JPH10160752A - Acceleration detecting apparatus - Google Patents

Acceleration detecting apparatus

Info

Publication number
JPH10160752A
JPH10160752A JP8321925A JP32192596A JPH10160752A JP H10160752 A JPH10160752 A JP H10160752A JP 8321925 A JP8321925 A JP 8321925A JP 32192596 A JP32192596 A JP 32192596A JP H10160752 A JPH10160752 A JP H10160752A
Authority
JP
Japan
Prior art keywords
acceleration
detected
acceleration sensing
voltage
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8321925A
Other languages
Japanese (ja)
Other versions
JP3287244B2 (en
Inventor
Nobuyoshi Sugitani
伸芳 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32192596A priority Critical patent/JP3287244B2/en
Publication of JPH10160752A publication Critical patent/JPH10160752A/en
Application granted granted Critical
Publication of JP3287244B2 publication Critical patent/JP3287244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an acceleration detecting apparatus in which voltages according to accelerations in two directions can be detected by a single acceleration detection part by a method wherein a voltage generated at a time when an acceleration sensing part is bent to a second direction is detected by a first detection part and a voltage generated at a time when the acceleration sensing part is bent to a third direction nearly perpendicular to a first direction and the second direction is detected by a second detection part. SOLUTION: An acceleration sensing body 1 is composed of a fixation part 11 to which an object to be acceleration-detected is fixed, of an acceleration sensing part 12 and of a weight part 13, and it is constituted integrally of a piezoelectric crystal quartz single-crystal substrate. The single-crystal substrate which is used for the acceleration sensing body 1 is a Z-plate, and it is cut in a plane perpendicular to the Z-axis of a crystal direction. Then, when the object to be detected is moved at an acceleration in an arbitrary direction inside the X-Z plane, an inertia force acts on the weight part 13 in the opposite direction. Since bend components in the X-direction and the Y-direction of the bend of the acceleration sensing part 12 correspond to components in the X-direction and the Z-direction of the acceleration, an output voltage at the output terminal of the first detection part indicates the acceleration of the component in the X-direction, and an output voltage at the output terminal of a second detection part indicates the acceleration of the component in the Z-direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの運動
体に搭載され、その加速度を検知する加速度検知装置に
関するものであり、特に、互いに直交する2つの方向の
加速度を検出することができる加速度検知装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration detector mounted on a moving body such as an automobile and detecting its acceleration, and more particularly to an acceleration capable of detecting accelerations in two directions orthogonal to each other. The present invention relates to a detection device.

【0002】[0002]

【従来の技術】互いに直交する2つの方向の加速度を検
出する加速度検知装置として、特開平1−287470
号公報に開示された「半導体加速度センサ」がある。こ
の加速度センサは半導体を利用したもので、半導体基板
中にチップ表面と垂直な面を持つ梁を設け、加速度に応
じて変化する梁の抵抗値を測定して加速度を検知するも
のである。そして、一つの梁は1つの方向の加速度のみ
を検知するものであるため、半導体基板上に互いに直交
する2つの梁を設けることにより、1チップで2方向の
加速度を検知できるように構成している。
2. Description of the Related Art As an acceleration detecting device for detecting accelerations in two directions orthogonal to each other, Japanese Patent Application Laid-Open No. 1-287470 is disclosed.
There is a "semiconductor acceleration sensor" disclosed in Japanese Unexamined Patent Application Publication No. HEI 9-86. This acceleration sensor uses a semiconductor, and includes a beam having a surface perpendicular to the chip surface in a semiconductor substrate, and detects acceleration by measuring a resistance value of the beam that changes according to acceleration. Since one beam detects only acceleration in one direction, two beams orthogonal to each other are provided on the semiconductor substrate so that acceleration in two directions can be detected by one chip. I have.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種の加
速度検知装置は、その搭載スペース等を考慮すると可能
な限り小型化することが求められている。しかし、上述
した従来の半導体加速度センサ置によれば、確かに1チ
ップで互いに直交する2つの方向の加速度を検出できる
が、そのためには必ず2つの梁が必要であるため、チッ
プ面積の縮小化には限界があった。
By the way, this kind of acceleration detecting device is required to be as small as possible in consideration of its mounting space and the like. However, according to the conventional semiconductor acceleration sensor device described above, it is possible to detect accelerations in two directions orthogonal to each other with one chip. However, two beams are always required for that, so that the chip area is reduced. Had limitations.

【0004】[0004]

【課題を解決するための手段】本発明の加速度検知装置
は、このような問題を解決するためになされたものであ
り、加速度を検出したい物体に固定される固定部と、こ
の固定部から突出する加速度感知部と、この加速度感知
部の先端に設けられた重り部とを有する加速度感知体
と、加速度感知部の屈曲量を検出する検出手段とを備
え、加速度感知部は、その長手方向である第1の方向に
かかる応力に応じてこの第1の方向に略垂直な第2の所
定方向に電圧が生じる圧電性結晶からなり、検出手段
は、加速度感知部が第2の方向に屈曲したときにその屈
曲量に応じて生じる電圧を検出する第1検出部と、加速
度感知部が第1および第2の両方向にそれぞれ略垂直な
第3の方向に屈曲したときにその屈曲量に応じて生じる
電圧を検出する第2検出部とを有するものである。
SUMMARY OF THE INVENTION An acceleration detecting device according to the present invention has been made in order to solve such a problem, and has a fixing portion fixed to an object whose acceleration is to be detected, and a protrusion protruding from the fixing portion. An acceleration sensor having a weight portion provided at the tip of the acceleration sensor, and a detector for detecting the amount of bending of the acceleration sensor. The detecting means is formed of a piezoelectric crystal in which a voltage is generated in a second predetermined direction substantially perpendicular to the first direction in response to a stress applied in a certain first direction, and the acceleration sensing unit is bent in the second direction. A first detection unit for detecting a voltage generated according to the amount of bending, and an acceleration sensor according to the amount of bending when bent in a third direction substantially perpendicular to both the first and second directions. Second detection for detecting the resulting voltage And it has a door.

【0005】加速度を検出したい物体に加速度が加わる
と、その反力としての慣性力が重り部に働き、加速度感
知部が加速度と反対の方向に屈曲する。この屈曲の外側
部分は第1の方向に関して伸び、内側部分は第1の方向
に関して縮む。そして、この第1の方向の伸び縮みによ
り加速度感知部の側面に圧電効果による電圧が生じる。
加速度感知部の側面に生じる電圧は、長手方向である第
1の方向にかかる応力に応じてこれに略垂直な第2の所
定方向に電圧が生じるという圧電効果により、屈曲の方
向によって異なる分布を示す。すなわち、屈曲方向は第
2の方向成分と第3の方向成分の合成したものであり、
電圧分布は屈曲の第2の方向成分により生じる電圧と第
3の方向成分により生じる電圧の和となる。一方、検出
手段は加速度感知部の第2の方向の屈曲により発生した
電圧と、第3の方向の屈曲により発生した電圧を互いに
独立に検出できる。したがって、単一の加速度感知部か
ら2方向の加速度に応じた電圧を検知できる。
When acceleration is applied to an object whose acceleration is to be detected, inertial force as a reaction force acts on the weight portion, and the acceleration sensing portion bends in a direction opposite to the acceleration. The outer part of the bend extends in a first direction and the inner part contracts in a first direction. Then, a voltage due to the piezoelectric effect is generated on the side surface of the acceleration sensing unit due to the expansion and contraction in the first direction.
The voltage generated on the side surface of the acceleration sensing unit has a distribution different depending on the bending direction due to a piezoelectric effect that a voltage is generated in a second predetermined direction substantially perpendicular to the stress applied in a first direction which is a longitudinal direction. Show. That is, the bending direction is a combination of the second direction component and the third direction component,
The voltage distribution is the sum of the voltage generated by the second direction component of the bending and the voltage generated by the third direction component. On the other hand, the detecting means can independently detect the voltage generated by the bending of the acceleration sensor in the second direction and the voltage generated by the bending of the acceleration sensor in the third direction. Therefore, a voltage corresponding to the acceleration in two directions can be detected from a single acceleration sensor.

【0006】[0006]

【発明の実施の形態】図1は本発明の一実施形態である
加速度検知装置の加速度感知体を示す斜視図であり、図
2はその検出手段の回路構成を示すブロック図である。
加速度感知体1は、加速度を検出したい物体に固定され
る固定部11と、この固定部11から突出する加速度感
知部12と、この加速度感知部12の先端に設けられた
重り部13とから成り、これらは圧電性結晶である水晶
の単結晶基板で一体に構成されている。なお、以後の説
明を容易にするために、加速度感知体1の配置をXYZ
三次元直交座標において規定すると、本実施形態では、
加速度感知体1をXY平面上に置き、加速度感知部12
の長手方向をY方向に一致させることにする。
FIG. 1 is a perspective view showing an acceleration sensor of an acceleration detecting device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a circuit configuration of the detecting means.
The acceleration sensor 1 includes a fixed portion 11 fixed to an object whose acceleration is to be detected, an acceleration sensing portion 12 protruding from the fixed portion 11, and a weight portion 13 provided at a tip of the acceleration sensing portion 12. These are integrally formed by a single crystal substrate of quartz which is a piezoelectric crystal. In addition, in order to facilitate the following description, the arrangement of the acceleration sensor 1 is XYZ.
When defined in three-dimensional rectangular coordinates, in this embodiment,
The acceleration sensor 1 is placed on the XY plane, and the acceleration sensor 12
Are made to coincide with the Y direction.

【0007】ここで、水晶の結晶軸について簡単に説明
する。天然の水晶は、一般に柱状結晶であり、この柱状
結晶の縦方向の中心軸すなわち<0001>結晶軸はZ
軸または光軸と規定され、Z軸を通り柱状結晶の各表面
に垂直に交わる線はY軸または機械軸と規定される。ま
た、Z軸を通りこの柱状結晶の縦方向の稜線と直交する
線はX軸または電気軸と規定される。
[0007] Here, the crystal axis of quartz will be briefly described. Natural quartz is generally a columnar crystal, and the longitudinal central axis of the columnar crystal, that is, the <0001> crystal axis is Z
An axis or optical axis is defined, and a line passing through the Z axis and perpendicular to each surface of the columnar crystal is defined as a Y axis or a mechanical axis. A line passing through the Z axis and orthogonal to the vertical ridge line of the columnar crystal is defined as an X axis or an electric axis.

【0008】加速度感知体1に用いられている単結晶基
板はZ板と呼ばれる基板であり、結晶方位のZ軸に垂直
ないし略垂直な面で切り出された単結晶基板である。し
たがって、本実施形態においては、結晶方位のZ軸と、
図面上の加速度感知体1の配置方向を示すZ軸とは一致
している。また、水晶のX軸およびY軸は互いに直交す
るものが3組あり、そのうちの一組と図面上の加速度感
知体1の配置方向を示すX軸およびY軸とが一致してい
る。なお、加速度感知体1に用いられる水晶は、人工水
晶であるがその構造は天然の水晶と同じである。
The single crystal substrate used for the acceleration sensor 1 is a substrate called a Z plate, which is a single crystal substrate cut out from a plane perpendicular or substantially perpendicular to the Z axis of the crystal orientation. Therefore, in the present embodiment, the Z axis of the crystal orientation and
The Z axis, which indicates the direction in which the acceleration sensor 1 is arranged in the drawing, coincides with the Z axis. In addition, there are three sets of the X axis and the Y axis of the crystal which are orthogonal to each other, and one of the sets matches the X axis and the Y axis indicating the arrangement direction of the acceleration sensor 1 on the drawing. The quartz used for the acceleration sensor 1 is an artificial quartz, but its structure is the same as a natural quartz.

【0009】加速度感知部12の固定部11側の根本部
に6個の電圧検出用電極14〜19が蒸着により設けら
れている。電極14、15は加速度感知部12の上下面
にそえぞれ配置されており、図1上では図示を省略した
配線を介して電荷アンプ21の入力端子に接続されてい
る。電極16〜19は加速度感知部12の4つの角部に
それぞれ配置されており、対角線上にあるもの同士が図
1上では図示を省略した配線を介して相互に結線されて
いる。そのうち、電極16および17は電荷アンプ22
の入力端子に接続され、電極18および19は抵抗20
を介して中間電位電源201に接続されている。
[0009] Six voltage detecting electrodes 14 to 19 are provided by vapor deposition at the root of the acceleration sensing unit 12 on the fixed unit 11 side. The electrodes 14 and 15 are arranged on the upper and lower surfaces of the acceleration sensing unit 12, respectively, and are connected to the input terminals of the charge amplifier 21 via wires not shown in FIG. The electrodes 16 to 19 are arranged at four corners of the acceleration sensing unit 12, respectively, and the electrodes on the diagonal lines are connected to each other via wiring not shown in FIG. The electrodes 16 and 17 are the charge amplifiers 22
And the electrodes 18 and 19 are connected to the resistor 20
Is connected to the intermediate potential power supply 201 via the.

【0010】このように構成される加速度感知体1は、
その固定部11が加速度を検出したい物体に固定され、
その物体がXZ平面に平行な任意の方向に加速度をもっ
て移動すると、重り部13に加わる慣性力によって加速
度感知部12が加速度に応じて移動方向と反対の方向に
屈曲する。たとえば、被検出物体がZ方向の+Zの向き
に加速度gで移動したとすると、加速度感知部12は−
Zの向きに加速度gに応じた程度に屈曲する。本実施形
態の加速度検知装置は、この加速度感知体1に図2に示
す回路を組み合わせることにより、屈曲に伴って加速度
感知部12に圧電効果により生じる電圧から加速度を検
出するものである。
The acceleration sensor 1 configured as described above has
The fixing part 11 is fixed to an object whose acceleration is to be detected,
When the object moves with an acceleration in an arbitrary direction parallel to the XZ plane, the inertial force applied to the weight 13 causes the acceleration sensing unit 12 to bend in a direction opposite to the moving direction according to the acceleration. For example, if the detected object moves at an acceleration g in the + Z direction in the Z direction, the acceleration sensing unit 12 determines that −
It bends in the direction of Z to an extent corresponding to the acceleration g. The acceleration detecting device according to the present embodiment detects acceleration from a voltage generated by the piezoelectric effect in the acceleration sensing unit 12 due to bending by combining the acceleration sensor 1 with the circuit shown in FIG.

【0011】なお、電極14〜19が、加速度感知部1
2の固定部11側の根本部に設けられているのは、屈曲
率が最も大きく、加速度に対する感度を最も大きくとる
ことができるからである。
The electrodes 14 to 19 correspond to the acceleration sensor 1
2 is provided at the root portion on the side of the fixing portion 11 because the bending rate is the highest and the sensitivity to acceleration can be the highest.

【0012】次に図2に示す検出回路の説明に先立っ
て、屈曲に伴って発生する圧電効果のメカニズムを図3
および図4を用いて説明する。図3および図4はそれぞ
れ図1のII−II断面を示すものである。
Next, prior to the description of the detection circuit shown in FIG. 2, the mechanism of the piezoelectric effect caused by bending will be described with reference to FIG.
This will be described with reference to FIG. FIG. 3 and FIG. 4 each show a II-II section of FIG.

【0013】まず、図3を用いて加速度感知部12がX
方向に屈曲した場合に生じる圧電効果を説明する。加速
度感知部12が−Xの向き、すなわち、矢印38の向き
に屈曲すると、加速度感知部12の左半分121がY方
向に伸び、右半分122がY方向に縮む。加速度感知体
1を構成している水晶のZ板は、すでに述べたように、
Y方向の応力に対してX方向の電圧(誘電分極)が生じ
る。そして、圧縮応力と引っ張り応力とでは、電圧の向
きが互いに反対となる。すなわち、図3に示すように、
加速度感知部12の左半分121には矢印35で示す向
きの電圧が生じ、右半分122には矢印36で示す向き
の電圧が生じる。この2つの電圧により、加速度感知部
12全体としては、矢印31〜34で示すような電界分
布となり、上面および下面には正の電圧が生じる。
First, referring to FIG.
The piezoelectric effect that occurs when bending in the direction will be described. When the acceleration sensing unit 12 bends in the -X direction, that is, the direction of the arrow 38, the left half 121 of the acceleration sensing unit 12 extends in the Y direction and the right half 122 contracts in the Y direction. As described above, the quartz Z plate constituting the acceleration sensor 1
A voltage (dielectric polarization) in the X direction is generated with respect to the stress in the Y direction. The directions of the voltages are opposite to each other between the compressive stress and the tensile stress. That is, as shown in FIG.
A voltage in a direction indicated by an arrow 35 is generated in the left half 121 of the acceleration sensing unit 12, and a voltage in a direction indicated by an arrow 36 is generated in the right half 122. With these two voltages, the acceleration sensor 12 as a whole has an electric field distribution as indicated by arrows 31 to 34, and positive voltages are generated on the upper surface and the lower surface.

【0014】加速度感知部12が同じX方向で+Xの向
き、すなわち、矢印39の向きに屈曲した場合は、同様
の原理により、加速度感知部12の左半分121および
右半分122には、それぞれ矢印35および36の逆向
きの電圧が生じる。これにより、加速度感知部12全体
としては、矢印31〜34のすべてが逆向きとなる電界
分布となり、加速度感知部12の上面および下面には負
の電圧が生じる。
When the acceleration sensor 12 is bent in the same X direction in the direction of + X, that is, in the direction of the arrow 39, the left half 121 and the right half 122 of the acceleration sensor 12 are provided with arrows in accordance with the same principle. Reverse voltages of 35 and 36 result. Thus, the entirety of the acceleration sensing unit 12 has an electric field distribution in which all the arrows 31 to 34 are in opposite directions, and a negative voltage is generated on the upper surface and the lower surface of the acceleration sensing unit 12.

【0015】このように、加速度感知部12のX方向の
屈曲に応じて、加速度感知12の上面および下面に電圧
が現れ、この電圧の変化に応じて電極14および15内
の電子が移動するので、この電子の移動を検出すれば、
X方向の屈曲量、ひいてはX方向の加速度を検出するこ
とができる。
As described above, a voltage appears on the upper and lower surfaces of the acceleration sensor 12 in accordance with the bending of the acceleration sensor 12 in the X direction, and the electrons in the electrodes 14 and 15 move in accordance with the change in the voltage. , If this movement of electrons is detected,
The amount of bending in the X direction, and thus the acceleration in the X direction, can be detected.

【0016】つぎに、図4を用いて加速度感知部12が
Z方向に屈曲した場合に生じる圧電効果について説明す
る。加速度感知部12が+Zの向き、すなわち、矢印4
3の向きに屈曲すると、加速度感知部12の上半分12
3はY方向に縮み、下半分124はY方向に伸びる。す
ると、上半分123には矢印41で示すように右向きの
誘電分極が発生し、下半分124には矢印42で示すよ
うな左向きの誘電分極が発生する。そして、誘電分極の
強さは伸縮の大きさに依存するので上面または下面にお
いて強く現れ、中間部に向かうほど弱い。したがって、
電界は4つの角部に集中し、左上および右下が正の極
性、右上および左下が負の極性となる。
Next, the piezoelectric effect generated when the acceleration sensing unit 12 is bent in the Z direction will be described with reference to FIG. When the acceleration sensing unit 12 is in the + Z direction,
3, the upper half 12 of the acceleration sensor 12 is bent.
3 contracts in the Y direction, and the lower half 124 extends in the Y direction. Then, a rightward dielectric polarization is generated in the upper half 123 as shown by the arrow 41, and a leftward dielectric polarization is generated in the lower half 124 as shown by the arrow 42. Since the strength of dielectric polarization depends on the magnitude of expansion and contraction, it appears strongly on the upper or lower surface, and becomes weaker toward the middle. Therefore,
The electric field is concentrated at the four corners, with the upper left and lower right having positive polarity and the upper right and lower left having negative polarity.

【0017】一方、加速度感知部12が−Zの向き、す
なわち、矢印44の向きに屈曲すると、加速度感知部1
2の上半分123はY方向に伸び、下半分124はY方
向に縮む。これにより、加速度感知部12内に矢印41
および42とは反対向きの誘電分極が生じ、右上および
左下に正の極性、右下および左上に負の極性が現れる。
On the other hand, when the acceleration sensor 12 is bent in the direction of -Z, that is, in the direction of the arrow 44, the acceleration sensor 1
2, the upper half 123 extends in the Y direction, and the lower half 124 contracts in the Y direction. Thereby, the arrow 41 is displayed in the acceleration sensing unit 12.
And 42 the opposite direction of polarization occurs, with a positive polarity appearing in the upper right and lower left, and a negative polarity appearing in the lower right and upper left.

【0018】このように、加速度感知部12のZ方向の
屈曲に応じて、加速度感知部12の4つの角部に電圧が
現れ、この電圧の変化に応じて電極16〜19内の電子
が移動するので、この電子の移動を検出すれば、Z方向
の屈曲量、ひいてはZ方向の加速度を検出することがで
きる。
As described above, a voltage appears at four corners of the acceleration sensing unit 12 in accordance with the bending of the acceleration sensing unit 12 in the Z direction, and electrons in the electrodes 16 to 19 move in accordance with the change in the voltage. Therefore, if the movement of the electrons is detected, the amount of bending in the Z direction, and thus the acceleration in the Z direction, can be detected.

【0019】つぎに、図2に示す検出手段を説明する。
検出回路は、加速度感知部12で発生した誘電分極によ
る電極14〜19における電荷の移動量ΔQを増幅する
電荷アンプ(チャージアンプ)21、22と、その出力
電圧のオフセット調整および増幅をする反転増幅回路2
3、24とを備えている。そして、電極14、15、電
荷アンプ21、および反転増幅回路23でX方向の加速
度を検出する第1検出部を構成し、電極16、17、電
荷アンプ22、および反転増幅回路24でZ方向の加速
度を検出する第2検出部を構成する。
Next, the detecting means shown in FIG. 2 will be described.
The detection circuit includes charge amplifiers (charge amplifiers) 21 and 22 for amplifying the amount of movement ΔQ of charges on the electrodes 14 to 19 due to dielectric polarization generated by the acceleration sensing unit 12 and inverting amplification for offset adjustment and amplification of the output voltage. Circuit 2
3 and 24. The electrodes 14 and 15, the charge amplifier 21, and the inverting amplifier circuit 23 constitute a first detecting unit that detects acceleration in the X direction. The electrodes 16 and 17, the charge amplifier 22, and the inverting amplifier circuit 24 constitute a first detecting unit. A second detection unit for detecting acceleration is configured.

【0020】なお、電極18および19は、第1検出部
および第2検出部の両方の基準電位を与えるものとして
機能する。
The electrodes 18 and 19 function as applying reference potentials to both the first detecting section and the second detecting section.

【0021】第1検出部および第2検出部は、電極1
8、19に接続する端子28を、オペアンプ211、2
21等の上位駆動電源電圧(たとえば5V)と下位駆動
電源電圧(たとえば接地電圧)の中間の電位(たとえば
2.5V)の電源201に接続することにより、X方向
およびZ方向のそれぞれにおいて向きを含めた加速度の
検出が可能となる。
The first detection unit and the second detection unit include an electrode 1
Terminals 28 connected to 8 and 19 are connected to operational amplifiers 211 and 2
By connecting to a power supply 201 of an intermediate potential (for example, 2.5 V) between the upper drive power supply voltage (for example, 5 V) and the lower drive power supply voltage (for example, ground voltage) such as 21, the direction is changed in the X direction and the Z direction. It is possible to detect the included acceleration.

【0022】電荷アンプ21は、オペアンプ211と、
容量値C1の容量212および抵抗値R1の抵抗213
からなる負帰還回路とで構成されている。オペアンプ2
11の反転入力端子は、電極14および15と接続する
端子27に接続され、非反転入力端子は、加速度感知体
1のバックグラウンド電位である中間電位214に固定
されている。
The charge amplifier 21 includes an operational amplifier 211,
A capacitance 212 with a capacitance value C1 and a resistance 213 with a resistance value R1
And a negative feedback circuit composed of Operational amplifier 2
Eleven inverting input terminals are connected to a terminal 27 connected to the electrodes 14 and 15, and the non-inverting input terminal is fixed to an intermediate potential 214 which is a background potential of the acceleration sensor 1.

【0023】加速度感知部12がX方向に屈曲して上面
および下面に電圧が発生すると電極14、15内の電子
(電荷)が移動して電流Iが生じる。この電流Iから移
動した電荷量ΔQに比例した出力電圧を得るには電流I
を積分する必要があり、この積分処理をコンデンサ21
2が行っている。なお、抵抗213はDC負帰還および
バイアス用として用いられている。検出すべき電荷量は
非常に微量であるため、コンデンサ212の容量値C1
には数十pFの小さい値が用いられ、リークを少なくす
るためDC負帰還用の抵抗213の抵抗値R1は数十M
Ω以上の大きな値が用いられる。この電荷アンプの出力
V1は、 V1=ΔQ/C1 …(1) で与えられる。
When the acceleration sensing portion 12 bends in the X direction to generate a voltage on the upper and lower surfaces, electrons (charges) in the electrodes 14 and 15 move to generate a current I. To obtain an output voltage proportional to the amount of charge ΔQ moved from the current I, the current I
Must be integrated, and this integration process is performed by the capacitor 21
Two are going. The resistor 213 is used for DC negative feedback and bias. Since the amount of charge to be detected is very small, the capacitance value C1
Has a small value of several tens of pF, and the resistance value R1 of the DC negative feedback resistor 213 is several tens M in order to reduce leakage.
A large value of Ω or more is used. The output V1 of this charge amplifier is given by: V1 = ΔQ / C1 (1)

【0024】電荷アンプ21の出力側には、オペアンプ
231、コンデンサ232、可変抵抗233、235お
よび抵抗234から成る感度調整およびオフセット調整
が可能な反転増幅回路23が接続されている。この反転
増幅回路49では、電荷アンプ21の出力電圧V1をさ
らに増幅すると共に、可変抵抗233の調整により感度
調整を行い、可変抵抗235を調整することにより出力
電圧のオフセット調整を行う。
The output side of the charge amplifier 21 is connected to an inverting amplifier circuit 23 composed of an operational amplifier 231, a capacitor 232, variable resistors 233 and 235 and a resistor 234 and capable of sensitivity adjustment and offset adjustment. In the inverting amplifier circuit 49, the output voltage V1 of the charge amplifier 21 is further amplified, the sensitivity is adjusted by adjusting the variable resistor 233, and the offset of the output voltage is adjusted by adjusting the variable resistor 235.

【0025】反転増幅回路23の出力は、第1検出部の
出力端子25に接続され、この端子の出力電圧は、X方
向の向きの情報も含めた加速度情報となる。
The output of the inverting amplifier circuit 23 is connected to an output terminal 25 of the first detector, and the output voltage of this terminal becomes acceleration information including information on the direction in the X direction.

【0026】電荷アンプ22は、上述した電荷アンプ2
1と同一の構成であり、オペアンプ221と、容量値C
1の容量222および抵抗値R1の抵抗223からなる
負帰還回路とで構成され、オペアンプ221の反転入力
端子は、電極16および17と接続する端子27に接続
され、非反転入力端子は、中間電位224に固定されて
いる。
The charge amplifier 22 includes the charge amplifier 2 described above.
1 and has an operational amplifier 221 and a capacitance value C
1 and a negative feedback circuit including a resistor 223 having a resistance value R1. An inverting input terminal of the operational amplifier 221 is connected to a terminal 27 connected to the electrodes 16 and 17, and a non-inverting input terminal is connected to an intermediate potential. 224.

【0027】反転増幅回路24は、上述した反転増幅回
路23と同一の構成であり、オペアンプ241、コンデ
ンサ242、可変抵抗243、245および抵抗244
からなり、可変抵抗245は上位駆動電源246と接地
電位との間に接続されている。
The inverting amplifier circuit 24 has the same configuration as the inverting amplifier circuit 23 described above, and includes an operational amplifier 241, a capacitor 242, variable resistors 243 and 245, and a resistor 244.
The variable resistor 245 is connected between the upper drive power supply 246 and the ground potential.

【0028】この反転増幅回路24の出力は、第2検出
部の出力端子26に接続され、この端子の出力電圧は、
Z方向の向きの情報も含めた加速度情報となる。
The output of the inverting amplifier circuit 24 is connected to the output terminal 26 of the second detector, and the output voltage of this terminal is
The acceleration information includes information on the direction in the Z direction.

【0029】以上のように構成された加速度検知装置に
よれば、XZ平面内の任意の方向に被検出物体が加速度
をもって移動すると、その移動方向と反対の方向に重り
部13に慣性力が働き、加速度感知部12が屈曲する。
このときの加速度感知部12の屈曲のX方向成分とY方
向成分は、加速度のX方向成分とZ方向成分に対応して
いるので、第1検出部の出力端子25の出力電圧は、X
方向成分の加速度を示し、第2検出部の出力端子26の
出力電圧は、Z方向成分の加速度を示すことになる。
According to the acceleration detecting device constructed as described above, when the object to be detected moves with an acceleration in an arbitrary direction in the XZ plane, an inertial force acts on the weight portion 13 in a direction opposite to the moving direction. , The acceleration sensing part 12 bends.
At this time, since the X-direction component and the Y-direction component of the bending of the acceleration sensing unit 12 correspond to the X-direction component and the Z-direction component of the acceleration, the output voltage of the output terminal 25 of the first detection unit is X
It indicates the acceleration of the directional component, and the output voltage of the output terminal 26 of the second detection unit indicates the acceleration of the Z-direction component.

【0030】なお、本実施形態では、加速度感知体1と
して水晶基板を用いているが、第1の方向にかかる応力
に応じてこの第1の方向に略垂直な第2の所定方向に電
圧が生じる他の圧電体結晶、たとえば、LiTaO3
を水晶に代えて用いることができる。
In this embodiment, a quartz substrate is used as the acceleration sensor 1, but a voltage is applied in a second predetermined direction substantially perpendicular to the first direction in accordance with the stress applied in the first direction. Other resulting piezoelectric crystals, such as LiTaO 3 , can be used in place of quartz.

【0031】[0031]

【発明の効果】以上説明したように、本発明の加速度検
知装置によれば、単一の加速度感知部から2方向の加速
度に応じた電圧を独立に検知できるので小型化が容易で
ある。
As described above, according to the acceleration detecting device of the present invention, the voltage according to the acceleration in two directions can be independently detected from a single acceleration detecting portion, and therefore, the miniaturization is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である加速度検知装置に用
いられる加速度感知体を示す斜視図。
FIG. 1 is a perspective view showing an acceleration sensor used in an acceleration detecting device according to an embodiment of the present invention.

【図2】本発明の一実施形態である加速度検知装置に用
いられる検出手段の回路を示すブロック図。
FIG. 2 is a block diagram showing a circuit of a detecting means used in the acceleration detecting device according to the embodiment of the present invention.

【図3】加速度感知体のX方向の屈曲による圧電効果を
説明するための断面図。
FIG. 3 is a sectional view for explaining a piezoelectric effect caused by bending of an acceleration sensor in the X direction.

【図4】加速度感知体のZ方向の屈曲による圧電効果を
説明するための断面図。
FIG. 4 is a cross-sectional view for explaining a piezoelectric effect due to bending of the acceleration sensor in the Z direction.

【符号の説明】[Explanation of symbols]

1…加速度感知体、11…固定部、12…加速度感知
部、13…重り部、14〜19…電極、21、22…電
荷アンプ、23、24…反転増幅回路。
DESCRIPTION OF SYMBOLS 1 ... Acceleration sensor, 11 ... Fixed part, 12 ... Acceleration sensing part, 13 ... Weight part, 14-19 ... Electrode, 21, 22 ... Charge amplifier, 23, 24 ... Inverting amplifier circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加速度を検出したい物体に固定される固
定部と、この固定部から突出する加速度感知部と、この
加速度感知部の先端に設けられた重り部とを有する加速
度感知体と、前記加速度感知部の屈曲量を検出する検出
手段とを備え、 前記加速度感知部は、その長手方向である第1の方向に
かかる応力に応じてこの第1の方向に略垂直な第2の所
定方向に電圧が生じる圧電性結晶からなり、 前記検出手段は、前記加速度感知部が前記第2の方向に
屈曲したときにその屈曲量に応じて生じる電圧を検出す
る第1検出部と、前記加速度感知部が前記第1および第
2の両方向にそれぞれ略垂直な第3の方向に屈曲したと
きにその屈曲量に応じて生じる電圧を検出する第2検出
部とを有することを特徴とする加速度検出装置。
An acceleration sensor having a fixed portion fixed to an object whose acceleration is to be detected, an acceleration sensing portion protruding from the fixed portion, and a weight provided at a tip of the acceleration sensing portion; Detecting means for detecting the amount of bending of the acceleration sensing unit, wherein the acceleration sensing unit has a second predetermined direction substantially perpendicular to the first direction in accordance with a stress applied in a first direction which is a longitudinal direction thereof. A first detecting unit configured to detect a voltage generated according to an amount of bending when the acceleration sensing unit bends in the second direction; A second detecting section for detecting a voltage generated in accordance with the amount of bending when the section is bent in a third direction substantially perpendicular to both the first and second directions. .
JP32192596A 1996-12-02 1996-12-02 Acceleration detector Expired - Fee Related JP3287244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32192596A JP3287244B2 (en) 1996-12-02 1996-12-02 Acceleration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32192596A JP3287244B2 (en) 1996-12-02 1996-12-02 Acceleration detector

Publications (2)

Publication Number Publication Date
JPH10160752A true JPH10160752A (en) 1998-06-19
JP3287244B2 JP3287244B2 (en) 2002-06-04

Family

ID=18137954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32192596A Expired - Fee Related JP3287244B2 (en) 1996-12-02 1996-12-02 Acceleration detector

Country Status (1)

Country Link
JP (1) JP3287244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042478A (en) * 2011-10-11 2012-03-01 Kyocera Kinseki Corp Inertial sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042478A (en) * 2011-10-11 2012-03-01 Kyocera Kinseki Corp Inertial sensor element

Also Published As

Publication number Publication date
JP3287244B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US6504356B2 (en) Microelectro-mechanical high resolution current sensing apparatus
EP0497289B1 (en) A capacitive angular acceleration sensor
EP0565065B1 (en) Acceleration sensor
KR100513346B1 (en) A capacitance accelerometer having a compensation elctrode
JP3016986B2 (en) Vibrating gyroscope detection circuit
CN101680910B (en) Operation method and switch arrangement for a capacitive micromechanical sensor with analog reset
JP4327395B2 (en) Sensors and micromachined equipment
EP0905479B1 (en) Vibrating gyroscope
US10330696B2 (en) Accelerometer sensor system
JP2000009475A (en) Angular velocity detection device
WO2004090556A1 (en) Silicon integrated acceleration sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP2001153659A (en) Angular velocituy sensor
JP3287244B2 (en) Acceleration detector
JP5631529B2 (en) Acceleration sensor
US6822375B2 (en) Vibrating gyroscope and electronic device using the same having a driving circuit, a detection circuit and four supporting members with different rigidities, different shapes, different cross sections, different materials and different lengths
US5696322A (en) Vibrating gyroscope
JP2773460B2 (en) Semiconductor acceleration sensor
CN110514189B (en) Gyroscope and method for fusing and correcting quadrature error of gyroscope
JP3019549B2 (en) Semiconductor acceleration sensor
JPH1096745A (en) Electrical capacitance type external force detecting device
JPH10170538A (en) Acceleration sensor
JP3136888B2 (en) Accelerometer sensitivity adjustment device
JPH06151272A (en) Slight movement positioning device provided with acceleration feedback
JPH0627133A (en) Three dimensional acceleration sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees