の放熱側に接している放熱部を空冷し、熱電発電を行
う発電器であって、前記ファンの全部又は一部が、前記
放熱部のフィン部の内部に収納されていることを特徴と
する熱電発電器。
1. A heat input section for inputting heat, a heat radiating section having a fin portion and a fan, and a power generation unit for performing thermoelectric conversion using a thermoelectric element sandwiched between the heat radiating section and the heat input section. And a fuel supply means for supplying fuel, which supplies heat directly to the high-temperature side of the thermoelectric element, and at the same time, air-cools a radiating portion in contact with the radiating side of the thermoelectric element to perform thermoelectric generation. A thermoelectric generator, wherein all or a part of the fan is housed inside a fin portion of the heat radiating portion.
【請求項2】 フィン部のフィンは、放射状に形成さ
れ、その放射の中心のフィンが無い若しくは低い部分に
前記ファンが配置されていることを特徴とする請求項1
記載の熱電発電器。
2. The fin of the fin portion is formed radially, and the fan is arranged in a portion where the fin at the center of the radiation is absent or low.
A thermoelectric generator as described.
【請求項3】ファンは軸流ファンであって、前記ファン
のモーター部と前記フィン部との間に断熱手段が設けら
れていることを特徴とする請求項1記載の熱電発電器。
3. The thermoelectric generator according to claim 1, wherein the fan is an axial fan, and a heat insulating means is provided between the motor portion of the fan and the fin portion.
JP8321833A 1996-12-02 1996-12-02 Thermoelectric generator Pending JPH10164876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8321833A JPH10164876A (en) 1996-12-02 1996-12-02 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8321833A JPH10164876A (en) 1996-12-02 1996-12-02 Thermoelectric generator

Publications (1)

Publication Number Publication Date
JPH10164876A true JPH10164876A (en) 1998-06-19

Family

ID=18136942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8321833A Pending JPH10164876A (en) 1996-12-02 1996-12-02 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH10164876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029919A (en) * 2002-10-04 2004-04-08 에이스텍 주식회사 Solar battery system
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029919A (en) * 2002-10-04 2004-04-08 에이스텍 주식회사 Solar battery system
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator

Similar Documents

Publication Publication Date Title
US5917144A (en) Thermoelectric generator, thermoelectric generator for outdoor use
US8519254B2 (en) Device and method for generating electrical power
JP5737139B2 (en) Thermoelectric generator
JP2007166721A (en) Electric power generator
JP2005006492A (en) Low-temperature and solid-state thermoelectric energy converter
WO2009064551A2 (en) Device and method for generating electrical power
JP2013093466A (en) Thermoelectric generator
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
JPH10164876A (en) Thermoelectric generator
JP2009293390A (en) Gas turbine engine
JPH10150787A (en) Thermoelectric generator for outdoor use
US8003880B2 (en) Method and devices for generating energy from photovoltaics and temperature differentials
JPH0679168U (en) Exhaust heat power generator
JP2013150420A (en) Thermoelectric generator
JPH05187256A (en) Gas turbine generating device
JPH10201269A (en) Dual-purpose electricity and steam generation system
JP2013150419A (en) Thermoelectric generator
JP2001263088A (en) Jet engine using generating element by temperature difference
JPH02303381A (en) Cogeneration facility
JP5691999B2 (en) Thermoelectric generator
WO2024082689A1 (en) Combined heat and power generation apparatus, thermoelectric power generation system, voltage control method and heating device
JPH07227092A (en) Thermoelectric type electricity generator
CN209782883U (en) Portable refrigeration fan based on semiconductor refrigeration element
Kumakura et al. Development of Portable Gas Turbine Generator" Dynajet 2.6"
JP3082283U (en) Hot air heater with internal power supply