JPH10161164A - Nonlinear optical element and its production - Google Patents

Nonlinear optical element and its production

Info

Publication number
JPH10161164A
JPH10161164A JP32392496A JP32392496A JPH10161164A JP H10161164 A JPH10161164 A JP H10161164A JP 32392496 A JP32392496 A JP 32392496A JP 32392496 A JP32392496 A JP 32392496A JP H10161164 A JPH10161164 A JP H10161164A
Authority
JP
Japan
Prior art keywords
core region
optical element
region
optical waveguide
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32392496A
Other languages
Japanese (ja)
Other versions
JP3591174B2 (en
Inventor
Akishi Hongo
晃史 本郷
Seiichi Kashimura
誠一 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP32392496A priority Critical patent/JP3591174B2/en
Publication of JPH10161164A publication Critical patent/JPH10161164A/en
Application granted granted Critical
Publication of JP3591174B2 publication Critical patent/JP3591174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nonlinear optical element which is low in loss, high in reliability and small in size and is small in driving energy and a process for producing the same. SOLUTION: At the time of forming an optical waveguide 11 by forming a core region 13 consisting of Ge-doped SiO2 glass having a high refractive index on a substrate 12 and enclosing this core region 13 with a clad region 14 having a low refractive index, an electric field of a high DC voltage is impressed from the outside so as to intersect with the core region 13 and simultaneously the core region 13 is irradiated with excitation light of a wavelength of <=550nm so as to intersect with the electric field and the core region 13, by which an optically anisotropic region is formed in the core region 13. The nonlinear optical element which is low in the loss, high in the reliability and small in the size and is small in the driving energy is thus obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非線形光学素子及
びその製造方法に関する。
The present invention relates to a nonlinear optical element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光を利用した通信、計測、情報処理の分
野の発展に伴い、高機能で信頼性の高いSiO2 −Ge
2 ガラスを用いた光学素子や、電気光学効果や第二高
調波発生等の非線形特性を有する光学素子の開発が求め
られている。特に石英系材料を用いた導波路型の光素子
は、その低損失性に加え複雑な回路を平面基板上に一括
して形成できる可能性があることから最も注目を集めて
いる。
2. Description of the Related Art With the development of the fields of communication, measurement and information processing using light, highly functional and highly reliable SiO 2 -Ge
There is a demand for the development of an optical element using O 2 glass and an optical element having nonlinear characteristics such as an electro-optical effect and second harmonic generation. In particular, a waveguide-type optical element using a quartz-based material has received the most attention because it has the possibility of forming a complicated circuit on a flat substrate in addition to its low loss.

【0003】これら導波路型の光素子は、バッファ層
(下側クラッド層)と呼ばれる低屈折率層を有するSi
基板や、石英基板上に、相対的に屈折率の高いコアと呼
ばれる光の伝搬領域を形成し、このコア部分をさらに低
屈折率のクラッド層で覆った構造をとるのが一般的であ
る。特にコア部分の材料組成は、光ファイバの低損失コ
ア材料として実績のあるSiO2 −GeO2 組成ガラス
が有効とされている。
[0003] These waveguide type optical elements are made of Si having a low refractive index layer called a buffer layer (lower cladding layer).
In general, a light propagation region called a core having a relatively high refractive index is formed on a substrate or a quartz substrate, and this core portion is further covered with a clad layer having a low refractive index. Particularly, as the material composition of the core portion, a SiO 2 —GeO 2 composition glass that has been proven as a low-loss core material of an optical fiber is considered to be effective.

【0004】ところで、一般に、シリカガラスのような
無機ガラスは光学的に等方性物質であり、その反転対称
性のために本来、電気光学効果や第二高調波発生等の非
線形光学特性を持たないと考えられてきた。
[0004] In general, inorganic glass such as silica glass is an optically isotropic substance, and inherently has nonlinear optical characteristics such as an electro-optical effect and second harmonic generation due to its inversion symmetry. Have been considered not.

【0005】しかし、最近このような光学的等方体であ
るガラス材料でも、ポーリング処理を行うことによって
二次の光非線形性が誘起されることが明らかにされた。
[0005] However, it has recently been clarified that even in such an optically isotropic glass material, a second-order optical nonlinearity is induced by performing the poling treatment.

【0006】ここで、ポーリング処理とは、高温状態に
おいて試料、すなわちガラス材料に直流電場を加え、電
場を印加したまま一定時間保持した後放熱させ、光導波
路が室温まで低下した後で直流電場を解除する処理であ
る。このようなガラス材料の非線形光学効果は、これま
でにシリカガラスの他にテルライトガラスやリン酸塩ガ
ラス等種々のガラスにおいて確認されている。
Here, the poling treatment means that a DC electric field is applied to a sample, that is, a glass material in a high temperature state, the electric field is kept applied for a certain period of time, heat is released, and the DC electric field is reduced after the optical waveguide is lowered to room temperature. This is the process of canceling. The nonlinear optical effect of such a glass material has been confirmed in various glasses such as tellurite glass and phosphate glass in addition to silica glass.

【0007】しかしながら、ポーリング処理による非線
形光学効果の誘起のメカニズムは詳細に解明されておら
ず、この非線形光学効果の起源に関する要因は幾つか存
在するものと考えられている。すなわち、ポーリング処
理によりガラス中に誘起される電気双極子には、ガラス
の構造、組成、ポーリング処理条件等によって以下のよ
うな幾つかの異なる種類があると考えられる。
However, the mechanism of inducing the nonlinear optical effect by the polling process has not been elucidated in detail, and it is considered that there are some factors relating to the origin of the nonlinear optical effect. That is, it is considered that there are several different types of electric dipoles induced in the glass by the poling treatment depending on the structure, composition, poling treatment conditions, and the like of the glass as follows.

【0008】まず、不純物としての可動プロトンイオン
(Na+ 等)のドリフトにより、ポーリング処理時に陽
極近傍での陽イオン欠乏領域(空間電荷層)が形成さ
れ、この陽イオン欠乏領域が電気双極子の配向をもたら
すことがある。この場合には主に陽極側数十μmの表面
層のみが光学的異方性領域となる。
First, due to the drift of mobile proton ions (such as Na + ) as impurities, a cation-deficient region (space charge layer) is formed near the anode during the poling process, and this cation-deficient region forms an electric dipole. May result in orientation. In this case, only the surface layer of several tens μm on the anode side mainly serves as an optically anisotropic region.

【0009】これに対し、点欠陥、OH基、非架橋酸素
等の存在に関連した要因で生じる電気双極子は、これら
の要因が光導波路全体に存在すれば、ポーリング処理に
より電場を印加した光導波路全体にわたって光学的異方
性が観測される。
On the other hand, electric dipoles generated by factors related to the presence of point defects, OH groups, non-crosslinking oxygen, etc., if these factors are present in the entire optical waveguide, the optical waveguide to which an electric field is applied by the poling process is used. Optical anisotropy is observed over the entire waveguide.

【0010】このように光学的等方性であるガラス材料
に異方性特徴を組み込むという新しい試みが、ますます
学問的、実用的な興味を集めるようになった。特にSi
2を主成分とするシリカガラスは、低損失性、信頼性
の点で現在のオプトエレクトロニクスの中枢部を担う材
料であり、既に光ファイバ化や平面光導波路化の製造技
術も確立している。また、シリカガラスは特にバンドギ
ャップが広く、通信分野以外でも紫外領域、遠紫外領域
での素子として将来的におおいに期待できる材料であ
る。
[0010] New attempts to incorporate anisotropic features in such optically isotropic glass materials have attracted increasing academic and practical interest. Especially Si
Silica glass containing O 2 as a main component is a material that plays a central role in the current optoelectronics in terms of low loss and reliability, and manufacturing technologies for making optical fibers and planar optical waveguides have already been established. . In addition, silica glass has a particularly wide band gap, and is a material that can be greatly expected in the future as an element in the ultraviolet region and the far ultraviolet region even in fields other than the communication field.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、光変調
器や光スイッチ、或いは波長変換素子等実用的な光素子
を実現するためには、これまでに報告されているガラス
材料における非線形光学効果はまだ微弱である。現状の
レベルでは、例えば電気光学効果を利用して光スイッチ
ング動作を行うためには、素子長(光導波路のコア領域
の長さ)が数十cmも必要であり、導波光を制御する駆
動電圧が数百Vも必要なため現実的とはいえない。少な
くとも既に非線形光学素子として実用化されているLi
NbO3 のような強誘電体材料に匹敵する非線形光学効
果の実現と最適な素子の開発が望まれる。
However, in order to realize a practical optical device such as an optical modulator, an optical switch, or a wavelength conversion device, the nonlinear optical effects in glass materials that have been reported to date have not yet been achieved. Weak. At the current level, for example, in order to perform an optical switching operation using the electro-optic effect, an element length (the length of the core region of the optical waveguide) is required to be several tens of cm, and a driving voltage for controlling the guided light is required. However, it is not realistic because several hundred volts are required. At least Li which has already been put to practical use as a nonlinear optical element
It is desired to realize a nonlinear optical effect comparable to a ferroelectric material such as NbO 3 and to develop an optimum device.

【0012】そこで、本発明の目的は、上記課題を解決
し、低損失で信頼性が高く小型で駆動エネルギーの小さ
い非線形光学素子及びその製造方法を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a non-linear optical element having low loss, high reliability, small size and small driving energy, and a method of manufacturing the same.

【0013】[0013]

【課題を解決するための手段】上述した課題を解決する
ためには、ガラス材料の組成、製法、ポーリング処理方
法、或いは光素子の構造等あらゆる観点から最適な条件
を見出ださなければならない。
In order to solve the above-mentioned problems, it is necessary to find the optimum conditions from all viewpoints such as the composition of the glass material, the manufacturing method, the poling method, and the structure of the optical element. .

【0014】本発明は、このような観点に立ちGeドー
プのSiO2 ガラスに着目した。この材料は前述のよう
に低損失、高信頼性或いは素子形成のための加工性等多
くの優れた特性を有し、既に通信用の受動素子として実
用になっているものである。このような材料を用いて高
い効率で非線形光学効果を誘起することができれば、さ
らに多くの光機能素子に応用することができる。しかも
ポーリング処理による非線形光学効果のメカニズムを考
察すれば、GeドープのSiO2 ガラスは、他のガラス
材料よりも大きな非線形光学効果が得られることが分か
った。
In view of the above, the present invention has focused on Ge-doped SiO 2 glass. As described above, this material has many excellent characteristics such as low loss, high reliability, and processability for element formation, and has already been put into practical use as a passive element for communication. If a nonlinear optical effect can be induced with high efficiency by using such a material, it can be applied to more optical functional elements. Moreover, considering the mechanism of the nonlinear optical effect due to the poling process, it was found that the Ge-doped SiO 2 glass can obtain a larger nonlinear optical effect than other glass materials.

【0015】すなわち上記目的を達成するために本発明
の非線形光学素子の製造方法は、基板上に屈折率の高い
GeドープのSiO2 ガラスからなるコア領域を形成
し、コア領域を屈折率の低いクラッド領域で囲んで光導
波路を形成する非線形光学素子の製造方法において、光
導波路と交差するように外部から直流高電圧の電場を印
加すると同時に電場及び光導波路と交差するように波長
550nm以下の励起光を照射することによりコア領域
に光学的異方性領域を形成するものである。
That is, in order to achieve the above object, a method of manufacturing a nonlinear optical element according to the present invention comprises forming a core region made of Ge-doped SiO 2 glass having a high refractive index on a substrate and forming the core region into a low refractive index. In a method of manufacturing a nonlinear optical element in which an optical waveguide is formed by being surrounded by a cladding region, an electric field of DC high voltage is applied from outside so as to intersect with the optical waveguide, and at the same time, excitation of a wavelength of 550 nm or less so as to intersect with the electric field and the optical waveguide. By irradiating light, an optically anisotropic region is formed in the core region.

【0016】本発明の非線形光学素子の製造方法は、基
板上に屈折率の高いGeドープのSiO2 ガラスからな
るコア領域を形成し、コア領域を屈折率の低いクラッド
領域で囲んで光導波路を形成する非線形光学素子の製造
方法において、光導波路と交差するように外部から直流
高電圧の電場を印加すると同時に光導波路内に波長55
0nm以下の励起光を伝搬させることによりコア領域に
光学的異方性領域を形成するものである。
According to the method of manufacturing a nonlinear optical element of the present invention, an optical waveguide is formed by forming a core region made of Ge-doped SiO 2 glass having a high refractive index on a substrate and surrounding the core region with a clad region having a low refractive index. In the method of manufacturing a nonlinear optical element to be formed, a DC high voltage electric field is applied from the outside so as to intersect with the optical waveguide, and at the same time, the wavelength 55
An optically anisotropic region is formed in the core region by propagating excitation light of 0 nm or less.

【0017】上記構成に加え本発明の非線形光学素子の
製造方法は、直流高電圧の電場を光導波路に対して交差
する方向に印加すると同時にコア領域に照射されるか或
いはコア領域内を伝搬する励起光の電界の偏光方向が、
直流高電圧の電場の方向と略平行になるようにするのが
好ましい。
In addition to the above structure, the method for manufacturing a nonlinear optical element according to the present invention applies a DC high-voltage electric field in a direction crossing the optical waveguide and simultaneously irradiates or propagates the core region. The polarization direction of the electric field of the excitation light is
It is preferable that the direction is substantially parallel to the direction of the DC high voltage electric field.

【0018】上記構成に加え本発明の非線形光学素子の
製造方法は、コア領域を局所的に高温加熱し、高温状態
において直流高電圧の外部電場を印加すると同時にコア
領域に励起光を照射するか或いはコア領域内を伝搬さ
せ、一定時間経過した後放熱させ、光導波路の温度が室
温まで低下した後に直流高電圧の電場の解除及び励起光
の照射の停止を行うことによりコア領域に光学的異方性
領域を形成するのが好ましい。
In addition to the above-described structure, the method for manufacturing a nonlinear optical element according to the present invention is characterized in that the core region is locally heated to a high temperature, and an external DC high-voltage electric field is applied in the high-temperature state and, at the same time, the core region is irradiated with excitation light. Alternatively, the optical waveguide is propagated in the core region, heat is released after a lapse of a certain time, and after the temperature of the optical waveguide is lowered to room temperature, the electric field of the DC high voltage is released and the irradiation of the excitation light is stopped, thereby causing an optical abnormality in the core region. Preferably, an isotropic region is formed.

【0019】上記構成に加え本発明の非線形光学素子の
製造方法は、光導波路への直流高電圧の電場の印加と同
時にコア領域に照射されるか或いはコア領域内を伝搬す
る波長550nm以下の励起光はHgランプ光、Arレ
ーザ、ArFエキシマレーザ、KrFエキシマレーザ、
Arレーザ或いは色素レーザの第二高調波或いはN
3+:YLFレーザの第四高調波のいずれかであるのが
好ましい。
In addition to the above structure, the method of manufacturing a nonlinear optical element according to the present invention is characterized in that the core region is irradiated simultaneously with the application of an electric field of a high DC voltage to the optical waveguide or the excitation light having a wavelength of 550 nm or less propagates in the core region. The light is Hg lamp light, Ar laser, ArF excimer laser, KrF excimer laser,
Ar laser or dye laser second harmonic or N
d 3+ : preferably one of the fourth harmonics of the YLF laser.

【0020】上記構成に加え本発明の非線形光学素子の
製造方法は、直流高電圧を印加するための電極のうちコ
ア領域により近い方の電極を陽極とするのが好ましい。
In addition to the above configuration, in the method of manufacturing a nonlinear optical element according to the present invention, it is preferable that an electrode closer to the core region among electrodes for applying a high DC voltage is used as an anode.

【0021】上記構成に加え本発明の非線形光学素子の
製造方法は、コア領域は高周波スパッタリング法によっ
て形成されるのが好ましい。
In addition to the above configuration, in the method of manufacturing a nonlinear optical element of the present invention, the core region is preferably formed by a high frequency sputtering method.

【0022】上記構成に加え本発明の非線形光学素子の
製造方法は、光導波路が形成された基板を高温水素雰囲
気或いは高圧水素雰囲気に一定時間保持するか或いは光
導波路の少なくとも一部を酸水素バーナーによって炙っ
た後、直流高電圧の外部電場を印加すると同時に光導波
路内部のコア領域に励起光を照射するか或いはコア領域
内に伝搬させるのが好ましい。
In addition to the above-described structure, the method of manufacturing a nonlinear optical element according to the present invention is characterized in that the substrate on which the optical waveguide is formed is maintained in a high-temperature hydrogen atmosphere or a high-pressure hydrogen atmosphere for a certain period of time, or at least a part of the optical waveguide is oxyhydrogen burner. After the heat treatment, it is preferable to apply an external electric field of DC high voltage and simultaneously irradiate the core region inside the optical waveguide with the excitation light or propagate the excitation light into the core region.

【0023】上記構成に加え本発明の非線形光学素子の
製造方法は、高電圧印加用電極の材料に、アルミニウム
或いは透明導電体を用いるのが好ましい。
In addition to the above configuration, in the method of manufacturing a nonlinear optical element according to the present invention, it is preferable to use aluminum or a transparent conductor as a material of the electrode for applying a high voltage.

【0024】上記構成に加え本発明の非線形光学素子の
製造方法は、高電圧印加用電極のうち少なくとも一方を
透明電極とし、直流高電圧印加と同時にこの透明電極を
透過して光導波路に対し交差する方向から励起光を照射
するのが好ましい。
In addition to the above structure, the method for manufacturing a nonlinear optical element according to the present invention is characterized in that at least one of the electrodes for applying a high voltage is made a transparent electrode, and at the same time as a high DC voltage is applied, the transparent electrode passes through the transparent electrode and crosses the optical waveguide. It is preferable to irradiate the excitation light from the direction in which the light is emitted.

【0025】本発明の非線形光学素子は、基板上に形成
された屈折率の高いGeドープのSiO2 ガラスからな
るコア領域と、コア領域を囲んだ屈折率の低いクラッド
領域とからなる光導波路を備えた非線形光学素子におい
て、コア領域に光学的異方性領域を形成するために使用
した高電圧印加用電極を、そのまま或いはその一部を光
導波路のコア領域を伝搬する光を制御するための駆動電
極として利用したものである。
The nonlinear optical element of the present invention comprises an optical waveguide formed of a core region made of Ge-doped SiO 2 glass having a high refractive index formed on a substrate and a cladding region having a low refractive index surrounding the core region. In the nonlinear optical element provided, the high voltage application electrode used to form the optically anisotropic region in the core region is used as it is or partly for controlling light propagating through the core region of the optical waveguide. It is used as a drive electrode.

【0026】本発明の非線形光学素子は、屈折率の高い
GeドープのSiO2 ガラスからなるコア領域と、コア
領域を囲む屈折率の低いクラッド領域とを備えた非線形
光学素子において、少なくとも一対の駆動電極が同一面
上に形成されており、駆動電極により外部から直流高電
圧の電場を光導波路と交差する方向に印加し導波光の伝
搬を制御するようにしたものである。
The nonlinear optical element according to the present invention comprises at least one pair of drive elements in a nonlinear optical element having a core region made of Ge-doped SiO 2 glass having a high refractive index and a cladding region having a low refractive index surrounding the core region. The electrodes are formed on the same surface, and a DC high voltage electric field is externally applied by a driving electrode in a direction intersecting the optical waveguide to control the propagation of the guided light.

【0027】本発明の非線形光学素子は、屈折率の高い
GeドープのSiO2 ガラスからなるコア領域と、コア
領域を囲む屈折率の低いクラッド領域とを備えた非線形
光学素子において、コア領域を囲む周辺のクラッド領域
の断面形状が、側面が傾斜した台形形状をなし、少なく
とも一対の駆動電極がこの傾斜した側面上に形成されて
おり、駆動電極により光導波路に対して交差する方向に
外部電場を印加して導波光の伝搬を制御するようにした
ものである。
A nonlinear optical element according to the present invention includes a core region made of Ge-doped SiO 2 glass having a high refractive index and a cladding region having a low refractive index surrounding the core region. The cross-sectional shape of the peripheral cladding region has a trapezoidal shape with inclined side surfaces, at least a pair of drive electrodes are formed on the inclined side surfaces, and the drive electrodes apply an external electric field in a direction intersecting the optical waveguide. This is to control the propagation of guided light by applying.

【0028】本発明の非線形光学素子は、屈折率の高い
GeドープのSiO2 ガラスからなるコア領域と、コア
領域を囲む屈折率の低いクラッド領域とを備えた非線形
光学素子において、コア領域の下方部には低抵抗半導体
層或いは金属電極が形成され、コア領域の上方部には透
明電極或いは金属電極が形成され、導波光の伝搬を制御
する外部電場を光導波路に対して厚さ方向に印加するよ
うにしたものである。
The nonlinear optical element of the present invention is a nonlinear optical element comprising a core region made of Ge-doped SiO 2 glass having a high refractive index and a cladding region having a low refractive index surrounding the core region. A low-resistance semiconductor layer or metal electrode is formed in the portion, and a transparent electrode or metal electrode is formed in the upper portion of the core region, and an external electric field for controlling propagation of guided light is applied to the optical waveguide in the thickness direction. It is something to do.

【0029】本発明によれば、ガラス導波路内に大きな
非線形光学係数をもつ光学的異方性領域を実現すること
ができる。そのメカニズムは以下のように推測される。
According to the present invention, an optically anisotropic region having a large nonlinear optical coefficient can be realized in a glass waveguide. The mechanism is presumed as follows.

【0030】前述のように種々のガラス材料は、ポーリ
ング処理することにより非線形光学効果が誘起される。
その要因として可動プロトンイオンや点欠陥、OH基、
非架橋酸素等種類の異なった電気双極子の形成が関与し
ていると考えられる。
As described above, a nonlinear optical effect is induced in various glass materials by performing poling.
The factors are mobile proton ions, point defects, OH groups,
It is thought that the formation of different types of electric dipoles such as non-bridging oxygen is involved.

【0031】本発明のSiO2 −GeO2 ガラスにおけ
る非線形光学効果は、これらの種々の要因のうち主にS
iO2 −GeO2 ガラス中の酸素欠乏欠陥を利用したも
のである。
The nonlinear optical effect in the SiO 2 —GeO 2 glass of the present invention is mainly due to S
This utilizes oxygen deficiency defects in iO 2 -GeO 2 glass.

【0032】GeO2 をドープしたSiO2 ガラスは、
5eV帯に吸収をもつ2種類のNOV(中性酸素欠陥)
及びGLPC(Geの孤立電子対)と呼ばれる酸素欠乏
欠陥が存在する。このうちNOVは、化1式で表される
構造をもつ欠陥であり、エキシマレーザのような紫外光
やArレーザ等の青緑光を照射すると化2式で表される
光化学反応が進行し、GeE´センタと呼ばれる常磁性
中心と電気双極子とが同時に生成する。
The SiO 2 glass doped with GeO 2 is
Two types of NOV (neutral oxygen deficiency) with absorption in the 5eV band
And GLPC (lone electron pair of Ge). Among them, NOV is a defect having a structure represented by the following chemical formula 1. When ultraviolet light such as an excimer laser or blue-green light such as an Ar laser is irradiated, a photochemical reaction represented by the following chemical formula 2 proceeds, and GeE A paramagnetic center called an 'center' and an electric dipole are simultaneously generated.

【0033】[0033]

【化1】 Embedded image

【0034】[0034]

【化2】 Embedded image

【0035】ところでGeE´センタの生成に関して
は、前述のNOVによる構造変化だけでなく、高光子密
度の紫外光によって4配位Geの電子捕獲中心(GE
C)への変化を経て、さらにその一部がGeE´センタ
に構造変化するという過程や、=Ge: の構造をもつG
LPCと水素分子H2 との反応によって、NOVへの構
造変化を経由してGeE´センタが生成するという過程
も存在すると考えられる。GeE´センタは6.3eV
帯に吸収ピークをもち、吸収帯の変化に従って屈折率が
増加する。このGeE´センタが生成される現象は、現
在光誘起により光ファイバ等にグレーティングを書き込
むことに広く利用されている。
Regarding the formation of the GeE 'center, not only the aforementioned structural change due to NOV, but also the electron trapping center (GE
C), a part of which undergoes a structural change to a GeE ′ center, or a G with a structure of = Ge:
It is considered that there is also a process in which a GeE ′ center is generated by a reaction between LPC and hydrogen molecule H 2 via a structural change to NOV. GeE 'center is 6.3 eV
The band has an absorption peak, and the refractive index increases as the absorption band changes. The phenomenon that this GeE 'center is generated is now widely used for writing a grating in an optical fiber or the like by photo-induced light.

【0036】本発明はGeE´センタの存在よりも、む
しろ同時に生成される電気双極子の生成に着目しこれを
利用するものである。
The present invention focuses on the generation of an electric dipole generated at the same time, rather than the existence of a GeE 'center, and utilizes it.

【0037】しかしながらGeE´センタ生成過程にお
いて、GeE´センタと電気双極子とは対をなして生成
されるので、結果として誘起される非線形光学効果はG
eE´センタの濃度に比例することになる。
However, in the process of generating the GeE 'center, the GeE' center and the electric dipole are generated in pairs, so that the resulting nonlinear optical effect is G
It will be proportional to the density of the eE 'center.

【0038】本発明は、以上のような電気双極子生成の
メカニズムを利用し、最も効率よく非線形光学効果を誘
起するものである。そのための着眼のポイントを以下に
述べる。
The present invention utilizes the mechanism of electric dipole generation as described above to induce the nonlinear optical effect most efficiently. The points of interest for that purpose are described below.

【0039】まず、NOVやGLPCの酸素欠乏欠陥そ
のものの絶対量を増加させる必要がある。次にGeE´
センタへの構造変化を促進し電気双極子の生成効率を高
めなければならない。そして電気双極子の生成と同時に
強力な外部電場により規則的な電気双極子の配向性によ
り光学的異方性を誘起させることが重要である。
First, it is necessary to increase the absolute amount of the oxygen deficiency defect itself of NOV or GLPC. Next, GeE '
The structural change to the center must be promoted to increase the efficiency of generating electric dipoles. It is important to induce the optical anisotropy by the regular electric dipole orientation by the strong external electric field simultaneously with the generation of the electric dipole.

【0040】このような観点から本発明が提案されたの
である。
The present invention has been proposed from such a viewpoint.

【0041】酸素欠乏欠陥の絶対量はGeの濃度だけで
なく、ガラスの製法によっても大きく異なる。GeO2
を含有したSiO2 をターゲットとした高周波スパッタ
リング法によって形成したGeドープSiO2 ガラス膜
は、電子ビーム蒸着やガラスの微粒子を溶融させて形成
する方法よりも酸素欠乏欠陥が多く含まれていることが
分かった。また波長550nm以下の励起光をGeドー
プSiO2 ガラス膜の近傍から照射したり、導波構造を
とるコア領域内を伝搬させることにより高エネルギー密
度を実現し、電気双極子の発生効率を高めることができ
る。また前述のようにGLPCとH2 との反応によって
もGeE´センタと電気双極子とが生成されるので、こ
の反応を促進させるために高温或いは高圧水素雰囲気中
に光導波路を一定時間保持する工程、或いは光導波路の
少なくとも一部を酸水素バーナで炙る工程を経て、直流
高電圧の電場を印加すると同時にコア領域に励起光を照
射するか或いはコア領域内に伝搬させてもよい。
The absolute amount of oxygen deficiency defects varies greatly depending not only on the Ge concentration but also on the glass production method. GeO 2
Ge-doped SiO 2 glass films formed by high-frequency sputtering using SiO 2 as a target contain more oxygen deficiency defects than methods formed by electron beam evaporation or melting glass fine particles. Do you get it. In addition, high energy density is achieved by irradiating excitation light having a wavelength of 550 nm or less from the vicinity of the Ge-doped SiO 2 glass film or by propagating in a core region having a waveguide structure, thereby increasing the generation efficiency of electric dipoles. Can be. Further, as described above, since the GeE ′ center and the electric dipole are also generated by the reaction between GLPC and H 2 , the step of holding the optical waveguide in a high-temperature or high-pressure hydrogen atmosphere for a certain time in order to promote this reaction. Alternatively, through a step of burning at least a part of the optical waveguide with an oxyhydrogen burner, a DC high voltage electric field may be applied, and at the same time, the core region may be irradiated with excitation light or may be propagated in the core region.

【0042】電気双極子の規則的な配向性を高めるた
め、本発明では光導波路に印加する直流高電圧の電場の
方向とコア領域に照射されるか或いはコア領域内を伝搬
する励起光の電界の偏光方向が略平行になるようにし
た。また直流高電圧の電場の印加及び励起光の照射と同
時に、基板を高温状態に保持し、これにより電気双極子
の配向を促進させている。
In order to enhance the regular orientation of the electric dipole, in the present invention, the direction of the electric field of the DC high voltage applied to the optical waveguide and the electric field of the excitation light irradiated to the core region or propagating in the core region. Were made substantially parallel in polarization direction. At the same time as applying a DC high voltage electric field and irradiating the excitation light, the substrate is kept at a high temperature, thereby promoting the orientation of the electric dipole.

【0043】[0043]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0044】図1は本発明の非線形光学素子の製造方法
の一実施の形態を示す概念図である。
FIG. 1 is a conceptual view showing an embodiment of a method for manufacturing a nonlinear optical element according to the present invention.

【0045】非線形光学素子としての光導波路11は、
石英基板12の上に形成されGeがドープされたSiO
2 ガラスからなるコア領域13と、コア領域13より低
い屈折率を有しコア領域13を囲むクラッド領域14と
で構成されている。
The optical waveguide 11 as a nonlinear optical element has:
Ge doped SiO formed on a quartz substrate 12
It comprises a core region 13 made of two glasses, and a cladding region 14 having a lower refractive index than the core region 13 and surrounding the core region 13.

【0046】コア領域13は、GeO2 を含有したSi
2 をターゲットとして高周波スパッタリング法によっ
て石英基板12上に形成されたコア膜がホトリソグラフ
ィ法によって導波路のパターニングが行われ、CHF3
ガスを用いた反応性イオンエッチング法により矩形断面
形状に形成されたものである。
The core region 13 is made of SiO containing GeO 2.
The core film formed on the quartz substrate 12 by the high frequency sputtering method using O 2 as a target is subjected to patterning of the waveguide by the photolithography method, and CHF 3
It is formed in a rectangular cross section by a reactive ion etching method using a gas.

【0047】クラッド領域14は、火炎堆積法でコア領
域13が形成された後、石英基板12の上全体に火炎加
水分解反応によりSiO2 にP(リン)とB(ホウ素)
とを添加したガラス微粒子が堆積され、石英基板12ご
と1300℃の高温で焼結されて、微粒子が透明ガラス
化されたものである。
The cladding region 14, after the core region 13 is formed by flame hydrolysis deposition, the whole on a quartz substrate 12 in the SiO 2 by flame hydrolysis P (phosphorus) and B (boron)
Are deposited and sintered together with the quartz substrate 12 at a high temperature of 1300 ° C. to make the fine particles vitrified.

【0048】PをSiO2 に添加するとSiO2 の屈折
率が高くなり、BをSiO2 へ添加すると逆にSiO2
の屈折率が低くなる。PとBとの量を調整することによ
りクラッド領域14の屈折率は石英基板12の屈折率と
略等しくなる。本実施の形態においては、コア領域13
の断面寸法を約5×5μmとし、コア領域13とクラッ
ド領域14との比屈折率差を0.8%とした。
[0048] The addition of P in the SiO 2 higher refractive index of SiO 2 is, SiO 2 on the contrary the addition of B to SiO 2
Has a low refractive index. By adjusting the amounts of P and B, the refractive index of the cladding region 14 becomes substantially equal to the refractive index of the quartz substrate 12. In the present embodiment, core region 13
Was set to about 5 × 5 μm, and the relative refractive index difference between the core region 13 and the cladding region 14 was set to 0.8%.

【0049】このようにして形成されたクラッド領域1
4の表面にコア領域13を挟むように両側に一対の電極
15,16を形成した。
The cladding region 1 thus formed
A pair of electrodes 15 and 16 were formed on both sides of the surface of No. 4 so as to sandwich the core region 13.

【0050】これら二つの電極15,16を直流高電圧
電源17に接続すると、電場が光導波路11のコア領域
13に対して横方向に発生する。電場の発生と同時にコ
ア領域13及び電場に対し交差する方向(図では上方か
ら)に励起光を矢印A方向に照射することにより、光導
波路11のコア領域13に光学的異方性領域が形成され
る。
When these two electrodes 15 and 16 are connected to a DC high voltage power supply 17, an electric field is generated in a direction transverse to the core region 13 of the optical waveguide 11. An optically anisotropic region is formed in the core region 13 of the optical waveguide 11 by irradiating the excitation light in the direction of arrow A in a direction (from above in the figure) crossing the core region 13 and the electric field simultaneously with the generation of the electric field. Is done.

【0051】励起光は、図示しないシリンドリカルレン
ズにより線状に集光されコア領域13の長手方向にわた
って照射される。尚、励起光をレンズによって集光し得
られた円形ビームを、コア領域13の長手方向に走査さ
せながら照射しても特定の長さの光学的異方性領域がコ
ア領域13の内部に形成される。本実施の形態では電極
15,16によってコア領域13に印加される電場の強
さを約106 〜107V/cmとした。
The excitation light is linearly condensed by a cylindrical lens (not shown) and is irradiated over the core region 13 in the longitudinal direction. Even if a circular beam obtained by condensing the excitation light by a lens is irradiated while scanning in the longitudinal direction of the core region 13, an optically anisotropic region having a specific length is formed inside the core region 13. Is done. In the present embodiment, the intensity of the electric field applied to the core region 13 by the electrodes 15 and 16 is about 10 6 to 10 7 V / cm.

【0052】直流高電圧の印加と同時にコア領域13に
照射される励起光には、100〜200mJ、10pp
sのKrFエキシマレーザが用いられ、その照射時間は
20〜30分間とした。尚、励起光は、これに限定され
ず、波長550nm以下のHgランプ光、Arレーザ、
ArFエキシマレーザ、Arレーザ、色素レーザの第二
高調波或いはNd3+:YLFレーザの第四高調波によっ
ても同様な非線形光学効果が得られる。
The excitation light applied to the core region 13 simultaneously with the application of the DC high voltage includes 100 to 200 mJ, 10 pp
s KrF excimer laser was used, and the irradiation time was 20 to 30 minutes. Note that the excitation light is not limited to this, and Hg lamp light having a wavelength of 550 nm or less, Ar laser,
A similar nonlinear optical effect can be obtained by the second harmonic of an ArF excimer laser, an Ar laser, a dye laser or the fourth harmonic of an Nd 3+ : YLF laser.

【0053】ここで、低エネルギーのHgランプ励起の
場合は、1光子吸収過程により酸素欠乏欠陥NOVがG
eE´に構造変化し、Arレーザ励起の場合は同様の構
造変化が2光子吸収過程によって行われると考えられ
る。また、エキシマレーザ等の高エネルギー密度の紫外
励起光照射の場合には、2光子吸収過程による無欠陥構
造のGECへの変化と、さらにその一部がGeE´セン
タに変化する2段階反応も寄与していると考えられる。
Here, in the case of low-energy Hg lamp excitation, the oxygen deficiency defect NOV becomes G due to the one-photon absorption process.
It is considered that the structure changes to eE ′, and in the case of Ar laser excitation, a similar structure change is performed by a two-photon absorption process. In the case of irradiation with high-energy-density ultraviolet excitation light such as an excimer laser, a two-step reaction in which the defect-free structure changes to GEC by the two-photon absorption process and a part of the structure changes to the GeE 'center also contributes. it seems to do.

【0054】また、この励起光照射のときの電気双極子
の配向性を高めるために、励起光の電界の偏光方向が直
流高電圧電場の電気力線と略平行になるようにした。さ
らにポーリング処理時、すなわち直流高電圧の印加と同
時に行われる励起光照射の間(20〜30分間)は、石
英基板12全体を約300℃に保持することによっても
コア領域13に誘起される光学的異方性が増強される傾
向が見られ、ポーリング処理時の高温保持も有効であ
る。
Further, in order to enhance the orientation of the electric dipole during the irradiation of the excitation light, the polarization direction of the electric field of the excitation light is made substantially parallel to the electric field lines of the DC high-voltage electric field. Further, during the poling process, that is, during the excitation light irradiation performed simultaneously with the application of the high DC voltage (20 to 30 minutes), the optical material induced in the core region 13 also by maintaining the entire quartz substrate 12 at about 300 ° C. There is a tendency that the thermal anisotropy is enhanced, and holding at a high temperature during the poling treatment is also effective.

【0055】また電気双極子の生成過程の効率を高める
ために、直流高電圧電場を発生させると同時に光導波路
11内のコア領域13に励起光を照射する工程の前処理
として、高温或いは高圧水素雰囲気に光導波路11を石
英基板12ごと一定時間保持する工程、或いは光導波路
11の少なくとも一部を酸水素バーナによって炙る工程
を経ても光学的異方性が増強される効果がみられる。こ
れは前述のようにGLPCと水素分子との反応によって
GeE´センタが生成するという過程が促進されるため
と考えられる。
In order to enhance the efficiency of the electric dipole generation process, high-temperature or high-pressure hydrogen is used as a pretreatment for the step of generating a DC high-voltage electric field and simultaneously irradiating the core region 13 in the optical waveguide 11 with excitation light. The effect of enhancing the optical anisotropy can be observed even after the step of holding the optical waveguide 11 together with the quartz substrate 12 in the atmosphere for a certain period of time or the step of burning at least a part of the optical waveguide 11 with an oxyhydrogen burner. This is considered to be because the process of generating a GeE ′ center by the reaction between GLPC and hydrogen molecules is promoted as described above.

【0056】尚、本実施の形態ではコア領域13が前述
のようにGeO2 をターゲットとした高周波スパッタリ
ング法により形成されている。コア領域13を形成する
ためのGeドープSiO2 層は、本実施の形態のような
スパッタリング法だけでなく、電子ビーム蒸着法や火炎
堆積法を用いて形成してもよい。しかし、コア領域13
内の欠陥の量はコア層の形成方法に大きく依存するの
で、検討の結果、本実施の形態で採用した高周波スパッ
タリング法が最も有効であることが分かった。
In this embodiment, the core region 13 is formed by the high-frequency sputtering method using GeO 2 as a target as described above. The Ge-doped SiO 2 layer for forming the core region 13 may be formed not only by the sputtering method as in the present embodiment but also by an electron beam evaporation method or a flame deposition method. However, the core region 13
Since the amount of the defects in the inside greatly depends on the method of forming the core layer, as a result of examination, it was found that the high frequency sputtering method employed in the present embodiment was the most effective.

【0057】図1に示した実施の形態では励起光として
エネルギー密度の高いKrFエキシマレーザを用いた。
レーザ光は主にコア領域に照射されるが、その一部は電
極15,16にも照射されるので、電極15,16が熱
的な損傷を受けるおそれがある。この熱的な損傷を防止
するため電極の材料としてアルミニウムを採用した。エ
キシマレーザの波長帯での金属の反射率は、例えば金を
材料とした場合では約32.9%であるのに対し、アル
ミニウムを材料とした場合では約92.4%と非常に高
く、金属材料の中ではアルミニウムが吸収による熱的損
傷が最も起こりにくい。尚、電極15,16の材料とし
ては、アルミニウムのように反射によって熱的損傷を防
止する以外に、ITO(indium-tin-oxide)等の透明電極
材料を用いても励起光照射による電極15,16の損傷
を防止するのに有効である。
In the embodiment shown in FIG. 1, a KrF excimer laser having a high energy density is used as the excitation light.
Although the laser light is mainly applied to the core region, a part of the laser light is also applied to the electrodes 15 and 16, so that the electrodes 15 and 16 may be thermally damaged. To prevent this thermal damage, aluminum was used as the material of the electrode. The reflectivity of a metal in the wavelength band of an excimer laser is, for example, about 32.9% when using gold as a material, whereas it is as high as about 92.4% when using aluminum as a material. Of the materials, aluminum is least likely to cause thermal damage due to absorption. As a material for the electrodes 15 and 16, besides preventing thermal damage by reflection like aluminum, a transparent electrode material such as ITO (indium-tin-oxide) may be used to form the electrodes 15, 16 by irradiation with excitation light. 16 is effective to prevent damage.

【0058】図1に示した電極15,16は、コア領域
13に光学的異方性領域を形成するために使用した高電
圧印加用の電極であるが、これはそのまま直流高電圧電
源17を適当な制御用電源に取り替えれば、光導波路1
1のコア領域13を伝搬する導波光を高速で制御する駆
動電極として使用することができる。
The electrodes 15 and 16 shown in FIG. 1 are electrodes for applying a high voltage used for forming an optically anisotropic region in the core region 13. If an appropriate control power supply is replaced, the optical waveguide 1
It can be used as a drive electrode for controlling the guided light propagating through one core region 13 at high speed.

【0059】図2は、本発明の非線形光学素子の製造方
法の他の実施の形態を示す概念図である。
FIG. 2 is a conceptual diagram showing another embodiment of the method for manufacturing a nonlinear optical element of the present invention.

【0060】図1に示した実施の形態との相違点は、ク
ラッド領域22の形状が台形断面形状となっており、ク
ラッド領域22の両斜面上に電極23,24が形成され
ている点であり、非線形光学効果の誘起効率、或いは導
波光を制御するための駆動電圧印加効率をさらに向上さ
せることを目的としたものである。
The difference from the embodiment shown in FIG. 1 is that the shape of the cladding region 22 has a trapezoidal cross-sectional shape, and electrodes 23 and 24 are formed on both slopes of the cladding region 22. The purpose is to further improve the efficiency of inducing the nonlinear optical effect or the efficiency of applying a driving voltage for controlling the guided light.

【0061】光導波路21は、図1に示した光導波路1
1と同様に、屈折率の高いGeドープのSiO2 ガラス
からなるコア領域13と、このコア領域13を囲む屈折
率の低いクラッド領域22とで構成されている。コア領
域13を囲む周辺のクラッド領域22の断面形状は側面
が傾斜をもった台形形状をなし、この傾斜した側面上に
非線形光学効果を誘起させるための高電圧印加用の電極
23,24が形成されている。
The optical waveguide 21 is the same as the optical waveguide 1 shown in FIG.
As in the first embodiment, the core region 13 is made of a Ge-doped SiO 2 glass having a high refractive index, and a cladding region 22 having a low refractive index surrounding the core region 13. The cross-sectional shape of the peripheral cladding region 22 surrounding the core region 13 has a trapezoidal shape with an inclined side surface, and electrodes 23 and 24 for applying a high voltage for inducing a nonlinear optical effect are formed on the inclined side surface. Have been.

【0062】ポーリング処理時の励起光の照射方法等は
図1に示した場合と同様に、電極23,24間に直流高
電圧を印加すると同時に矢印B方向に励起光を照射する
ことである。コア領域13を囲む周辺のクラッド領域2
2の断面形状を側面が傾斜をもった台形状にするために
は、図1に示した実施の形態と同様に火炎堆積法により
平坦なクラッド層を形成した後、コア領域13の上部を
マスクし、例えば反応性イオンエッチング等を用いるこ
とにより形成できる。コア領域13を囲むクラッド領域
22の側面の傾斜角度はマスクのサイドエッチングによ
って異なるが、マスクの材料或いはエッチング条件によ
って決定される。台形断面形状のクラッド領域22の形
成方法は、平坦化に適した火炎堆積法及びエッチング加
工を用いる以外にも、例えばバイアススパッタリング法
を用いても可能である。バイアススパッタリングは火炎
堆積法よりも平坦化作用は小さく、SiO2 をコア上部
に堆積させるだけで直接図2に示したような形状を形成
することができる。同図に示したような構造は、ポーリ
ング処理時に非線形光学効果の誘起効率を高めるだけで
なく、高電圧印加用の電極23,24をそのまま導波光
を制御するための駆動電極として使用すれば、より小さ
な電圧で導波光を制御することができる。
The method of irradiating the excitation light at the time of the poling process is to apply a high DC voltage between the electrodes 23 and 24 and irradiate the excitation light in the direction of arrow B at the same time as in the case shown in FIG. Peripheral cladding region 2 surrounding core region 13
In order to make the cross-sectional shape of 2 into a trapezoidal shape whose side surface is inclined, a flat clad layer is formed by the flame deposition method as in the embodiment shown in FIG. However, it can be formed by using, for example, reactive ion etching or the like. The inclination angle of the side surface of the cladding region 22 surrounding the core region 13 varies depending on the side etching of the mask, but is determined by the material of the mask or etching conditions. The cladding region 22 having a trapezoidal cross-sectional shape can be formed by, for example, a bias sputtering method in addition to the flame deposition method and the etching process suitable for flattening. The bias sputtering has a smaller planarizing effect than the flame deposition method, and the shape as shown in FIG. 2 can be directly formed only by depositing SiO 2 on the core. The structure as shown in the figure not only increases the efficiency of inducing the nonlinear optical effect during the poling process, but also uses the electrodes 23 and 24 for applying a high voltage as drive electrodes for directly controlling the guided light. The guided light can be controlled with a smaller voltage.

【0063】図1及び図2に示した実施の形態では、直
流高電圧の電場が印加され、同時に励起光が光導波路1
1(21)のコア領域13に対して交差する方向(図で
は上部方向)から照射する場合で説明したが、これに限
定されず励起光をコア領域13内に伝搬させてもよい。
In the embodiment shown in FIGS. 1 and 2, a DC high-voltage electric field is applied, and at the same time, the excitation light is
Although the case where the irradiation is performed from the direction (upper direction in the drawing) intersecting the core region 13 of 1 (21) has been described, the excitation light may be propagated into the core region 13 without being limited to this.

【0064】尚、励起光としてエキシマレーザを用いた
が、これに限定されず、波長約488nmのArレーザ
を導波路に入射してもよい。図1或いは図2に示したよ
うに励起光を導波路と交差する方向に照射する方法で
は、Arレーザの方がより高光エネルギーを有するエキ
シマレーザよりも非線形光学効果を誘起する効率は小さ
い。
Although an excimer laser is used as the excitation light, the present invention is not limited to this, and an Ar laser having a wavelength of about 488 nm may be incident on the waveguide. In the method of irradiating the excitation light in a direction intersecting with the waveguide as shown in FIG. 1 or 2, the efficiency of inducing the nonlinear optical effect is smaller in the Ar laser than in the excimer laser having higher light energy.

【0065】しかし、光導波路11(21)のコア領域
13内を励起光が伝搬すれば、その光エネルギー密度は
数MW/cm2 にも達するため、2光子吸収過程によっ
て高い効率で光学的異方性領域を誘起できる。但し、こ
の場合も光導波路11(21)のコア領域13に伝搬さ
れる励起光の電界の偏光方向が、直流高電圧の電場の方
向と平行になるようにした方が非線形光学効果の誘起効
率を高めることができる。
However, if the pumping light propagates in the core region 13 of the optical waveguide 11 (21), its light energy density reaches several MW / cm 2 , so that the two-photon absorption process causes a high efficiency of optical difference. An isotropic region can be induced. However, also in this case, it is better to make the polarization direction of the electric field of the excitation light propagating in the core region 13 of the optical waveguide 11 (21) parallel to the direction of the electric field of the DC high voltage, and to induce the nonlinear optical effect more efficiently. Can be increased.

【0066】図3は本発明の非線形光学素子の製造方法
の他の実施の形態を示す概念図である。
FIG. 3 is a conceptual diagram showing another embodiment of the method for manufacturing a nonlinear optical element of the present invention.

【0067】図1に示した実施の形態との相違点は、直
流高電圧が石英基板12の厚さ方向に印加され、直流高
電圧電場と交差する方向の励起光がコア領域13に照射
される点である。
The difference from the embodiment shown in FIG. 1 is that a DC high voltage is applied in the thickness direction of the quartz substrate 12 and the core region 13 is irradiated with excitation light in a direction crossing the DC high voltage electric field. It is a point.

【0068】石英基板12、コア領域13及びクラッド
領域31からなる光導波路32の石英基板12の上部及
び下部に電極33,34が形成され、石英基板12の厚
さ方向(図では上下方向)に直流高電圧を印加すると同
時にコア領域13へコア領域13の長手方向と交差する
方向(図では矢印C方向)に励起光が照射される。この
ような構造のため光導波路32に電極を形成するのが容
易となる。尚、一般に、二つの電極間に直流高電圧を印
加してポーリング処理する場合、陽極側の方が光学的異
方性領域を形成しやすいことが知られている。そのため
図3に示す実施の形態ではコア領域13の真上にある電
極33が陽極側になるように設定されている。照射され
る励起光の電界の方向は、前述と同様に印加される直流
高電圧電場の電気力線の方向と平行になるように設定さ
れている。電極33,34の材料としてはアルミニウム
が用いられる。
Electrodes 33 and 34 are formed on the upper and lower portions of the quartz substrate 12 of the optical waveguide 32 comprising the quartz substrate 12, the core region 13 and the cladding region 31, and are formed in the thickness direction of the quartz substrate 12 (vertical direction in the figure). Simultaneously with the application of the DC high voltage, the excitation light is applied to the core region 13 in a direction intersecting the longitudinal direction of the core region 13 (the direction of arrow C in the figure). With such a structure, it is easy to form an electrode on the optical waveguide 32. In general, it is known that when poling is performed by applying a high DC voltage between two electrodes, an optically anisotropic region is more easily formed on the anode side. Therefore, in the embodiment shown in FIG. 3, the electrode 33 immediately above the core region 13 is set to be on the anode side. The direction of the electric field of the applied excitation light is set to be parallel to the direction of the lines of electric force of the applied DC high-voltage electric field in the same manner as described above. Aluminum is used as a material of the electrodes 33 and 34.

【0069】この光導波路32の場合、図1に示した実
施の形態のように励起光をコア領域13の上方から照射
することはできない。そのため図3に示すようにコア領
域13の側面から励起光を照射しているが、光導波路3
2の側面とコア領域13との間の距離Lが長いと、励起
光が側面からコア領域に達するまでにビーム径が拡がっ
てしまい高いエネルギー密度で照射できないことがあ
る。
In the case of this optical waveguide 32, it is impossible to irradiate the excitation light from above the core region 13 as in the embodiment shown in FIG. Therefore, the excitation light is irradiated from the side surface of the core region 13 as shown in FIG.
If the distance L between the side surface 2 and the core region 13 is long, the beam diameter may expand before the excitation light reaches the core region from the side surface, and irradiation with high energy density may not be possible.

【0070】そこで、光導波路を細長く切断し、側面か
らの照射でも十分コア領域13に励起光が照射されるよ
うにしているが、回路構成によっては側面からの効率よ
い照射は難しい場合がある。このような場合には電極3
3,34としてITO等の透明電極を用いることによ
り、励起光を透明電極を透過してコア領域13の上方か
ら効率よく照射することができる。
Therefore, the optical waveguide is cut into an elongated shape so that the core region 13 is sufficiently irradiated with the excitation light even when irradiated from the side. However, depending on the circuit configuration, efficient irradiation from the side may be difficult. In such a case, the electrode 3
By using a transparent electrode such as ITO as 3, 34, the excitation light can be efficiently transmitted from above the core region 13 through the transparent electrode.

【0071】尚、励起光をコア領域13の側面から照射
する代わりに、コア領域13に直接入射して長手方向に
伝搬させてもよい。
Instead of irradiating the excitation light from the side surface of the core region 13, the excitation light may be directly incident on the core region 13 and propagated in the longitudinal direction.

【0072】また、基板として石英基板を用いたが、こ
れに限定されず低抵抗半導体基板を用いてもよい。低抵
抗半導体基板を用いる場合には、電極を光導波路の表裏
に形成し、厚さ方向に直流高電圧電場を印加すればよ
い。この場合、半導体基板は低抵抗であるため陰極とし
て機能し、図3に示すような電極34を基板裏面にわざ
わざ設ける必要はない。
Although a quartz substrate is used as the substrate, the present invention is not limited to this, and a low-resistance semiconductor substrate may be used. When a low-resistance semiconductor substrate is used, electrodes may be formed on the front and back of the optical waveguide, and a DC high-voltage electric field may be applied in the thickness direction. In this case, the semiconductor substrate functions as a cathode because of its low resistance, and it is not necessary to provide the electrode 34 as shown in FIG. 3 on the back surface of the substrate.

【0073】さらに基板に低抵抗Si基板を用いた場合
には、Si基板上に熱酸化或いはスパッタリングによっ
てSiO2 膜をバッファ層(下部クラッド層)として形
成するのが好ましい。コア領域13はバッファ層の上に
形成され、それ以外の構造は図3と同様である。Si基
板による導波光の吸収が無視できるように、バッファ層
の厚さは約20μmが好ましい。励起光は図3と同様コ
ア領域の側面から照射する。或いはコア領域の上側の電
極に透明電極を用いれば、コア上部からも励起光を照射
することができる。図3に示した実施の形態では石英基
板を用いているため、電極33と電極34との間隔は大
きい。そのためコア領域13内に大きな電場を印加する
には、両電極33,34間に非常に高い直流電圧を印加
しなければならない。これに対し、低抵抗半導体基板を
陰極として用いれば、コア領域13の上側の電極と陰極
(低抵抗基板)との間隔は数十μm程度に接近するの
で、より低い電圧の電源を用いてもコア領域13に大き
な電場を印加することができる。基板に低抵抗半導体基
板を用い、この低抵抗半導体基板を陰極とすることは、
コア領域13に光学的異方性領域を誘起するポーリング
処理の時だけでなく、導波光を制御する場合にも低い駆
動電圧で動作するので有利である。
When a low-resistance Si substrate is used as the substrate, it is preferable to form an SiO 2 film as a buffer layer (lower cladding layer) on the Si substrate by thermal oxidation or sputtering. The core region 13 is formed on the buffer layer, and the other structure is the same as that of FIG. The thickness of the buffer layer is preferably about 20 μm so that the absorption of the guided light by the Si substrate can be ignored. The excitation light is applied from the side surface of the core region as in FIG. Alternatively, if a transparent electrode is used as the electrode on the upper side of the core region, the excitation light can be irradiated from above the core. Since the quartz substrate is used in the embodiment shown in FIG. 3, the distance between the electrode 33 and the electrode 34 is large. Therefore, to apply a large electric field in the core region 13, a very high DC voltage must be applied between the electrodes 33 and 34. On the other hand, if a low-resistance semiconductor substrate is used as the cathode, the distance between the upper electrode of the core region 13 and the cathode (low-resistance substrate) is close to several tens of μm. A large electric field can be applied to the core region 13. Using a low-resistance semiconductor substrate as a substrate, and using this low-resistance semiconductor substrate as a cathode,
It is advantageous not only at the time of the poling process for inducing an optically anisotropic region in the core region 13 but also at the time of controlling the guided light, because it operates at a low driving voltage.

【0074】図4は本発明の非線形光学素子の一例を示
す概念図であり、電気光学効果を用いたMach−Ze
hnder型の光変調器41を示したものである。
FIG. 4 is a conceptual diagram showing an example of the nonlinear optical element of the present invention.
1 shows an hender-type optical modulator 41.

【0075】光変調器41は、石英基板42上にコア領
域43が形成され、コア領域43を囲むようにクラッド
領域44が形成されている。導波光の入力側及び出力側
にそれぞれY分岐45,46が形成されている。矢印D
方向に入射する導波光は入力側のY分岐45で2等分さ
れ、同じ長さの2本の導波路アーム47,48を伝搬す
るようになっている。
In the optical modulator 41, a core region 43 is formed on a quartz substrate 42, and a cladding region 44 is formed so as to surround the core region 43. Y branches 45 and 46 are formed on the input side and the output side of the guided light, respectively. Arrow D
The guided light incident in the direction is divided into two equal parts by the Y branch 45 on the input side, and propagates through two waveguide arms 47 and 48 having the same length.

【0076】クラッド領域44上の一方の導波路アーム
47の両側にはこの導波路アーム47を挟んで二つの電
極49,50が形成され、交流電源51と接続されてい
る。導波路アーム47内を伝搬する導波光は交流電圧の
電場によって位相変化を受ける。この導波光を出力側の
Y分岐46で他方の導波路アーム48を伝搬してきた参
照導波光と合波・干渉させることにより、両導波光の位
相差に対応して出力強度が変化して矢印E方向に出射す
る。
Two electrodes 49 and 50 are formed on both sides of one waveguide arm 47 on the cladding region 44 with the waveguide arm 47 interposed therebetween, and are connected to an AC power supply 51. The guided light propagating in the waveguide arm 47 undergoes a phase change due to the electric field of the AC voltage. This waveguide light is multiplexed and interferes with the reference waveguide light propagating through the other waveguide arm 48 at the output side Y branch 46, so that the output intensity changes according to the phase difference between the two waveguide lights, and Emitted in the E direction.

【0077】ここで光変調器41に入射する導波光の偏
光は、交流電場の方向と平行になるようにする。尚、位
相変化を生じさせるための電極49,50は、両電極4
9,50で挟まれた導波路アーム47のコア内に光学的
異方性領域を誘起させるポーリング処理時に使用した電
極をそのまま使用することができる。ポーリング処理時
には電極49,50間に図には示されない直流高電圧電
源が接続され、数百〜数KVの高電圧が印加される。こ
れに対し導波光の伝搬を制御し変調器として動作させる
には、数Vの交流電源を接続すれば十分である。
Here, the polarization of the guided light incident on the optical modulator 41 is set to be parallel to the direction of the AC electric field. The electrodes 49 and 50 for causing a phase change are provided on both electrodes 4.
The electrode used at the time of the poling process for inducing an optically anisotropic region in the core of the waveguide arm 47 sandwiched between 9, 50 can be used as it is. During the polling process, a DC high voltage power supply (not shown) is connected between the electrodes 49 and 50, and a high voltage of several hundreds to several KV is applied. On the other hand, to control the propagation of the guided light and operate as a modulator, it is sufficient to connect an AC power supply of several volts.

【0078】以上において本発明によれば、従来微弱な
非線形光学効果しか実現されていなかったGeドープの
SiO2 ガラスにおいて、非常に大きな光学的異方性領
域を効率的に誘起できる。これにより、電気光学効果や
第2高調波発生等の非線形光学効果を利用した光のスイ
ッチング、変調、波長変換等の各種機能を石英系の平面
光回路内部に集積できる。その結果、低損失で信頼性が
高く小型で駆動エネルギーの小さい機能性光素子が実現
できる。
As described above, according to the present invention, a very large optically anisotropic region can be efficiently induced in Ge-doped SiO 2 glass, which has conventionally only realized a weak nonlinear optical effect. This makes it possible to integrate various functions such as light switching, modulation, and wavelength conversion utilizing the non-linear optical effects such as the electro-optical effect and the second harmonic generation in the quartz-based planar optical circuit. As a result, a functional optical device with low loss, high reliability, small size, and small driving energy can be realized.

【0079】[0079]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0080】光導波路と交差するように外部から直流高
電圧の電場を印加すると同時に電場及び光導波路と交差
するように波長550nm以下の励起光を照射すること
により、光導波路のコア領域に光学的異方性領域が形成
され、低損失で信頼性が高く小型で駆動エネルギーの小
さい非線形光学素子及びその製造方法の実現を提供する
ことができる。
By applying a DC high voltage electric field from the outside so as to cross the optical waveguide and simultaneously irradiating excitation light having a wavelength of 550 nm or less so as to cross the electric field and the optical waveguide, the core region of the optical waveguide is optically irradiated. It is possible to provide a small-sized nonlinear optical element having low anisotropy, high reliability, high reliability and low driving energy, and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非線形光学素子の製造方法の一実施の
形態を示す概念図である。
FIG. 1 is a conceptual diagram showing one embodiment of a method for manufacturing a nonlinear optical element of the present invention.

【図2】本発明の非線形光学素子の製造方法の他の実施
の形態を示す概念図である。
FIG. 2 is a conceptual diagram showing another embodiment of the method for manufacturing a nonlinear optical element of the present invention.

【図3】本発明の非線形光学素子の製造方法の他の実施
の形態を示す概念図である。
FIG. 3 is a conceptual diagram showing another embodiment of the method for manufacturing a nonlinear optical element of the present invention.

【図4】本発明の非線形光学素子の一例を示す概念図で
ある。
FIG. 4 is a conceptual diagram illustrating an example of the nonlinear optical element of the present invention.

【符号の説明】[Explanation of symbols]

11 光導波路 12 基板(石英基板) 13 コア領域 14 クラッド領域 15,16 電極 17 直流高電圧電源 Reference Signs List 11 optical waveguide 12 substrate (quartz substrate) 13 core region 14 clad region 15, 16 electrode 17 DC high voltage power supply

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基板上に屈折率の高いGeドープのSi
2 ガラスからなるコア領域を形成し、該コア領域を屈
折率の低いクラッド領域で囲んで光導波路を形成する非
線形光学素子の製造方法において、上記光導波路と交差
するように外部から直流高電圧の電場を印加すると同時
に電場及び光導波路と交差するように波長550nm以
下の励起光を照射することによりコア領域に光学的異方
性領域を形成することを特徴とする非線形光学素子の製
造方法。
1. Ge-doped Si having a high refractive index on a substrate
In a method for manufacturing a nonlinear optical element in which an optical waveguide is formed by forming a core region made of O 2 glass and surrounding the core region with a clad region having a low refractive index, a high DC voltage is applied from outside so as to intersect the optical waveguide. A method for manufacturing a nonlinear optical element, characterized in that an optically anisotropic region is formed in a core region by irradiating excitation light having a wavelength of 550 nm or less so as to intersect the electric field and the optical waveguide at the same time as applying the electric field.
【請求項2】 基板上に屈折率の高いGeドープのSi
2 ガラスからなるコア領域を形成し、該コア領域を屈
折率の低いクラッド領域で囲んで光導波路を形成する非
線形光学素子の製造方法において、上記光導波路と交差
するように外部から直流高電圧の電場を印加すると同時
に光導波路内に波長550nm以下の励起光を伝搬させ
ることによりコア領域に光学的異方性領域を形成するこ
とを特徴とする非線形光学素子の製造方法。
2. A Ge-doped Si having a high refractive index on a substrate.
In a method for manufacturing a nonlinear optical element in which an optical waveguide is formed by forming a core region made of O 2 glass and surrounding the core region with a clad region having a low refractive index, a high DC voltage is applied from outside so as to intersect the optical waveguide. And forming an optically anisotropic region in the core region by applying an electric field of (1) and exciting light having a wavelength of 550 nm or less in the optical waveguide at the same time.
【請求項3】 直流高電圧の電場を光導波路に対して交
差する方向に印加すると同時にコア領域に照射されるか
或いはコア領域内を伝搬する励起光の電界の偏光方向
が、直流高電圧の電場の方向と略平行になるようにした
請求項1又は2に記載の非線形光学素子の製造方法。
3. A DC high-voltage electric field is applied in a direction crossing the optical waveguide, and at the same time, the direction of polarization of the electric field of the excitation light irradiated to the core region or propagating in the core region is changed to the DC high voltage. 3. The method for manufacturing a nonlinear optical element according to claim 1, wherein the non-linear optical element is substantially parallel to a direction of the electric field.
【請求項4】 コア領域を局所的に高温加熱し、高温状
態において直流高電圧の外部電場を印加すると同時にコ
ア領域に励起光を照射するか或いはコア領域内を伝搬さ
せ、一定時間経過した後放熱させ、光導波路の温度が室
温まで低下した後に直流高電圧の電場の解除及び励起光
の照射の停止を行うことによりコア領域に光学的異方性
領域を形成する請求項1又は2に記載の非線形光学素子
の製造方法。
4. A method in which the core region is locally heated to a high temperature, and at the same time, an external electric field of DC high voltage is applied in a high temperature state, and at the same time, the core region is irradiated with excitation light or propagated in the core region, and after a predetermined time elapses. The optically anisotropic region is formed in the core region by releasing heat and releasing the electric field of direct current high voltage and stopping irradiation of the excitation light after the temperature of the optical waveguide is lowered to room temperature. A method for manufacturing a nonlinear optical element.
【請求項5】 上記光導波路への直流高電圧の電場の印
加と同時にコア領域に照射されるか或いはコア領域内を
伝搬する波長550nm以下の励起光はHgランプ光、
Arレーザ、ArFエキシマレーザ、KrFエキシマレ
ーザ、Arレーザ或いは色素レーザの第二高調波或いは
Nd3+:YLFレーザの第四高調波のいずれかである請
求項1又は2に記載の非線形光学素子の製造方法。
5. An excitation light having a wavelength of 550 nm or less, which is applied to the core region simultaneously with the application of an electric field of a DC high voltage to the optical waveguide or propagates in the core region, is Hg lamp light.
The nonlinear optical element according to claim 1, wherein the nonlinear optical element is one of a second harmonic of an Ar laser, an ArF excimer laser, a KrF excimer laser, an Ar laser, a dye laser, and a fourth harmonic of a Nd 3+ : YLF laser. Production method.
【請求項6】 直流高電圧を印加するための電極のうち
コア領域により近い方の電極を陽極とする請求項1又は
2に記載の非線形光学素子の製造方法。
6. The method for manufacturing a nonlinear optical element according to claim 1, wherein an electrode closer to the core region among electrodes for applying a high DC voltage is used as an anode.
【請求項7】 上記コア領域は高周波スパッタリング法
によって形成される請求項1又は2に記載の非線形光学
素子の製造方法。
7. The method according to claim 1, wherein the core region is formed by a high frequency sputtering method.
【請求項8】 上記光導波路が形成された基板を高温水
素雰囲気或いは高圧水素雰囲気に一定時間保持するか或
いは上記光導波路の少なくとも一部を酸水素バーナーに
よって炙った後、直流高電圧の外部電場を印加すると同
時に光導波路内部のコア領域に励起光を照射するか或い
はコア領域内に伝搬させる請求項1又は2に記載の非線
形光学素子の製造方法。
8. An external electric field of DC high voltage after holding the substrate on which the optical waveguide is formed in a high-temperature hydrogen atmosphere or a high-pressure hydrogen atmosphere for a certain time or burning at least a part of the optical waveguide by an oxyhydrogen burner. The method for manufacturing a nonlinear optical element according to claim 1, wherein the excitation light is applied to the core region inside the optical waveguide or the excitation light is propagated in the core region at the same time as applying.
【請求項9】 高電圧印加用電極の材料に、アルミニウ
ム或いは透明導電体を用いた請求項1又は2に記載の非
線形光学素子の製造方法。
9. The method for manufacturing a nonlinear optical element according to claim 1, wherein aluminum or a transparent conductor is used as a material of the high voltage application electrode.
【請求項10】 高電圧印加用電極のうち少なくとも一
方を透明電極とし、直流高電圧印加と同時にこの透明電
極を透過して光導波路に対し交差する方向から励起光を
照射する請求項1又は2に記載の非線形光学素子の製造
方法。
10. The method according to claim 1, wherein at least one of the high voltage application electrodes is a transparent electrode, and the excitation light is applied from a direction crossing the optical waveguide through the transparent electrode simultaneously with the application of a DC high voltage. 3. The method for manufacturing a nonlinear optical element according to item 1.
【請求項11】 基板上に形成された屈折率の高いGe
ドープのSiO2 ガラスからなるコア領域と、該コア領
域を囲んだ屈折率の低いクラッド領域とからなる光導波
路を備えた非線形光学素子において、上記コア領域に光
学的異方性領域を形成するために使用した高電圧印加用
電極を、そのまま或いはその一部を光導波路のコア領域
を伝搬する光を制御するための駆動電極となるように利
用したことを特徴とする非線形光学素子。
11. A high refractive index Ge formed on a substrate.
In order to form an optically anisotropic region in the core region in a nonlinear optical element having an optical waveguide including a core region made of doped SiO 2 glass and a cladding region having a low refractive index surrounding the core region. A non-linear optical element characterized in that the high-voltage application electrode used in (1) or (2) is used as it is or partially as a drive electrode for controlling light propagating in the core region of the optical waveguide.
【請求項12】 屈折率の高いGeドープのSiO2
ラスからなるコア領域と、該コア領域を囲む屈折率の低
いクラッド領域とを備えた非線形光学素子において、少
なくとも一対の駆動電極が同一面上に形成されており、
該駆動電極により外部から直流高電圧の電場を光導波路
と交差する方向に印加し導波光の伝搬を制御するように
したことを特徴とする非線形光学素子。
12. A nonlinear optical element having a core region made of Ge-doped SiO 2 glass having a high refractive index and a cladding region having a low refractive index surrounding the core region, wherein at least a pair of drive electrodes are on the same plane. Is formed in,
A non-linear optical element, wherein the drive electrode controls the propagation of guided light by applying an electric field of DC high voltage from the outside in a direction crossing the optical waveguide.
【請求項13】 屈折率の高いGeドープのSiO2
ラスからなるコア領域と、該コア領域を囲む屈折率の低
いクラッド領域とを備えた非線形光学素子において、上
記コア領域を囲む周辺のクラッド領域の断面形状が、側
面が傾斜した台形形状をなし、少なくとも一対の駆動電
極がこの傾斜した側面上に形成されており、該駆動電極
により光導波路に対して交差する方向に外部電場を印加
して導波光の伝搬を制御するようにしたことを特徴とす
る非線形光学素子。
13. A nonlinear optical element including a core region made of Ge-doped SiO 2 glass having a high refractive index and a clad region having a low refractive index surrounding the core region, wherein a peripheral clad region surrounding the core region is provided. Has a trapezoidal shape in which the side surface is inclined, at least a pair of drive electrodes are formed on the inclined side surface, and the drive electrode applies an external electric field in a direction crossing the optical waveguide. A nonlinear optical element wherein propagation of guided light is controlled.
【請求項14】 屈折率の高いGeドープのSiO2
ラスからなるコア領域と、該コア領域を囲む屈折率の低
いクラッド領域とを備えた非線形光学素子において、上
記コア領域の下方部には低抵抗半導体層或いは金属電極
が形成され、コア領域の上方部には透明電極或いは金属
電極が形成され、導波光の伝搬を制御する外部電場を光
導波路に対して厚さ方向に印加するようにしたことを特
徴とする非線形光学素子。
14. A nonlinear optical element including a core region made of Ge-doped SiO 2 glass having a high refractive index and a clad region having a low refractive index surrounding the core region, wherein a low portion is formed below the core region. A resistive semiconductor layer or a metal electrode is formed, and a transparent electrode or a metal electrode is formed above the core region, so that an external electric field for controlling propagation of guided light is applied to the optical waveguide in a thickness direction. A nonlinear optical element characterized by the above-mentioned.
JP32392496A 1996-12-04 1996-12-04 Nonlinear optical element and method of manufacturing the same Expired - Fee Related JP3591174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32392496A JP3591174B2 (en) 1996-12-04 1996-12-04 Nonlinear optical element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32392496A JP3591174B2 (en) 1996-12-04 1996-12-04 Nonlinear optical element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10161164A true JPH10161164A (en) 1998-06-19
JP3591174B2 JP3591174B2 (en) 2004-11-17

Family

ID=18160154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32392496A Expired - Fee Related JP3591174B2 (en) 1996-12-04 1996-12-04 Nonlinear optical element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3591174B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047973A1 (en) * 1998-03-16 1999-09-23 Toyota Jidosha Kabushiki Kaisha Process for producing light wave control material and light wave control material
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production
AU740686B2 (en) * 1998-03-12 2001-11-08 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide
US6376086B1 (en) 1998-07-30 2002-04-23 Toyota Jidosha Kabushiki Kaisha Nonlinear optical silica material and nonlinear optical device
US6581414B2 (en) 1999-02-16 2003-06-24 Toyota Jidosha Kabushiki Kaisha Optical nonlinearity material and production method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU740686B2 (en) * 1998-03-12 2001-11-08 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide
US6466722B1 (en) 1998-03-12 2002-10-15 Toyota Jidosha Kabushiki Kaisha Method of fabricating optical nonlinear thin film waveguide and optical nonlinear thin film waveguide
WO1999047973A1 (en) * 1998-03-16 1999-09-23 Toyota Jidosha Kabushiki Kaisha Process for producing light wave control material and light wave control material
US6376086B1 (en) 1998-07-30 2002-04-23 Toyota Jidosha Kabushiki Kaisha Nonlinear optical silica material and nonlinear optical device
US6581414B2 (en) 1999-02-16 2003-06-24 Toyota Jidosha Kabushiki Kaisha Optical nonlinearity material and production method therefor
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production

Also Published As

Publication number Publication date
JP3591174B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
Tanaka Optical nonlinearity in photonic glasses
Righini et al. Glass optical waveguides: a review of fabrication techniques
Chen Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress
Madden et al. High‐performance integrated optics with tellurite glasses: status and prospects
Dussauze et al. Nonlinear optical properties of glass
Zhang et al. Planar and ridge waveguides formed by proton implantation and femtosecond laser ablation in fused silica
Ajami et al. Saturable absorption of silver nanoparticles in glass for femtosecond laser pulses at 400 nm
Shen et al. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation
Chen et al. Ridge waveguides and Y-branch beam splitters in KTiOAsO 4 crystal by 15 Mev oxygen ion implantation and femtosecond laser ablation
US6751386B2 (en) Periodic optical poling of waveguides for quasi phase matching
JP3591174B2 (en) Nonlinear optical element and method of manufacturing the same
Liu et al. One-dimensional and two-dimensional Er3+-doped germanate glass waveguides by combination of He+ ion implantation and precise diamond blade dicing
Myers et al. Recent advances in the second-order nonlinear optical properties of amorphous silica materials
JPH11167036A (en) Optical waveguide circuit and nonlinear optical device
Hao et al. Buried Optical Waveguide in Photo-Thermo-Refractive Glass by Ion Exchange Technology
Bai et al. Ridge waveguides in Yb3+-doped silicate glass fabricated by combination of proton implantation and femtosecond laser ablation
Ams et al. Femtosecond-laser-induced refractive index modifications for photonic device processing
JP3988403B2 (en) Method for manufacturing nonlinear optical element
Nazabal et al. Second harmonic generation in chalcogenide glasses
Liu et al. Optical ridge waveguides in Nd3+‐doped fluorophosphate glasses fabricated by carbon ion implantation and femtosecond laser ablation
JP3695054B2 (en) Method for manufacturing nonlinear optical element and nonlinear optical element
JP2002311465A (en) Manufacturing method of nonlinear optical element
EP1154313B1 (en) Optical nonlinear material and production method therefor
Hu et al. Glass in Integrated Photonics
Zhao et al. Optical properties of the O3+-ion implanted and femtosecond-laser ablated ridge waveguide in the Er3+-doped germanate glass

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A131 Notification of reasons for refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090903

LAPS Cancellation because of no payment of annual fees