JPH10158707A - Structure for furnace body of smelting reduction equipment - Google Patents
Structure for furnace body of smelting reduction equipmentInfo
- Publication number
- JPH10158707A JPH10158707A JP31518996A JP31518996A JPH10158707A JP H10158707 A JPH10158707 A JP H10158707A JP 31518996 A JP31518996 A JP 31518996A JP 31518996 A JP31518996 A JP 31518996A JP H10158707 A JPH10158707 A JP H10158707A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- furnace body
- furnace
- raw material
- tuyere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炉本体に金属原
料、炭材、及び媒溶剤を添加し、純酸素及び/又は酸素
富化ガスを吹き込んで、溶融金属を直接製造する溶融還
元設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting reduction facility for directly producing a molten metal by adding a metal raw material, a carbonaceous material, and a solvent to a furnace body and blowing pure oxygen and / or an oxygen-enriched gas. .
【0002】[0002]
【従来の技術】溶融還元は、炉本体内に金属原料、炭
材、及び媒溶剤を添加し、純酸素及び/又は酸素富化ガ
スを吹き込んで、スラグ中で鉄原料中の酸化金属を還元
し、溶融金属を直接製造する方法である。この方法で
は、溶融還元炉から、1600〜1800℃程度の高温
の燃焼性ガスが生成される。2. Description of the Related Art In the smelting reduction, a metal raw material, a carbon material, and a medium solvent are added to a furnace body, and pure oxygen and / or an oxygen-enriched gas is blown into the furnace to reduce the metal oxide in the iron raw material in the slag. In this method, molten metal is directly produced. In this method, a high-temperature combustible gas of about 1600 to 1800 ° C. is generated from the smelting reduction furnace.
【0003】この溶融還元法においては、鉄原料の還元
は溶融スラグ中で行われるため、その還元速度、即ち溶
銑の生産速度はスラグの体積にほぼ比例することは広く
知られている。従って、溶銑の生産速度を増大すること
は、溶融スラグの水平断面積又は溶融スラグの高さを増
大することで可能となる。しかし、溶融スラグの高さを
むやみに増大すると、溶融還元炉の設備高さが高くな
り、溶融還元炉に鉄原料、炭材、及び媒溶剤を添加する
原料設備、及び溶融還元炉から排出される燃焼性ガスを
回収する排ガス回収設備の設備高さが高くなり、ひいて
はこれらを収納する建築物の高さを高くしなければなら
ず、建設費の大幅な増大を引き起こす。従って、溶融ス
ラグの水平断面積を増大することが一般的に行われてい
る。[0003] In this smelting reduction method, since the reduction of the iron raw material is performed in the molten slag, it is widely known that the reduction rate, that is, the production rate of the hot metal, is almost proportional to the volume of the slag. Therefore, it is possible to increase the production rate of the hot metal by increasing the horizontal sectional area of the molten slag or the height of the molten slag. However, if the height of the molten slag increases unnecessarily, the equipment height of the smelting reduction furnace will increase, and the smelting reduction furnace will be discharged from the smelting reduction furnace with the raw material equipment for adding iron raw materials, carbonaceous materials, and medium solvents. The equipment height of the exhaust gas recovery equipment for recovering the combustible gas increases, and the height of the building that stores the exhaust gas recovery equipment must be increased, resulting in a significant increase in construction costs. Therefore, it is common practice to increase the horizontal cross-sectional area of the molten slag.
【0004】この溶融還元法は、従来の高炉法に比べ、
生産量の柔軟性が高い、即ち生産量の変更が容易なこと
と設備の停止、再起動が容易なこと、及び設備投資額が
小さいことから、特に小規模溶融金属製造法として最近
注目されつつある。[0004] This smelting reduction method, compared with the conventional blast furnace method,
Due to the high flexibility of production volume, that is, easy change of production volume, easy stop and restart of equipment, and small capital investment, it has recently been receiving attention especially as a small-scale molten metal production method. is there.
【0005】一般にこの種の溶融還元法は、炉本体内に
予備還元した金属原料、炭材、及び媒溶剤を添加し、炉
本体から発生する燃焼性ガス中のCOガス、H2 ガスで
金属原料を予備還元する2段法(例えば特開昭57−1
20607号公報、特開昭61−96019号公報等参
照)と、炉本体内に未還元の金属原料、炭材、及び媒溶
剤を添加し、スラグ中で金属原料中の酸化金属を還元
し、炉本体から発生する燃焼性ガス中のCOガス、H2
ガスを廃熱ボイラー内で完全燃焼させ、燃焼性ガスの顕
熱、潜熱を蒸気化して回収し、発電等を行う1段法(例
えば特開平1−502276号公報、特開昭61−27
9608号公報、特開昭60−9815号公報等参照)
とに分類される。In general, in this type of smelting reduction method, a preliminarily reduced metal raw material, a carbon material, and a medium solvent are added to a furnace main body, and CO gas and H 2 gas in a combustible gas generated from the furnace main body are used. A two-stage method for pre-reducing the raw material (for example,
20607, Japanese Unexamined Patent Publication No. 61-96019), and an unreduced metal raw material, a carbonaceous material, and a medium solvent are added into the furnace body, and the metal oxide in the metal raw material is reduced in the slag, CO gas, H 2 in combustible gas generated from the furnace body
A one-stage method in which the gas is completely burned in a waste heat boiler, the sensible heat and latent heat of the combustible gas are vaporized and collected, and power is generated (for example, JP-A-1-502276, JP-A-61-27).
9608, JP-A-60-9815, etc.)
Classified as
【0006】2段法は、1段法に比べエネルギー効率が
良い利点はあるものの、充填層方式及び流動層方式等の
予備還元炉が必要なため設備が複雑となり設備投資額が
高い、予備還元炉内での反応の均一性から鉄原料の形状
制限がある(例えば充填層方式においては塊状の鉄原料
しか使用できず、流動層方式では粉状の鉄原料しか使用
できない)等の欠点があることから、最近シンプルな1
段法が注目されつつある。Although the two-stage method has the advantage of higher energy efficiency than the one-stage method, it requires a pre-reduction furnace such as a packed-bed system or a fluidized-bed system, so that the equipment is complicated and the capital investment is high. There are drawbacks such as the limitation of the shape of the iron raw material due to the uniformity of the reaction in the furnace (for example, only a lump iron raw material can be used in a packed bed system and only a powdered iron raw material can be used in a fluidized bed system). So, recently a simple one
The column method is attracting attention.
【0007】また、この1段法においては、スラグ中で
発生するCOガス、H2 ガスをスラグ上部の炉内空間
(以後2次燃焼帯と呼ぶ)で燃焼する割合(以後炉内2
次燃焼率と呼び、炉内2次燃焼率=(CO2 %+H2 O
%)/(CO2 %+CO%+H2 O%+H2 %)と定義
する)を上昇させ、その燃焼熱をスラグに有効に伝える
ことで、エネルギー効率を向上させる、即ち炭材原単位
を低減させることが可能なことことは広く知られてい
る。In this one-stage method, the rate at which CO gas and H 2 gas generated in the slag are burned in a furnace space above the slag (hereinafter referred to as a secondary combustion zone) (hereinafter referred to as furnace 2).
The secondary combustion rate in the furnace = (CO 2 % + H 2 O)
%) / (Defined as CO 2 % + CO% + H 2 O% + H 2 %) and effectively transferring the combustion heat to the slag, thereby improving energy efficiency, that is, reducing the carbon unit consumption. It is widely known that this can be done.
【0008】ところが、スラグの上下方向の攪拌が十分
でない場合、スラグの下層への熱移動が小さくなり、ス
ラグの上層のみが加熱され、2次燃焼帯とスラグ上層の
温度差が小さくなり、2次燃焼帯からスラグへの熱移動
量が低下し、結果として2次燃焼率を上昇させても炭材
原単位を低減代が小さくなるという課題があった。この
場合、2次燃焼帯からスラグへの熱移動量が低下するこ
とから、2次燃焼帯の雰囲気温度が上昇し、2次燃焼帯
の炉壁に耐火物を内張りした場合には耐火物の損耗量が
急増するという課題があった。However, if the slag is not sufficiently stirred in the vertical direction, the heat transfer to the lower layer of the slag becomes small, only the upper layer of the slag is heated, and the temperature difference between the secondary combustion zone and the upper layer of the slag becomes small. There has been a problem that the amount of heat transfer from the secondary combustion zone to the slag is reduced, and as a result, even if the secondary combustion rate is increased, the cost of reducing the carbon unit consumption is reduced. In this case, since the amount of heat transfer from the secondary combustion zone to the slag decreases, the ambient temperature of the secondary combustion zone increases, and when the refractory is lined on the furnace wall of the secondary combustion zone, the refractory is not There was a problem that the amount of wear increased rapidly.
【0009】そこで、これらの課題を解決するために、
底吹羽口と酸素上吹きランスを備え、炉壁に耐火物を内
張りした溶解炉に溶銑を入れ、底吹羽口から吹き込まれ
るガス量を制御し、スラグ組成及び遊離炭材量を制限し
て溶融還元する方法が、特開昭60−9815号公報で
提案されている。Therefore, in order to solve these problems,
Equipped with a bottom tuyere and an oxygen top blowing lance, put hot metal in a melting furnace with a refractory lining on the furnace wall, control the amount of gas blown from the bottom tuyere, and limit the slag composition and the amount of free carbon material. A method for performing smelting reduction by using a method has been proposed in Japanese Patent Application Laid-Open No. 60-9815.
【0010】しかるに、この方法では、金属原料を還元
すると共に2次燃焼帯からスラグへの熱移動量を確保す
るためにスラグを強攪拌する必要があるが、この攪拌力
を溶融金属の攪拌を介してスラグに伝える点で精錬操作
上大きな難点があった。即ち、溶融金属攪拌ガス量を極
めて多くするため、非酸素ガスでは溶融金属温度の低下
を招き、一方、温度維持のために酸素を含ませると溶融
金属の酸化を招くジレンマがある。However, in this method, it is necessary to reduce the metal raw material and to vigorously agitate the slag in order to secure the amount of heat transfer from the secondary combustion zone to the slag. There was a major difficulty in the refining operation in transmitting the slag to the slag. In other words, there is a dilemma in that the non-oxygen gas causes a decrease in the temperature of the molten metal in order to greatly increase the amount of the molten metal stirring gas, while the inclusion of oxygen for maintaining the temperature causes the oxidation of the molten metal.
【0011】そこで、これらの課題を解決するために、
金属浴面下で金属を攪拌するために不活性ガスを吹き込
む羽口と、金属浴面上で且つスラグ面下に位置し、スラ
グ内に酸素又は酸素富化ガスを吹き込む羽口と酸素上吹
きランスとを備えた、炉壁に耐火物を内張りした溶融還
元炉を用いる方法が特開昭61−279608号公報で
提案されている。Therefore, in order to solve these problems,
A tuyere that blows an inert gas to agitate the metal under the metal bath, and a tuyere that blows oxygen or an oxygen-enriched gas into the slag that is located above the metal bath and below the slag. A method using a smelting reduction furnace provided with a lance and having a furnace wall lined with a refractory is proposed in Japanese Patent Application Laid-Open No. 61-279608.
【0012】しかるに、この方法であっても、金属を攪
拌するために金属浴面下の羽口から不活性ガスを吹き込
むために、なお以下の課題を抱えている。 金属浴面下の羽口から吹き込まれる不活性ガスによ
り、溶融金属の粒がスラグ中に吹き上げられ、金属浴面
上で且つスラグ面下に位置した羽口からスラグ内に吹き
込まれる酸素又は酸素富化ガスにより再酸化され、還元
速度向上、即ち生産速度向上の妨げとなる。 金属浴面下の羽口から吹き込まれる不活性ガスによ
り、溶融金属の粒がスラグ中に吹き上げられスラグ中に
懸濁するため、スラグの熱容量及び熱伝導率が大きくな
り、スラグに接する炉壁を水冷構造にできず、耐火物構
造にせざるを得ないため、この耐火物のスラグによる損
耗が大きく、頻繁に補修又は張り替えする必要がある。However, even with this method, the following problems still remain because the inert gas is blown from the tuyere below the metal bath to stir the metal. The inert gas blown from the tuyere below the metal bath causes molten metal particles to be blown up into the slag, and the oxygen or oxygen rich gas blown into the slag from the tuyere located above the metal bath and below the slag. It is re-oxidized by the oxidizing gas and hinders the reduction rate, that is, the production rate. Due to the inert gas blown from the tuyere below the metal bath, the molten metal particles are blown up into the slag and suspended in the slag, so the heat capacity and thermal conductivity of the slag increase, and the furnace wall in contact with the slag increases. Since a water-cooled structure cannot be used and a refractory structure must be used, the refractory is greatly worn by slag and must be repaired or replaced frequently.
【0013】 スラグの熱容量及び熱伝導率が大きく
なるため、金属浴面上で且つスラグ面に位置した羽口に
ついても水冷構造にできず、消耗式羽口にせざるを得な
いため、頻繁に交換する必要がある。 金属浴面下の羽口は、溶融金属の熱容量及び熱伝導
率が大きいため、水冷構造にできず、消耗式羽口にせざ
るを得ないため、頻繁に交換する必要がある。 金属浴面下の羽口周辺の耐火物の損耗が大きく、頻
繁に補修又は張り替えする必要がある。Since the heat capacity and the thermal conductivity of the slag increase, the tuyere located on the metal bath surface and on the slag surface cannot be water-cooled, and must be replaced by a consumable tuyere. There is a need to. The tuyere below the metal bath cannot be water-cooled due to the large heat capacity and thermal conductivity of the molten metal, and must be replaced by a consumable tuyere. The refractory around the tuyere below the metal bath is heavily worn and needs to be repaired or replaced frequently.
【0014】そこで、これらの課題を解決するために、
水平断面が長方形の炉体の2つの長辺の各々を前記長辺
に直角方向に貫通してスラグに向けられた下部羽口を通
じてスラグ中に純酸素及び/又は酸素付加ガスを吹き込
み、炉体を貫通して2次燃焼帯に向けられた上部羽口を
通じて2次燃焼帯に純酸素及び/又は酸素付加ガスを吹
き込み、炉内面の2次燃焼帯及びスラグに面した範囲に
水冷パネルを内張りした構造が、特開平1−50227
6号公報で提案されている。Therefore, in order to solve these problems,
Pure oxygen and / or an oxygen-added gas is blown into the slag through a lower tuyere directed at the slag by passing through each of two long sides of the furnace body having a rectangular horizontal section at right angles to the long side, Pure oxygen and / or an oxygen-added gas is blown into the secondary combustion zone through the upper tuyere directed to the secondary combustion zone through the slag, and a water-cooled panel is lined in a region facing the secondary combustion zone and slag on the inner surface of the furnace. Japanese Patent Laid-Open No. 1-50227
No. 6 proposes this.
【0015】その特開平1−502276号公報で提案
されている従来技術について、図4〜図6に基づいて説
明する。図4は、特開平1−502276号公報で提案
されている従来技術の溶融還元設備の炉体構造立断面図
であり、図5は図4のA−A断面図、図6は図4のB−
B断面図である。The prior art proposed in Japanese Patent Application Laid-Open No. 1-502276 will be described with reference to FIGS. FIG. 4 is an elevational sectional view of a furnace body structure of a conventional smelting reduction facility proposed in Japanese Patent Application Laid-Open No. 1-502276, FIG. 5 is an AA sectional view of FIG. 4, and FIG. B-
It is B sectional drawing.
【0016】炉体1は基礎2に固定され、炉内面は水冷
パネル3及び耐火物4を内張りされており、炉体1の上
部には、鉄原料、炭材、及び媒溶剤を添加する原料投入
口5及び炉本体から発生する燃焼性ガスを排出するガス
排出口6が配設されている。炉体1の底部には溶銑7が
溜まり、その上部に溶銑7より比重の軽いスラグ8が溜
まっており、溶銑7は溶銑溜まり9を介して出銑口11
から、スラグはスラグ溜まり10を介して出滓口12か
らそれぞれ連続又は断続的に排出される。The furnace body 1 is fixed to a foundation 2, and the inner surface of the furnace is lined with a water-cooled panel 3 and a refractory 4. On the upper part of the furnace body 1, a raw material to which an iron raw material, a carbonaceous material, and a solvent are added. An inlet 5 and a gas outlet 6 for discharging combustible gas generated from the furnace body are provided. Hot metal 7 is stored at the bottom of the furnace body 1, and slag 8 having a lower specific gravity than the hot metal 7 is stored at the upper portion of the hot metal 7.
Therefore, the slag is continuously or intermittently discharged from the slag port 12 through the slag reservoir 10.
【0017】原料投入口5から投入された鉄原料中の酸
化鉄(FeO及びFe2 O3 )は、同じく原料投入口5
から投入された炭材中炭素分により、スラグ8中で以下
の式(1),(2)に示す反応により還元される。 FeO + C→ Fe+ CO (吸熱反応) ・・・・・・(1) Fe2 O3 +3C→2Fe+3CO (吸熱反応) ・・・・・・(2)The iron oxide (FeO and Fe 2 O 3 ) in the iron raw material input from the raw material input port 5
Is reduced in the slag 8 by the reaction represented by the following formulas (1) and (2) by the carbon content in the carbonaceous material supplied from the reactor. FeO + C → Fe + CO (endothermic reaction) (1) Fe 2 O 3 + 3C → 2Fe + 3CO (endothermic reaction) (2)
【0018】この溶融還元法においては、式(1),
(2)の還元反応はスラグ8中で行われるため、その還
元速度、即ち溶銑の生産速度はスラグの体積にほぼ比例
することは広く知られている。In this smelting reduction method, the formula (1),
Since the reduction reaction of (2) is performed in the slag 8, it is widely known that the reduction rate, that is, the production rate of the hot metal is substantially proportional to the volume of the slag.
【0019】また、原料投入口5から投入された炭材中
炭素分の一部は、炉体1を貫通してスラグ8に向けて配
設された下部羽口13を通じてスラグ8中に吹き込まれ
る酸素と以下の式(3)に示す反応により酸化される。 C+1/2O2 →CO (発熱反応) ・・・・・・(3)Further, a part of the carbon content in the carbonaceous material supplied from the raw material charging port 5 is blown into the slag 8 through the lower tuyere 13 which penetrates the furnace body 1 and is disposed toward the slag 8. It is oxidized by oxygen and a reaction represented by the following formula (3). C + 1 / 2O 2 → CO (exothermic reaction) (3)
【0020】この溶融還元炉のエネルギー効率、即ち炭
材原単位は、式(1),(2),(3)の反応に必要な
炭素分の合計によって決定される。The energy efficiency of this smelting reduction furnace, that is, the basic unit of carbonaceous material, is determined by the total amount of carbon necessary for the reactions of the formulas (1), (2) and (3).
【0021】更に、上記式(1),(2),(3)によ
りスラグ8中で発生したCOガス及び炭材中水素分は、
炉体1を貫通して2次燃焼帯16に向けて配設された上
部羽口14を通じて2次燃焼帯15中に吹き込まれる酸
素と以下の式(4),(5)に示す反応により酸化され
る。 CO+1/2O2 →CO2 (発熱反応) ・・・・・・(4) H2 +1/2O2 →H2 O (発熱反応) ・・・・・・(5)Further, the CO gas generated in the slag 8 and the hydrogen content in the carbonaceous material according to the equations (1), (2) and (3) are as follows:
Oxygen blown into the secondary combustion zone 15 through the upper tuyere 14 which is arranged toward the secondary combustion zone 16 through the furnace body 1 and is oxidized by a reaction represented by the following formulas (4) and (5). Is done. CO + 1 / 2O 2 → CO 2 (exothermic reaction) (4) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (5)
【0022】この式(4),(5)の反応を炉内2次燃
焼と呼び、この2次燃焼の度合いの大小を以下の式
(6)で定義される炉内2次燃焼率で表すことと、この
2次燃焼率は上部羽口14を通じて2次燃焼帯15中に
吹き込まれる酸素の流量を増加することで増加すること
は広く知られている。 炉内2次燃焼率=(CO2 %+H2 O%)/(CO2 %+CO%+H2 O% +H2 %) ・・・・・・(6) 但し、(6)式中のCO2 %,CO%,H2 O%,H2
%は、ガス排出口6における燃焼性ガスの各成分の体積
分率を示す。The reactions of equations (4) and (5) are referred to as in-furnace secondary combustion, and the degree of the degree of secondary combustion is represented by the in-furnace secondary combustion rate defined by the following equation (6). It is widely known that the secondary combustion rate can be increased by increasing the flow rate of oxygen blown into the secondary combustion zone 15 through the upper tuyere 14. Secondary combustion rate in furnace = (CO 2 % + H 2 O%) / (CO 2 % + CO% + H 2 O% + H 2 %) (6) where CO 2 in equation (6) %, CO%, H 2 O %, H 2
% Indicates the volume fraction of each component of the combustible gas at the gas outlet 6.
【0023】炉内2次燃焼率を上昇させると、2次燃焼
帯15における式(4),(5)の反応熱の一部がスラ
グ8に伝達し、スラグ中の式(3)の発熱反応に必要な
炭素分を減少せしめることで、炭材原単位が減少する。When the secondary combustion rate in the furnace is increased, a part of the reaction heat of the equations (4) and (5) in the secondary combustion zone 15 is transmitted to the slag 8, and the heat of the equation (3) in the slag is generated. By reducing the amount of carbon required for the reaction, the carbon unit consumption is reduced.
【0024】炉内2次燃焼率を上昇したときの炭材原単
位の減少代を大きくするためには、前述の様に2次燃焼
帯15における式(4),(5)の反応熱のスラグ8へ
の移動量を高める、即ちスラグの上下方向の攪拌を十分
に行うことが有効であるが、2次燃焼帯15からスラグ
8への熱移動量は2次燃焼帯15の雰囲気温度とスラグ
8の温度の差の関数でもあるため、溶銑7とスラグ8の
温度差を極力小さくし、スラグ8の温度を下げることも
極めて有効である。この構造では、前述の金属を攪拌す
るために不活性ガスを吹き込む溶銑浴面下の羽口がない
ために、前述の〜の課題はすべて解決している。In order to increase the amount of reduction in the unit carbon consumption when the secondary combustion rate in the furnace is increased, as described above, the reaction heat of the equations (4) and (5) in the secondary combustion zone 15 is used. It is effective to increase the amount of transfer to the slag 8, that is, to sufficiently agitate the slag in the vertical direction. However, the amount of heat transfer from the secondary combustion zone 15 to the slag 8 depends on the temperature of the atmosphere in the secondary combustion zone 15. Since it is also a function of the temperature difference of the slag 8, it is also very effective to reduce the temperature difference between the hot metal 7 and the slag 8 as much as possible and to lower the temperature of the slag 8. In this structure, all of the above-mentioned problems (1) to (5) are solved because there is no tuyere below the surface of the hot metal bath into which an inert gas is blown for stirring the metal.
【0025】[0025]
【発明が解決しようとする課題】しかるに、図4〜図6
に示すこの種の炉体構造であっても、なお以下の課題を
抱えている。水平断面が長方形の炉体の2つの長辺16
の各々を前記長辺16に直角方向に貫通してスラグに向
けて配設された下部羽口13を通じてスラグ中に純酸素
及び/又は酸素富化ガスを吹き込む構造の場合、スラグ
8は上下方向(図4の矢印)、及び水平断面が長方形の
炉体の短辺17方向(図6の矢印)に流動するものの、
水平断面が長方形の炉体の長辺16方向には殆ど流動し
ない。However, FIGS.
However, this type of furnace body structure still has the following problems. Two long sides 16 of a furnace body with a rectangular horizontal section
Is inserted into the slag through the lower tuyere 13 arranged at a right angle to the long side 16 in the direction perpendicular to the long side 16, the slag 8 is moved vertically. (Arrow in FIG. 4), and the horizontal cross section flows in the short side 17 direction (arrow in FIG. 6) of the rectangular furnace body,
It hardly flows in the direction of the long side 16 of the furnace body having a rectangular horizontal cross section.
【0026】従って、鉄原料、炭材、及び媒溶剤を添加
する原料投入口5を炉体1上部に1個のみ設けた場合、
原料投入口5の真下のスラグ内と原料投入口5から遠い
箇所のスラグ内の鉄原料及び炭材濃度に不均一が生じや
すく、生産量を増加、即ち水平断面が長方形の炉体の長
辺16を大きくした場合には、原料投入口5を複数個設
置する必要があり、原料投入設備が複数基必要となり、
設備費が増加する。Therefore, when only one raw material inlet 5 for adding the iron raw material, the carbonaceous material, and the medium solvent is provided in the upper part of the furnace body 1,
The concentration of iron and carbon materials in the slag just below the raw material inlet 5 and in the slag far from the raw material inlet 5 is likely to be non-uniform, increasing the production amount, that is, the long side of the furnace body having a rectangular horizontal cross section. When 16 is increased, it is necessary to install a plurality of raw material input ports 5, and a plurality of raw material input facilities are required,
Equipment costs increase.
【0027】更に、原料投入口を複数個にすることで、
図4に示す様に、原料投入口5とガス排出口6との距離
を小さくせざるを得ず、金属原料及び炭材の粒径が小さ
い場合には、炉本体1から発生する燃焼性ガスの流れに
乗って、原料投入口5からガス排出口6へ直接飛散する
金属原料及び炭材の量が増加する問題も生じる。Further, by providing a plurality of material input ports,
As shown in FIG. 4, the distance between the raw material inlet 5 and the gas outlet 6 must be reduced, and when the particle size of the metal raw material and the carbonaceous material is small, the combustible gas generated from the furnace body 1 is reduced. There is also a problem that the amount of the metal raw material and the carbonaceous material directly scattered from the raw material input port 5 to the gas discharge port 6 along with the flow of the gas increases.
【0028】また、この構造では、溶銑7を攪拌するた
めに不活性ガスを吹き込む金属浴面下の羽口がないため
に、下部羽口13より上に位置するスラグは強攪拌され
るものの、下部羽口13より下に位置する溶銑7及び溶
銑7とスラグ8の界面が極めて静かである。そのため、
2次燃焼帯15からスラグ8への熱移動量は大きいので
スラグ中の還元反応は進むものの、スラグ8から溶銑7
への熱移動量は小さく、結果としてスラグ8と溶銑7の
温度差が大きくなる。Further, in this structure, since there is no tuyere below the metal bath surface into which an inert gas is blown to stir the hot metal 7, the slag located above the lower tuyere 13 is strongly stirred. The hot metal 7 located below the lower tuyere 13 and the interface between the hot metal 7 and the slag 8 are extremely quiet. for that reason,
Since the amount of heat transfer from the secondary combustion zone 15 to the slag 8 is large, the reduction reaction in the slag proceeds, but the hot metal 7
The amount of heat transfer to the slag 8 and the hot metal 7 becomes large as a result.
【0029】溶融還元設備では、下行程の制約から炉か
ら排出される溶銑温度が指定されるため、スラグ8と溶
銑7の温度差が大きいと、その分だけスラグ8の温度を
上げざるを得ず、その分だけ炉から排出される燃焼性ガ
スの温度も上昇する。In the smelting reduction facility, the temperature of the hot metal discharged from the furnace is specified due to the restriction of the downward stroke. Therefore, if the temperature difference between the slag 8 and the hot metal 7 is large, the temperature of the slag 8 must be increased accordingly. However, the temperature of the combustible gas discharged from the furnace increases accordingly.
【0030】従って、スラグ8と溶銑7の温度差が例え
ば約100℃ある場合、スラグ8と溶銑7の温度差がな
い場合に比べ、スラグ8と炉から排出される燃焼性ガス
の温度を約100℃上昇するに必要なエネルギーが余分
に必要となり、その分だけ炭材及び酸素原単位が上昇す
ることになる。Therefore, when the temperature difference between the slag 8 and the hot metal 7 is, for example, about 100 ° C., the temperature of the slag 8 and the combustible gas discharged from the furnace is reduced by about Extra energy is required to increase the temperature by 100 ° C., and the carbonaceous material and the oxygen consumption rate increase accordingly.
【0031】更に、前述の様に炉から排出される燃焼性
ガス及びスラグ8の温度が約100℃上昇すると、炉内
面の2次燃焼帯15及びスラグ8に面した範囲に水冷パ
ネル3を内張りした場合、水冷パネル3からの抜熱が増
加するために、炭材及び酸素原単位が更に上昇すること
になる。これは、2次燃焼帯15に面した水冷パネルに
おいては、水冷パネルへの伝熱が輻射伝熱が主体のため
に、(燃焼性ガスの温度)4 −(水冷パネル)4 にほぼ
比例し、スラグ8に面した水冷パネルにおいては、水冷
パネルへの伝熱が対流伝熱が主体のために、(スラグの
温度)−(水冷パネル)にほぼ比例するためである。Further, as described above, when the temperature of the combustible gas discharged from the furnace and the temperature of the slag 8 rises by about 100 ° C., the water-cooled panel 3 is lined in a region facing the secondary combustion zone 15 and the slag 8 on the inner surface of the furnace. In this case, since the heat removal from the water-cooled panel 3 increases, the carbonaceous material and the oxygen consumption rate further increase. This is because, in the water-cooled panel facing the secondary combustion zone 15, the heat transfer to the water-cooled panel is mainly radiant heat transfer, and is substantially proportional to (combustible gas temperature) 4 − (water-cooled panel) 4. This is because, in the water-cooled panel facing the slag 8, heat transfer to the water-cooled panel is substantially proportional to (slag temperature)-(water-cooled panel) because convective heat transfer is mainly performed.
【0032】本発明は、以上のような問題点を解決する
ためになされたものであり、その目的とするところは、
水平断面が長方形の炉体の長辺16方向にもスラグを流
動させることで、生産量を増加、即ち水平断面が長方形
の炉体の長辺16を大きくした場合にも、原料投入口5
を1個にすることが可能な溶融還元設備を提供すること
を目的とするものである。The present invention has been made in order to solve the above-mentioned problems.
The flow rate of the slag is also increased in the direction of the long side 16 of the furnace body having a rectangular horizontal section, thereby increasing the production amount.
It is an object of the present invention to provide a smelting reduction facility capable of reducing the number of smelting units to one.
【0033】更に、金属を攪拌するために溶銑浴面下の
羽口からガスを吹き込むことなしに、溶銑とスラグの界
面直上のスラグを攪拌し、スラグと溶銑の相対速度を増
大し、スラグから溶銑への熱移動量を増大し、結果とし
てスラグと溶銑の温度差を小さくする溶融還元設備を提
供することを目的とするものである。Further, the slag just above the interface between the hot metal and the slag is stirred without blowing gas from the tuyere below the hot metal bath to stir the metal, so that the relative speed between the slag and the hot metal is increased, and It is an object of the present invention to provide a smelting reduction facility that increases the amount of heat transferred to hot metal and consequently reduces the temperature difference between slag and hot metal.
【0034】[0034]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、水平断面が長方形の炉本体に金属原
料、炭材、及び媒溶剤を添加し、炉体の長辺を水平方向
に貫通してスラグに向けて配設された下部羽口を通じて
スラグ中に酸素及び/又は酸素付加ガスを吹き込んで、
溶融金属を直接製造する設備において、前記下部羽口を
炉体の長辺に直角方向から横向きに原料投入口と反対方
向に15〜45゜指向せしめたことを特徴とするもので
ある。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method of adding a metal material, a carbonaceous material, and a solvent to a furnace body having a rectangular horizontal cross section and horizontally extending the long side of the furnace body. Oxygen and / or oxygen-added gas is blown into the slag through the lower tuyere that is arranged toward the slag through
In the facility for directly producing molten metal, the lower tuyere is oriented sideways from a direction perpendicular to the long side of the furnace body by 15 to 45 ° in a direction opposite to the raw material inlet.
【0035】本発明の溶融還元炉の炉体構造において
は、下部羽口を炉体の長辺に直角方向から横向きに原料
投入口と反対方向に15〜45゜指向せしめたことによ
り、以下の作用がある。In the furnace body structure of the smelting reduction furnace of the present invention, the lower tuyere is oriented 15 to 45 ° in a direction opposite to the raw material inlet sideways from a direction perpendicular to the long side of the furnace body in the sideways direction. There is action.
【0036】 水平断面が長方形の炉体の長辺方向に
原料投入口と反対方向に下部羽口より上方のスラグを流
動させることで、スラグ内の鉄原料及び炭材濃度を長辺
方向に均一化し、生産量を増加、即ち水平断面が長方形
の炉体の長辺を大きくした場合にも、原料投入口を1個
にすることが可能となり、原料投入設備を1基とするこ
とができ、設備費が削減される。 原料投入口を1個にすることで、原料投入口とガス
排出口との距離を大きくすることが可能となり、金属原
料及び炭材の粒径が小さい場合でも、炉本体から発生す
る燃焼性ガスの流れに乗ってガス排出口へ直接飛散する
金属原料及び炭材の量が増加することを防止できる。By flowing the slag above the lower tuyere in a direction opposite to the raw material inlet in the long side direction of the furnace body having a rectangular horizontal cross section, the iron raw material and the carbon material concentration in the slag are made uniform in the long side direction. And increase the production amount, that is, when the long side of the furnace body having a rectangular horizontal cross section is enlarged, it becomes possible to use only one raw material input port, and it is possible to use one raw material input facility, Equipment costs are reduced. By using only one material inlet, the distance between the material inlet and the gas outlet can be increased, and even if the particle size of the metal material and the carbonaceous material is small, the combustible gas generated from the furnace body It is possible to prevent an increase in the amount of the metal raw material and the carbonaceous material directly scattered to the gas discharge port along the flow of the gas.
【0037】更に、下部羽口より下方のスラグは、前記
下部羽口より上方のスラグと反対方向、即ち原料投入口
の方向に流動することとなり、金属を攪拌するために金
属浴面下の羽口からガスを吹き込むことなしに、溶銑と
スラグの界面直上のスラグを流動させ、スラグと溶銑の
相対速度を増大し、スラグから溶銑への熱移動量を増大
し、結果としてスラグと溶融金属の温度差を小さくする
ことが可能となることで、以下の作用がある。Further, the slag below the lower tuyere flows in the opposite direction to the slag above the lower tuyere, that is, in the direction of the raw material inlet, and the slag below the metal bath surface to stir the metal. Without blowing gas from the mouth, the slag just above the interface between the hot metal and the slag flows, increasing the relative speed between the slag and the hot metal, increasing the amount of heat transfer from the slag to the hot metal, and consequently the slag and the molten metal. The following effects are achieved by making it possible to reduce the temperature difference.
【0038】 スラグと溶銑の温度差が小さくなり、
その分だけスラグと炉から排出される燃焼性ガスの温度
を低下でき、その熱量の分だけ炭材及び酸素原単位が低
下する。 スラグと炉から排出される燃焼性ガスの温度を低下
でき、炉内面の2次燃焼帯及びスラグに面した範囲に水
冷パネルを内張りした場合には、水冷パネルの抜熱量が
低下し、その熱量の分だけ炭材及び酸素原単位が低下す
る。The temperature difference between the slag and the hot metal becomes smaller,
The temperature of the slag and the temperature of the combustible gas discharged from the furnace can be reduced by that much, and the carbonaceous material and the oxygen consumption rate are reduced by the amount of heat. When the temperature of the slag and the combustible gas discharged from the furnace can be reduced, and the water-cooled panel is lined in the area facing the secondary combustion zone and the slag inside the furnace, the heat removal of the water-cooled panel decreases and the heat , The amount of carbonaceous material and oxygen consumption decreases.
【0039】 炉から排出される燃焼性ガスの温度を
低下でき、炉内面の2次燃焼帯に面した範囲に耐火物を
内張りした場合には、耐火物の損耗速度を低減できるこ
とで、補修又は張り替えの頻度が低下する。 溶融金属の粒がスラグ中に吹き上げられることがな
いため、下部羽口からスラグ内に吹き込まれる酸素又は
酸素富化ガスにより再酸化されることがなく、還元速度
向上、即ち生産速度が向上する。When the temperature of the combustible gas discharged from the furnace can be lowered and the refractory is lined in a range facing the secondary combustion zone on the inner surface of the furnace, the wear rate of the refractory can be reduced, so that repair or repair can be performed. The frequency of replacement is reduced. Since the molten metal particles are not blown up into the slag, they are not reoxidized by oxygen or oxygen-enriched gas blown into the slag from the lower tuyere, so that the reduction rate, that is, the production rate is improved.
【0040】 溶融金属の粒がスラグ中に吹き上げら
れることがないため、スラグの熱容量及び熱伝導率が小
さくなり、スラグに接する炉壁及び下部羽口を水冷構造
にでき、半永久的に使用できることで、耐火物、羽口コ
スト及び補修、交換のための操業停止頻度が激減する。 金属浴面下の羽口が必要でないため、耐火物、羽口
コスト及び補修、交換のための操業停止頻度が激減す
る。Since the molten metal particles are not blown up into the slag, the heat capacity and thermal conductivity of the slag are reduced, and the furnace wall and the lower tuyere in contact with the slag can be water-cooled, and can be used semipermanently. , Refractories, tuyere costs and the frequency of outages for repairs and replacements are drastically reduced. Since the tuyere below the metal bath is not required, refractories, tuyere costs and the frequency of shutdowns for repair and replacement are drastically reduced.
【0041】[0041]
【発明の実施の形態】以下、本発明の一実施例を図1〜
図3に基づいて説明する。図1は、本発明に係わる溶融
還元設備の1実施例の炉体構造立断面図であり、図2は
図1のA−A断面図、図3は図1のB−B断面図であ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG. 1 is a vertical sectional view of a furnace body structure of one embodiment of a smelting reduction facility according to the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a sectional view taken along line BB of FIG. .
【0042】図1〜図3に示す本発明に係わる溶融還元
設備においては、水平断面が長方形の炉体1に金属原
料、炭材、及び媒溶剤を添加し、炉体の長辺16を水平
方向に貫通してスラグに向けて配設された下部羽口13
を通じてスラグ8中に酸素及び/又は酸素付加ガスを吹
き込んで、溶銑7を直接製造する設備において、前記下
部羽口13を炉体の長辺に直角方向から横向きに、原料
投入口5と反対方向の角度θが15〜45゜の範囲にな
るように指向せしめている。In the smelting reduction facility according to the present invention shown in FIGS. 1 to 3, a metal raw material, a carbonaceous material and a solvent are added to a furnace body 1 having a rectangular horizontal cross section, and the long side 16 of the furnace body is horizontal. Tuyere 13 pierced in the direction and arranged toward the slag
In a facility for directly producing hot metal 7 by blowing oxygen and / or an oxygen-added gas into slag 8 through, the lower tuyere 13 is directed sideways from a direction perpendicular to the long side of the furnace body in a direction opposite to the raw material inlet 5. Are directed so that the angle θ is in the range of 15 to 45 °.
【0043】それにより、下部羽口13より上方のスラ
グは、水平断面が長方形の炉体の長辺16方向に原料投
入口5と反対方向に流動する。更に、下部羽口13より
下方のスラグは、前記下部羽口より上方のスラグと反対
方向、即ち原料投入口5の方向に流動することとなり、
金属を攪拌するために金属浴面下の羽口からガスを吹き
込むことなしに、溶銑7とスラグ8の界面直上のスラグ
8を攪拌し、スラグ8と溶銑7の相対速度を増大し、ス
ラグ8から溶銑7への熱移動量を増大する。Accordingly, the slag above the lower tuyere 13 flows in the direction opposite to the raw material inlet 5 in the direction of the long side 16 of the furnace having a rectangular horizontal cross section. Further, the slag below the lower tuyere 13 flows in the opposite direction to the slag above the lower tuyere, that is, in the direction of the raw material inlet 5,
The slag 8 immediately above the interface between the hot metal 7 and the slag 8 is stirred without blowing gas from the tuyere below the metal bath surface to stir the metal, and the relative speed between the slag 8 and the hot metal 7 is increased. The amount of heat transfer from the iron to the hot metal 7 is increased.
【0044】下部羽口13の横向き角度に関しては、発
明者らが実施したモデルテストの結果から、θを45°
以上にすると、下部羽口13を通じてスラグ8中に吹き
込まれる酸素及び/又は酸素付加ガスの気泡が炉体1の
短辺17方向の中心部まで到達せずに、前記短辺17方
向の中心部が十分に攪拌されないこと、及び、θを15
°以下にすると、下部羽口13より上方のスラグの炉体
の長辺16方向に原料投入口5と反対方向への流動が十
分に発生しないことが確認されたので、下部羽口15の
横向き角度は15〜45°の範囲にすることが好まし
い。With respect to the horizontal angle of the lower tuyere 13, from the result of the model test conducted by the inventors, θ was set to 45 °.
By doing so, the oxygen and / or oxygen-added gas bubbles blown into the slag 8 through the lower tuyere 13 do not reach the center of the furnace body 1 in the direction of the short side 17, but the center of the furnace 1 in the direction of the short side 17. Is not sufficiently stirred, and θ is 15
° or less, it was confirmed that the flow of the slag above the lower tuyere 13 in the direction of the long side 16 of the furnace body in the direction opposite to the raw material inlet 5 was not sufficiently generated. The angle is preferably in the range of 15 to 45 °.
【0045】表1に、特開平1−502276号公報で
提案された従来技術及び本発明に係わる溶融還元設備の
試験操業における炭材及び酸素原単位の1例を示す。試
験条件は以下の通りである。 炉体面積(下部羽口13の高さにおける水平断面の面積):20m2 下部羽口13の横向き角度θ:本発明 30°,従来技術 0° 溶融金属原料種類 :鉄鉱石 炭材種類 :石炭Table 1 shows one example of the carbonaceous material and the oxygen consumption rate in the test operation of the smelting reduction facility according to the prior art and the present invention proposed in Japanese Patent Application Laid-Open No. 1-502276. The test conditions are as follows. Furnace body area (area of horizontal cross section at the height of lower tuyere 13): 20 m 2 Lateral angle θ of lower tuyere 13: 30 ° of the present invention, conventional technology 0 ° Molten metal raw material type: iron ore Carbon material type: coal
【0046】[0046]
【表1】 [Table 1]
【0047】本実施例は、鉄の還元の場合について説明
したが、本発明が同様の溶融還元法によって製造される
非鉄金属及び鉄合金(例えばクロム、ニッケル、マンガ
ン等)の溶融還元設備についても適用されることは言う
までもない。Although the present embodiment has been described for the case of iron reduction, the present invention is also applicable to a non-ferrous metal and iron alloy (for example, chromium, nickel, manganese, etc.) smelting reduction equipment manufactured by a similar smelting reduction method. It goes without saying that it applies.
【0048】[0048]
【発明の効果】本発明の溶融還元炉の炉体構造において
は、炉本体に金属原料、炭材、及び媒溶剤を添加し、炉
体の側面を水平方向に貫通してスラグに向けて配設され
た下部羽口を通じてスラグ中に酸素及び/又は酸素付加
ガスを吹き込んで、溶融金属を直接製造する設備におい
て、下部羽口を炉体の側面に直角方向から横向きに原料
投入口と反対方向に15〜45゜指向せしめたことによ
り、以下の効果が期待できる。According to the furnace body structure of the smelting reduction furnace of the present invention, a metal raw material, a carbonaceous material and a solvent are added to the furnace body, and the furnace body is horizontally penetrated and distributed toward the slag. In a facility for directly producing molten metal by injecting oxygen and / or oxygen-added gas into slag through the provided lower tuyere, the lower tuyere is directed sideways from the direction perpendicular to the side of the furnace body in the direction opposite to the raw material inlet. The following effects can be expected by directing the beam at 15 to 45 degrees.
【0049】 水平断面が長方形の炉体の長辺方向に
原料投入口と反対方向に下部羽口より上方のスラグを流
動させることで、スラグ内の鉄原料及び炭材濃度を長辺
方向に均一化し、生産量を増加、即ち水平断面が長方形
の炉体の長辺を大きくした場合にも、原料投入口を1個
にすることが可能となり、原料投入設備を1基とするこ
とができ、設備費が削減される。 原料投入口を1個にすることで、原料投入口とガス
排出口との距離を大きくすることが可能となり、金属原
料及び炭材の粒径が小さい場合でも、炉本体から発生す
る燃焼性ガスの流れに乗ってガス排出口へ直接飛散する
金属原料及び炭材の量が増加することを防止できる。By flowing slag above the lower tuyere in the direction opposite to the raw material inlet in the long side direction of the furnace body having a rectangular horizontal cross section, the iron raw material and the carbon material concentration in the slag are made uniform in the long side direction. And increase the production amount, that is, when the long side of the furnace body having a rectangular horizontal cross section is enlarged, it becomes possible to use only one raw material input port, and it is possible to use one raw material input facility, Equipment costs are reduced. By using only one material inlet, the distance between the material inlet and the gas outlet can be increased, and even if the particle size of the metal material and the carbonaceous material is small, the combustible gas generated from the furnace body It is possible to prevent an increase in the amount of the metal raw material and the carbonaceous material directly scattered to the gas discharge port along the flow of the gas.
【0050】更に、下部羽口より下方のスラグは、前記
下部羽口より上方のスラグと反対方向、即ち原料投入口
の方向に流動することとなり、金属を攪拌するために金
属浴面下の羽口からガスを吹き込むことなしに、溶銑と
スラグの界面直上のスラグを流動させ、スラグと溶銑の
相対速度を増大し、スラグから溶銑への熱移動量を増大
し、結果としてスラグと溶融金属の温度差を小さくする
ことが可能となることで、以下の効用がある。Further, the slag below the lower tuyere flows in the opposite direction to the slag above the lower tuyere, that is, in the direction of the raw material inlet, and the slag below the metal bath surface is stirred to stir the metal. Without blowing gas from the mouth, the slag just above the interface between the hot metal and the slag flows, increasing the relative speed between the slag and the hot metal, increasing the amount of heat transfer from the slag to the hot metal, and consequently the slag and the molten metal. The ability to reduce the temperature difference has the following effects.
【0051】 スラグと溶銑の温度差が小さくなり、
その分だけスラグと炉から排出される燃焼性ガスの温度
を低下でき、その熱量の分だけ炭材及び酸素原単位が低
下する。 スラグと炉から排出される燃焼性ガスの温度を低下
でき、炉内面の2次燃焼帯及びスラグに面した範囲に水
冷パネルを内張りした場合には、水冷パネルの抜熱量が
低下し、その熱量の分だけ炭材及び酸素原単位が低下す
る。The temperature difference between the slag and the hot metal becomes smaller,
The temperature of the slag and the temperature of the combustible gas discharged from the furnace can be reduced by that much, and the carbonaceous material and the oxygen consumption rate are reduced by the amount of heat. When the temperature of the slag and the combustible gas discharged from the furnace can be reduced, and the water-cooled panel is lined in the area facing the secondary combustion zone and the slag inside the furnace, the heat removal of the water-cooled panel decreases and the heat , The amount of carbonaceous material and oxygen consumption decreases.
【0052】 炉から排出される燃焼性ガスの温度を
低下でき、炉内面の2次燃焼帯に面した範囲に耐火物を
内張りした場合には、耐火物の損耗速度を低減できるこ
とで、補修又は張り替えの頻度が低下する。 溶融金属の粒がスラグ中に吹き上げられることがな
いため、下部羽口からスラグ内に吹き込まれる酸素又は
酸素富化ガスにより再酸化されることがなく、還元速度
向上、即ち生産速度が向上する。When the temperature of the combustible gas discharged from the furnace can be lowered, and the refractory is lined in the area facing the secondary combustion zone on the inner surface of the furnace, the wear rate of the refractory can be reduced, so that repair or repair can be performed. The frequency of replacement is reduced. Since the molten metal particles are not blown up into the slag, they are not reoxidized by oxygen or oxygen-enriched gas blown into the slag from the lower tuyere, so that the reduction rate, that is, the production rate is improved.
【0053】 溶融金属の粒がスラグ中に吹き上げら
れることがないため、スラグの熱容量及び熱伝導率が小
さくなり、スラグに接する炉壁及び下部羽口を水冷構造
にでき、半永久的に使用できることで、耐火物、羽口コ
スト及び補修、交換のための操業停止頻度が激減する。 金属浴面下の羽口が必要でないため、耐火物、羽口
コスト及び補修、交換のための操業停止頻度が激減す
る。Since the molten metal particles are not blown up into the slag, the heat capacity and the thermal conductivity of the slag are reduced, and the furnace wall and the lower tuyere in contact with the slag can have a water-cooled structure and can be used semipermanently. , Refractories, tuyere costs and the frequency of outages for repairs and replacements are drastically reduced. Since the tuyere below the metal bath is not required, refractories, tuyere costs and the frequency of shutdowns for repair and replacement are drastically reduced.
【図1】本発明に係わる溶融還元設備の1実施例を示す
炉体構造立断面図。FIG. 1 is a vertical sectional view of a furnace body structure showing one embodiment of a smelting reduction facility according to the present invention.
【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.
【図3】図1のB−B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 1;
【図4】従来技術の溶融還元設備の炉体構造立断面図。FIG. 4 is a vertical sectional view of a furnace body structure of a conventional smelting reduction facility.
【図5】図4のA−A断面図。FIG. 5 is a sectional view taken along line AA of FIG. 4;
【図6】図4のB−B断面図。FIG. 6 is a sectional view taken along line BB of FIG. 4;
1:炉体 2:基礎 3:水冷パネル 4:耐火物 5:原料投入口 6:ガス排出口 7:溶銑 8:スラグ 9:溶銑溜まり 10:スラグ溜まり 11:出銑口 12:出滓口 13:下部羽口 14:上部羽口 15:2次燃焼帯 16:水平断面が長方形の炉体の長辺 17:水平断面が長方形の炉体の短辺 θ:下部羽口13の横向き角度 1: Furnace 2: Base 3: Water-cooled panel 4: Refractory 5: Raw material inlet 6: Gas outlet 7: Hot metal 8: Slag 9: Hot metal pool 10: Slag pool 11: Tap hole 12: Slag port 13 : Lower tuyere 14: Upper tuyere 15: Secondary combustion zone 16: Long side of furnace body having a rectangular horizontal section 17: Short side of furnace body having a horizontal cross section θ: Lateral angle of lower tuyere 13
Claims (1)
炭材、及び媒溶剤を添加し、炉体の長辺を水平方向に貫
通してスラグに向けて配設された下部羽口を通じてスラ
グ中に酸素及び/又は酸素付加ガスを吹き込んで、溶融
金属を直接製造する設備において、前記下部羽口を炉体
の長辺に直角方向から横向きに原料投入口と反対方向に
15〜45゜指向せしめたことを特徴とする溶融還元設
備の炉体構造。1. A metal raw material in a furnace body having a rectangular horizontal section,
A carbon material and a medium solvent are added, and oxygen and / or an oxygen-added gas is blown into the slag through a lower tuyere that is horizontally provided through the long side of the furnace body and directed toward the slag. Wherein the lower tuyere is directed sideways from a direction perpendicular to the long side of the furnace body by 15 to 45 degrees in a direction opposite to the raw material inlet.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31518996A JPH10158707A (en) | 1996-11-26 | 1996-11-26 | Structure for furnace body of smelting reduction equipment |
PCT/JP1997/001142 WO1997038141A1 (en) | 1996-04-05 | 1997-04-02 | Smelting reduction apparatus and method of operating the same |
KR1019980707816A KR20000005151A (en) | 1996-04-05 | 1997-04-02 | Melt reduction apparatus and operating method thereof |
CN97194407A CN1068052C (en) | 1996-04-05 | 1997-04-02 | Multen reduction apparatus and method for operating same |
EP97914586A EP0905260A1 (en) | 1996-04-05 | 1997-04-02 | Smelting reduction apparatus and method of operating the same |
IDP971143A ID16806A (en) | 1996-04-05 | 1997-04-04 | MELT REDUCTION TOOLS AND ITS OPERATION METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31518996A JPH10158707A (en) | 1996-11-26 | 1996-11-26 | Structure for furnace body of smelting reduction equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10158707A true JPH10158707A (en) | 1998-06-16 |
Family
ID=18062496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31518996A Withdrawn JPH10158707A (en) | 1996-04-05 | 1996-11-26 | Structure for furnace body of smelting reduction equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10158707A (en) |
-
1996
- 1996-11-26 JP JP31518996A patent/JPH10158707A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100325652B1 (en) | Production method of metallic iron | |
US6379424B1 (en) | Direct smelting apparatus and process | |
CA2320654C (en) | A direct smelting process | |
US6368548B1 (en) | Direct smelting process and apparatus | |
JPS6199637A (en) | Production of metal and/or formation of slag | |
US6423115B1 (en) | Direct smelting process | |
US6626977B1 (en) | Direct smelting process and apparatus | |
ZA200506454B (en) | An improved smelting process for the production ofiron | |
US6482249B1 (en) | Direct smelting process | |
CA2335753C (en) | A direct smelting process | |
US4414026A (en) | Method for the production of ferrochromium | |
JPH10158707A (en) | Structure for furnace body of smelting reduction equipment | |
JP4047422B2 (en) | How to operate a vertical furnace | |
EP0950117B1 (en) | A method for producing metals and metal alloys | |
JPH09272907A (en) | Furnace structure in smelting reduction plant | |
JP3516793B2 (en) | How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace | |
JP4005682B2 (en) | How to operate a vertical furnace | |
AU780707B2 (en) | A direct smelting process and apparatus | |
JPH10158708A (en) | Structure for furnace body of smelting reduction equipment | |
JP4005683B2 (en) | Vertical furnace operation method for treating powdered waste | |
JPH10183214A (en) | Operation of smelting reduction equipment and furnace body structure therefor | |
JPH10183213A (en) | Operation of smelting reduction equipment and furnace body structure therefor | |
AU768628B2 (en) | A direct smelting process | |
JPH1150118A (en) | Smelting reduction equipment and its operation | |
JPH10152709A (en) | Structure of furnace body in smelting reduction equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |