JP2000009470A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JP2000009470A
JP2000009470A JP10171869A JP17186998A JP2000009470A JP 2000009470 A JP2000009470 A JP 2000009470A JP 10171869 A JP10171869 A JP 10171869A JP 17186998 A JP17186998 A JP 17186998A JP 2000009470 A JP2000009470 A JP 2000009470A
Authority
JP
Japan
Prior art keywords
vibration
drive
drive frame
vibrating body
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10171869A
Other languages
Japanese (ja)
Inventor
Tadashi Touge
宗 志 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10171869A priority Critical patent/JP2000009470A/en
Publication of JP2000009470A publication Critical patent/JP2000009470A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the detection precision from lowering by a physical (electrical and mechanical) disturbance and to improve the angular velocity detection precision. SOLUTION: The angular velocity sensor is provided with a pair of parallel connection beams bb1 and bb2 being extended in x direction, a first drive frame 5 and a second drive frame 25 that are continuous to spring beams 1-4/21-24 with a high deflection property in x direction being continuous to them, are located between the pair of connection beams bb1 and bb2, and are aligned in x direction, a first drive body 11 that is located inside the first drive frame 5 and is continuous to beams 7-10 with a high deflection property in a y direction being continuous to it, a second drive body 31 that is located inside the second drive frame 25 and has a high deflection property in a y direction being continuous to it, excitation means 15, 16/35, and 36 for vibrating and driving at least one of the first and second drive frames 5 and 25 in x direction, first displacement detection means 13 and 14 for detecting the y vibration of the first vibration body 11, and second displacement detection means 33 and 34 for detecting the y vibration of the second vibration body 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板に対して浮動
支持された振動体を備える角速度センサに関し、特に、
これに限定する意図ではないが、半導体微細加工技術を
用いて形成される浮動半導体薄膜を櫛歯電極にて電気的
に吸引/解放してx方向に励振する角速度センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor having a vibrating body floatingly supported on a substrate.
Although not intended to be limited to this, the present invention relates to an angular velocity sensor that electrically attracts / releases a floating semiconductor thin film formed by using a semiconductor microfabrication technique with a comb-shaped electrode and excites the x-direction.

【0002】[0002]

【従来の技術】この種の角速度センサの代表的なもの
は、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛
歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備
え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触
で噛み合いかつ平行な左側固定櫛歯電極および右側固定
櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電
極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に
電圧を印加することにより、浮動薄膜がx方向に振動す
る。浮動薄膜に、z軸を中心とする回転の角速度が加わ
ると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、
y方向にも振動する楕円振動となる。浮動薄膜を導体と
しもしくは電極が接合したものとし、浮動薄膜のxz平
面に平行な検出電極を基板上に備えておくと、この検出
電極と浮動薄膜との間の静電容量が、楕円振動のy成分
(角速度成分)に対応して振動する。この静電容量の変
化(振幅)を測定することにより、角速度を求めること
が出来る(例えば特開平5−248872号公報,特開
平7−218268号公報,特開平8−152327号
公報,特開平9−127148号公報,特開平9−42
973号公報)。
2. Description of the Related Art A typical type of angular velocity sensor has a pair of floating comb electrodes (a left floating comb electrode and a right floating comb electrode) on the left side and one set on the right side of a floating thin film. And two sets of fixed comb electrodes (a left fixed comb electrode and a right fixed comb electrode that mesh with and are parallel to each set of floating comb electrodes in a non-contact manner) as left floating comb electrodes / left fixed comb electrodes. By alternately applying a voltage between the space and the right floating comb electrode / the right fixed comb electrode, the floating thin film vibrates in the x direction. When an angular velocity of rotation about the z-axis is applied to the floating thin film, Coriolis force is applied to the floating thin film, and the floating thin film becomes
An elliptical vibration that vibrates also in the y direction. If the floating thin film is used as a conductor or an electrode is bonded, and a detection electrode parallel to the xz plane of the floating thin film is provided on the substrate, the capacitance between the detection electrode and the floating thin film becomes elliptical oscillation. Vibrates according to the y component (angular velocity component). By measuring the change (amplitude) of the capacitance, the angular velocity can be determined (for example, Japanese Patent Application Laid-Open Nos. 5-248873, 7-218268, 8-152327, and 9). -127148, JP-A-9-42
No. 973).

【0003】米国特許明細書第5,635,638号のFig.4に
は、1対の振動子を半円形状の1対の梁で連結して、各
振動子の振動方向xに対して撓み性が高い梁を介して、
8個のアンカーにて、該1対の振動子を浮動支持した角
速度センサが開示されている。
FIG. 4 of US Pat. No. 5,635,638 shows that a pair of vibrators are connected by a pair of semicircular beams, and each of the vibrators has high flexibility in the vibration direction x. Through the beam,
There is disclosed an angular velocity sensor in which the pair of vibrators are floated and supported by eight anchors.

【0004】[0004]

【発明が解決しようとする課題】従来の角速度センサで
はアンカー部が多点にわかれており、互いに距離がある
ため振動子を単振動させる梁バネ部に温度変化等の外力
が加わると圧縮あるいは引張りの応力がかかる。そのた
め共振周波数が温度とともに変化し、ヒステリシスと不
連続点をもつ特性となる。それはセンサの精度を低下さ
せる。例えば特開平7−218268号公報に開示のご
とき、アンカー部が多点にわかれた従来の角度センサで
は、アンカー間に距離があるため駆動時の振動が検出側
の振動にもれ、そのため精度低下となることが考えられ
る。また、例えば特開平7−218268号公報に開示
のごときの、駆動の振動モードと検出の振動モードの不
動点が不一致のものでは、互いの振動もれと外力の影響
があると角速度検出精度が低下すると考えられる。ま
た、駆動の振動モードにコリオリ力による振動を低減さ
せる振動成分を含むと、角速度検出出力が小さい。従来
の振動子の振幅が、+x方向と−x方向とで異なって振
動が不安定になるときがあり、センサとして成立しない
ときがある。
In the conventional angular velocity sensor, the anchor portion is divided into multiple points, and since there is a distance between the anchor portions, compression or tension is applied when an external force such as a temperature change is applied to a beam spring portion for making the vibrator single vibration. Stress is applied. Therefore, the resonance frequency changes with the temperature, and the characteristic has hysteresis and discontinuous points. It reduces the accuracy of the sensor. For example, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-218268, in a conventional angle sensor having multiple anchor portions, vibration during driving leaks to the vibration on the detection side due to the distance between the anchors, thereby lowering accuracy. It is considered that Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-218268, in the case where the fixed points of the driving vibration mode and the detection vibration mode do not match, the angular velocity detection accuracy is affected by mutual vibration leakage and external force. It is thought to decrease. Further, when the driving vibration mode includes a vibration component that reduces vibration due to Coriolis force, the angular velocity detection output is small. In some cases, the amplitude of the conventional vibrator is different between the + x direction and the −x direction, and the vibration is unstable, and the vibration may not be established as a sensor.

【0005】米国特許明細書第5,635,638号の角速度セ
ンサでは、振動子の重心から振動バネが接続されていな
いため、製造時の寸法変動により、振動マスに加わる駆
動力が不均一になると振動がアンバランスになると推察
される。また、非線形振動になる。そのため共振周波数
のシフト振動のアンバランスにより検出出力の不安定な
変動を発生させるためS/Nが悪いと推察される。駆動
振動子と検出振動子が同一の質量となっているため、製
造時の寸法変動により検出方向への振動を駆動振動子が
発生すると、角速度信号のS/Nが低下すると推察され
る。検出振動子の振動が複数点支持のねじれ振動となる
ため、振動が基板をとおして外部にもれ、外部で反射し
た振動成分が基板に戻り振動子に加わるため、角速度信
号のS/Nが低下すると推察される。振動駆動信号が検
出コンデンサに伝わるので、角速度信号のS/Nが低い
と推察される。
In the angular velocity sensor disclosed in US Pat. No. 5,635,638, the vibration spring is not connected from the center of gravity of the vibrator. It is presumed to be balanced. In addition, nonlinear oscillation occurs. Therefore, it is presumed that S / N is poor because an unstable fluctuation of the detection output is generated due to the imbalance of the shift vibration of the resonance frequency. Since the driving vibrator and the detecting vibrator have the same mass, it is assumed that if the driving vibrator generates vibration in the detection direction due to a dimensional change during manufacturing, the S / N of the angular velocity signal decreases. Since the vibration of the detection vibrator is a torsional vibration supported at a plurality of points, the vibration leaks to the outside through the substrate, and the vibration component reflected outside returns to the substrate and is applied to the vibrator, so that the S / N of the angular velocity signal is reduced. It is presumed to decrease. Since the vibration drive signal is transmitted to the detection capacitor, it is assumed that the S / N of the angular velocity signal is low.

【0006】本発明は、物理的(電気的および機械的)
外乱による検出精度の低下を防ぎ、角速度検出精度を高
くすることを目的とする。
[0006] The present invention relates to physical (electrical and mechanical)
It is an object of the present invention to prevent a decrease in detection accuracy due to disturbance and to increase angular velocity detection accuracy.

【0007】[0007]

【課題を解決するための手段】(1)本発明の角速度セ
ンサは、基板(100)で浮動支持された、x方向に延びる
平行な、対の連結梁(bb1,bb2);これらに連続するx方
向の撓み性が高いばね梁(1〜4/21〜24)に連続し、対の
連結梁(bb1,bb2)の間に位置する、x方向に並んだ第1
駆動枠(5)および第2駆動枠(25);第1駆動枠(5)の内方
にあって、それに連続するy方向に撓み性が高いばね梁
(7〜10)に連続する第1振動体(11);第2駆動枠(25)の
内方にあって、それに連続するy方向に撓み性が高いば
ね梁(27〜30)に連続する第2振動体(31);第1駆動枠
(5)および第2駆動枠(25)の少くとも一方をx方向に振
動駆動する励振手段(15,16/35,36);第1振動体(11)の
y振動を検出する第1の変位検出手段(13,14);およ
び、第2振動体(31)のy振動を検出する第2の変位検出
手段(33,34);を備える。なお、理解を容易にするため
にカッコ内には、図面に示し後述する実施例の対応要素
の符号を参考までに付記した。
(1) An angular velocity sensor according to the present invention comprises a pair of parallel connecting beams (bb1, bb2) extending in the x direction and supported by a substrate (100); The first spring beam (1 to 4/21 to 24) having high flexibility in the x direction is continuous between the pair of connecting beams (bb1, bb2) and is arranged in the x direction.
A drive frame (5) and a second drive frame (25); a spring beam which is inside the first drive frame (5) and has high flexibility in the y-direction continuous therewith.
A first vibrating body (11) continuous to (7 to 10); continuous to a spring beam (27 to 30) inside the second drive frame (25) and having high flexibility in the y-direction continuous therewith; 2nd vibrating body (31); 1st drive frame
(5) Exciting means (15, 16/35, 36) for driving at least one of the second drive frame (25) in the x direction; a first means for detecting y vibration of the first vibrating body (11) Displacement detecting means (13, 14); and second displacement detecting means (33, 34) for detecting y-vibration of the second vibrating body (31). For easy understanding, the reference numerals of the corresponding elements in the embodiments shown in the drawings and described later are added in the parentheses for reference.

【0008】これによれば、励振手段(15,16/35,36)に
て第1駆動枠(5)および第2駆動枠(25)をx方向に逆相
で振動させると、それらの内側にある第1振動体(11)お
よび第2振動体(31)も、第1駆動枠(5)および第2駆動
枠(25)と同じく、x方向に逆相で振動する。z軸廻りの
角速度が加わると、第1振動体(11)および第2振動体(3
1)は、y方向に撓み性が高いばね梁(7〜10/27〜30)にて
支持されているので、第1振動体(11)および第2振動体
(31)の振動が楕円振動となり、y方向にも振動する。第
1振動体(11)および第2振動体(31)のx振動が相対的に
逆相であるので、y振動も相対的には逆相となる。第1
および第2変位検出手段(13,14/33,34)が、これらのy
振動を検出する。
According to this, when the first drive frame (5) and the second drive frame (25) are vibrated in the x-direction in opposite phases by the excitation means (15, 16/35, 36), The first vibrating body (11) and the second vibrating body (31) also vibrate in opposite phases in the x direction, similarly to the first drive frame (5) and the second drive frame (25). When an angular velocity about the z-axis is applied, the first vibrating body (11) and the second vibrating body (3
1) is supported by a spring beam (7 to 10/27 to 30) having high flexibility in the y direction, so that the first vibrating body (11) and the second vibrating body
The vibration of (31) becomes an elliptical vibration, and also vibrates in the y direction. Since the x vibrations of the first vibrating body (11) and the second vibrating body (31) are relatively opposite in phase, the y vibration is also relatively opposite in phase. First
And the second displacement detecting means (13, 14/33, 34)
Detect vibration.

【0009】第1および第2変位検出手段(13,14/33,3
4)の振動検出信号の差動増幅を行なうと、各変位検出手
段の振動検出信号の略2倍のレベルの振動検出信号が得
られると共に、電気的なノイズが減殺されるばかりでな
く、角速度以外の機械的な外力による信号成分も相殺さ
れる。例えばy方向の加,減速度が加わった場合、それ
による第1振動体(11)および第2振動体(31)の移動が同
方向で、第1および第2変位検出手段(13,14/33,34)の
変位検出信号レベルが同方向に同程度振れるが、それら
を差動増幅すると、この信号レベルの振れが相殺とな
る。したがって、加速度など、外力による角速度信号の
S/N低下を生じない。
The first and second displacement detecting means (13, 14/33, 3
By performing the differential amplification of the vibration detection signal of 4), a vibration detection signal of a level approximately twice as large as the vibration detection signal of each displacement detecting means is obtained, and not only electrical noise is reduced, but also angular velocity is reduced. Signal components due to other mechanical external forces are also canceled. For example, when acceleration and deceleration in the y direction are applied, the movements of the first vibrating body (11) and the second vibrating body (31) are in the same direction, and the first and second displacement detecting means (13, 14 / The displacement detection signal levels of (33, 34) fluctuate in the same direction to the same extent, but if they are differentially amplified, the fluctuations of this signal level cancel out. Therefore, the S / N of the angular velocity signal does not decrease due to external force such as acceleration.

【0010】x方向の撓み性が高いばね梁(1〜4/21〜2
4)を介して第1駆動枠(5)および第2駆動枠(25)が連結
梁(bb1,bb2)で支持され、基板(100)に対しては浮動支持
であり、第1駆動枠(5)および第2駆動枠(25)が、温度
歪を生じにくく、それらならびに第1および第2振動体
(11,31)のx振動が安定するのに加えて、y方向に撓み
性が高いばね梁(7〜10/27〜30)を介して第1および第
2振動体(11,31)が浮動支持されているので、第1およ
び第2振動体(11,31)は更に温度歪を生じにくく、角速
度対応のy振動が安定したものとなり、角速度信号の信
頼性(安定性)が高い。
A spring beam having high flexibility in the x direction (1 to 4/21 to 2
4), the first drive frame (5) and the second drive frame (25) are supported by the connecting beams (bb1, bb2), are floatingly supported on the substrate (100), and have the first drive frame (25). 5) and the second drive frame (25) are less susceptible to temperature distortion;
In addition to stabilizing the x-vibration of (11, 31), the first and second vibrators (11, 31) can be moved through the spring beams (7 to 10/27 to 30) having high flexibility in the y-direction. Since the first and second vibrators (11, 31) are floated and supported, the first and second vibrators (11, 31) are less susceptible to temperature distortion, the y-vibration corresponding to the angular velocity is stabilized, and the reliability (stability) of the angular velocity signal is high.

【0011】[0011]

【発明の実施の形態】(2)第1振動体(11)および第2
振動体(31)は、枠形状体であり、それぞれの内側に第1
および第2の変位検出手段(13,14/33,34)が位置する。 (3)対の連結梁(bb1,bb2)はそれらの間の中間点Oを
通るx軸およびy軸に関して対称であり、第1および第
2駆動枠(5,25)はy軸に関して対称であり、第1および
第2振動体(11,31)もy軸に関して対称である (4)基板で浮動支持されたx方向の撓み性が高いばね
梁(1〜4,21〜24)に連続し、x方向に並んだ第1駆動枠
(5)および第2駆動枠(25);第1駆動枠(5)および第2駆
動枠(25)を連結したx方向の撓み性が高いばね梁(61,6
2);第1駆動枠の内方にあって、それに連続するy方向
に撓み性が高いばね梁に連続する第1振動体;第2駆動
枠の内方にあって、それに連続するy方向に撓み性が高
いばね梁に連続する第2振動体;第1駆動枠(5)および
第2駆動枠(25)の少くとも一方をx方向に振動駆動する
励振手段(15,16/35,36);第1振動体(11)のy振動を検
出する第1の変位検出手段(13,14);および、第2振動
体(31)のy振動を検出する第2の変位検出手段(33,3
4);を備える角速度センサ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (2) First vibrating body (11) and second vibrating body (11)
The vibrating body (31) is a frame-shaped body, and a first body is provided inside each of them.
And second displacement detecting means (13, 14/33, 34). (3) The pair of connecting beams (bb1, bb2) are symmetric about the x-axis and the y-axis passing through the intermediate point O between them, and the first and second drive frames (5, 25) are symmetric about the y-axis. Yes, the first and second vibrators (11, 31) are also symmetrical with respect to the y-axis. (4) Connected to a spring beam (1 to 4, 21 to 24) with high flexibility in the x direction supported by floating on a substrate. And the first drive frame arranged in the x direction
(5) and a second drive frame (25); a spring beam (61,6) having a high flexibility in the x direction connecting the first drive frame (5) and the second drive frame (25);
2); a first vibrator which is inside the first drive frame and which is continuous with the spring beam having high flexibility in the y direction which is continuous therewith; a y-direction which is inside the second drive frame and which is continuous therewith A second vibrating body continuous with a spring beam having high flexibility; an exciting means (15, 16/35, which vibrates and drives at least one of the first drive frame (5) and the second drive frame (25) in the x direction; 36); first displacement detecting means (13, 14) for detecting y vibration of the first vibrating body (11); and second displacement detecting means (13) for detecting y vibration of the second vibrating body (31). 33,3
4) an angular velocity sensor comprising;

【0012】本発明の好ましい実施例では、連結梁(bb
1,bb2)の端部は、一端をアンカー(a11,a16)で支持し
た、y方向に撓み性が高いばね梁(b11,b16/b21,b26)で
支持し、なかほどは、第1駆動枠(5)と第1振動体(11)
の組体でなる第1組の振動系と、第2駆動枠(25)と第2
振動体(31)の組体でなる第2組の振動系との、音叉共振
させるため、一端をアンカー(a12〜a15/a22〜a25)で支
持した、x方向に撓み性が高いばね梁(b12〜b15/b22〜b
25)で支持し、中間点Oに関して角速度センサエレント
の配列をすべて点対称とした。
In a preferred embodiment of the invention, the connecting beams (bb
The end of (1, bb2) is supported by a spring beam (b11, b16 / b21, b26) having one end supported by an anchor (a11, a16) and having high flexibility in the y-direction. Frame (5) and first vibrator (11)
A first set of vibration systems composed of a set of a second drive frame (25) and a second set of
A spring beam having a high flexibility in the x direction, one end of which is supported by an anchor (a12 to a15 / a22 to a25) in order to resonate the tuning fork with a second set of vibration systems composed of the vibrating body (31). b12-b15 / b22-b
25), and the arrangement of the angular velocity sensor elements with respect to the intermediate point O was all point symmetric.

【0013】これによれば、第1駆動枠(5)と第1振動
体(11)の組体でなる第1組の振動系と、第2駆動枠(25)
と第2振動体(31)の組体でなる第2組の振動系が、連結
梁(bb1,bb2)を介して多点でアンカーされているにもか
かわらず、熱膨張,内部応力等の解放によって点Oに関
する対称性がくずれることはない。したがって角速度信
号の信頼性(安定性)が高い。
According to this, a first set of vibration systems composed of an assembly of the first drive frame (5) and the first vibrator (11), and the second drive frame (25).
Although the second set of vibration systems consisting of the set of the second vibrator and the second vibrator (31) is anchored at multiple points via connecting beams (bb1, bb2), thermal expansion, internal stress, etc. The release does not break the symmetry about point O. Therefore, the reliability (stability) of the angular velocity signal is high.

【0014】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0015】[0015]

【実施例】−第1実施例− 図1に、本発明の第1実施例の機構要素を示す。絶縁層
を形成したシリコン基板100には、導電性とするため
の不純物を含むポリシリコン(以下導電性ポリシリコ
ン)の、浮動体アンカーa11〜a15,a21〜a2
5,駆動電極15,16/35,36のアンカー,駆動
検出電極17,18/37,38のアンカー,角速度検
出電極13,14/33,34のアンカーおよび周波数
調整電極19,20/39,40のアンカー、が接合し
ており、これらのアンカーは、シリコン基板100上の
絶縁層の上に形成された配線により、図示しない接続電
極に接続されている。
FIG. 1 shows a mechanical element of a first embodiment of the present invention. On the silicon substrate 100 on which the insulating layer is formed, floating body anchors a11 to a15 and a21 to a2 made of polysilicon containing conductive impurities (hereinafter referred to as conductive polysilicon) are provided.
5, anchors of drive electrodes 15, 16/35, 36, anchors of drive detection electrodes 17, 18/37, 38, anchors of angular velocity detection electrodes 13, 14/33, 34, and frequency adjustment electrodes 19, 20/39, 40. Anchors are connected, and these anchors are connected to connection electrodes (not shown) by wiring formed on the insulating layer on the silicon substrate 100.

【0016】リソグラフによる半導体プロセスを用い
て、シリコン基板100から浮きしかも浮動体アンカー
a11〜a15,a21〜a25に連続した、導電性ポ
リシリコンの、x方向に延びるばね梁b11,b16/
b21,b26,y方向に延びるばね梁b12〜b15
/b22〜b25、ならびにこれらに連続し、x方向に
延びる連結梁bb1,bb2が形成されている。これら
の連結梁bb1,bb2は同一幅,長さであって互に平
行であり、それらの中間点Oを通るx軸に関して対称で
ある。
By using a lithographic semiconductor process, spring beams b11, b16 / of conductive polysilicon floating in the x-direction, floating from the silicon substrate 100 and connected to the floating anchors a11 to a15, a21 to a25.
b21, b26, spring beams b12 to b15 extending in the y direction
/ B22 to / b25, and connecting beams bb1 and bb2 which are continuous with them and extend in the x direction. These connecting beams bb1 and bb2 have the same width and length, are parallel to each other, and are symmetric with respect to the x-axis passing through their intermediate point O.

【0017】連結梁bb1およびbb2には、y方向に
延びx方向の撓み性が高いばね梁1,2/21,22お
よび3,4/23,24が連続し、これらのばね梁に第
1駆動枠5および第2駆動枠25が連続し、これらの駆
動枠5および25の内側に、x方向に延びy方向の撓み
性が高いばね梁7〜10および27〜30を介して、第
1振動体11および第2振動体31が連続している。こ
れらの要素も、シリコン基板100から浮いており、導
電性ポリシリコンである。
Spring beams 1,2 / 21,22 and 3,4 / 23,24 extending in the y-direction and having high flexibility in the x-direction are continuous with the connecting beams bb1 and bb2, and the first spring beams are connected to these spring beams. The drive frame 5 and the second drive frame 25 are continuous, and the first and second drive frames 5 and 25 are provided inside the drive frames 5 and 25 via spring beams 7 to 10 and 27 to 30 which extend in the x direction and have high flexibility in the y direction. The vibrating body 11 and the second vibrating body 31 are continuous. These elements also float from the silicon substrate 100 and are conductive polysilicon.

【0018】第1,第2の駆動枠5と25、第1,第2
の振動体11と31、はセンサ中心Oを通るy軸に関し
て対称な形状であって対称な位置にあり、ばね梁1〜
4,7〜10と21〜24,27〜30も、y軸に関し
て対称な形状であって対称な位置にある。
The first and second drive frames 5 and 25, the first and second drive frames
Are symmetrical with respect to the y-axis passing through the sensor center O and are symmetrically positioned.
4, 7 to 10 and 21 to 24, 27 to 30 are also symmetrical with respect to the y-axis and located at symmetrical positions.

【0019】第1,第2駆動枠5/25には、y方向に
等ピッチで分布しx方向に突出する櫛歯状の可動電極6
/26があり、駆動電極アンカーに連続した、導電性ポ
リシリコンの駆動電極15,16/35,36にも、可
動電極6/26のy方向分布の空間に突出する櫛歯状の
固定電極がありy方向に分布している。
The first and second drive frames 5/25 each have a comb-shaped movable electrode 6 distributed at an equal pitch in the y direction and projecting in the x direction.
/ 26, and the drive electrodes 15, 16/35, and 36 made of conductive polysilicon connected to the drive electrode anchor also have comb-shaped fixed electrodes protruding into the space in the y-direction distribution of the movable electrode 6/26. There is a distribution in the y direction.

【0020】駆動電極15,16(35,36)に交互
に、駆動枠5(25)の電位(略機器ア−スレベル)よ
り高い電圧を印加することにより、駆動枠5(25)が
x方向に振動する。この実施例では、同様に駆動枠25
もx方向に駆動するが、そのx振動は、共振音叉振動と
するために、駆動枠5とは逆相である。
By applying a voltage higher than the potential of the drive frame 5 (25) (approximately the equipment ground level) to the drive electrodes 15 and 16 (35, 36) alternately, the drive frame 5 (25) moves in the x direction. Vibrates. In this embodiment, the drive frame 25
Is also driven in the x direction, but the x vibration has a phase opposite to that of the drive frame 5 in order to make a resonance tuning fork vibration.

【0021】振動体11(31)は、x方向に延びるば
ね梁7〜10(27〜30)で駆動枠5(25)に連結
しているので、x振動する。駆動枠5および振動体11
でなる第1振動系と、駆動枠25および振動体31でな
る第2振動系とを共振音叉振動させることにより、エネ
ルギ消費効率が高いx振動となる。
The vibrating body 11 (31) vibrates x because it is connected to the drive frame 5 (25) by spring beams 7 to 10 (27 to 30) extending in the x direction. Drive frame 5 and vibrating body 11
And the second vibration system including the drive frame 25 and the vibrating body 31 are caused to vibrate in a resonant tuning fork manner, so that x vibration with high energy consumption efficiency is obtained.

【0022】駆動枠5(25)がx方向に振動すること
により、駆動枠5と駆動検出電極17,18との間の静
電容量が振動し、かつその容量振動と逆位相で駆動枠2
5と駆動検出電極37,38との間の静電容量が振動す
る。
When the drive frame 5 (25) vibrates in the x direction, the capacitance between the drive frame 5 and the drive detection electrodes 17 and 18 vibrates, and the drive frame 2 (25) has a phase opposite to the capacitance vibration.
5 and the drive detection electrodes 37 and 38 oscillate in capacitance.

【0023】振動体11/31も大略で枠形状である
が、x方向に延びる複数の渡し梁がy方向に等ピッチで
存在し、y方向で隣り合う渡し梁の間の空間に、各1対
の導電体ポリシリコンの固定検出電極13,14/3
3,34があり、基板100上の検出電極用の各アンカ
ーで支持されそれと電気的に連続である(電気接続関係
にある)。
The vibrating body 11/31 is also generally in the form of a frame, but a plurality of cross beams extending in the x direction exist at equal pitches in the y direction. Fixed detection electrodes 13, 14/3 of a pair of conductive polysilicon
3, 34, which are supported by the respective anchors for the detection electrodes on the substrate 100 and are electrically continuous therewith (in an electrical connection relationship).

【0024】対の検出電極13,14(33,34)間
は絶縁されているが、振動体11(31)のy振動(y
変位)を検出するための各対電極13,14(33,3
4)の、各対間で対応位置にある検出電極は、電気リ−
ドに共通接続され、チャ−ジアンプ46,47(56,
57)に接続されている。
Although the pair of detection electrodes 13 and 14 (33, 34) are insulated, the y-vibration (y
Each of the counter electrodes 13, 14 (33, 3) for detecting the
4) The detection electrodes at the corresponding positions between each pair are electric relays.
And the charge amplifiers 46 and 47 (56,
57).

【0025】振動体11,31がx方向に共振音叉振動
しているとき、中心Oを通るz軸廻りの角速度が加わる
と、振動体11,31が、y成分も有する相対的に逆相
の楕円振動となり、これによって電極13,14/3
3,34にy振動対応の静電容量振動を生ずる。電極1
3,14の静電容量振動は相対的に逆相、同様に電極3
3,34の静電容量振動も相対的に逆相である。そし
て、振動体11,31のy振動が逆相であるので、電極
13,33の静電容量振動は相対的に逆相、同様に電極
14,34の静電容量振動は相対的に逆相である。
When the vibrating bodies 11 and 31 are vibrating in a resonant tuning fork manner in the x direction and an angular velocity about the z-axis passing through the center O is applied, the vibrating bodies 11 and 31 are relatively out of phase having a y component. Elliptical vibration occurs, which causes the electrodes 13, 14/3
Capacitance vibration corresponding to y vibration is generated at 3, 34. Electrode 1
The capacitance oscillations of the electrodes 3 and 14 are relatively opposite in phase, and
The capacitance oscillations of 3, 34 are also relatively opposite in phase. Since the y-vibrations of the vibrators 11 and 31 are in opposite phases, the capacitance oscillations of the electrodes 13 and 33 are relatively opposite phases, and similarly, the capacitance oscillations of the electrodes 14 and 34 are relatively opposite phases. It is.

【0026】振動体11,31にも、y方向に等ピッチ
で分布しx方向に突出する櫛歯状の可動電極12,32
があり、固定電極アンカーに連続した、導電性ポリシリ
コンの周波数調整電極19,20/39,40にも、可
動電極12/32のy方向分布の空間に突出する櫛歯状
の電極がありy方向に分布している。これらの可動電極
および周波数調整電極は、振動体11,31のx振動の
速度(ばね力)を調整し、振動体11,31の共振周波
数(固有振動数)を、駆動枠5,25の共振周波数よ
り、数100Hz高い程度にまで下げるものである。な
お、駆動枠5,25は、駆動電圧の印加によって両者
を、固有振動数相当の同一周波数でx励振する。角速度
検出感度を高くするために、駆動枠5,25の共振周波
数(固有振動数)より、振動体11,31の共振周波数
(固有振動数)を数100Hz高く設計しており、上述
の周波数調整電極19,20/39,40に直流電圧を
印加してそのレベルを調整することにより、振動体1
1,31の共振周波数を設計値に近い値に微調整する。
Comb-shaped movable electrodes 12, 32 distributed at equal pitches in the y direction and projecting in the x direction are also provided on the vibrators 11, 31.
The frequency adjusting electrodes 19, 20/39, and 40 made of conductive polysilicon connected to the fixed electrode anchor also have comb-shaped electrodes protruding into the space of the movable electrode 12/32 in the y-direction distribution. Distributed in the direction. These movable electrodes and frequency adjusting electrodes adjust the speed (spring force) of the x-vibration of the vibrating bodies 11 and 31, and adjust the resonance frequency (natural frequency) of the vibrating bodies 11 and 31 by the resonance of the drive frames 5 and 25. The frequency is lowered to several hundred Hz higher than the frequency. The drive frames 5, 25 excite both of them at the same frequency equivalent to the natural frequency by applying a drive voltage. In order to increase the angular velocity detection sensitivity, the resonance frequencies (natural frequencies) of the vibrators 11 and 31 are designed to be several hundred Hz higher than the resonance frequencies (natural frequencies) of the drive frames 5 and 25. By applying a DC voltage to the electrodes 19, 20/39, and 40 to adjust the level, the vibrating body 1
The resonance frequencies of 1, 31 are finely adjusted to values close to the design values.

【0027】以上に説明した角速度センサには、図2に
示す角速度検出回路42〜60,TSG,FCRが接続
される。タイミング信号発生器TSGが、駆動枠5,2
5をx方向に共振周波数で逆相駆動する駆動信号を発生
して、駆動回路41,51に与えると共に、同期検波用
の同期信号を同期検波回路45,50,55に与える。
図3に、駆動信号A,Bと、駆動フィ−ドバック信号
および角速度信号、ならびにx振動およびy振動を示
す。駆動信号A,Bに同期して駆動回路41,51が駆
動電極15,16/35,36に駆動電圧(パルス)を
印加する。これにより、駆動枠5と共に振動体11なら
びに駆動枠25と共に振動体31が、x方向に逆相で振
動する。この振動によって、駆動検出電極17,18の
静電容量が逆相で振動し、また駆動検出電極37,38
の静電容量が逆相で振動する。この静電容量の振動をチ
ャ−ジアンプ42,43/52,53が電圧振動(静電
容量信号)に変換する。
The angular velocity sensors described above are connected to the angular velocity detection circuits 42 to 60, TSG, and FCR shown in FIG. The timing signal generator TSG is used to drive the driving frames 5 and 2
A drive signal for driving phase shifter 5 in the x direction at a resonance frequency is generated and supplied to drive circuits 41 and 51 and a synchronous signal for synchronous detection is supplied to synchronous detection circuits 45, 50 and 55.
FIG. 3 shows drive signals A and B, drive feedback signal and angular velocity signal, and x and y vibrations. The drive circuits 41 and 51 apply a drive voltage (pulse) to the drive electrodes 15, 16/35 and 36 in synchronization with the drive signals A and B. Thus, the vibrating body 11 together with the drive frame 5 and the vibrating body 31 together with the drive frame 25 vibrate in opposite phases in the x direction. Due to this vibration, the capacitances of the drive detection electrodes 17 and 18 vibrate in opposite phases, and the drive detection electrodes 37 and 38 also vibrate.
Vibrates in opposite phases. Charge vibrations 42, 43/52, 53 convert the vibration of the capacitance into voltage vibration (capacitance signal).

【0028】差動増幅器44がアンプ42,43の静電
容量信号(逆相)を差動増幅し、1個のチャ−ジアンプ
が発生する静電容量信号の振幅を略2倍とし、ノイズを
相殺した差動信号を発生し、同期検波回路45およびフ
ィ−ドバック処理回路FCRに与える。同期検波回路4
5は、駆動信号と同相の同期信号に同期して、差動増幅
器44が与える差動信号すなわちx振動を表わすx振動
検出電圧を検波し、駆動パルス信号に対するx振動の位
相ずれを表わすフィ−ドバック信号を発生してフィ−ド
バック処理回路FCRに与える。
The differential amplifier 44 differentially amplifies the capacitance signals (opposite phases) of the amplifiers 42 and 43, makes the amplitude of the capacitance signal generated by one charge amplifier approximately double, and reduces noise. A canceled differential signal is generated and supplied to the synchronous detection circuit 45 and the feedback processing circuit FCR. Synchronous detection circuit 4
5 detects a differential signal provided by the differential amplifier 44, that is, an x-vibration detection voltage representing x-vibration, in synchronism with a synchronizing signal having the same phase as the drive signal, and detects a phase shift of x-vibration with respect to the drive pulse signal. A feedback signal is generated and supplied to a feedback processing circuit FCR.

【0029】フィ−ドバック処理回路FCRは、同期検
波回路45が与える位相ずれ信号レベルを設定値に合わ
すための移相信号を、駆動回路41に与え、それを受け
た駆動回路41は、移相信号に対応して、駆動信号に対
する出力駆動電圧の位相をシフトする。同期検波回路4
5の位相ずれ信号レベルが実質上設定値になった状態
で、駆動枠5のx振動は安定したものとなる。周波数調
整電極19,20には、振動体11の共振周波数を駆動
枠5の共振周波数より数100Hz程度高い値に下げる
直流電圧を、周波数調整回路59が印加する。
The feedback processing circuit FCR provides the drive circuit 41 with a phase shift signal for adjusting the level of the phase shift signal provided by the synchronous detection circuit 45 to a set value. The phase of the output drive voltage with respect to the drive signal is shifted according to the signal. Synchronous detection circuit 4
In the state where the phase shift signal level of No. 5 substantially reaches the set value, the x vibration of the drive frame 5 becomes stable. The frequency adjustment circuit 59 applies a DC voltage that reduces the resonance frequency of the vibrating body 11 to a value that is several hundred Hz higher than the resonance frequency of the drive frame 5 to the frequency adjustment electrodes 19 and 20.

【0030】駆動枠25および振動体31の駆動,フィ
−ドバック回路も、上述の駆動枠5および振動体11の
ものと同様であり、駆動枠25が駆動枠5と同一の周波
数で共振音叉振動し、振動体31が11と実質上同一の
周波数で共振音叉振動する。安定した共振音叉振動の間
に、中心Oを通るz軸廻りの角速度が加わると、コリオ
リ力が駆動枠5,25および振動体11,31に加わ
り、これらにx振動に加えてy振動を含む楕円運動を起
こさせる。しかし駆動枠5,25は、x方向には撓み性
が高いがy方向には剛性が高いばね梁1〜4,21〜2
4で支持されているので、y振動は小さい。ところが振
動体11,31は、y方向に撓み性が高いばね梁7〜1
0,27〜30で支持されているので、y方向に大きく
振動する。振動体11,31のこのy振動は相対的に逆
相である。
The driving and feedback circuits of the driving frame 25 and the vibrating body 31 are the same as those of the driving frame 5 and the vibrating body 11 described above. Then, the vibrating body 31 vibrates at a resonance tuning fork at substantially the same frequency as 11. When an angular velocity about the z-axis passing through the center O is applied during the stable resonance tuning fork vibration, Coriolis force is applied to the drive frames 5, 25 and the vibrators 11, 31, which include y vibration in addition to x vibration. Causes elliptical motion. However, the drive frames 5, 25 have high flexibility in the x direction but high rigidity in the y direction.
4, the y vibration is small. However, the vibrating members 11 and 31 have spring beams 7-1 having high flexibility in the y direction.
Since it is supported at 0, 27 to 30, it vibrates largely in the y direction. The y vibrations of the vibrating bodies 11 and 31 are relatively in opposite phases.

【0031】振動体11のy振動を検出する対の検出電
極13,14の静電容量が逆相で振動し、これを表わす
静電容量信号をチャ−ジアンプ46,47が発生して差
動増幅器48が、両信号の差動信号すなわち1個のチャ
−ジアンプが発生する静電容量信号の振幅を略2倍と
し、ノイズを相殺した差動信号、を発生し、差動増幅器
49に与える。振動体31のy振動を検出する対の検出
電極33,34の静電容量が逆相で振動し、これを表わ
す静電容量信号をチャ−ジアンプ56,57が発生して
差動増幅器58が、両信号の差動信号すなわち1個のチ
ャ−ジアンプが発生する静電容量信号の振幅を略2倍と
し、ノイズを相殺した差動信号、を発生し、差動増幅器
49に与える。差動増幅器48と58の差動増幅信号は
相対的に逆相である。したがって差動増幅器49の差動
出力は、第1振動体11と第2振動体31の各信号処理
回路に同時に実質上同一レベルで作用するノイズを相殺
し、しかも、加,減速度,振動など、第1,第2振動体
11,31に同時に同方向に作用する外力による振動体
のy変位成分(これもノイズに該当する)も相殺した、
角速度起因のy振動を増幅した検出信号であり、角速度
検出感度が高く、S/Nが高い。
The capacitances of the pair of detecting electrodes 13 and 14 for detecting the y vibration of the vibrating body 11 oscillate in opposite phases, and the charge amplifiers 46 and 47 generate the capacitance signals representing the vibrations to generate differential signals. The amplifier 48 substantially doubles the amplitude of the differential signal of the two signals, that is, the amplitude of the capacitance signal generated by one charge amplifier, generates a differential signal in which noise is canceled, and supplies the differential signal to the differential amplifier 49. . The capacitance of the pair of detection electrodes 33 and 34 for detecting the y vibration of the vibrating body 31 oscillates in opposite phases, and the charge amplifiers 56 and 57 generate the capacitance signals indicating this, and the differential amplifier 58 The amplitude of the differential signal of the two signals, that is, the capacitance signal generated by one charge amplifier is approximately doubled to generate a differential signal in which noise is canceled, and the differential signal is given to the differential amplifier 49. The differential amplification signals of the differential amplifiers 48 and 58 are relatively out of phase. Therefore, the differential output of the differential amplifier 49 cancels out noise acting on each signal processing circuit of the first vibrating body 11 and the second vibrating body 31 at substantially the same level at the same time, and furthermore, acceleration, deceleration, vibration, etc. , The y-displacement component (also corresponding to noise) of the vibrating body due to the external force acting on the first and second vibrating bodies 11 and 31 simultaneously in the same direction is also cancelled.
This is a detection signal obtained by amplifying y vibration caused by angular velocity, and has high angular velocity detection sensitivity and high S / N.

【0032】この差動出力すなわち検出信号は、同期検
波回路50に与えられ、同期検波回路50は、駆動信号
と同相の同期信号に同期して、検出信号を検波し、角速
度を表わす信号を発生する。この角速度信号の極性
(±)は加わった角速度の方向を、信号レベルの絶対値
は角速度の大きさを表わす。
The differential output, that is, the detection signal, is applied to a synchronous detection circuit 50, which detects the detection signal in synchronization with the synchronous signal having the same phase as the drive signal, and generates a signal representing the angular velocity. I do. The polarity (±) of the angular velocity signal indicates the direction of the applied angular velocity, and the absolute value of the signal level indicates the magnitude of the angular velocity.

【0033】−第2実施例− 図4に第2実施例の機構要素を示す。この第2実施例で
は、駆動枠5,25のx振動の線形性を高くするため
に、ばね梁1〜4,21〜24をx,y方向に共に撓み
性が高いコ型のばね梁とし、しかも駆動枠5,25が共
振音叉振動をしやすくするために、コ型のばね梁61,
62を加えて、これらで駆動枠5,25を連結してい
る。すなわち、コ型のばね梁61,62が駆動枠5およ
び25に連続している。更に、振動体11,31のx振
動も線形性を高くしかつ独立の振動とするために、ばね
梁7〜10,27〜30をコ型のばね梁としている。こ
の第2実施例では、駆動振動が単振動に近くなり、角速
度検出信号のS/Nが向上する。なおこの第2実施例で
は、コ型のばね梁61,62で第1駆動枠5と第2駆動
枠25とを連結しており、これにより駆動枠5,25の
共振音叉振動が可能であるので、連結はりbb1,bb
2を省略して、ばね梁1〜4,21〜24をアンカーで
基板100に対して浮動支持してもよい。しかし、連結
梁bb1,bb2が加工歪や温度歪を解放し駆動枠5,
25のx振動の線形性を高くするのに効果があるので、
連結梁bb1,bb2を用いるのが好ましい。
Second Embodiment FIG. 4 shows mechanical elements of a second embodiment. In the second embodiment, in order to increase the linearity of the x vibration of the drive frames 5 and 25, the spring beams 1-4 and 21-24 are U-shaped spring beams having high flexibility in both the x and y directions. In addition, the U-shaped spring beams 61,
In addition, the drive frames 5 and 25 are connected by these. That is, the U-shaped spring beams 61 and 62 are continuous with the drive frames 5 and 25. Further, the x-vibrations of the vibrators 11 and 31 are also U-shaped spring beams in order to increase the linearity and make the vibrations independent. In the second embodiment, the driving vibration is close to a simple vibration, and the S / N of the angular velocity detection signal is improved. In the second embodiment, the first drive frame 5 and the second drive frame 25 are connected by U-shaped spring beams 61, 62, so that the resonant tuning fork vibration of the drive frames 5, 25 is possible. So the connection beams bb1 and bb
2 may be omitted, and the spring beams 1 to 4 and 21 to 24 may be floatingly supported on the substrate 100 by anchors. However, the connecting beams bb1 and bb2 release the processing distortion and the temperature distortion, and the drive frame 5,
Since it is effective to increase the linearity of the x vibration of 25,
It is preferable to use the connecting beams bb1 and bb2.

【0034】図5に、本発明の第3実施例を示す。この
第3実施例では、第2実施例と同様にコ型のばね梁6
1,62で第1駆動枠5と第2駆動枠25とを連結し、
ばね梁1〜4,21〜24をx方向の撓み性が高くy方
向には撓み性が低いz型のばね梁とし、振動体11,3
1を支持するばね梁7〜10,27〜30をy方向には
撓み性が高くx方向には撓み性が低いz型のばね梁とし
た。第2実施例との違いは、ばね梁1〜4,21〜24
を、y方向に振動しにくく、x方向に振動し易くし、ば
ね梁7〜10,27〜30をy方向に振動しやすくした
点である。
FIG. 5 shows a third embodiment of the present invention. In the third embodiment, a U-shaped spring beam 6 is provided as in the second embodiment.
At 1,62, the first drive frame 5 and the second drive frame 25 are connected,
The spring beams 1 to 4 and 21 to 24 are z-type spring beams having high flexibility in the x direction and low flexibility in the y direction, and the vibrators 11 and 3
The spring beams 7 to 10 and 27 to 30 supporting the first spring 1 are z-shaped spring beams having high flexibility in the y direction and low flexibility in the x direction. The difference from the second embodiment is that the spring beams 1-4, 21-24
Are hardly vibrated in the y direction, easily vibrated in the x direction, and the spring beams 7 to 10 and 27 to 30 are easily vibrated in the y direction.

【0035】図6に本発明の第4実施例を示す。この第
4実施例は、下地の基板100との温度膨張率の差によ
る、駆動枠5,25,振動体11,31の内部応力の増
加とそれぞれに連結するばね梁の応力の増加を低減し、
振動特性を非線形から線形とし、共振音叉振動を実現
し、角速度信号のS/Nを高くする工夫をしたものであ
る。ばね梁は、偏平ル−プ状のル−プ梁であり、ル−プ
の略直線辺と直交する方向の撓み性が高く、ル−プの略
直線辺に平行な方向の撓み性は低い。振動体11,31
をル−プ梁で駆動枠5,25に対して支持しているの
で、検出振動yの方向のみに振動し、他の方向に振動し
にくい構成である。さらに、駆動枠5,25もル−プ梁
で支持しているので、駆動枠5,25および振動体1
1,31共に、温度による内部応力の増加は少く、振動
の線形性をたもつ。連結梁は、y平行辺bb3,bb4
を有する略長方形状の保護枠であり、4個のル−プ梁b
11,b16,b21,b26を介してアンカーa1
1,a16,a21,a26で支持されている。これに
より、基板100又は保護枠(bb1〜bb4)の熱膨
張による寸法変化で、固定電極と可動電極との配置が相
対的に対称にずれ、差動構成で温度変化による容量変化
が相殺される構成になっている。以上に説明した本発明
の角速度センサの特徴を次に列記する。 (1)駆動枠5,25のx加振を静電気力で行う,(2)駆動
振動子である駆動枠5,25と、検出振動子である振動
体11,31が枠状である,(3)駆動振動子5,25を
共振音叉振動をさせるために、ばね梁(1〜4,21〜24,bb
1,bb2/61,62)で連結した,(4)駆動振動子枠5,25が
検出振動子枠11,31を囲むように外側に構成されて
いる,(5)振動体11,31の角速度対応のy変位の検
出を静電容量で行う,(6)駆動の周波数と検出の周波数
を双共振で振動させるために、検出側の振動数が数10
0Hz高いか、または、低い,(7)2つの駆動する振動
子5,25を振動させるばね形状が、π型(図1のb1
1,2,21),コ型(図4の61,62)あるいはル
−プ(図6)のばね梁を用いて、駆動振動を逆相の音叉
振動とした。ル−プは、長方形あるいは円形もしくは多
角形でもよい,(8)複数の駆動振動子5,25は、連結
梁(bb1〜bb4)に、ばね梁により接続されている,(9)駆
動振動子5,25と検出振動子11,31が、複数のば
ね梁7〜10,27〜30で接続されており、これらの
ばね梁は、偏平につぶれた円環型あるいは長方形のばね
形状の、特定方向のみ撓み性が高い,(10)多くの構成要
素が、それぞれの中心に関して対称構造であり、また、
要素の組合せが、中心Oに関して対称である。(12)対称
の点が重心と一致する,(13)駆動系の信号検出および検
出系の信号検出のそれぞれが、差動構成になっており、
検出信号の同相成分が除去される,(14)上記のすべての
構成を含むことで、静電力による加振時の電気ノイズの
漏れが著しく低減する,(15)上記(13)により、駆動の変
位信号のS/Nが向上し、かつ検出振動変位信号のS/
Nが向上し、角速度信号のS/Nが向上する,(16)構成
体を多角形の枠(bb1〜bb4)で外側に囲んでいる。この枠
は円形でも楕円形でもよい,(16)上記の枠(bb1〜bb4)あ
るいは連結梁bb1,bb2と振動子5,25との接続
部には駆動振動時の応力緩和のために応力緩和梁1〜
4,21〜24が設けられている。これにより、振動の
線形性と単振動を実現できる,(17)上記の枠(bb1〜bb4)
を、下地のシリコン基板100にル−プ状のばね梁(図
6のb11,b16,b21,b26)で振動子5,2
5の重心に対して対称に4個所以上で固定した。ル−プ
は、円形もしくは多角形でもよい。これにより枠状の部
位と基板を固定しているバネ部で下の固定基板を振動体
の熱膨張差による応力が低減し温度特性が改善する。ル
−プ状のバネ部によりバネ部の線形性が高く、かつばね
自身の温度特性が改善する。また、所定の振動モード以
外が誘起されにくいばね構造である。(18)上記のばね梁
のばね定数は、駆動振動および検出振動の共振周波数か
ら十分に高く設定している,(19)以上の構成をすべて含
む構成により、センサの角速度出力の零点と感度の温度
特性においては再現性があり、ヒステリシスや不連続的
の特性をもたないため、低コストでS/Nが高いセンサ
となる。(20)リソグラフを用いる半導体プロセスにて、
シリコンウェ−ハ上に構成でき従来の半導体プロセスに
て製作可能なため、低コストで生産しうる。浮動体が1
枚板から形成され、半導体プロセスにて簡単に造形で
き、低コストで生産しうる。
FIG. 6 shows a fourth embodiment of the present invention. In the fourth embodiment, the increase in the internal stress of the drive frames 5, 25 and the vibrating bodies 11, 31 and the increase in the stress of the spring beams connected to each other due to the difference in the thermal expansion coefficient from the base substrate 100 are reduced. ,
The vibration characteristics are changed from non-linear to linear, a resonance tuning fork vibration is realized, and the S / N of the angular velocity signal is increased. The spring beam is a flat loop-shaped loop beam, and has high flexibility in a direction orthogonal to the substantially straight side of the loop and low flexibility in a direction parallel to the substantially straight side of the loop. . Vibrators 11, 31
Is supported on the drive frames 5 and 25 by the loop beams, so that it vibrates only in the direction of the detected vibration y and is hardly vibrated in other directions. Further, since the drive frames 5, 25 are also supported by loop beams, the drive frames 5, 25 and the vibrating body 1
Both 1 and 31 have a small increase in internal stress due to temperature and have linearity of vibration. The connecting beams are y parallel sides bb3, bb4
A substantially rectangular protection frame having four loop beams b
Anchor a1 via 11, b16, b21, b26
1, a16, a21, and a26. Thereby, the arrangement of the fixed electrode and the movable electrode is relatively symmetrically displaced by the dimensional change due to the thermal expansion of the substrate 100 or the protection frame (bb1 to bb4), and the capacitance change due to the temperature change is offset in the differential configuration. It has a configuration. The features of the angular velocity sensor of the present invention described above are listed below. (1) x-excitation of the drive frames 5 and 25 is performed by electrostatic force. (2) The drive frames 5 and 25 that are drive vibrators and the vibrators 11 and 31 that are detection vibrators are frame-shaped. 3) Spring beams (1 to 4, 21 to 24, bb)
1, bb2 / 61, 62), (4) the driving vibrator frames 5, 25 are formed outside so as to surround the detecting vibrator frames 11, 31, and (5) the vibrating bodies 11, 31 The y-displacement corresponding to the angular velocity is detected by the capacitance. (6) In order to oscillate the driving frequency and the detection frequency by dual resonance, the frequency on the detection side is several tens.
(7) The spring shape for vibrating the two driving vibrators 5 and 25 is π type (b1 in FIG. 1).
1, 2, 21), U-shaped (61, 62 in FIG. 4) or loop (FIG. 6) spring beams were used, and the driving vibration was inverted tuning fork vibration. The loop may be rectangular, circular or polygonal. (8) The plurality of driving oscillators 5, 25 are connected to the connecting beams (bb1 to bb4) by spring beams. (9) The driving oscillator 5 and 25 and the detecting vibrators 11 and 31 are connected by a plurality of spring beams 7 to 10 and 27 to 30. These spring beams have a specific shape of a flattened annular or rectangular spring. High flexibility only in the direction. (10) Many components are symmetrical with respect to their respective centers.
The combination of elements is symmetric about the center O. (12) The point of symmetry coincides with the center of gravity. (13) Each of the signal detection of the drive system and the signal detection of the detection system has a differential configuration.
The in-phase component of the detection signal is removed. (14) By including all of the above configurations, the leakage of electric noise during vibration due to electrostatic force is significantly reduced. (15) The S / N of the displacement signal is improved, and the S / N of the detected vibration displacement signal is improved.
N is improved, and the S / N of the angular velocity signal is improved. (16) The structure is surrounded by a polygonal frame (bb1 to bb4). This frame may be circular or elliptical. (16) The above frames (bb1 to bb4) or the connecting portions between the connecting beams bb1 and bb2 and the vibrators 5 and 25 are stress-relaxed to relieve stress during driving vibration. Beam 1
4, 21 to 24 are provided. Thereby, the linearity of the vibration and the simple vibration can be realized. (17) The above frame (bb1 to bb4)
The oscillators 5 and 2 are formed on the underlying silicon substrate 100 by loop spring beams (b11, b16, b21 and b26 in FIG. 6).
It was fixed at four or more locations symmetrically with respect to the center of gravity of No. 5. The loop may be circular or polygonal. Thus, the stress due to the thermal expansion difference of the vibrating body is reduced in the lower fixed substrate by the spring portion fixing the frame portion and the substrate, and the temperature characteristics are improved. The loop-shaped spring portion improves the linearity of the spring portion and improves the temperature characteristics of the spring itself. In addition, a spring structure that hardly induces a mode other than the predetermined vibration mode is used. (18) The spring constant of the above-mentioned spring beam is set sufficiently higher than the resonance frequency of the drive vibration and the detection vibration. Since the temperature characteristics have reproducibility and do not have hysteresis or discontinuous characteristics, the sensor has a low cost and a high S / N. (20) In a semiconductor process using lithography,
Since it can be constructed on a silicon wafer and can be manufactured by a conventional semiconductor process, it can be produced at low cost. 1 floating body
Formed from a single plate, it can be easily formed by a semiconductor process and can be produced at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例の平面図である。FIG. 1 is a plan view of a first embodiment of the present invention.

【図2】 図1に示す実施例に接続した角速度計測回路
の概要を示すブロック図である。
FIG. 2 is a block diagram showing an outline of an angular velocity measuring circuit connected to the embodiment shown in FIG. 1;

【図3】 図2に示す駆動回路41,42が、x励振用
の駆動電極15,16/25,26に印加する電圧等を
示すタイムチャ−トであり、(a)および(b)は駆動
電極に印加される駆動電圧を、(c)は同期検波回路4
5の出力信号を、(d)は同期検波回路50の出力信号
を、(e)は差動増幅器44の出力信号を、(f)は差
動増幅器49の出力信号を、それぞれ示す。
FIG. 3 is a time chart showing voltages applied to drive electrodes 15, 16/25, and 26 for x excitation by drive circuits 41 and 42 shown in FIG. 2, wherein (a) and (b) are drive charts. The drive voltage applied to the electrodes is shown in FIG.
5, (d) shows the output signal of the synchronous detection circuit 50, (e) shows the output signal of the differential amplifier 44, and (f) shows the output signal of the differential amplifier 49.

【図4】 本発明の第2実施例の平面図である。FIG. 4 is a plan view of a second embodiment of the present invention.

【図5】 本発明の第3実施例の平面図である。FIG. 5 is a plan view of a third embodiment of the present invention.

【図6】 本発明の第4実施例の平面図である。FIG. 6 is a plan view of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

a11〜a16,a21〜a26:アンカー b11〜b16,b21〜b26:ばね梁 bb1〜bb4:連結梁 1〜4:ばね梁 5:第1駆動枠 6:可動電極 7〜10:ばね梁 11:第1振動体 12:可動電極 13〜20:固定電極 21〜24:ばね梁 25:第2駆動枠 26:可動電極 27〜30:ばね梁 31:第2振動体 32:可動電極 33〜40:固定電極 61,62:ばね梁 a11 to a16, a21 to a26: anchors b11 to b16, b21 to b26: spring beams bb1 to bb4: connecting beams 1-4: spring beams 5: first drive frame 6: movable electrodes 7 to 10: spring beams 11: first 1 vibrator 12: movable electrode 13-20: fixed electrode 21-24: spring beam 25: second drive frame 26: movable electrode 27-30: spring beam 31: second vibrator 32: movable electrode 33-40: fixed Electrodes 61, 62: spring beams

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板で浮動支持された、x方向に延びる平
行な、対の連結梁;これらに連続するx方向の撓み性が
高いばね梁に連続し、対の連結梁の間に位置する、x方
向に並んだ第1駆動枠および第2駆動枠;第1駆動枠の
内方にあって、それに連続するy方向に撓み性が高いば
ね梁に連続する第1振動体;第2駆動枠の内方にあっ
て、それに連続するy方向に撓み性が高いばね梁に連続
する第2振動体;第1駆動枠および第2駆動枠の少くと
も一方をx方向に振動駆動する手段;第1振動体のy振
動を検出する第1の変位検出手段;および、 第2振動体のy振動を検出する第2の変位検出手段;を
備える角速度センサ。
1. A pair of parallel connecting beams extending in the x direction and floatingly supported by a substrate; continuous with a highly flexible spring beam in the x direction which is continuous with the connecting beams and located between the pair of connecting beams. , A first drive frame and a second drive frame arranged in the x direction; a first vibrating body that is inside the first drive frame and is continuous with a spring beam having high flexibility in the y direction that is continuous with the first drive frame; a second drive A second vibrating body which is inside the frame and which is continuous with the spring beam having high flexibility in the y direction which is continuous with the second vibrating body; means for vibrating and driving at least one of the first drive frame and the second drive frame in the x direction; An angular velocity sensor comprising: first displacement detecting means for detecting y vibration of the first vibrating body; and second displacement detecting means for detecting y vibration of the second vibrating body.
【請求項2】第1振動体および第2振動体は、枠形状体
であり、それぞれの内側に第1および第2の変位検出手
段が位置する、請求項1記載の角速度センサ。
2. The angular velocity sensor according to claim 1, wherein the first vibrating body and the second vibrating body are frame-shaped bodies, and the first and second displacement detecting means are located inside each of the first and second vibrating bodies.
【請求項3】対の連結梁はそれらの間の中間点Oを通る
x軸およびy軸に関して対称であり、第1および第2駆
動枠はy軸に関して対称であり、第1および第2振動体
もy軸に関して対称である請求項1又は請求項2記載の
角速度センサ。
3. The pair of connecting beams are symmetrical about an x-axis and a y-axis passing through an intermediate point O therebetween, the first and second drive frames are symmetrical about a y-axis, and the first and second vibrations are provided. 3. The angular velocity sensor according to claim 1, wherein the body is also symmetric with respect to the y-axis.
【請求項4】基板で浮動支持されたx方向の撓み性が高
いばね梁に連続する、x方向に並んだ第1駆動枠および
第2駆動枠;第1駆動枠および第2駆動枠を連結したx
方向の撓み性が高いばね梁;第1駆動枠の内方にあっ
て、それに連続するy方向に撓み性が高いばね梁に連続
する第1振動体;第2駆動枠の内方にあって、それに連
続するy方向に撓み性が高いばね梁に連続する第2振動
体;第1駆動枠および第2駆動枠の少くとも一方をx方
向に振動駆動する手段;第1振動体のy振動を検出する
第1の変位検出手段;および、 第2振動体のy振動を検出する第2の変位検出手段;を
備える角速度センサ。
4. A first drive frame and a second drive frame arranged in the x direction and continuous with a spring beam having a high flexibility in the x direction supported by floating on a substrate; connecting the first drive frame and the second drive frame. Done x
A spring beam having high flexibility in the first direction; a first vibrating body which is inside the first drive frame and is continuous with a spring beam having high flexibility in the y direction which is continuous with the first drive frame; and which is inside the second drive frame. A second vibrating body that is continuous with a spring beam having high flexibility in the y direction that is continuous with the second vibrating body; means for vibrating and driving at least one of the first driving frame and the second driving frame in the x direction; y vibration of the first vibrating body An angular velocity sensor comprising: first displacement detecting means for detecting the vibration; and second displacement detecting means for detecting the y vibration of the second vibrating body.
JP10171869A 1998-06-18 1998-06-18 Angular velocity sensor Pending JP2000009470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10171869A JP2000009470A (en) 1998-06-18 1998-06-18 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10171869A JP2000009470A (en) 1998-06-18 1998-06-18 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2000009470A true JP2000009470A (en) 2000-01-14

Family

ID=15931307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10171869A Pending JP2000009470A (en) 1998-06-18 1998-06-18 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2000009470A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304872A (en) * 2000-02-18 2001-10-31 Denso Corp Angular velocity sensor
JP2005249784A (en) * 2004-02-27 2005-09-15 Univ California Nonresonant micromachined gyroscope having mode decoupled structure
US6973844B2 (en) 2003-03-12 2005-12-13 Denso Corporation Semiconductor mechanical quantity sensor
JP2007218608A (en) * 2006-02-14 2007-08-30 Denso Corp Semiconductor dynamic quantity sensor
JP2007530918A (en) * 2003-07-30 2007-11-01 テミック オートモーティブ オブ ノース アメリカ インコーポレイテッド Flexible vibration type micro electromechanical device
JP2009075135A (en) * 2009-01-09 2009-04-09 Wacoh Corp Angular velocity sensor
JP2009529697A (en) * 2006-03-10 2009-08-20 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Micro mechanical rotation speed sensor
WO2009107576A1 (en) * 2008-02-25 2009-09-03 アルプス電気株式会社 Angular velocity sensor
WO2012005062A1 (en) 2010-07-06 2012-01-12 日立オートモーティブシステムズ株式会社 Inertia sensor
JP2012047537A (en) * 2010-08-25 2012-03-08 Denso Corp Angular velocity sensor
JP5037690B2 (en) * 2008-08-18 2012-10-03 株式会社日立製作所 Micro electromechanical system
JP2013096952A (en) * 2011-11-04 2013-05-20 Seiko Epson Corp Gyro sensor, electronic apparatus and manufacturing method of gyro sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304872A (en) * 2000-02-18 2001-10-31 Denso Corp Angular velocity sensor
US6973844B2 (en) 2003-03-12 2005-12-13 Denso Corporation Semiconductor mechanical quantity sensor
JP2007530918A (en) * 2003-07-30 2007-11-01 テミック オートモーティブ オブ ノース アメリカ インコーポレイテッド Flexible vibration type micro electromechanical device
JP2005249784A (en) * 2004-02-27 2005-09-15 Univ California Nonresonant micromachined gyroscope having mode decoupled structure
JP2007218608A (en) * 2006-02-14 2007-08-30 Denso Corp Semiconductor dynamic quantity sensor
JP2009529697A (en) * 2006-03-10 2009-08-20 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Micro mechanical rotation speed sensor
US8342022B2 (en) 2006-03-10 2013-01-01 Conti Temic Microelectronic Gmbh Micromechanical rotational speed sensor
WO2009107576A1 (en) * 2008-02-25 2009-09-03 アルプス電気株式会社 Angular velocity sensor
JP5037690B2 (en) * 2008-08-18 2012-10-03 株式会社日立製作所 Micro electromechanical system
JP2009075135A (en) * 2009-01-09 2009-04-09 Wacoh Corp Angular velocity sensor
WO2012005062A1 (en) 2010-07-06 2012-01-12 日立オートモーティブシステムズ株式会社 Inertia sensor
US9182421B2 (en) 2010-07-06 2015-11-10 Hitachi Automotive Systems, Ltd. Inertia sensor
JP2012047537A (en) * 2010-08-25 2012-03-08 Denso Corp Angular velocity sensor
JP2013096952A (en) * 2011-11-04 2013-05-20 Seiko Epson Corp Gyro sensor, electronic apparatus and manufacturing method of gyro sensor

Similar Documents

Publication Publication Date Title
JP4075022B2 (en) Angular velocity sensor
US5585562A (en) Vibration-sensing gyro
JP3882973B2 (en) Angular velocity sensor
US4750364A (en) Angular velocity and acceleration sensor
US6321598B1 (en) Angular velocity sensor device having oscillators
US6119518A (en) Angular velocity sensor
US7707886B2 (en) Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses
JP3882972B2 (en) Angular velocity sensor
US6415664B2 (en) Angular velocity sensor capable of preventing unnecessary oscillation
JP3492010B2 (en) Vibrating gyroscope and vibration isolator
US6125701A (en) Angular velocity detecting apparatus
US6526826B2 (en) Angular speed sensor device
JPH11337345A (en) Vibratory microgyrometer
JP2000046560A (en) Angular velocity sensor
JP2000009470A (en) Angular velocity sensor
JPH1164002A (en) Angular velocity sensor
US8104344B2 (en) Angular velocity sensor utilizing coriolis force
JP2000009475A (en) Angular velocity detection device
US6308568B1 (en) Angular velocity sensor
JP2000074673A (en) Compound movement sensor
JP2000018951A (en) Angular velocity detecting method and device thereof
JP2000105124A (en) Electrostatic drive, electrostatic detecting type angular velocity sensor
JP3368723B2 (en) Vibrating gyro
JP2000049358A (en) Surface micromachine and its manufacture
JP2000018952A (en) Angular velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070525