JP2000009475A - Angular velocity detection device - Google Patents

Angular velocity detection device

Info

Publication number
JP2000009475A
JP2000009475A JP10180303A JP18030398A JP2000009475A JP 2000009475 A JP2000009475 A JP 2000009475A JP 10180303 A JP10180303 A JP 10180303A JP 18030398 A JP18030398 A JP 18030398A JP 2000009475 A JP2000009475 A JP 2000009475A
Authority
JP
Japan
Prior art keywords
angular velocity
assisting
voltage
vibration
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10180303A
Other languages
Japanese (ja)
Inventor
Tadashi Touge
宗 志 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10180303A priority Critical patent/JP2000009475A/en
Publication of JP2000009475A publication Critical patent/JP2000009475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the angular velocity detection sensitivity, to check to see if an angular velocity sensor is abnormal, to calibrate the angular velocity sensor, and to automate the procedures. SOLUTION: The angular velocity detection device is provided with first and second vibration bodies 7, 11/17, and 21 that are floated and supported for a substrate 100 and are symmetrical, drive electrodes 5a, 6a/5b, and 6b for performing the x vibration drive of them, detection electrodes 12, 13/22, and 23 for detecting the y vibration of the vibration bodies, assisting electrodes 62, 63/72, and 73 for giving static electricity force to the vibration body in a y direction, and voltage circuits 64/74 for applying a voltage for static electricity force to them. The assisting electrodes are a pair of electrodes 62, 63/72, 73 for giving static electricity force in the opposite direction to the vibration body. A measurement controller TCR adjusts an assisting voltage Ve to be applied to the assisting electrode for calibrating x amplitude, applies a voltage for feeding a pseudo Coriolis force to the vibration bodies 11 and 21 to the assisting electrodes for reading an angular velocity detection signal and calibrates a measurement circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板に対して浮動
支持された振動体を備える角速度センサおよびそれを用
いる角速度検出装置に関し、特に、これに限定する意図
ではないが、半導体微細加工技術を用いて形成される浮
動半導体薄膜を櫛歯電極にて電気的に吸引/解放してx
方向に励振する角速度センサとそれを用いる角速度検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor having a vibrating body floatingly supported on a substrate and an angular velocity detecting device using the same. The floating semiconductor thin film formed by using is electrically attracted / released by a comb-shaped electrode and x
The present invention relates to an angular velocity sensor that excites in a direction and an angular velocity detection device using the sensor.

【0002】[0002]

【従来の技術】この種の角速度センサの代表的なもの
は、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛
歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備
え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触
で噛み合いかつ平行な左側固定櫛歯電極および右側固定
櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電
極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に
電圧を印加することにより、浮動薄膜がx方向に振動す
る。浮動薄膜に、z軸を中心とする回転の角速度が加わ
ると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、
y方向にも振動する楕円振動となる。浮動薄膜を導体と
しもしくは電極が接合したものとし、浮動薄膜のxz平
面に平行な検出電極を基板上に備えておくと、この検出
電極と浮動薄膜との間の静電容量が、楕円振動のy成分
(角速度成分)に対応して振動する。この静電容量の変
化(振幅)を測定することにより、角速度を求めること
が出来る(例えば、米国特許明細書第5,635,638号,特
開平5−248872号公報,特開平7−218268
号公報,特開平8−152327号公報,特開平9−1
27148号公報,特開平9−42973号公報)。
2. Description of the Related Art A typical type of angular velocity sensor has a pair of floating comb electrodes (a left floating comb electrode and a right floating comb electrode) on the left side and one set on the right side of a floating thin film. And two sets of fixed comb electrodes (a left fixed comb electrode and a right fixed comb electrode that mesh with and are parallel to each set of floating comb electrodes in a non-contact manner) as left floating comb electrodes / left fixed comb electrodes. By alternately applying a voltage between the space and the right floating comb electrode / the right fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z-axis is applied to the floating thin film, Coriolis force is applied to the floating thin film, and the floating thin film becomes
An elliptical vibration that vibrates also in the y direction. If the floating thin film is used as a conductor or an electrode is bonded, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the capacitance between the detection electrode and the floating thin film becomes elliptical oscillation. Vibrates according to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be determined (for example, U.S. Pat. No. 5,635,638, JP-A-5-248872, and JP-A-7-218268).
JP, JP-A 8-152327, JP-A 9-1
27148, JP-A-9-42973).

【0003】[0003]

【発明が解決しようとする課題】例えば米国特許第56
35,638号の図4に示されるマイクロマシンヨーレ
ートセンサは、角速度検出感度を高くするときには、励
振駆動電圧を高くして振動子の変位を大きくするが、励
振駆動電圧による振動変位の調整範囲は狭く、大幅な感
度の向上はみこめない。一方、この種の角速度センサで
は、励振駆動電圧および角速度以外にも、角速度検出信
号にレベル変化を与える多くのパラメ−タがあり、セン
サの動作異常のチェックならびに角速度検出信号を生成
する電気処理回路の校正が重要であるが、振動子に角速
度がくわわりコリオリ力が発生するまで、角速度検出信
号には変化が現われない。
SUMMARY OF THE INVENTION For example, US Pat. No. 56
In the micromachine yaw rate sensor shown in FIG. 4 of Japanese Patent No. 35,638, when the angular velocity detection sensitivity is increased, the excitation drive voltage is increased to increase the displacement of the vibrator, but the adjustment range of the vibration displacement by the excitation drive voltage is narrow. There is no significant improvement in sensitivity. On the other hand, in this type of angular velocity sensor, there are many parameters that change the level of the angular velocity detection signal in addition to the excitation drive voltage and the angular velocity, and an electric processing circuit for checking for abnormal operation of the sensor and generating the angular velocity detection signal. Is important, but the angular velocity detection signal does not change until the angular velocity is applied to the vibrator and Coriolis force is generated.

【0004】例えば、振動子は正常に駆動しているが、
温度,外乱等でセンサの動きが異常になって角速度検出
信号がシフトした場合、角速度の変化と識別できない。
例えば、双共振型の角速度センサは励振,角速度検出振
動の共振周波数差が一定の範囲内でなければならないた
め、万一検出振動の周波数がその範囲からはずれている
場合、角速度信号の振れからは、それが分からない。車
載等、移動体上に搭載している時には、他のセンサ類か
ら角速度を推定し、角速度センサの角速度信号の正,誤
をチェックしているが、角速度センサ出力を校正するこ
とは難かしい。角速度センサが温度等で経時変化をおこ
し、出力感度が低下しても角速度センサ自身では判定で
きないため角速度検出信号の信頼性が低下する。
[0004] For example, the vibrator operates normally,
If the angular velocity detection signal shifts due to abnormal movement of the sensor due to temperature, disturbance, or the like, it cannot be identified as a change in angular velocity.
For example, since the resonance frequency difference between the excitation and angular velocity detection vibration of the dual resonance type angular velocity sensor must be within a certain range, if the frequency of the detection vibration deviates from that range, the angular velocity signal swing I don't know it. When mounted on a moving body such as a vehicle, the angular velocity is estimated from other sensors and the correctness or wrongness of the angular velocity signal of the angular velocity sensor is checked. However, it is difficult to calibrate the output of the angular velocity sensor. Even if the angular velocity sensor changes with time due to temperature or the like, and the output sensitivity is reduced, the angular velocity sensor itself cannot make a determination, so that the reliability of the angular velocity detection signal is reduced.

【0005】本発明は、検出感度を高くしうる角速度セ
ンサを提供することを第1の目的とし、異常チェックあ
るいは検出信号の校正が容易な角速度センサを提供する
ことを第2の目的とし、自身で異常チェックあるいは検
出信号の校正を行なう角速度検出装置を提供することを
第3の目的とする。
A first object of the present invention is to provide an angular velocity sensor capable of increasing the detection sensitivity, and a second object of the present invention is to provide an angular velocity sensor which can easily check for an abnormality or calibrate a detection signal. It is a third object of the present invention to provide an angular velocity detecting device for checking an abnormality or calibrating a detection signal.

【0006】[0006]

【課題を解決するための手段】(1)本発明の角速度検
出装置は、x,y方向に撓み性が高い浮動支持部材(a1
〜a4,b1〜b4,c1,c2,31〜38)で基板(100)に対して浮動支
持され、x方向に並び、並びの中間点Oを通るy軸に関
して対称な第1および第2振動体(7,11/17,21);第1お
よび第2振動体の少くとも一方をx方向に振動駆動する
励振手段(5a,6a/5b,6b);第1および第2振動体のy振
動を検出する変位検出手段(12,13/22,23);および、第
1および第2振動体の少くとも一方に、y方向の力を与
えるy変位助勢手段(62,63/72,73);を備える。なお、
理解を容易にするためにカッコ内には、図面に示し後述
する実施例の対応要素の符号を参考までに付記した。
(1) An angular velocity detecting device according to the present invention is a floating support member (a1) having high flexibility in x and y directions.
A4, b1 to b4, c1, c2, 31 to 38) floatingly supported with respect to the substrate (100), arranged in the x direction, and symmetrical with respect to the y axis passing through the midpoint O of the arrangement. Exciting means (5a, 6a / 5b, 6b) for driving at least one of the first and second vibrating bodies in the x direction; y of the first and second vibrating bodies Displacement detecting means (12,13 / 22,23) for detecting vibration; and y displacement assisting means (62,63 / 72,73) for applying a force in the y direction to at least one of the first and second vibrating bodies. ) ;. In addition,
In order to facilitate understanding, the reference numerals of the corresponding elements in the embodiments shown in the drawings and described later are added in the parentheses for reference.

【0007】励振手段(5a,6a/5b,6b)が振動体をx方向
に振動駆動し、第1および第2振動体が実質上等しい周
波数で振動しているとき、中間点Oを通るz軸廻りの角
速度が加わると、コリオリ力により、第1および第2振
動体の振動が楕円振動となりy方向にも振動する。第1
および第2振動体のy振動は相対的に逆相となるので、
第1および第2振動体は、z軸廻りのねじれ振動をす
る。y振動の、x振動に対する位相の正,負は角速度の
回転方向に、y振動の振幅の絶対値は角速度の大きさ
(絶対値)に対応する。変位検出手段(12,13/22,23)が
これらのy振動を検出する。検出したy振動から角速度
信号を生成することができる。
The excitation means (5a, 6a / 5b, 6b) drives the vibrating body to vibrate in the x direction, and when the first and second vibrating bodies vibrate at substantially equal frequencies, z When an angular velocity around the axis is applied, the vibrations of the first and second vibrators become elliptical vibrations due to Coriolis force, and also vibrate in the y direction. First
And the y-vibration of the second vibrating body has a relatively opposite phase,
The first and second vibrators perform torsional vibration around the z-axis. The positive and negative phases of the y vibration with respect to the x vibration correspond to the rotation direction of the angular velocity, and the absolute value of the amplitude of the y vibration corresponds to the magnitude (absolute value) of the angular velocity. The displacement detecting means (12, 13/22, 23) detects these y vibrations. An angular velocity signal can be generated from the detected y vibration.

【0008】y変位助勢手段(62,63/72,73)が振動体
に、y方向の力を与えると、該力の方向の、振動体の見
かけ上のばね定数が変化して変位量が変わり、角速度に
対する振動体の感度が変化し、角速度検出感度が変化す
る。これにより、1つのセンサ設計で各仕様のセンサ感
度,測定範囲などを任意に調整,設定しうる。高感度で
低コストのセンサを実現することもできる。
When the y-displacement assisting means (62, 63/72, 73) applies a force in the y-direction to the vibrating body, the apparent spring constant of the vibrating body in the direction of the force changes, and the amount of displacement is reduced. Changes, the sensitivity of the vibrating body to the angular velocity changes, and the angular velocity detection sensitivity changes. Thereby, the sensor sensitivity, the measurement range, and the like of each specification can be arbitrarily adjusted and set by one sensor design. It is also possible to realize a high-sensitivity and low-cost sensor.

【0009】ところで、 Fc=2×M×Ω×Acosωt Fc:コリオリ力, M:振動子の質量, Ω:角速度 A:x振動の振幅 ω=2πf,f:x振動の周波数 であるので、角速度Ω対応のコリオリ力Fcを振動子に
与えるには、振動子に 2×M×Ω×Acosωt の力を加えればよい。y変位助勢手段(62,63/72,73)に
て、角速度Ωの各値の2×M×Ω×Acosωtなる力を
振動体に加えることにより、振動体に角速度Ωの各値の
コリオリ力が加わったのと同様な力が作用する。変位検
出手段(12,13/22,23)が検出するy振動と、加えた力対
応の角速度Ωとを照合することにより、角速度センサの
動作の正否,ならびに、角速度検出特性(入力角速度対
出力検出信号の関係)をチェックすることができ、角速
度検出特性を設計特性に合わす校正(電気回路の信号処
理特性の調整)を行なうことができる。
By the way, Fc = 2 × M × Ω × Acosωt Fc: Coriolis force, M: mass of vibrator, Ω: angular velocity A: amplitude of x vibration ω = 2πf, f: frequency of x vibration In order to apply the Coriolis force Fc corresponding to Ω to the vibrator, a force of 2 × M × Ω × Acosωt may be applied to the vibrator. By applying a force of 2 × M × Ω × Acosωt of each value of the angular velocity Ω to the vibrating body by the y displacement assisting means (62, 63/72, 73), the Coriolis force of each value of the angular velocity Ω is applied to the vibrating body. The same force acts as when. By comparing the y-vibration detected by the displacement detecting means (12, 13/22, 23) with the angular velocity Ω corresponding to the applied force, the operation of the angular velocity sensor is determined, and the angular velocity detection characteristics (input angular velocity versus output) (Relationship between detection signals) can be checked, and calibration (adjustment of signal processing characteristics of an electric circuit) that matches the angular velocity detection characteristics with the design characteristics can be performed.

【0010】[0010]

【発明の実施の形態】(2)x,y方向に撓み性が高い
浮動支持部材(a1〜a4,b1〜b4,c1,c2,31〜38)で基板(10
0)に対して浮動支持され、x方向に並び、並びの中間点
Oを通るy軸に関して対称な第1および第2振動体(7,1
1/17,21);第1および第2振動体の少くとも一方をx方
向に振動駆動する励振手段(5a,6a/5b,6b);第1および
第2振動体のy振動を検出する変位検出手段(12,13/22,
23);第1振動体にy方向の静電気力を与えるためのy
変位助勢用の第1電極手段(62,63);第2振動体にy方
向の静電気力を与えるためのy変位助勢用の第2電極手
段(72,73);および、y変位助勢用の第1および第2電
極手段(62,63/72,73)に静電気力用の電圧を印加する手
段(64/74);を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (2) A floating support member (a1 to a4, b1 to b4, c1, c2, 31 to 38) having high flexibility in the x and y directions is used for a substrate (10).
0), the first and second vibrators (7, 1) are arranged in the x direction and symmetric with respect to the y axis passing through the midpoint O of the arrangement.
Exciting means (5a, 6a / 5b, 6b) for driving at least one of the first and second vibrators in the x direction; detecting y-vibration of the first and second vibrators Displacement detection means (12,13 / 22,
23); y for applying an electrostatic force in the y direction to the first vibrator
First electrode means (62, 63) for assisting displacement; second electrode means (72, 73) for assisting y displacement for applying an electrostatic force in the y direction to the second vibrating body; and Means (64/74) for applying a voltage for electrostatic force to the first and second electrode means (62, 63/72, 73).

【0011】y変位助勢用の第1電極手段(62,63)およ
びy変位助勢用の第2電極手段(72,73)に、角速度Ω対
応の力に相当する静電気力用の電圧を、電圧印加手段(6
4/74)から印加することにより、第1および第2振動体
には角速度Ωのコリオリ力が加わったのと同様な力が作
用する。これに対し、変位検出手段(12,13/22,23)が検
出するy振動と、加えた力対応の角速度Ωとを照合する
ことにより、角速度センサの動作の正否、ならびに、角
速度検出特性(入力角速度対出力検出信号の関係)をチェ
ックすることができ、角速度検出特性の校正を行うこと
ができる。 (3)y変位助勢用の第1および第2電極手段(62,63/
72,73)は、それぞれ、振動体がy方向の一方の方向に移
動するとき振動体が近付く助勢電極(62/72)および他方
の方向に移動するとき振動体が近付く助勢電極(63/73)
を含む。
A voltage for electrostatic force corresponding to a force corresponding to an angular velocity Ω is applied to the first electrode means (62, 63) for assisting y-displacement and the second electrode means (72, 73) for assisting y-displacement. Application means (6
4/74), a force similar to the Coriolis force having an angular velocity Ω is applied to the first and second vibrators. On the other hand, by comparing the y vibration detected by the displacement detecting means (12, 13/22, 23) with the angular velocity Ω corresponding to the applied force, whether the operation of the angular velocity sensor is correct or not, and the angular velocity detection characteristic ( The relationship between the input angular velocity and the output detection signal) can be checked, and the angular velocity detection characteristics can be calibrated. (3) First and second electrode means (62, 63 /
72, 73) are assisting electrodes (62/72) to which the vibrating body approaches when the vibrating body moves in one direction of the y direction and assisting electrodes (63/73) to which the vibrating body approaches when moving in the other direction. )
including.

【0012】これによれば、両助勢電極(62,63/72,73)
に同一の直流電圧を与えると、共にy方向ではあるが、
反対方向の静電気力(吸引力)が振動体に加わり、それ
らが相殺し合って振動体には実質上助勢力は加わらな
い。しかし、角速度が加わってこれによりy振動を生ず
ると、振動体が近づく助勢電極(例えば62/72)の静電
気力が増大し振動体が離れる助勢電極(63/73)の静電
気力が低下し、角速度によるy振動が両助勢電極(62,63
/72,73)によって増幅され、角速度対y振動のゲインが
大きい。両助勢電極(62,63/72,73)に印加する直流電圧
レベルにより、1つのセンサ設計で各仕様のセンサ感
度,測定範囲などを任意に調整,設定しうる。よって高
感度で低コストのセンサを実現できる。
According to this, both assisting electrodes (62, 63/72, 73)
Are applied in the y direction,
An electrostatic force (attraction force) in the opposite direction is applied to the vibrating body, and they cancel each other, so that substantially no assisting force is applied to the vibrating body. However, when an angular velocity is applied to generate y-vibration, the electrostatic force of the assisting electrode (eg, 62/72) to which the vibrating body approaches increases, and the electrostatic force of the assisting electrode (63/73) to which the vibrating body separates decreases. The y-vibration due to the angular velocity causes both supporting electrodes (62, 63
/ 72,73), and the gain of angular velocity versus y vibration is large. Depending on the DC voltage level applied to both assisting electrodes (62, 63/72, 73), the sensor sensitivity and measurement range of each specification can be arbitrarily adjusted and set by one sensor design. Therefore, a highly sensitive and low-cost sensor can be realized.

【0013】一方、両助勢電極(62,63/72,73)間に交流
電圧を印加すると、一方の助勢電極(例えば62,63)の静
電気力(吸引力)が強いとき他方の助勢電極(72,73)の
静電気力(吸引力)が弱く、これが切換わるので、振動
体が、角速度が加わったときと同様にy振動する。変位
検出手段(12,13/22,23)が検出するy振動と、加えた交
流電圧の静電気力対応の角速度Ωとを照合することによ
り、角速度センサの動作の正否,ならびに、角速度検出
特性(入力角速度対出力検出信号の関係)をチェックす
ることができ、角速度検出特性を設計特性に合わす校正
(電気回路の信号処理特性の調整)を行なうことができ
る。
On the other hand, when an AC voltage is applied between the two supporting electrodes (62, 63/72, 73), when the electrostatic force (attraction force) of one of the supporting electrodes (eg, 62, 63) is strong, the other supporting electrode ( Since the electrostatic force (suction force) of (72, 73) is weak and is switched, the vibrating body vibrates in the same manner as when the angular velocity is applied. By comparing the y vibration detected by the displacement detecting means (12, 13/22, 23) with the angular velocity Ω corresponding to the electrostatic force of the applied AC voltage, whether the operation of the angular velocity sensor is correct and the angular velocity detection characteristics ( The relationship between the input angular velocity and the output detection signal) can be checked, and calibration (adjustment of the signal processing characteristic of the electric circuit) can be performed to match the angular velocity detection characteristic with the design characteristic.

【0014】また、両助勢電極(62,63/72,73)間に交流
電圧を印加しかつそのレベルを数種の低周波数で変動
(振幅変調)させ、変位検出手段(12,13/22,23)が検出
するy振動と、加えた交流電圧の静電気力対応の角速度
Ωおよび変調周波数とを照合することにより、角速度セ
ンサの動作の正否,角速度検出特性(入力角速度対出力
検出信号の関係)および周波数特性(入力角速度の周波
数対出力検出信号の関係)をチェックすることができ、
角速度検出特性および周波数特性を設計特性に合わす校
正(電気回路の信号処理特性の調整)を行なうことがで
きる。 (4)y変位助勢用の第1および第2電極手段(62,63/
72,73)に、複数の角速度レベルの静電気力用の交流電圧
を順次印加して、前記変位検出手段(12,13/22,23)の検
出値を読込んで、検出値を角速度に変換する電気信号処
理系の変換特性を設定する計測制御手段(TCR);を更に
備える。これによれば、上述の角速度検出特性の校正が
自動的に行なわれる。 (5)y変位助勢用の第1および第2電極手段(62,63/
72,73)に、複数の周波数の静電気力用の電圧を順次印加
して、前記変位検出手段(12,13/22,23)の検出値を読込
んで、検出値を角速度に変換する電気信号処理系の、周
波数特性を設定する計測制御手段(TCR);を更に備え
る。これによれば、上述の周波数特性の校正が自動的に
行なわれる。
Further, an AC voltage is applied between the assisting electrodes (62, 63/72, 73) and the level is varied (amplitude modulated) at several low frequencies, and the displacement detecting means (12, 13/22) is used. , 23) by comparing the y-vibration detected with the angular velocity Ω and the modulation frequency corresponding to the electrostatic force of the applied AC voltage, to determine whether or not the angular velocity sensor is operating properly and the angular velocity detection characteristics (relationship between input angular velocity and output detection signal). ) And frequency characteristics (the relationship between the frequency of the input angular velocity and the output detection signal) can be checked.
Calibration (adjustment of signal processing characteristics of an electric circuit) that matches the angular velocity detection characteristics and the frequency characteristics with the design characteristics can be performed. (4) First and second electrode means (62, 63 /
72, 73), an AC voltage for electrostatic force at a plurality of angular velocity levels is sequentially applied, the detected value of the displacement detecting means (12, 13/22, 23) is read, and the detected value is converted into angular velocity. A measurement control unit (TCR) for setting a conversion characteristic of the electric signal processing system. According to this, the calibration of the angular velocity detection characteristics described above is automatically performed. (5) First and second electrode means (62, 63 /
72, 73), sequentially apply voltages for electrostatic force of a plurality of frequencies, read the detected value of the displacement detecting means (12, 13/22, 23), and convert the detected value into an angular velocity. A measurement control unit (TCR) for setting a frequency characteristic of the processing system; According to this, the calibration of the frequency characteristics described above is automatically performed.

【0015】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0016】[0016]

【実施例】図1に、本発明の一実施例を示す。この実施
例においては、絶縁層を形成したシリコン基板100に
は、導電性ポリシリコンの、浮動体アンカーa1〜a
4,駆動電極5a,5b/6a,6bのアンカー,駆動
検出電極15a,15b/16a,16bのアンカー,
角速度検出電極12,13/22,23および助勢電極
62,63/72,73のアンカーが接合しており、こ
れらのアンカーは、シリコン基板100上の絶縁層の上
に形成された配線により、図示しない接続電極に接続さ
れている。
FIG. 1 shows an embodiment of the present invention. In this embodiment, floating anchors a1 to a of conductive polysilicon are provided on the silicon substrate 100 on which the insulating layer is formed.
4, anchors of the drive electrodes 5a, 5b / 6a, 6b, anchors of the drive detection electrodes 15a, 15b / 16a, 16b,
The anchors of the angular velocity detecting electrodes 12, 13/22, 23 and the assisting electrodes 62, 63/72, 73 are joined, and these anchors are illustrated by wiring formed on an insulating layer on the silicon substrate 100. Not connected to the connection electrode.

【0017】リソグラフによる半導体プロセスを用い
て、シリコン基板100から浮きしかも浮動体アンカー
a1〜a4に連続した、導電性ポリシリコンの、x,y
方向に撓み性が高いばね梁b1〜b4、ならびにこれら
に連続した帯板状の連結梁c1,c2が形成されてい
る。これらの連結梁c1,c2は、中心Oを通るx軸お
よびy軸に関して対称であり、浮動体アンカーa1〜a
4およびばね梁b1〜b4は、x軸およびy軸に関して
対称に分布する。
Using a lithographic semiconductor process, x, y of conductive polysilicon floating from the silicon substrate 100 and continuous to the floating body anchors a1 to a4.
Spring beams b1 to b4, which have high flexibility in the directions, and strip-shaped connecting beams c1 and c2 that are continuous with these spring beams are formed. These connecting beams c1, c2 are symmetric with respect to the x-axis and the y-axis passing through the center O, and the floating body anchors a1-a
4 and the spring beams b1 to b4 are distributed symmetrically with respect to the x-axis and the y-axis.

【0018】連結梁c1,c2には、それらに連続する
各4本のx方向に撓み性が高いばね梁31〜34/35
〜38で、それらに連続する第1駆動枠7,第2駆動枠
17が支持されている。第1,第2駆動枠7,17は矩
形枠であり、それらと一体にかつ内側に、第1振動体1
1および第2振動体21が連続している。これらの要素
も、シリコン基板100から浮いており、導電性ポリシ
リコンである。
The connecting beams c1 and c2 are provided with four spring beams 31 to 34/35 each having high flexibility in the x-direction.
The first drive frame 7 and the second drive frame 17 which are continuous with them are supported by. The first and second drive frames 7 and 17 are rectangular frames, and are integrally and internally provided with the first vibrating body 1.
The first and second vibrators 21 are continuous. These elements also float from the silicon substrate 100 and are conductive polysilicon.

【0019】第1,第2の駆動枠7と17、第1,第2
の振動体11と21、はセンサ中心Oを通るx軸および
y軸に関して対称な形状であって対称な位置にあり、ば
ね梁31〜34/35〜38も、x軸およびy軸に関し
て対称である。
The first and second drive frames 7 and 17, the first and second drive frames
Are symmetrical with respect to the x-axis and the y-axis passing through the sensor center O and are at symmetrical positions. The spring beams 31 to 34/35 to 38 are also symmetrical with respect to the x-axis and the y-axis. is there.

【0020】第1,第2の駆動枠7,17それぞれのy
平行2辺には、y方向に等ピッチで分布しx方向に突出
する櫛歯状の可動電極があり、駆動電極アンカーに連続
した、導電性ポリシリコンの駆動電極5a,5b/6
a,6b、および、駆動検出電極アンカーに連続した、
導電性ポリシリコンの駆動検出電極15a,15b/1
6a,16bに、可動電極のy方向分布の空間に突出す
る櫛歯状の固定電極がありy方向に分布している。
Y of each of the first and second drive frames 7 and 17
On the two parallel sides, there are comb-shaped movable electrodes that are distributed at equal pitches in the y direction and protrude in the x direction, and the conductive electrodes 5a and 5b / 6 made of conductive polysilicon are connected to the drive electrode anchors.
a, 6b, and the drive detection electrode anchor,
Drive detection electrodes 15a, 15b / 1 made of conductive polysilicon
In 6a and 16b, there are comb-shaped fixed electrodes protruding in the space of the movable electrode in the y direction, which are distributed in the y direction.

【0021】駆動電極5aと5bに、また6aと6bに
交互に、駆動枠7,17の電位(略機器ア−スレベル)
より高い電圧を印加することにより、駆動枠7,17が
x方向に振動する。駆動枠7,17を共振音叉振動とす
るために、駆動枠7,17のx振動は相対的に逆相にす
る。
The potentials of the drive frames 7 and 17 (approximately the equipment ground level) are alternately applied to the drive electrodes 5a and 5b and alternately to 6a and 6b.
By applying a higher voltage, the drive frames 7, 17 vibrate in the x direction. In order to make the drive frames 7 and 17 have resonance tuning fork vibration, the x vibrations of the drive frames 7 and 17 are made to have relatively opposite phases.

【0022】駆動枠7および振動体11でなる第1振動
系と、駆動枠17および振動体21でなる第2振動系と
を、共振音叉振動させることにより、エネルギ消費効率
が高いx励振となる。なお、第1および第2駆動枠7,
17のx振動の共振周波数は同一に設計され、角速度検
出感度を高くするために、それらのy振動の共振周波数
はx振動の共振周波数より数100Hz程度高い値、ま
たは、低い値に設計されている。
The first vibration system including the drive frame 7 and the vibrating body 11 and the second vibration system including the drive frame 17 and the vibrating body 21 are caused to vibrate in a resonant tuning fork manner, thereby achieving x-excitation with high energy consumption efficiency. . The first and second drive frames 7,
The resonance frequency of the x vibration of 17 is designed to be the same, and the resonance frequency of the y vibration is designed to be a value several hundred Hz higher or lower than the resonance frequency of the x vibration in order to increase the angular velocity detection sensitivity. I have.

【0023】駆動枠7,17がx方向に共振音叉振動す
ることにより、駆動枠7と駆動検出電極15a,16b
との間の静電容量が逆相で振動し、かつその容量振動と
逆相で、駆動枠17と駆動検出電極15b,16bとの
間の静電容量が振動する。
When the drive frames 7 and 17 vibrate in a resonance tuning fork in the x direction, the drive frame 7 and the drive detection electrodes 15a and 16b
And the capacitance between the drive frame 17 and the drive detection electrodes 15b and 16b oscillates in a phase opposite to that of the capacitance oscillation.

【0024】駆動枠7,17と一体の振動体11,21
も大略で枠形状であるが、x方向に延びる複数の渡し梁
がy方向に等ピッチで存在し、y方向で隣り合う渡し梁
の間の空間に、各1対の導電体ポリシリコンの固定検出
電極12,13/22,23があり、また固定検出電極
と同一構造の助勢用電極62,63/72,73があ
り、基板100上の検出電極用の各アンカーで支持され
それと電気的に連続である。
Vibrators 11 and 21 integrated with drive frames 7 and 17
Are generally frame-shaped, but a plurality of bridges extending in the x direction are present at equal pitches in the y direction, and a pair of conductive polysilicons is fixed in a space between bridges adjacent in the y direction. There are detection electrodes 12, 13/22, and 23, and there are assisting electrodes 62, 63/72, and 73 having the same structure as the fixed detection electrode, and are supported by the detection electrode anchors on the substrate 100 and electrically connected thereto. It is continuous.

【0025】対の検出電極12,13(22,23)間
は絶縁されているが、振動体11(21)のy振動(y
変位)を検出するための各対電極12,13(22,2
3)の、各対間で対応位置にある検出電極は、電気リ−
ドに共通接続され、チャ−ジアンプ46,47(56,
57)に接続されている。
Although the pair of detection electrodes 12, 13 (22, 23) are insulated, the y-vibration (y
Each of the counter electrodes 12, 13 (22, 2) for detecting
In 3), the detection electrodes at the corresponding positions between each pair are electric relays.
And the charge amplifiers 46 and 47 (56,
57).

【0026】同様に、対の助勢電極62,63(72,
73)間は絶縁されているが、振動体11(21)のy
振動(y変位)を助勢するための各対電極62,63
(72,73)の、各対間で対応位置にあるものは、電
気リ−ドに共通接続され、助勢電圧回路64,74に接
続されている。助勢電圧回路64,74はそれぞれ、電
圧制御周波数可変発振器(VCO),振幅変調器および
直,交流電圧出力回路を含み、計測コントロ−ラTCR
が指示するレベルの、指示する周波数の交流電圧又は直
流電圧を助勢電極62,63(72,73)に出力す
る。
Similarly, a pair of assisting electrodes 62, 63 (72,
73) is insulated, but y of the vibrating body 11 (21) is
Each counter electrode 62, 63 for supporting vibration (y displacement)
(72, 73) which are at corresponding positions between each pair are commonly connected to electric leads and connected to supporting voltage circuits 64, 74. The assisting voltage circuits 64 and 74 each include a voltage controlled frequency variable oscillator (VCO), an amplitude modulator, and a direct current and AC voltage output circuit.
Output the AC voltage or the DC voltage of the designated frequency at the designated frequency to the assisting electrodes 62, 63 (72, 73).

【0027】振動体11,21がx方向に音叉振動して
いるとき、中心Oを通るz軸廻りの角速度が加わると、
振動体11,21が、y成分も有する相対的に逆相の楕
円振動となり、これによって電極12,13/22,2
3にy振動対応の静電容量振動を生ずる。電極12,1
3の静電容量振動は相対的に逆相、同様に電極22,2
3の静電容量振動も相対的に逆相である。そして、振動
体11,21のy振動が逆相であるので、電極12,2
2の静電容量振動は相対的に逆相、同様に電極13,2
3の静電容量振動は相対的に逆相である。
When the vibrating bodies 11 and 21 are vibrating in a tuning fork direction in the x direction, when an angular velocity about the z axis passing through the center O is applied,
The vibrating bodies 11 and 21 become relatively opposite-phase elliptical vibrations also having a y component, whereby the electrodes 12, 13/22, 2
3 produces a capacitance vibration corresponding to the y vibration. Electrodes 12, 1
The capacitance oscillations of the electrodes 22 and 2 are relatively opposite in phase.
The capacitance oscillation of No. 3 is also relatively opposite in phase. Since the y vibrations of the vibrators 11 and 21 are in opposite phases, the electrodes 12 and 2
The capacitance oscillations of the electrodes 13 and 2 are relatively opposite in phase.
The capacitance oscillation of No. 3 is in a relatively opposite phase.

【0028】角速度計測時には、計測コントロ−ラTC
Rが、駆動枠7,17をx方向に共振周波数で駆動する
駆動信号A,Bを発生して、それらを駆動回路41およ
び51に与えると共に、同期検波用の同期信号を同期検
波回路45a,45b,50a,50bに与える。
At the time of measuring the angular velocity, the measurement controller TC
R generates drive signals A and B for driving the drive frames 7 and 17 at the resonance frequency in the x-direction and supplies them to the drive circuits 41 and 51, and also outputs a synchronous signal for synchronous detection to the synchronous detection circuits 45a and 45a. 45b, 50a, 50b.

【0029】駆動信号A,Bに同期して、駆動回路41
/51が駆動電極5a,6a/5b,6bに駆動電圧
(パルス)を印加する。これにより、第1/第2駆動枠
7/17を介して、駆動枠7と共に振動体11ならびに
駆動枠17と共に振動体21が、x方向に逆相で振動す
る。この振動によって、駆動検出電極15a,16a/
15b,16bの静電容量が逆相で振動する。この静電
容量の振動をチャ−ジアンプ42a,43a/42b,
43bが電圧振動(静電容量信号)に変換し、出力調整
(可調整ゲインアンプ)が電圧振動のピ−クレベルを実
質上同一に調整して、差動増幅器44a/44bに与え
る。
The driving circuit 41 is synchronized with the driving signals A and B.
/ 51 applies a drive voltage (pulse) to the drive electrodes 5a, 6a / 5b, 6b. Accordingly, the vibrating body 11 and the vibrating body 21 together with the drive frame 17 vibrate in the x-direction in opposite phases via the first and second drive frames 7/17. Due to this vibration, the drive detection electrodes 15a, 16a /
The capacitances of 15b and 16b vibrate in opposite phases. The vibration of the capacitance is transmitted to the charge amplifiers 42a, 43a / 42b,
43b converts it into a voltage oscillation (capacitance signal), and the output adjustment (adjustable gain amplifier) adjusts the peak level of the voltage oscillation to be substantially the same, and gives it to the differential amplifiers 44a / 44b.

【0030】差動増幅器44a/44bは、与えられた
静電容量信号(逆相)を差動増幅し、一方の静電容量信
号の振幅を略2倍とし、ノイズを相殺した差動信号を発
生し、出力調整(可調整ゲインアンプによる増幅)をし
た後、計測コントロ−ラTCRおよび差動増幅器61に
与える。差動増幅器61は、差動増幅して同期検波回路
45a,45bに与える。同期検波回路45aは、駆動
信号と同相の同期信号に同期して、差動増幅器61が与
える差動信号すなわちx振動を表わすx振動検出電圧を
検波し、駆動パルス信号に対するx振動の位相ずれを表
わす位相信号を発生して計測コントロ−ラTCRに与え
る。同期検波回路45bは、駆動信号と同相の同期信号
に同期して、差動増幅器61が与える差動信号すなわち
x振動を表わすx振動検出電圧を検波し、x振動の振幅
を表わす振幅信号を発生して計測コントロ−ラTCRに
与える。
The differential amplifiers 44a / 44b differentially amplify a given capacitance signal (reverse phase), make the amplitude of one of the capacitance signals approximately double, and convert the differential signal with noise cancelled. After being generated and subjected to output adjustment (amplification by an adjustable gain amplifier), it is given to a measurement controller TCR and a differential amplifier 61. The differential amplifier 61 amplifies the difference and provides the same to the synchronous detection circuits 45a and 45b. The synchronous detection circuit 45a detects a differential signal provided by the differential amplifier 61, that is, an x-vibration detection voltage representing x-vibration, in synchronization with a synchronous signal having the same phase as the drive signal, and detects a phase shift of the x-vibration with respect to the drive pulse signal. A representative phase signal is generated and applied to the measurement controller TCR. Synchronous detection circuit 45b detects a differential signal provided by differential amplifier 61, that is, an x-vibration detection voltage representing x-vibration, and generates an amplitude signal representing the amplitude of x-vibration, in synchronization with a synchronous signal in phase with the drive signal. To the measurement controller TCR.

【0031】計測コントロ−ラTCRは、位相信号が表
わす位相を設定値に合わすための移相信号ならびに振幅
信号が表わすx振動の振幅を設定値に合わすための電圧
指示信号を、駆動回路41,51に与え、それを受けた
駆動回路41,51は、移相信号に対応して、駆動信号
に対する出力駆動電圧の位相をシフトし、電圧指示信号
に対応して出力電圧レベルをシフトする。同期検波回路
45a,45bの位相信号,振幅信号が実質上設定値に
なった状態で、駆動枠7,17のx振動すなわち共振音
叉振動は安定したものとなる。
The measurement controller TCR outputs a phase shift signal for adjusting the phase represented by the phase signal to the set value and a voltage instruction signal for adjusting the amplitude of the x vibration indicated by the amplitude signal to the set value. The drive circuits 41 and 51 receiving the shift shift the phase of the output drive voltage with respect to the drive signal in response to the phase shift signal and shift the output voltage level in response to the voltage instruction signal. With the phase signals and the amplitude signals of the synchronous detection circuits 45a and 45b substantially at the set values, the x vibration of the drive frames 7 and 17, that is, the resonance tuning fork vibration becomes stable.

【0032】安定した共振音叉振動の間に、中心Oを通
るz軸廻りの角速度が加わると、コリオリ力が駆動枠
7,17に加わり、これらに、x振動に加えてy振動を
含む楕円運動を起こさせる。ところで駆動枠7,17
は、x方向には撓み性が高いがy方向には剛性が高いば
ね梁31〜34,35〜38で支持されているので、連
結梁c1,c2が駆動枠7,17と共にy方向に振動す
る。駆動枠7,17のy振動は相対的に逆相であるの
で、連結梁c1,c2は、中心Oを通るz軸を中心にね
じり(旋回)振動する。
When an angular velocity about the z-axis passing through the center O is applied during the stable resonance tuning fork vibration, Coriolis force is applied to the drive frames 7 and 17, and an elliptical motion including y vibration in addition to x vibration is applied thereto. Wake up. By the way, the drive frames 7, 17
Are supported by spring beams 31 to 34 and 35 to 38, which have high flexibility in the x direction but high rigidity in the y direction, so that the connecting beams c1 and c2 vibrate in the y direction together with the drive frames 7 and 17. I do. Since the y-vibrations of the drive frames 7 and 17 are relatively opposite in phase, the connecting beams c1 and c2 vibrate in a torsional (turning) manner around the z-axis passing through the center O.

【0033】図2に、駆動信号A,Bと、x振動および
y振動を示す。再度図1を参照すると、駆動枠7と一体
の振動体11のy振動を検出する対の検出電極12,1
3の静電容量が逆相で振動し、これを表わす静電容量信
号をチャ−ジアンプ46,47が発生し、出力調整(可
調整ゲインアンプ)が電圧振動のピ−クレベルを実質上
同一に調整して、差動増幅器48に与える。差動増幅器
48が、両信号の差動信号すなわち一方の静電容量信号
の振幅を略2倍とし、ノイズを相殺した差動信号、を発
生し出力調整(可調整ゲインアンプ)でレベルを調整し
た後、差動増幅器49に与える。同様な、駆動枠17と
一体の振動体21のy振動を検出する対の検出電極2
2,23の静電容量が、差動増幅器49に与えられる。
したがって差動増間器49の差動出力は、第1振動体1
1と第2振動体21の各信号処理回路に同時に実質上同
一レベルで作用するノイズを相殺し、しかも、加,減速
度,振動など、第1,第2振動体11,21に同時に同
方向に作用する外力による振動体のy変位成分(これも
ノイズに該当する)も相殺した、角速度起因のy振動を
増幅した検出信号であり、角速度検出感度が高く、S/
Nが高い。
FIG. 2 shows drive signals A and B and x and y vibrations. Referring to FIG. 1 again, a pair of detection electrodes 12 and 1 for detecting y vibration of the vibrating body 11 integrated with the drive frame 7.
3 oscillates in opposite phases, and the charge amplifiers 46 and 47 generate capacitance signals representing the same, and the output adjustment (adjustable gain amplifier) makes the peak level of the voltage oscillation substantially the same. It is adjusted and given to the differential amplifier 48. The differential amplifier 48 substantially doubles the amplitude of the differential signal of the two signals, that is, one of the capacitance signals, generates a differential signal in which noise is canceled out, and adjusts the level by output adjustment (adjustable gain amplifier). After that, it is given to the differential amplifier 49. Similarly, a pair of detection electrodes 2 for detecting y vibration of the vibrating body 21 integrated with the drive frame 17
2, 23 are provided to the differential amplifier 49.
Therefore, the differential output of the differential extender 49 is
Noises acting on the respective signal processing circuits of the first and second vibrating bodies 21 at substantially the same level at the same time are canceled out, and the same direction is applied to the first and second vibrating bodies 11 and 21 simultaneously, such as acceleration, deceleration, and vibration. Is a detection signal obtained by amplifying the y-vibration caused by the angular velocity, which also cancels out the y-displacement component (also corresponding to noise) of the vibrating body due to the external force acting on the vibrating body.
N is high.

【0034】この差動出力すなわち検出信号は、同期検
波回路50a,50bに与えられ、同期検波回路50a
は、駆動信号と同相の同期信号に同期して、検出信号を
検波し、角速度の方向を表わす位相信号を発生する。同
期検波回路50bは、角速度の絶対値を表わす振幅信号
を発生する。
The differential output, that is, the detection signal is applied to synchronous detection circuits 50a and 50b, and the synchronous detection circuit 50a
Detects a detection signal in synchronization with a synchronization signal having the same phase as the drive signal, and generates a phase signal representing the direction of the angular velocity. Synchronous detection circuit 50b generates an amplitude signal representing the absolute value of the angular velocity.

【0035】助勢電圧回路64/74が、助勢電極6
2,63/72,73に同一の直流電圧を与えると、共
にy方向ではあるが、反対方向の静電気力(吸引力)が
振動体11/21に加わり、それらが相殺し合って振動
体には実質上助勢力は加わらない。しかし、角速度が加
わってこれによりy振動を生ずると、振動体が近づく固
定電極(例えば62/72)の静電気力が増大し振動体
が離れる固定電極(63/73)の静電気力が低下し、
角速度によるy振動が両助勢電極62,63/72,7
3によって増幅され、角速度対y振動のゲインが大き
い。両助勢電極62,63/72,73に印加する直流
電圧レベルにより角速度対y振動のゲインを設定しう
る。
The assisting voltage circuit 64/74 is connected to the assisting electrode 6
When the same DC voltage is applied to 2, 63/72, 73, an electrostatic force (attraction force) in the y direction but in the opposite direction is applied to the vibrating body 11/21. Has virtually no support. However, when an angular velocity is applied to generate y-vibration, the electrostatic force of the fixed electrode (for example, 62/72) to which the vibrating body approaches increases, and the electrostatic force of the fixed electrode (63/73) to which the vibrating body separates decreases.
The y-vibration caused by the angular velocity is caused by the two supporting electrodes
3, the gain of angular velocity versus y vibration is large. The gain of angular velocity versus y vibration can be set by the DC voltage level applied to both assisting electrodes 62, 63/72, 73.

【0036】一方、助勢電圧回路64/74が、両助勢
電極62,63/72,73間に交流電圧を印加する
と、一方の助勢電極(例えば62,63)の静電気力
(吸引力)が強いとき他方の助勢電極(72,73)の
静電気力(吸引力)が弱く、これが切換わるので、振動
体11/21が、角速度が加わったときと同様にy振動
する。
On the other hand, when the assisting voltage circuit 64/74 applies an AC voltage between the assisting electrodes 62, 63/72, 73, the electrostatic force (attraction force) of one of the assisting electrodes (eg, 62, 63) is strong. At this time, the electrostatic force (attraction force) of the other assisting electrodes (72, 73) is weak, and this is switched, so that the vibrating body 11/21 vibrates in the same manner as when the angular velocity is applied.

【0037】図7に、サインカ−ブ状の変化を示す疑似
コリオリ力を振動体11,21に加えたときの、振動体
11,21のy変位と、y振動速度を示す。
FIG. 7 shows the y-displacement and y-vibration speed of the vibrators 11 and 21 when a pseudo Coriolis force indicating a sine curve change is applied to the vibrators 11 and 21.

【0038】差動増幅器48/58の出力と、加えた交
流電圧の静電気力対応の角速度Ωとを照合することによ
り、角速度センサの動作の正否,ならびに、角速度検出
特性(入力角速度対出力検出信号の関係)をチェックす
ることができ、角速度検出特性を設計特性に合わす校正
(電気回路の信号処理特性の調整)を行なうことができ
る。また、両助勢電極62,63/72,73間に加え
る交流電圧のレベルを数種の低周波数で変動(振幅変
調)させ、差動増幅器48/58の出力と、加えた交流
電圧の静電気力対応の角速度Ωおよび変調周波数とを照
合することにより、角速度センサの動作の正否,角速度
検出特性(入力角速度対出力検出信号の関係)および周
波数特性(入力角速度の周波数対出力検出信号の関係)
をチェックすることができ、角速度検出特性および周波
数特性を設計特性に合わす校正(電気回路の信号処理特
性の調整)を行なうことができる。
By comparing the output of the differential amplifier 48/58 with the angular velocity Ω corresponding to the electrostatic force of the applied AC voltage, whether the operation of the angular velocity sensor is correct or not, and the angular velocity detection characteristics (input angular velocity versus output detection signal) Can be checked, and calibration (adjustment of the signal processing characteristics of the electric circuit) that matches the angular velocity detection characteristics with the design characteristics can be performed. Also, the level of the AC voltage applied between the two assisting electrodes 62, 63/72, 73 is varied (amplitude modulated) at several low frequencies, and the output of the differential amplifier 48/58 and the electrostatic force of the applied AC voltage are changed. By comparing the corresponding angular velocity Ω and the modulation frequency, whether the angular velocity sensor operates correctly, angular velocity detection characteristics (relationship between input angular velocity and output detection signal) and frequency characteristics (relationship between frequency of input angular velocity and output detection signal)
Can be checked, and calibration (adjustment of the signal processing characteristics of the electric circuit) that matches the angular velocity detection characteristics and the frequency characteristics with the design characteristics can be performed.

【0039】この実施例では、出力調整(ゲイン可調整
の増幅器)を備えているので、さまざまな理由で差動構
成の信号のアンバランスが発生しても駆動信号とチャ−
ジアンプの出力段、ならびに必要に応じて差動増幅器の
入力段で調整し、駆動検出,角速度検出の信号のノイズ
を低減しかつ検出信号間のアンバランスを調整すること
ができるため、角速度検出のS/Nを高くすることがで
きるのは勿論、センサの歩留りを高くし、低コスト化す
ることができる。
In this embodiment, since an output adjustment (gain-adjustable amplifier) is provided, even if the imbalance of the signal of the differential configuration occurs for various reasons, the drive signal and the charge are not controlled.
It can be adjusted at the output stage of the di-amplifier and, if necessary, at the input stage of the differential amplifier to reduce the noise of the drive detection and angular velocity detection signals and adjust the imbalance between the detection signals. Not only can the S / N be increased, but also the sensor yield can be increased and the cost can be reduced.

【0040】計測コントロ−ラTCRはマイクロコンピ
ュ−タおよび入出力電気回路を含むコンピュ−タシステ
ムであり、角速度センサの異常チェックならびに、前記
角速度検出特性の校正および周波数特性の校正を自動的
に行なう。なお、この実施例は車両に搭載されており、
車両の停止中/走行中を判定するための図示しない車両
上状態情報発生器の信号も計測コントロ−ラTCRに与
えられる。計測コントロ−ラTCRには、車両上イグニ
ションキ−がオン(エンジン動作中)のときに動作電圧
(電源)が印加される。
The measuring controller TCR is a computer system including a micro computer and an input / output electric circuit, and automatically performs an abnormality check of the angular velocity sensor, a calibration of the angular velocity detection characteristic, and a calibration of the frequency characteristic. This embodiment is mounted on a vehicle,
A signal from an on-vehicle state information generator (not shown) for determining whether the vehicle is stopped or running is also supplied to the measurement controller TCR. An operating voltage (power supply) is applied to the measurement controller TCR when the on-vehicle ignition key is turned on (during engine operation).

【0041】図3に、計測コントロ−ラTCRの計測制
御の概要を示す。動作電圧が印加されると計測コントロ
−ラTCRのマイクロコンピュ−タは、初期化を行なっ
た後、「x励振の周波数f,電圧V,Veの設定」Aを
行なう。ここではまず、駆動回路41,51を介して、
設計範囲の下限値である初期周波数f0,設計範囲の中
位値である初期電圧V0の電圧パルス出力を開始し、助
勢電極62,63/72,73には、設計範囲の中位値
である初期助勢直流電圧Ve0を印加する(ステップ
1)。以下カッコ内には、「ステップ」という語を省略
して、ステップNo.数字のみを記す。
FIG. 3 shows an outline of the measurement control of the measurement controller TCR. When the operating voltage is applied, the microcomputer of the measurement controller TCR performs "setting of the frequency f of x excitation, the voltages V and Ve" A after initialization. Here, first, via the drive circuits 41 and 51,
The output of the voltage pulse with the initial frequency f0 which is the lower limit of the design range and the initial voltage V0 which is the middle value of the design range is started, and the assisting electrodes 62, 63/72 and 73 have the middle value of the design range. An initial assist DC voltage Ve0 is applied (step 1). Hereinafter, the word “step” is omitted in parentheses, and step No. Write only numbers.

【0042】その後、t0周期でx励振の周波数fを小
値Δfづつ高くし、駆動回路41,51に与える駆動信
号A(周波数f)に対するx振動検出信号(差動増幅器
44a,44bの出力)の位相ずれが、進み90°(周
波数fが駆動枠11,21のx振動の共振周波数より低
い)から遅れ90°(周波数fが駆動枠11,21のx
振動の共振周波数より高い)に切換わったかをチェック
し、周波数fのシフトアップ回数N0をカウントする
(2〜7の繰返し)。すなわち、駆動枠11,21の共
振周波数をわずかに越える周波数まで、x励振周波数f
を高くする。シフトアップ回数N0が設定値PN0に達
すると(周波数fが設計上限値を越えると)、センサ故
障と見なして、エラ−報知をし、そこで待機する(1
1)。
Thereafter, the frequency f of the x excitation is increased by a small value Δf in the period t0, and the x vibration detection signal (output of the differential amplifiers 44a and 44b) for the drive signal A (frequency f) applied to the drive circuits 41 and 51 is output. Is shifted from 90 ° (the frequency f is lower than the resonance frequency of the x vibration of the drive frames 11 and 21) to 90 ° lag (the frequency f is x
It is checked whether the frequency has been switched to (higher than the resonance frequency of the vibration), and the number N0 of upshifts of the frequency f is counted (repetition of 2 to 7). That is, until the frequency slightly exceeds the resonance frequency of the drive frames 11 and 21, the x excitation frequency f
Higher. When the number of upshifts N0 reaches the set value PN0 (when the frequency f exceeds the design upper limit value), it is regarded as a sensor failure, an error is notified, and the system stands by (1).
1).

【0043】設定値PN0に達する前に、x振動検出信
号が遅れ90°に切換わると、そのときのx励振周波数
fは、駆動枠11,21の共振周波数又はそれよりわず
かに高い周波数である。これを認知すると計測コントロ
−ラTCRは、x振動検出信号(差動増幅器44a,4
4bの出力)の振幅(検出振幅)が、比較的に広い設定
範囲R0内にあるかをチェックし(8)、外れていると
駆動回路41,51の出力電圧Vおよび必要に応じて助
勢電極62,63/72,73の助勢直流電圧Veを、
検出振幅が設定範囲R0内に入る方向に調整する
(9)。出力電圧レベルV又は助勢直流電圧Veが設計
範囲を外れるときは、センサ故障と見なして、エラ−報
知をし、そこで待機する(11)が、出力電圧レベル
V,助勢直流電圧Veが共に設計範囲内で検出振幅が設
定範囲R0内に入ると、「x振動の安定性判定」(1
2)を実行する。
If the x-vibration detection signal switches to a delay of 90 ° before reaching the set value PN0, the x-excitation frequency f at that time is the resonance frequency of the drive frames 11 and 21 or a slightly higher frequency. . Upon recognizing this, the measurement controller TCR outputs the x vibration detection signal (differential amplifiers 44a and 44a).
It is checked whether the amplitude (detection amplitude) of the output 4b is within a comparatively wide setting range R0 (8). If not, the output voltage V of the drive circuits 41 and 51 and, if necessary, the supporting electrode The supporting DC voltage Ve of 62, 63/72, 73 is
The detection amplitude is adjusted so as to fall within the set range R0 (9). If the output voltage level V or the assisting DC voltage Ve is out of the design range, it is regarded as a sensor failure, an error is notified, and the process waits (11), but both the output voltage level V and the assisting DC voltage Ve are in the design range. When the detected amplitude falls within the set range R0 within the range, the “x vibration stability determination” (1
Perform 2).

【0044】「x振動の安定性判定」(12)で計測コ
ントロ−ラTCRは、検出振幅のピ−ク値を連続m個検
出し、それらの平均値を算出する。そして平均値に対す
る各ピ−ク値の差が、平均値の±0.1%を越えるかを
チェックして、越えると周波数をΔf分下げ、そしてま
たピ−ク値のばらつきチェックする(12〜15)。周
波数を初期周波数f0まで下げてもばらつきが±0.1
%以内に入らないときは、センサ故障と見なして、エラ
−報知をし、そこで待機する(11)が、初期周波数f
0までにばらつきが±0.1%以内になると、x振動検
出信号(差動増幅器44a,44bの出力)の振幅(検
出振幅)が、前記設定範囲R0より極く狭い第2設定範
囲R1内にあるかをチェックする(16)。そして設定
範囲R1内にないと、駆動回路41,51の出力電圧レ
ベルVと必要に応じて助勢直流電圧Veを、検出振幅が
設定範囲R1内に入る方向に調整する(17)。この調
整は、微細に行なう。すなわち1回の電圧変更量は小値
である。検出振幅が設定範囲R1内に入らないで出力電
圧レベルV又は助勢直流電圧Veが設計範囲を外れると
きは、センサ故障と見なして、エラ−報知をし、そこで
待機する(11)。検出振幅が設定範囲R1内に入った
ときには、「零点ドリフト判定」Bに進む。「零点ドリ
フト判定」Bでは、助勢直流電圧Veに角速度Ω=+
0.5°/秒相当の静電気力を振動体11,21に与え
る周波数fの交流電圧を加えた電圧を、助勢電圧回路6
4,74を介して助勢電極62,63/72,73に印
加して振動体11,21のy振動(差動増幅器48,4
9/58,59の出力)を読取り、また、助勢直流電圧
Veに角速度Ω=−0.5°/秒相当の静電気力を振動
体11,21に与える周波数fの交流電圧を加えた電圧
を助勢電極62,63/72,73に印加して振動体1
1,21のy振動を読取って、2つの読取り値の中点を
算出し、中点値(ドリフト零点値)が、許容範囲内であ
るかをチェックして、許容範囲を外れていると、「ドリ
フト調整」Cに進み、中点値を零とするために、差動増
幅器48,49の入力に至るゲインと、必要に応じて助
勢電極62,63/72,73に加える助勢直流電圧V
eを差分調整する。差分調整では、助勢電極62,63
に関しては、一方のみを高く又は低くまた必要に応じて
一方を高くし他方を低くする。助勢電極72,73に関
しても同様である。
In "determination of stability of x vibration" (12), the measurement controller TCR detects m continuous peak values of the detected amplitude and calculates an average value thereof. Then, it is checked whether the difference between each peak value with respect to the average value exceeds ± 0.1% of the average value, and if it exceeds, the frequency is reduced by Δf and the variation of the peak value is checked (12 to 12). 15). Even if the frequency is lowered to the initial frequency f0, the variation is ± 0.1
%, It is regarded as a sensor failure, an error is notified, and there is a wait (11).
When the variation is within ± 0.1% by 0, the amplitude (detection amplitude) of the x-vibration detection signal (the output of the differential amplifiers 44a and 44b) falls within the second setting range R1 which is extremely narrower than the setting range R0. (16). If not within the setting range R1, the output voltage level V of the drive circuits 41 and 51 and, if necessary, the assisting DC voltage Ve are adjusted so that the detected amplitude falls within the setting range R1 (17). This adjustment is performed finely. That is, the amount of voltage change at one time is a small value. If the detected voltage does not fall within the set range R1 and the output voltage level V or the assisting DC voltage Ve is out of the design range, it is regarded as a sensor failure, an error is notified, and the process stands by (11). When the detected amplitude falls within the set range R1, the process proceeds to “zero point drift determination” B. In the “zero point drift determination” B, the angular velocity Ω = +
A voltage obtained by adding an AC voltage having a frequency f that applies an electrostatic force of 0.5 ° / sec to the vibrators 11 and 21 is applied to the assisting voltage circuit 6.
4, 74 applied to the assisting electrodes 62, 63/72, 73 via the y-vibration of the vibrators 11, 21 (differential amplifiers 48, 4).
9/58, 59), and an AC voltage having a frequency f that applies an electrostatic force equivalent to an angular velocity Ω = −0.5 ° / sec to the vibrators 11 and 21 is added to the assisting DC voltage Ve. Vibrating body 1 is applied to assisting electrodes 62, 63/72, 73
The y-vibration of 1,21 is read, the midpoint of the two read values is calculated, and it is checked whether the midpoint value (drift zero point value) is within the allowable range. Proceeding to “drift adjustment” C, the gain reaching the inputs of the differential amplifiers 48 and 49 and the supporting DC voltage V applied to the supporting electrodes 62, 63/72 and 73 as necessary to make the midpoint value zero.
e is differentially adjusted. In the difference adjustment, the assisting electrodes 62 and 63
With respect to, only one is raised or lowered and, if necessary, one is raised and the other is lowered. The same applies to the assisting electrodes 72 and 73.

【0045】そしてまた「零点ドリフト判定」Bを行な
いここで、角速度Ω=±0.5°/秒相当の静電気力を
与える直流電圧に助勢電圧Veを加えた電圧を、振動体
11,助勢電極62,63/72,73に印加する。該
電圧(直流電圧+助勢電圧Ve)が設定範囲を外れる
か、又は中点値が許容範囲(0と見なせる範囲)になる
まで、「零点ドリフト判定」Bおよび「ドリフト調整」
Cを繰返し、該電圧(直流電圧+助勢電圧Ve)が設定
範囲を外れると、センサ故障と見なして、エラ−報知を
し、そこで待機する(11)。中点値が許容範囲内にな
ったときには、助勢電圧Veをバイアス値としてレジス
タ(内部メモリの一領域)にセ−ブして、「検出感度調
整」Dに進む。
Then, "zero point drift determination" B is performed. Here, a voltage obtained by adding an assisting voltage Ve to a DC voltage that gives an electrostatic force equivalent to an angular velocity Ω = ± 0.5 ° / sec is applied to the vibrating body 11, the assisting electrode. 62, 63/72, 73. Until the voltage (DC voltage + assisting voltage Ve) is out of the set range or the midpoint value is within the allowable range (a range that can be regarded as 0), “zero point drift determination” B and “drift adjustment”
C is repeated, and when the voltage (DC voltage + assisting voltage Ve) is out of the set range, it is regarded as a sensor failure, an error is notified, and the process stands by (11). When the midpoint value falls within the allowable range, the assisting voltage Ve is saved as a bias value in a register (one area of the internal memory), and the process proceeds to “detection sensitivity adjustment” D.

【0046】図4に「検出感度調整」Dの内容を示す。
これに進むと計測コントロ−ラTCRは、±0.5,±
1.0,±10.0,±20.0,±50.0,±10
0°/秒相当の静電気力を与える、周波数fの交流電圧
に、先にセ−ブしたバイアス値(Ve)を加えた電圧を
助勢電極62,63/72,73に順次に印加して、同
期検波回路50a,50bの出力(角速度信号)を読取
る(21)。これは、計12点の疑似角速度電圧の印加
と角速度信号の読取りである。12点の印加電圧対応の
疑似角速度(横軸)と、各点の角速度信号との関係を直
線(一次式)で近似し、近似直線関数、角速度信号(レ
ベル)=a×角速度+b、を求める(22)。そして該
近似直線関数のb値が、設定範囲(実質上零領域)内で
あるかをチェックする(23,24)。設定範囲を外れ
ていると、最初の「x励振の周波数f,電圧Vの設定」
Aに戻る。
FIG. 4 shows the contents of "detection sensitivity adjustment" D.
Proceeding to this, the measurement controller TCR becomes ± 0.5, ± 0.5
1.0, ± 10.0, ± 20.0, ± 50.0, ± 10
A voltage obtained by adding the previously saved bias value (Ve) to an AC voltage having a frequency f that gives an electrostatic force equivalent to 0 ° / sec is sequentially applied to the assisting electrodes 62, 63/72, and 73. The outputs (angular velocity signals) of the synchronous detection circuits 50a and 50b are read (21). This is the application of a total of 12 pseudo angular velocity voltages and reading of the angular velocity signal. The relationship between the pseudo angular velocities (horizontal axis) corresponding to 12 applied voltages and the angular velocity signals at each point is approximated by a straight line (linear expression), and an approximate linear function, angular velocity signal (level) = a × angular velocity + b, is obtained. (22). Then, it is checked whether the value b of the approximate linear function is within a set range (substantially zero area) (23, 24). If it is out of the setting range, the first "setting of the frequency f of x excitation and the voltage V"
Return to A.

【0047】b値が設定範囲内であると、前記近似直線
関数のa値(傾き)が設定範囲内であるかをチェックす
る(25,26)。設定範囲を外れていると、設定範囲
に入る方向に、差動増幅器49の入,出力ゲインおよび
/又は同期検波回路50bの入,出力ゲインを調整する
(27)。一回の調整(ゲイン変更)を行なう毎に、上
述の12点のサンプリング(21)に戻る。a値が設定
範囲に入らないで、調整範囲外となると、最初の「x励
振の周波数f,電圧Vの設定」Aに戻る(28)。a値
が設定範囲に入ると、「線形性調整」Eに進む(2
6)。
If the value b is within the set range, it is checked whether the value a (slope) of the approximate linear function is within the set range (25, 26). If it is out of the setting range, the input and output gains of the differential amplifier 49 and / or the input and output gains of the synchronous detection circuit 50b are adjusted in the direction of entering the setting range (27). Every time one adjustment (gain change) is performed, the process returns to the above-described sampling of 12 points (21). If the value a does not fall within the setting range and goes out of the adjustment range, the process returns to the initial "setting of the frequency f of x excitation and the voltage V" A (28). When the value a falls within the set range, the process proceeds to “linearity adjustment” E (2
6).

【0048】図5に、「線形性調整」Eの内容を示す。
これに進むと計測コントロ−ラTCRは、±0.5,±
1.0,±10.0,±20.0,±50.0,±10
0°/秒相当の静電気力を与える、周波数fの交流電圧
に、先にセ−ブしたバイアス値(Ve)を加えた電圧を
順次に助勢電極62,63/72,73に印加して、同
期検波回路50a,50bの出力(角速度信号)を読取
る(31)。これは、計12点の疑似角速度電圧の印加
と角速度信号の読取りである。12点の印加電圧対応の
疑似角速度(横軸)と、各点の角速度信号との関係を直
線(一次式)で近似し、近似直線関数、角速度信号(レ
ベル)=A×角速度+B、を求める(32)。次に12
点それぞれの、該近似直線に対する距離を算出し(3
3)、それらが設定範囲内であるかをチエックして(3
4)、設定範囲を外れるものがあると、最初の「x励振
の周波数f,電圧Vの設定」Aに戻る(34)。算出し
た距離(12点)がすべて設定範囲内にあると、12点
の連なりを近似する2次曲線関数を算出する(35)。
そして算出した2次曲線上の点をステップ32で算出し
た近似直線上に移すための逆関数(検出値補正関数)を
算出する(36)。そして逆関数に上記12点の計測値
を与えて各逆関数値(補正値)を算出して(計測値に線
形補正を施して)(37)、算出した12点の補正値の
線形性を判定する(38)。ここでは、近似直線に対す
る各補正値の距離を算出する。そして、算出した距離
(12点)が設定範囲内かをチェックして(39)、す
べてが設定範囲内であると、「周波数特性調整」Fに進
む。設定範囲を外れるときには、最初の「x励振の周波
数f,電圧Vの設定」Aに戻る。
FIG. 5 shows the contents of the “linearity adjustment” E.
Proceeding to this, the measurement controller TCR becomes ± 0.5, ± 0.5
1.0, ± 10.0, ± 20.0, ± 50.0, ± 10
A voltage obtained by adding the previously saved bias value (Ve) to an AC voltage having a frequency f that gives an electrostatic force equivalent to 0 ° / sec is sequentially applied to the assisting electrodes 62, 63/72, and 73. The outputs (angular velocity signals) of the synchronous detection circuits 50a and 50b are read (31). This is the application of a total of 12 pseudo angular velocity voltages and reading of the angular velocity signal. The relationship between the pseudo angular velocity (horizontal axis) corresponding to 12 applied voltages and the angular velocity signal at each point is approximated by a straight line (linear expression), and an approximate linear function, angular velocity signal (level) = A × angular velocity + B, is obtained. (32). Then 12
The distance of each point to the approximate straight line is calculated (3
3) Check if they are within the setting range (3
4) If there is something outside the setting range, the process returns to the initial "setting of the frequency f of x excitation and the voltage V" A (34). If all the calculated distances (12 points) are within the set range, a quadratic curve function that approximates a series of 12 points is calculated (35).
Then, an inverse function (detection value correction function) for moving the calculated point on the quadratic curve to the approximate straight line calculated in step 32 is calculated (36). Then, the measured values at the above 12 points are given to the inverse function to calculate respective inverse function values (correction values) (by performing linear correction on the measured values) (37), and the linearity of the calculated correction values at the 12 points is calculated. A determination is made (38). Here, the distance of each correction value from the approximate straight line is calculated. Then, it is checked whether or not the calculated distance (12 points) is within the set range (39). If all the distances are within the set range, the process proceeds to “frequency characteristic adjustment” F. When the value is out of the setting range, the process returns to the initial "setting of frequency f and voltage V of x excitation" A.

【0049】図6に、「周波数特性調整」Fの内容を示
す。ここではまず、周波数0(直流),1,3,5,1
0,30Hzで変調した、±100°/秒相当の静電気
力を与える周波数fの電圧に、バイアス値Veを加え電
圧を順次に印加して、同期検波回路50a,50bの出
力(角速度信号)を読取る(41)。これは、計6点
の、周波数が異なる疑似角速度電圧の印加と角速度信号
の読取りである。次に計測コントロ−ラTCRは、6点
の計測値の連なりを表わす、横軸に角速度周波数を、縦
軸に角速度をとった近似楕円関数を算出する(42)。
そして該楕円関数に対する計測値6点の分散を算出し
(43)、設定範囲内かをチェックする(44)。設定
範囲内であると、設計範囲内の角速度周波数において、
該楕円関数上にある計測値を、該楕円と縦軸との交点を
通る、横軸に平行な直線上に移すための周波数対応のゲ
インを、差動増幅器49の出力増幅器に設定する(4
5)。そして「角速度計測」Gに進む。
FIG. 6 shows the contents of "frequency characteristic adjustment" F. Here, first, frequency 0 (DC), 1, 3, 5, 1
A bias value Ve is added to a voltage f of a frequency f that gives an electrostatic force equivalent to ± 100 ° / sec, modulated at 0 and 30 Hz, and voltages are sequentially applied to output voltages (angular velocity signals) of the synchronous detection circuits 50a and 50b. Read (41). This is a total of six points of application of pseudo angular velocity voltages having different frequencies and reading of angular velocity signals. Next, the measurement controller TCR calculates an approximate elliptic function that represents a series of measured values at six points and has an angular velocity frequency on the horizontal axis and an angular velocity on the vertical axis (42).
Then, the variance of the six measurement values with respect to the elliptic function is calculated (43), and it is checked whether it is within the set range (44). If it is within the setting range, at the angular velocity frequency within the design range,
The gain corresponding to the frequency for shifting the measurement value on the elliptic function to a straight line parallel to the horizontal axis passing through the intersection of the ellipse and the vertical axis is set in the output amplifier of the differential amplifier 49 (4).
5). Then, the process proceeds to “angular velocity measurement” G.

【0050】「角速度計測」Gにおいて計測コントロ−
ラTCRは、図示しない車両上状態情報発生器の信号に
基づいて車両停止中か走行中かを判定し、走行中は、上
述の処理で設定した周波数f,電圧Vの電圧パルスを駆
動電極5a,6a/5b,6bに印加し、助勢電極6
2,63/72,73にはセ−ブしている助勢直流電圧
Veを印加して、所定周期で同期検波回路50a,50
bの検出信号を読込んで、同期検波回路50bの信号
を、ステップ36で設定した逆関数に基づいて補正して
角速度値を得て、角速度デ−タ(方向と大きさ)を、図
示しないホストコンピュ−タに出力する。
Measurement control in "Angular velocity measurement" G
The TCR determines whether the vehicle is stopped or running based on a signal from an on-vehicle state information generator (not shown). During running, the TCR outputs a voltage pulse of the frequency f and the voltage V set in the above-described processing to the drive electrode 5a. , 6a / 5b, 6b, and
2, 63/72, 73 are supplied with the assisting direct-current voltage Ve, and the synchronous detection circuits 50a, 50
b), the signal of the synchronous detection circuit 50b is corrected based on the inverse function set in step 36 to obtain an angular velocity value, and the angular velocity data (direction and magnitude) is obtained by a host (not shown). Output to computer.

【0051】車両停止中となったときには、所定周期で
「角速度計測」Gから上述の「x励振の周波数f,電圧
V,Veの設定」Aに進む。それから「零点ドリフト判
定」B,「ドリフト調整」C,「検出感度調整」Dおよ
び「線形性調整」Eを経て、「角速度計測」Gに進む。
したがって車両停止中は、所定周期で角速度センサのチ
ェックと計測回路の校正が行なわれる。
When the vehicle is stopped, the process proceeds from "measurement of angular velocity" G to "setting of frequency f of x excitation, voltage V, Ve" A at a predetermined cycle. Then, the process proceeds to “angular velocity measurement” G via “zero point drift determination” B, “drift adjustment” C, “detection sensitivity adjustment” D, and “linearity adjustment” E.
Therefore, while the vehicle is stopped, the angular velocity sensor is checked and the measurement circuit is calibrated at a predetermined cycle.

【0052】なお、図1に示す角速度センサは、駆動枠
7,17をそれぞれ駆動回路41,51で共振x振動駆
動するが、このx振動駆動を駆動枠7,17の一方のみ
としてもよい。その場合、駆動枠7,17がばね梁31
〜38および連結梁c1,c1で連結されているので、
一方の駆動枠7のみを共振周波数でx振動駆動すると、
駆動枠7が共振周波数で共振する。また、振動体11,
21を駆動枠7,17と一体としているが、振動体1
1,21から分離し、ばね梁で振動体11,21を駆動
枠7,17に連結した構造としてもよい。
In the angular velocity sensor shown in FIG. 1, the drive frames 7 and 17 are driven by resonance x vibration by the drive circuits 41 and 51, respectively. However, the x vibration drive may be performed by only one of the drive frames 7 and 17. In that case, the drive frames 7 and 17 are
~ 38 and the connecting beams c1 and c1
When only one drive frame 7 is driven by x vibration at the resonance frequency,
The drive frame 7 resonates at the resonance frequency. Further, the vibrating body 11,
21 is integrated with the drive frames 7 and 17,
Alternatively, the vibration bodies 11 and 21 may be separated from the drive frames 7 and 17 by spring beams.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の平面図である。FIG. 1 is a plan view of one embodiment of the present invention.

【図2】 図1に示す駆動回路41,42のそれぞれに
与えられる駆動信号A,B等を示すタイムチャ−トであ
り、(a)および(b)は駆動信号A,Bを、(c)は
振動体11,21のx振動を、(d)は、助勢電極6
2,63/72,73に助勢電圧Veを印加していない
ときの振動体11,21のy振動を、(e)は助勢電圧
Veを、(f)は助勢電極62,63/72,73に助
勢電圧Veを印加しているないときの振動体11,21
のy振動を、それぞれ示す。
FIGS. 2A and 2B are time charts showing drive signals A, B and the like provided to drive circuits 41, 42 shown in FIG. 1, respectively. FIGS. 2A and 2B show drive signals A, B; Represents the x vibration of the vibrating bodies 11 and 21, and (d) represents the supporting electrode 6.
2, (e) shows the supporting voltage Ve, and (f) shows the supporting electrodes 62, 63/72, 73 when the supporting voltage Ve is not applied to the supporting electrodes 2, 63/72, 73. Vibrators 11 and 21 when no assisting voltage Ve is applied to
Y-vibration are shown.

【図3】 図1に示す計測コントロ−ラTCRの計測制
御の概要を示すフロ−チャ−トである。
FIG. 3 is a flowchart showing an outline of measurement control of a measurement controller TCR shown in FIG. 1;

【図4】 図3に示す「検出感度調整」Dの内容を示す
フロ−チャ−トである。
FIG. 4 is a flowchart showing the content of “detection sensitivity adjustment” D shown in FIG. 3;

【図5】 図3に示す「線形性調整」Eの内容を示すフ
ロ−チャ−トである。
FIG. 5 is a flowchart showing the contents of “linearity adjustment” E shown in FIG. 3;

【図6】 図3に示す「周波数特性調整」Fの内容を示
すフロ−チャ−トである。
FIG. 6 is a flowchart showing the content of “frequency characteristic adjustment” F shown in FIG. 3;

【図7】 サインカ−ブ状の変化を示す疑似コリオリ力
を図1に示す振動体11,21に加えたときの、該疑似
コリオリ力,振動体11,21のy変位および、y振動
速度を示すグラフである。
FIG. 7 shows the pseudo Coriolis force, the y displacement of the vibrators 11, 21 and the y vibration velocity when a pseudo Coriolis force showing a sine curve change is applied to the vibrators 11, 21 shown in FIG. It is a graph shown.

【符号の説明】[Explanation of symbols]

a1〜a8:アンカー b1〜b8,1〜3,8〜10,19,20:ばね梁 c:連結枠 4:駆動枠 5,6:駆動電極 7:第1駆動枠 11:第1振動体 12,13,22,2
3:y変位検出電極 14,24,64:振動枠 15,16,65,6
6:駆動変位検出電極 25,26:周波数調整用電極 31〜38:ばね梁 62,63/72,73:助勢電極
a1 to a8: anchors b1 to b8, 1 to 3, 8, 10 to 19, 20: spring beams c: connecting frame 4: driving frame 5, 6: driving electrode 7: first driving frame 11: first vibrating body 12 , 13,22,2
3: y displacement detection electrode 14, 24, 64: vibration frame 15, 16, 65, 6
6: drive displacement detection electrode 25, 26: frequency adjustment electrode 31-38: spring beam 62, 63/72, 73: assisting electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】x,y方向に撓み性が高い浮動支持部材で
基板に対して浮動支持され、x方向に並び、並びの中間
点Oを通るy軸に関して対称な第1および第2振動体;
第1および第2振動体の少くとも一方をx方向に振動駆
動する励振手段;第1および第2振動体のy振動を検出
する変位検出手段;および、第1および第2振動体の少
くとも一方に、y方向の力を与えるy変位助勢手段;を
備える角速度検出装置。
1. A first and second vibrating body which is floated and supported on a substrate by a floating supporting member having high flexibility in x and y directions, is arranged in the x direction, and is symmetric with respect to a y-axis passing through an intermediate point O in the arrangement. ;
Exciting means for driving at least one of the first and second vibrators in the x direction; displacement detecting means for detecting y-vibration of the first and second vibrators; and at least one of the first and second vibrators On the other hand, an angular velocity detecting device comprising: a y displacement assisting means for applying a force in the y direction.
【請求項2】x,y方向に撓み性が高い浮動支持部材で
基板に対して浮動支持され、x方向に並び、並びの中間
点Oを通るy軸に関して対称な第1および第2振動体;
第1および第2振動体の少くとも一方をx方向に振動駆
動する励振手段;第1および第2振動体のy振動を検出
する変位検出手段;第1振動体にy方向の静電気力を与
えるためのy変位助勢用の第1電極手段;第2振動体に
y方向の静電気力を与えるためのy変位助勢用の第2電
極手段;および、y変位助勢用の第1および第2電極手
段に静電気力用の電圧を印加する手段;を備える角速度
検出装置。
2. A first and second vibrating body which is supported by a floating support member having high flexibility in the x and y directions, is arranged in the x direction, and is symmetric with respect to the y-axis passing through an intermediate point O in the arrangement. ;
Exciting means for driving at least one of the first and second vibrators in the x direction; displacement detecting means for detecting y vibration of the first and second vibrators; applying an electrostatic force in the y direction to the first vibrator. First electrode means for assisting y displacement; second electrode means for assisting y displacement for applying an electrostatic force in the y direction to the second vibrator; and first and second electrode means for assisting y displacement. Means for applying a voltage for electrostatic force to the device.
【請求項3】y変位助勢用の第1および第2電極手段
は、それぞれ、振動体がy方向の一方の方向に移動する
とき振動体が近付く助勢電極および他方の方向に移動す
るとき振動体が近付く助勢電極を含む、請求項2記載の
角速度検出装置。
3. The first and second electrode means for assisting y-displacement include an assisting electrode to which the vibrating body approaches when the vibrating body moves in one direction of the y-direction and a vibrating body when moving in the other direction. The angular velocity detecting device according to claim 2, further comprising an assisting electrode.
【請求項4】y変位助勢用の第1および第2電極手段
に、複数の角速度レベルの静電気力用の交流電圧を順次
印加して、前記変位検出手段の検出値を読込んで、検出
値を角速度に変換する電気信号処理系の変換特性を設定
する計測制御手段;を更に備える、請求項2記載の角速
度検出装置。
4. An AC voltage for electrostatic force at a plurality of angular velocity levels is sequentially applied to the first and second electrode means for assisting y displacement, and the detected value of the displacement detecting means is read, and the detected value is read. The angular velocity detection device according to claim 2, further comprising: a measurement control unit that sets a conversion characteristic of an electric signal processing system that converts the angular velocity into an angular velocity.
【請求項5】y変位助勢用の第1および第2電極手段
に、複数の周波数の静電気力用の交流電圧を順次印加し
て、前記変位検出手段の検出値を読込んで、検出値を角
速度に変換する電気信号処理系の、周波数特性を設定す
る計測制御手段;を更に備える、請求項2又は請求項4
記載の角速度検出装置。
5. An AC voltage for electrostatic force of a plurality of frequencies is sequentially applied to the first and second electrode means for assisting y displacement, and the detected value of the displacement detecting means is read, and the detected value is converted to an angular velocity. The measurement signal control means for setting a frequency characteristic of the electric signal processing system for converting the electric signal into a signal.
The angular velocity detecting device according to any one of the preceding claims.
JP10180303A 1998-06-26 1998-06-26 Angular velocity detection device Pending JP2000009475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10180303A JP2000009475A (en) 1998-06-26 1998-06-26 Angular velocity detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10180303A JP2000009475A (en) 1998-06-26 1998-06-26 Angular velocity detection device

Publications (1)

Publication Number Publication Date
JP2000009475A true JP2000009475A (en) 2000-01-14

Family

ID=16080858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10180303A Pending JP2000009475A (en) 1998-06-26 1998-06-26 Angular velocity detection device

Country Status (1)

Country Link
JP (1) JP2000009475A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139322A (en) * 2000-10-31 2002-05-17 Murata Mfg Co Ltd Self-diagnosable method of vibrating gyro and vibrating gyro and electronic device using the same
JP2002267450A (en) * 2001-03-09 2002-09-18 Denso Corp Angular velocity sensor
JP2005274458A (en) * 2004-03-25 2005-10-06 Denso Corp Vibratory angular velocity sensor
JP2006017624A (en) * 2004-07-02 2006-01-19 Denso Corp Angular velocity sensor
JP2006521560A (en) * 2003-03-06 2006-09-21 ビーイーアイ テクノロジーズ インコーポレイテッド Micromachine vibration gyroscope using electrostatic coupling
JP2007108072A (en) * 2005-10-14 2007-04-26 Toyota Motor Corp Dynamical amount detection element, and dynamical amount detector
US7313958B2 (en) * 2002-01-12 2008-01-01 Robert Bosch Gmbh Rotational rate sensor
CN100381823C (en) * 2004-03-19 2008-04-16 株式会社电装 Vibration type angular velocity sensor
KR100839870B1 (en) 2006-09-18 2008-06-19 한국과학기술원 micro inertial sensor
WO2010084531A1 (en) * 2009-01-22 2010-07-29 パナソニック株式会社 Drive circuit and physical quantity sensor apparatus
JP2010210640A (en) * 2010-05-26 2010-09-24 Murata Mfg Co Ltd Vibration gyro and electronic device using the same
JP2016161451A (en) * 2015-03-03 2016-09-05 セイコーエプソン株式会社 Gyro sensor, electronic apparatus, mobile body, and method for manufacturing the gyro sensor
JP2018159630A (en) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 Sensor element controller, physical quantity sensor, electronic apparatus, mobile entity, and method for diagnosing fault in physical quantity sensor
JP2020160050A (en) * 2019-02-15 2020-10-01 株式会社村田製作所 Gyroscope with double input
WO2022191066A1 (en) * 2021-03-10 2022-09-15 パナソニックIpマネジメント株式会社 Module inspection method and inertial sensor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139322A (en) * 2000-10-31 2002-05-17 Murata Mfg Co Ltd Self-diagnosable method of vibrating gyro and vibrating gyro and electronic device using the same
JP2002267450A (en) * 2001-03-09 2002-09-18 Denso Corp Angular velocity sensor
US7313958B2 (en) * 2002-01-12 2008-01-01 Robert Bosch Gmbh Rotational rate sensor
JP2006521560A (en) * 2003-03-06 2006-09-21 ビーイーアイ テクノロジーズ インコーポレイテッド Micromachine vibration gyroscope using electrostatic coupling
CN100381823C (en) * 2004-03-19 2008-04-16 株式会社电装 Vibration type angular velocity sensor
DE102005012155B4 (en) * 2004-03-19 2013-06-13 Denso Corporation Vibratory angular velocity sensor
JP2005274458A (en) * 2004-03-25 2005-10-06 Denso Corp Vibratory angular velocity sensor
JP4524571B2 (en) * 2004-03-25 2010-08-18 株式会社デンソー Vibration type angular velocity sensor
JP4556515B2 (en) * 2004-07-02 2010-10-06 株式会社デンソー Angular velocity sensor
JP2006017624A (en) * 2004-07-02 2006-01-19 Denso Corp Angular velocity sensor
JP2007108072A (en) * 2005-10-14 2007-04-26 Toyota Motor Corp Dynamical amount detection element, and dynamical amount detector
KR100839870B1 (en) 2006-09-18 2008-06-19 한국과학기술원 micro inertial sensor
JP2010169532A (en) * 2009-01-22 2010-08-05 Panasonic Corp Drive circuit and physical quantity sensor apparatus
WO2010084531A1 (en) * 2009-01-22 2010-07-29 パナソニック株式会社 Drive circuit and physical quantity sensor apparatus
JP2010210640A (en) * 2010-05-26 2010-09-24 Murata Mfg Co Ltd Vibration gyro and electronic device using the same
JP2016161451A (en) * 2015-03-03 2016-09-05 セイコーエプソン株式会社 Gyro sensor, electronic apparatus, mobile body, and method for manufacturing the gyro sensor
JP2018159630A (en) * 2017-03-23 2018-10-11 セイコーエプソン株式会社 Sensor element controller, physical quantity sensor, electronic apparatus, mobile entity, and method for diagnosing fault in physical quantity sensor
JP2020160050A (en) * 2019-02-15 2020-10-01 株式会社村田製作所 Gyroscope with double input
US11193768B2 (en) 2019-02-15 2021-12-07 Murata Manufacturing Co., Ltd. Gyroscope with double input
WO2022191066A1 (en) * 2021-03-10 2022-09-15 パナソニックIpマネジメント株式会社 Module inspection method and inertial sensor
JP7458035B2 (en) 2021-03-10 2024-03-29 パナソニックIpマネジメント株式会社 Module inspection method and inertial sensor

Similar Documents

Publication Publication Date Title
JP4075022B2 (en) Angular velocity sensor
US7093487B2 (en) Angular-rate detecting apparatus
JP5368181B2 (en) Physical quantity detection device, control method for physical quantity detection device, abnormality diagnosis system, and abnormality diagnosis method
US7316161B2 (en) Rotation rate sensor
US6321598B1 (en) Angular velocity sensor device having oscillators
JP2000009472A (en) Angular velocity sensor
JP3894587B2 (en) Micromachined speed sensor system for sensing rotational speed and method for minimizing parasitic drive voltage
KR100592985B1 (en) Vibration type angular velocity sensor
EP1023607A2 (en) Multi-element micro gyro
US20100218604A1 (en) Angular velocity sensor
JP2000009475A (en) Angular velocity detection device
EP2351982B1 (en) Angular velocity sensor
JP2001513885A (en) Tuning fork gyro with split electrode
US6526826B2 (en) Angular speed sensor device
JP2000171257A (en) Angular speed detector
US20030200785A1 (en) Passive temperature compensation technique for MEMS devices
JP4843855B2 (en) Angular velocity sensor
JP2000046560A (en) Angular velocity sensor
JP2000009471A (en) Angular velocity sensor
WO2001079862A1 (en) Z-axis micro-gyro
JP2000009470A (en) Angular velocity sensor
JP2001264071A (en) Vibrator driving device
JP2000018951A (en) Angular velocity detecting method and device thereof
JP2000018952A (en) Angular velocity sensor
JPH09218040A (en) Self-diagnostic method for angular speed sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070525