JPH10152709A - Structure of furnace body in smelting reduction equipment - Google Patents

Structure of furnace body in smelting reduction equipment

Info

Publication number
JPH10152709A
JPH10152709A JP31245696A JP31245696A JPH10152709A JP H10152709 A JPH10152709 A JP H10152709A JP 31245696 A JP31245696 A JP 31245696A JP 31245696 A JP31245696 A JP 31245696A JP H10152709 A JPH10152709 A JP H10152709A
Authority
JP
Japan
Prior art keywords
slag
oxygen
furnace
furnace body
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31245696A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
宏 市川
Yukinobu Horikawa
幸悦 堀川
Shiro Hora
史郎 洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31245696A priority Critical patent/JPH10152709A/en
Publication of JPH10152709A publication Critical patent/JPH10152709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a smelting reduction equipment which can increase metallic iron ratio in an iron raw material, lowers the unit requirements of carbonaceous material and oxygen and also, can increase the production of molten iron, by enabling the use of large scale scraps as a part of the iron raw material and increasing the scrap ratio in the iron raw material without blowing gas from a tuyere below molten iron for stirring the metal. SOLUTION: This equipment is the one directly producing the molten iron by adding the metallic raw material, carbonaceous material and flux into the furnace body and blowing oxygen and/or oxygen-enriched gas into slag through lower tuyeres 13 penetrating the side surface of the furnace body 1 and arranged toward the slag 8. In such a case, what is called, a linear type electromagnetic induction stirring device 15 generating parallel moving magnetic field is arranged to generate the moving magnetic field in the horizontal direction at the bottom part of the furnace body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉本体に金属原
料、炭材、及び媒溶剤を添加し、純酸素及び/又は酸素
富化ガスを吹き込んで、溶融金属を直接製造する溶融還
元設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a smelting reduction facility for directly producing a molten metal by adding a metal raw material, a carbonaceous material, and a solvent to a furnace body and blowing pure oxygen and / or an oxygen-enriched gas. .

【0002】[0002]

【従来の技術】溶融還元は、炉本体内に金属原料、炭
材、及び媒溶剤を添加し、純酸素及び/又は酸素富化ガ
スを吹き込んで、スラグ中で鉄原料中の酸化金属を還元
し、溶融金属を直接製造する方法である。この方法で
は、溶融還元炉から、1600〜1800℃程度の高温
の燃焼性ガスが生成される。
2. Description of the Related Art In the smelting reduction, a metal raw material, a carbon material, and a medium solvent are added to a furnace body, and pure oxygen and / or an oxygen-enriched gas is blown into the furnace to reduce the metal oxide in the iron raw material in the slag. In this method, molten metal is directly produced. In this method, a high-temperature combustible gas of about 1600 to 1800 ° C. is generated from the smelting reduction furnace.

【0003】この溶融還元法は、従来の高炉法に比べ、
生産量の柔軟性が高い、即ち生産量の変更が容易なこと
と設備の停止、再起動が容易なこと、及び設備投資額が
小さいことから、特に小規模溶融金属製造法として最近
注目されつつある。
[0003] This smelting reduction method, compared with the conventional blast furnace method,
Due to the high flexibility of production volume, that is, easy change of production volume, easy stop and restart of equipment, and small capital investment, it has recently been receiving attention especially as a small-scale molten metal production method. is there.

【0004】一般にこの種の溶融還元法は、炉本体内に
予備還元した金属原料、炭材、及び媒溶剤を添加し、炉
本体から発生する燃焼性ガス中のCOガス、H2 ガスで
金属原料を予備還元する2段法(例えば特開昭57−1
20607号公報、特開昭61−96019号公報等参
照)と、炉本体内に未還元の金属原料、炭材、及び媒溶
剤を添加し、スラグ中で金属原料中の酸化金属を還元
し、炉本体から発生する燃焼性ガス中のCOガス、H2
ガスを廃熱ボイラー内で完全燃焼させ、燃焼性ガスの顕
熱、潜熱を蒸気化して回収し、発電等を行う1段法(例
えば特開平1−502276号公報、特開昭61−27
9608号公報、特開昭60−9815号公報等参照)
とに分類される。
Generally, in this type of smelting reduction method, a preliminarily reduced metal raw material, a carbon material, and a medium solvent are added to a furnace main body, and CO gas and H 2 gas in a combustible gas generated from the furnace main body are used for metal reduction. A two-stage method for pre-reducing the raw material (for example,
20607, Japanese Unexamined Patent Publication No. 61-96019), and an unreduced metal raw material, a carbonaceous material, and a medium solvent are added into the furnace body, and the metal oxide in the metal raw material is reduced in the slag, CO gas, H 2 in combustible gas generated from the furnace body
A one-stage method in which the gas is completely burned in a waste heat boiler, the sensible heat and latent heat of the combustible gas are vaporized and collected, and power is generated (for example, JP-A-1-502276, JP-A-61-27).
9608, JP-A-60-9815, etc.)
Classified as

【0005】2段法は、1段法に比べエネルギー効率が
良い利点はあるものの、充填層方式及び流動層方式等の
予備還元炉が必要なため設備が複雑となり設備投資額が
高い、予備還元炉内での反応の均一性から鉄原料の形状
制限がある(例えば充填層方式においては塊状の鉄原料
しか使用できず、流動層方式では粉状の鉄原料しか使用
できない)等の欠点があることから、最近シンプルな1
段法が注目されつつある。
[0005] The two-stage method has the advantage of higher energy efficiency than the one-stage method, but requires a pre-reduction furnace of a packed-bed type, a fluidized-bed type, etc., so that the equipment is complicated and the capital investment is high. There are drawbacks such as the limitation of the shape of the iron raw material due to the uniformity of the reaction in the furnace (for example, only a lump iron raw material can be used in a packed bed system and only a powdered iron raw material can be used in a fluidized bed system). So, recently a simple one
The column method is attracting attention.

【0006】また、この1段法においては、スラグ中で
発生するCOガス、H2 ガスをスラグ上部の炉内空間
(以後2次燃焼帯と呼ぶ)で燃焼する割合(以後炉内2
次燃焼率と呼び、炉内2次燃焼率=(CO2 %+H2
%)/(CO2 %+CO%+H2 O%+H2 %)と定義
する)を上昇させ、その燃焼熱をスラグに有効に伝える
ことで、エネルギー効率を向上させる、即ち炭材原単位
を低減させることが可能なことことは広く知られてい
る。
[0006] In this one-stage method, the rate at which CO gas and H 2 gas generated in the slag are burned in the furnace space above the slag (hereinafter referred to as a secondary combustion zone) (hereinafter referred to as furnace 2).
The secondary combustion rate in the furnace = (CO 2 % + H 2 O)
%) / (Defined as CO 2 % + CO% + H 2 O% + H 2 %) and effectively transferring the combustion heat to the slag, thereby improving energy efficiency, that is, reducing the carbon unit consumption. It is widely known that this can be done.

【0007】ところが、スラグの上下方向の攪拌が十分
でない場合、スラグの下層への熱移動が小さくなり、ス
ラグの上層のみが加熱され、2次燃焼帯とスラグ上層の
温度差が小さくなり、2次燃焼帯からスラグへの熱移動
量が低下し、結果として2次燃焼率を上昇させても炭材
原単位を低減代が小さくなるという課題があった。この
場合、2次燃焼帯からスラグへの熱移動量が低下するこ
とから、2次燃焼帯の雰囲気温度が上昇し、2次燃焼帯
の炉壁に耐火物を内張りした場合には耐火物の損耗量が
急増するという課題があった。
However, if the slag is not sufficiently stirred in the vertical direction, the heat transfer to the lower layer of the slag becomes small, only the upper layer of the slag is heated, and the temperature difference between the secondary combustion zone and the upper layer of the slag becomes small, and There has been a problem that the amount of heat transfer from the secondary combustion zone to the slag is reduced, and as a result, even if the secondary combustion rate is increased, the cost of reducing the carbon unit consumption is reduced. In this case, since the amount of heat transfer from the secondary combustion zone to the slag decreases, the ambient temperature of the secondary combustion zone increases, and when the refractory is lined on the furnace wall of the secondary combustion zone, the refractory is not There was a problem that the amount of wear increased rapidly.

【0008】そこで、これらの課題を解決するために、
底吹羽口と酸素上吹きランスを備え、炉壁に耐火物を内
張りした溶解炉に溶銑を入れ、底吹羽口から吹き込まれ
るガス量を制御し、スラグ組成及び遊離炭材量を制限し
て溶融還元する方法が、特開昭60−9815号公報で
提案されている。
Therefore, in order to solve these problems,
Equipped with a bottom tuyere and an oxygen top blowing lance, put hot metal in a melting furnace with a refractory lining on the furnace wall, control the amount of gas blown from the bottom tuyere, and limit the slag composition and the amount of free carbon material. A method for performing smelting reduction by using a method has been proposed in Japanese Patent Application Laid-Open No. 60-9815.

【0009】しかるに、この方法では、金属原料を還元
すると共に2次燃焼帯からスラグへの熱移動量を確保す
るためにスラグを強攪拌する必要があるが、この攪拌力
を溶融金属の攪拌を介してスラグに伝える点で精錬操作
上大きな難点があった。即ち、溶融金属攪拌ガス量が極
めて多いため、非酸素ガスでは溶融金属温度の低下を招
き、一方、温度維持のために酸素を含ませると溶融金属
の酸化を招くジレンマがある。
However, in this method, it is necessary to vigorously stir the slag in order to reduce the metal raw material and secure the heat transfer amount from the secondary combustion zone to the slag. There was a major difficulty in the refining operation in transmitting the slag to the slag. That is, since the amount of the molten metal stirring gas is extremely large, a non-oxygen gas causes a decrease in the temperature of the molten metal. On the other hand, when oxygen is contained for maintaining the temperature, there is a dilemma in which the molten metal is oxidized.

【0010】そこで、これらの課題を解決するために、
金属浴面下で金属を攪拌するために不活性ガスを吹き込
む羽口と、金属浴面上で且つスラグ面下に位置し、スラ
グ内に酸素又は酸素富化ガスを吹き込む羽口と酸素上吹
きランスとを備えた、炉壁に耐火物を内張りした溶融還
元炉を用いる方法が特開昭61−279608号公報で
提案されている。
Therefore, in order to solve these problems,
A tuyere that blows an inert gas to agitate the metal under the metal bath, and a tuyere that blows oxygen or an oxygen-enriched gas into the slag that is located above the metal bath and below the slag. A method using a smelting reduction furnace provided with a lance and having a furnace wall lined with a refractory is proposed in Japanese Patent Application Laid-Open No. 61-279608.

【0011】しかるに、この方法であっても、金属を攪
拌するために金属浴面下の羽口から不活性ガスを吹き込
むために、なお以下の課題を抱えている。 金属浴面下の羽口から吹き込まれる不活性ガスによ
り、溶融金属の粒がスラグ中に吹き上げられ、金属浴面
上で且つスラグ面下に位置した羽口からスラグ内に吹き
込まれる酸素又は酸素富化ガスにより再酸化され、還元
速度向上、即ち生産速度向上の妨げとなる。 金属浴面下の羽口から吹き込まれる不活性ガスによ
り、溶融金属の粒がスラグ中に吹き上げられスラグ中に
懸濁するため、スラグの熱容量及び熱伝導率が大きくな
り、スラグに接する炉壁を水冷構造にできず、耐火物構
造にせざるを得ないため、この耐火物のスラグによる損
耗が大きく、頻繁に補修又は張り替えする必要がある。
However, even this method still has the following problems in order to blow the inert gas from the tuyere below the surface of the metal bath in order to stir the metal. The inert gas blown from the tuyere below the metal bath causes molten metal particles to be blown up into the slag, and the oxygen or oxygen rich gas blown into the slag from the tuyere located above the metal bath and below the slag. It is re-oxidized by the oxidizing gas and hinders the reduction rate, that is, the production rate. Due to the inert gas blown from the tuyere below the metal bath, the molten metal particles are blown up into the slag and suspended in the slag, so the heat capacity and thermal conductivity of the slag increase, and the furnace wall in contact with the slag increases. Since a water-cooled structure cannot be used and a refractory structure must be used, the refractory is greatly worn by slag and must be repaired or replaced frequently.

【0012】 スラグの熱容量及び熱伝導率が大きく
なるため、金属浴面上で且つスラグ面に位置した羽口に
ついても水冷構造にできず、消耗式羽口にせざるを得な
いため、頻繁に交換する必要がある。 金属浴面下の羽口は、溶融金属の熱容量及び熱伝導
率が大きいため、水冷構造にできず、消耗式羽口にせざ
るを得ないため、頻繁に交換する必要がある。 金属浴面下の羽口周辺の耐火物の損耗が大きく、頻
繁に補修又は張り替えする必要がある。
Since the heat capacity and the thermal conductivity of the slag increase, the tuyere located on the metal bath surface and on the slag surface cannot be water-cooled, and must be replaced by a consumable tuyere. There is a need to. The tuyere below the metal bath cannot be water-cooled due to the large heat capacity and thermal conductivity of the molten metal, and must be replaced by a consumable tuyere. The refractory around the tuyere below the metal bath is heavily worn and needs to be repaired or replaced frequently.

【0013】そこで、これらの課題を解決するために、
炉体を水平方向に貫通してスラグに向けられた下部羽口
を通じてスラグ中に純酸素及び/又は酸素付加ガスを吹
き込み、炉体を貫通して2次燃焼帯に向けられた上部羽
口を通じて2次燃焼帯に純酸素及び/又は酸素付加ガス
を吹き込み、炉内面の2次燃焼帯及びスラグに面した範
囲に水冷パネルを内張りした構造が、特開平1−502
276号公報で提案されている。以下、特開平1−50
2276号公報で提案されている従来技術の溶融還元設
備を図8、図9に基づいて説明する。図8は、特開平1
−502276号公報で提案されている従来技術の溶融
還元設備の縦断面図、図9はその側面図である。
Therefore, in order to solve these problems,
Pure oxygen and / or oxygenated gas is blown into the slag through the lower tuyere directed to the slag through the furnace body horizontally and through the upper tuyere directed through the furnace body to the secondary combustion zone. A structure in which pure oxygen and / or an oxygen-added gas is blown into a secondary combustion zone, and a water-cooled panel is lined in a region facing the secondary combustion zone and slag on the inner surface of the furnace is disclosed in Japanese Patent Laid-Open No. 1-502.
No. 276 has proposed this. Hereinafter, JP-A-1-50
A conventional smelting reduction facility proposed in Japanese Patent No. 2276 will be described with reference to FIGS. FIG.
FIG. 9 is a longitudinal sectional view of a conventional smelting reduction facility proposed in Japanese Patent Application Publication No. 502276, and FIG. 9 is a side view thereof.

【0014】炉体1は基礎2に固定され、炉内面は水冷
パネル3及び耐火物4を内張りされており、炉体1の上
部には、鉄鉱石、鉄含有ダスト、鉄スクラップ等の鉄原
料、炭材、及び媒溶剤を添加する原料投入口5及び炉本
体から発生する燃焼性ガスを排出するガス排出口6が配
設されている。炉体1の底部には溶銑7が溜まり、その
上部に溶銑7より比重の軽いスラグ8が溜まっており、
溶銑7は溶銑溜まり9を介して出銑口11から、スラグ
はスラグ溜まり10を介して出滓口12からそれぞれ連
続又は断続的に排出される。
A furnace body 1 is fixed to a foundation 2, a furnace inner surface is lined with a water-cooled panel 3 and a refractory 4, and an iron material such as iron ore, iron-containing dust, iron scrap, etc. A raw material input port 5 for adding carbonaceous material and a medium solvent, and a gas discharge port 6 for discharging combustible gas generated from the furnace body are provided. Hot metal 7 accumulates at the bottom of the furnace body 1, and slag 8 having a lower specific gravity than the hot metal 7 accumulates at the upper portion thereof.
The hot metal 7 is discharged continuously or intermittently from a tap hole 11 through a hot metal pool 9, and slag is discharged from a tap hole 12 through a slag pool 10.

【0015】原料投入口5から投入された鉄原料中の酸
化鉄(FeO及びFe2 3 )は、同じく原料投入口5
から投入された炭材中炭素分により、スラグ8中で以下
の式(1),(2)に示す反応により還元される。 FeO + C→ Fe+ CO (吸熱反応) ・・・・・・(1) Fe2 3 +3C→2Fe+3CO (吸熱反応) ・・・・・・(2)
The iron oxide (FeO and Fe 2 O 3 ) in the iron raw material input from the raw material input port 5
Is reduced in the slag 8 by the reaction represented by the following formulas (1) and (2) by the carbon content in the carbonaceous material supplied from the reactor. FeO + C → Fe + CO (endothermic reaction) (1) Fe 2 O 3 + 3C → 2Fe + 3CO (endothermic reaction) (2)

【0016】また、原料投入口5から投入された炭材中
炭素分の一部は、炉体1を貫通してスラグ8に向けて配
設された下部羽口13を通じてスラグ8中に吹き込まれ
る酸素と以下の式(3)に示す反応により酸化される。 C+1/2O2 →CO (発熱反応) ・・・・・・(3)
Further, a part of the carbon content in the carbonaceous material supplied from the raw material charging port 5 is blown into the slag 8 through the lower tuyere 13 which penetrates the furnace body 1 and is disposed toward the slag 8. It is oxidized by oxygen and a reaction represented by the following formula (3). C + 1 / 2O 2 → CO (exothermic reaction) (3)

【0017】この溶融還元炉のエネルギー効率、即ち炭
材原単位は、式(1),(2),(3)の反応に必要な
炭素分の合計によって決定される。従って、鉄原料中の
スクラップ比率を増加することにより、鉄原料中の金属
鉄比率を増加すると、式(1),(2)で消費される炭
素分が減少すると共に、式(1),(2)の吸熱量が減
少するので、式(3)の発熱量を減少し、結果として式
(1),(2),(3)の反応に必要な炭素分の合計が
減少し、炭材原単位が減少する。又、それに伴い式
(3)及び後で説明する式(5),(6)に必要な酸素
量が減少することで、酸素原単位も減少する。
The energy efficiency of this smelting reduction furnace, that is, the basic unit of carbonaceous material, is determined by the total amount of carbon necessary for the reactions of the formulas (1), (2) and (3). Therefore, when the ratio of metallic iron in the iron raw material is increased by increasing the scrap ratio in the iron raw material, the carbon content consumed in the equations (1) and (2) decreases, and the equations (1) and (2) Since the endothermic amount of 2) is reduced, the calorific value of formula (3) is reduced, and as a result, the total carbon content required for the reactions of formulas (1), (2) and (3) is reduced. Intensity decreases. In addition, the amount of oxygen necessary for the expression (3) and the expressions (5) and (6) described later decreases, thereby reducing the oxygen intensity.

【0018】更に、上記式(1),(2),(3)によ
りスラグ8中で発生したCOガス及び炭材中水素分は、
炉体1を貫通して2次燃焼帯16に向けて配設された上
部羽口14を通じて2次燃焼帯16中に吹き込まれる酸
素と以下の式(4),(5)に示す反応により酸化され
る。 CO+1/2O2 →CO2 (発熱反応) ・・・・・・(4) H2 +1/2O2 →H2 O (発熱反応) ・・・・・・(5)
Further, the CO gas generated in the slag 8 and the hydrogen content in the carbonaceous material according to the above equations (1), (2) and (3) are:
Oxygen blown into the secondary combustion zone 16 through the upper tuyere 14 disposed toward the secondary combustion zone 16 through the furnace body 1 is oxidized by a reaction represented by the following formulas (4) and (5). Is done. CO + 1 / 2O 2 → CO 2 (exothermic reaction) (4) H 2 + 1 / 2O 2 → H 2 O (exothermic reaction) (5)

【0019】この式(4),(5)の反応を炉内2次燃
焼と呼び、この2次燃焼の度合いの大小を以下の式
(6)で定義される炉内2次燃焼率で表すことと、この
2次燃焼率は上部羽口14を通じて2次燃焼帯16中に
吹き込まれる酸素の流量を増加することで増加すること
は広く知られている。 炉内2次燃焼率=(CO2 %+H2 O%)/(CO2 %+CO%+H2 O% +H2 %) ・・・・・・(6) 但し、(6)式中のCO2 %,CO%,H2 O%,H2
%は、ガス排出口6における燃焼性ガスの各成分の体積
分率を示す。
The reactions of the equations (4) and (5) are referred to as in-furnace secondary combustion, and the degree of the degree of the secondary combustion is represented by the in-furnace secondary combustion rate defined by the following equation (6). It is widely known that the secondary combustion rate can be increased by increasing the flow rate of oxygen blown into the secondary combustion zone 16 through the upper tuyere 14. Secondary combustion rate in furnace = (CO 2 % + H 2 O%) / (CO 2 % + CO% + H 2 O% + H 2 %) (6) where CO 2 in equation (6) %, CO%, H 2 O %, H 2
% Indicates the volume fraction of each component of the combustible gas at the gas outlet 6.

【0020】炉内2次燃焼率を上昇させると、2次燃焼
帯16における式(4),(5)の反応熱の一部がスラ
グ8に伝達し、スラグ中の式(3)の発熱反応に必要な
炭素分を減少せしめることで、炭材原単位が減少する。
この構造では、前述の金属を攪拌するために不活性ガス
を吹き込む金属浴面下の羽口がないために、前述の〜
の課題はすべて解決している。
When the secondary combustion rate in the furnace is increased, a part of the reaction heat of the equations (4) and (5) in the secondary combustion zone 16 is transmitted to the slag 8, and the heat of the equation (3) in the slag is generated. By reducing the amount of carbon required for the reaction, the carbon unit consumption is reduced.
In this structure, since there is no tuyere below the metal bath surface into which an inert gas is blown to stir the above-mentioned metal,
All issues have been solved.

【0021】一方、炉の底より下に、平らで炉の底に平
行な平面に螺旋状に巻かれたいわゆるパンケーキコイル
による誘導攪拌によって発生する上昇流により形成され
る溶融金属露出面を、炭素溶解反応域と溶融金属金属中
の溶解炭素による金属酸化物還元反応域とに分けて、そ
れぞれの前記反応域に炭素含有還元材料と金属酸化物材
料とを別々に供給し、それによって金属酸化物の還元を
促進することを特徴とする方法が、特公昭54−243
61号公報で提案されている。
On the other hand, below the bottom of the furnace, the exposed surface of the molten metal formed by the upflow generated by induction stirring by a so-called pancake coil spirally wound in a flat plane parallel to the bottom of the furnace, The reaction zone is divided into a carbon dissolution reaction zone and a metal oxide reduction reaction zone by dissolved carbon in the molten metal, and a carbon-containing reducing material and a metal oxide material are separately supplied to each of the reaction zones. A method characterized by promoting the reduction of materials is disclosed in Japanese Patent Publication No. 54-243.
No. 61 has proposed this.

【0022】また、連続鋳造設備の電磁攪拌装置に関し
て、複数の電磁コイルにより形成され且つ交流電源によ
り運転される一対の電磁コイル群を備え、鋳片内部の溶
湯に対する攪拌を、前記一対の電磁コイル群により形成
される前記電磁コイル群に平行な移動磁界を利用して行
うリニア型電磁攪拌装置が、特開昭63−183761
号公報において、従来技術として紹介されている。
Further, the present invention relates to an electromagnetic stirring device for a continuous casting facility, comprising a pair of electromagnetic coils formed by a plurality of electromagnetic coils and operated by an AC power supply, for stirring the molten metal inside the slab by the pair of electromagnetic coils. A linear electromagnetic stirrer using a moving magnetic field parallel to the electromagnetic coil group formed by the group is disclosed in JP-A-63-183761.
In this publication, it is introduced as a conventional technique.

【0023】[0023]

【発明が解決しようとする課題】しかるに、この特開平
1−502276号公報で提案されている方法であって
も、前述の溶銑7を攪拌するために不活性ガスを吹き込
む金属浴面下の羽口がないために、下部羽口13より上
に位置するスラグ8は強攪拌されるものの、下部羽口1
3より下に位置する溶銑7及び溶銑7とスラグ8の界面
が極めて静かであることから、なお以下の課題を抱えて
いる。
However, even with the method proposed in Japanese Patent Laid-Open No. 1-502276, the blade below the surface of a metal bath into which an inert gas is blown to stir the hot metal 7 described above. Since there is no mouth, the slag 8 located above the lower tuyere 13 is strongly stirred, but the lower tuyere 1
Since the hot metal 7 located below 3 and the interface between the hot metal 7 and the slag 8 are extremely quiet, they still have the following problems.

【0024】 鉄原料の一部として鉄スクラップを使
用する場合、比較的少量の例えばシュレッダー、ダライ
粉等の小型スクラップ、即ち体積当たりの表面積が大き
いスクラップの溶解は可能なものの、比較的大量の大型
のスクラップ、即ち体積当たりの表面積が小さいスクラ
ップの溶解が困難である。これは、大型のスクラップは
スラグに比べて比重が大きいことと体積当たりの表面積
が小さいことから、スラグ中で溶解しきれずに溶融金属
浴に到達し、更に、溶融金属浴が殆ど攪拌されていない
ためにスクラップ表面積当たりの溶融金属浴からの熱移
動量が小さいので、溶解速度が遅く、溶融金属浴中に溶
け残りやすいためである。
When iron scrap is used as a part of the iron raw material, a relatively small amount of small scraps such as shredders and Dalai powder, that is, a scrap having a large surface area per volume can be dissolved, but a relatively large amount of large scraps can be dissolved. , It is difficult to dissolve scrap having a small surface area per volume. This is because large scrap has a higher specific gravity and a smaller surface area per volume than slag, so it cannot reach the molten metal bath without being completely dissolved in the slag, and furthermore, the molten metal bath is hardly agitated. Therefore, since the amount of heat transfer from the molten metal bath per scrap surface area is small, the dissolution rate is low, and it is easy to remain in the molten metal bath.

【0025】 2次燃焼帯からスラグへの熱移動量は
大きいのでスラグ中の還元反応は進むものの、スラグか
ら溶融金属への熱移動量は小さく、結果としてスラグと
溶融金属の温度差が大きくなる。溶融還元設備では、下
行程の制約から炉から排出される溶融金属温度が指定さ
れるため、スラグと溶融金属の温度差が大きいと、その
分だけスラグの温度が上げざるを得ず、その分だけ炉か
ら排出される燃焼性ガスの温度も上昇する。従って、ス
ラグと溶融金属の温度差が例えば約100℃ある場合、
スラグと溶融金属の温度差がない場合に比べ、スラグと
燃焼性ガスの温度を約100℃上昇するに必要なエネル
ギーが余分に必要となり、その分だけ炭材及び酸素原単
位が上昇することになる。
Since the amount of heat transfer from the secondary combustion zone to the slag is large, the reduction reaction in the slag proceeds, but the amount of heat transfer from the slag to the molten metal is small, and as a result, the temperature difference between the slag and the molten metal increases. . In the smelting reduction facility, the temperature of the molten metal discharged from the furnace is specified due to restrictions on the down process, so if the temperature difference between the slag and the molten metal is large, the temperature of the slag must be increased by that much, and that much Only the temperature of the combustible gas discharged from the furnace also rises. Therefore, if the temperature difference between the slag and the molten metal is, for example, about 100 ° C,
Compared to the case where there is no temperature difference between the slag and the molten metal, extra energy is required to raise the temperature of the slag and the combustible gas by about 100 ° C. Become.

【0026】 前述の様に炉から排出される燃焼性ガ
ス及びスラグの温度が約100℃上昇すると、炉内面の
2次燃焼帯及びスラグに面した範囲に水冷パネルを内張
りした場合、水冷パネルからの抜熱が増加するために、
炭材及び酸素原単位が更に上昇することになる。これ
は、2次燃焼帯に面した水冷パネルにおいては、水冷パ
ネルへの伝熱が輻射伝熱が主体のために、(燃焼性ガス
の温度)4 −(水冷パネル)4 にほぼ比例し、スラグに
面した水冷パネルにおいては、水冷パネルへの伝熱が対
流伝熱が主体のために、(スラグの温度)−(水冷パネ
ル)にほぼ比例するためである。
As described above, when the temperature of the flammable gas and slag discharged from the furnace rises by about 100 ° C., when the water-cooled panel is lined in the area facing the secondary combustion zone and slag on the inner surface of the furnace, To increase the heat removal of
The carbonaceous material and the oxygen consumption rate will be further increased. This is because, in the water-cooled panel facing the secondary combustion zone, the heat transfer to the water-cooled panel is mainly radiant heat transfer, and is substantially proportional to (combustible gas temperature) 4 − (water-cooled panel) 4 , This is because, in the water-cooled panel facing the slag, the heat transfer to the water-cooled panel is substantially proportional to (slag temperature)-(water-cooled panel) because convective heat transfer is mainly performed.

【0027】一方、この特開平1−502276号公報
で提案されている方法は、鉄原料中の酸化鉄(FeO及
びFe2 3 )が、炭材中炭素分によりスラグ8中で還
元されるので、特公昭54−24361号公報で提案さ
れている、誘導攪拌によって発生する上昇流により形成
される溶銑7の露出面に炭素含有還元材料と金属酸化物
材料とを供給し、それによって金属酸化物の還元を促進
することを特徴とする技術を適応しても、何ら改善は期
待できない。
On the other hand, in the method proposed in Japanese Patent Application Laid-Open No. 1-502276, iron oxide (FeO and Fe 2 O 3 ) in the iron raw material is reduced in the slag 8 by the carbon content in the carbonaceous material. Therefore, the carbon-containing reducing material and the metal oxide material are supplied to the exposed surface of the hot metal 7 formed by the ascending flow generated by the induction stirring, which is proposed in Japanese Patent Publication No. 54-24361. Even if a technology characterized by promoting the reduction of materials is applied, no improvement can be expected.

【0028】そればかりか、上昇流により溶銑7の露出
面が形成されると、溶銑7が2次燃焼帯16の雰囲気ガ
スもしくは上部羽口14から吹き込まれる酸素と直接接
触し、再酸化され、結果的に溶銑生産量が低下するとい
う悪影響がある。また、上昇流により溶銑7がスラグ8
に吹き上げられ、下部羽口13から吹き込まれる酸素と
直接接触し、再酸化され、結果的に溶銑生産量が低下す
るという悪影響もある。
In addition, when the exposed surface of the hot metal 7 is formed by the upward flow, the hot metal 7 comes into direct contact with the atmospheric gas in the secondary combustion zone 16 or the oxygen blown from the upper tuyere 14 and is reoxidized. As a result, there is an adverse effect that the hot metal production is reduced. Also, the hot metal 7 is turned into slag 8 by the upward flow.
And is in direct contact with the oxygen blown from the lower tuyere 13 and is re-oxidized, with the result that the production of hot metal is reduced.

【0029】本発明は、以上のような問題点を解決する
ためになされたものであり、その目的とするところは、
金属を攪拌するために金属浴面下の羽口からガスを吹き
込むことなしに、また、溶融金属浴に上昇流を発生する
ことなしに、溶融金属浴に水平流を発生させ、溶融金属
とスクラップの相対速度を増大し、溶融金属からスクラ
ップへの熱移動量を増大し、鉄原料の一部として大型ス
クラップを使用可能な溶融還元設備を提供することを目
的とするものである。
The present invention has been made in order to solve the above-mentioned problems.
A horizontal flow is generated in the molten metal bath without blowing gas from the tuyeres below the metal bath to stir the metal, and without generating an upward flow in the molten metal bath, and the molten metal is scrapped. It is an object of the present invention to provide a smelting reduction facility capable of increasing the relative speed of the steel, increasing the amount of heat transfer from the molten metal to the scrap, and using a large scrap as a part of the iron raw material.

【0030】また、溶融金属に水平流を発生させ、スラ
グと溶融金属の相対速度を増大し、スラグから溶融金属
への熱移動量を増大し、結果としてスラグと溶融金属の
温度差を小さくする溶融還元設備を提供することを目的
とするものである。
In addition, a horizontal flow is generated in the molten metal to increase the relative speed between the slag and the molten metal, thereby increasing the amount of heat transfer from the slag to the molten metal, and as a result, reducing the temperature difference between the slag and the molten metal. It is an object to provide a smelting reduction facility.

【0031】[0031]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、炉本体に金属原料、炭材、及び媒溶剤
を添加し、炉体の側面を水平方向に貫通してスラグに向
けて配設された下部羽口を通じてスラグ中に酸素及び/
又は酸素付加ガスを吹き込んで、溶融金属を直接製造す
る設備において、平行移動磁界を発生するいわゆるリニ
ア型の電磁誘導攪拌装置を前記炉本体の底部に配設し、
炉本体の底部に水平な方向の移動磁界を発生する如くな
したことを特徴とするものである。もしくは、前記炉本
体の底部に電磁誘導加熱装置を配設したことを特徴とす
る溶融還元設備の炉体構造である。
In order to solve the above-mentioned problems, the present invention relates to a method of adding a metal raw material, a carbonaceous material, and a solvent to a furnace body and horizontally penetrating a side surface of the furnace body to form a slag. Oxygen and / or in the slag through the lower tuyere
Or, by blowing oxygen-added gas, in a facility for directly producing molten metal, a so-called linear electromagnetic induction stirrer that generates a parallel moving magnetic field is provided at the bottom of the furnace body,
A moving magnetic field in a horizontal direction is generated at the bottom of the furnace body. Alternatively, there is provided a furnace body structure of a smelting reduction facility, wherein an electromagnetic induction heating device is provided at the bottom of the furnace body.

【0032】本発明の溶融還元炉の炉体構造において
は、前記炉本体の底部に電磁誘導攪拌装置もしくは電磁
誘導加熱装置を配設したことにより、金属を攪拌するた
めに金属浴面下の羽口からガスを吹き込むことなしに、
また、溶融金属浴に上昇流を発生することなしに、溶融
金属浴に水平流を発生させ、溶融金属とスクラップ及び
スラグと溶融金属の相対速度を増大し、溶融金属からス
クラップ及びスラグから溶融金属への熱移動量を増大す
ることが可能となることで、以下の作用がある。
In the furnace body structure of the smelting reduction furnace according to the present invention, an electromagnetic induction stirrer or an electromagnetic induction heater is disposed at the bottom of the furnace main body, so that the blade below the metal bath surface is stirred to stir the metal. Without blowing gas from the mouth,
Also, without generating an upward flow in the molten metal bath, a horizontal flow is generated in the molten metal bath to increase the relative speed between the molten metal and the scrap and between the slag and the molten metal, and the molten metal is recycled from the scrap and the slag to the molten metal. It is possible to increase the amount of heat transfer to the surface, thereby having the following effects.

【0033】 鉄原料の一部として大型スクラップを
使用可能となる。 鉄原料中のスクラップ比率を増加できることによ
り、鉄原料中の金属鉄比率を増加でき、炭材及び酸素原
単位が低下すると共に、溶銑生産速度を増加できる。
Large scrap can be used as a part of the iron raw material. Since the scrap ratio in the iron raw material can be increased, the metal iron ratio in the iron raw material can be increased, the carbon material and the oxygen consumption rate can be reduced, and the hot metal production rate can be increased.

【0034】 スラグと溶融金属の温度差が小さくな
り、その分だけスラグと炉から排出される燃焼性ガスの
温度を低下でき、その熱量の分だけ炭材及び酸素原単位
が低下する。 スラグと炉から排出される燃焼性ガスの温度を低下
でき、炉内面の2次燃焼帯及びスラグに面した範囲に水
冷パネルを内張りした場合には、水冷パネルの抜熱量が
低下し、その熱量の分だけ炭材及び酸素原単位が低下す
る。
[0034] The temperature difference between the slag and the molten metal is reduced, the temperature of the slag and the temperature of the combustible gas discharged from the furnace can be reduced accordingly, and the carbonaceous material and the oxygen consumption rate can be reduced by the amount of heat. When the temperature of the slag and the combustible gas discharged from the furnace can be reduced, and the water-cooled panel is lined in the area facing the secondary combustion zone and the slag inside the furnace, the heat removal of the water-cooled panel decreases and the heat , The amount of carbonaceous material and oxygen consumption decreases.

【0035】 炉から排出される燃焼性ガスの温度を
低下でき、炉内面の2次燃焼帯に面した範囲に耐火物を
内張りした場合には、耐火物の損耗速度を低減できるこ
とで、補修又は張り替えの頻度が低下する。 溶融金属の粒がスラグ中に吹き上げられることがな
いため、下部羽口からスラグ内に吹き込まれる酸素又は
酸素富化ガスにより再酸化されることがなく、還元速度
向上、即ち生産速度が向上する。
When the temperature of the combustible gas discharged from the furnace can be lowered and the refractory is lined in a region facing the secondary combustion zone on the inner surface of the furnace, the wear rate of the refractory can be reduced, so that repair or repair can be performed. The frequency of replacement is reduced. Since the molten metal particles are not blown up into the slag, they are not reoxidized by oxygen or oxygen-enriched gas blown into the slag from the lower tuyere, so that the reduction rate, that is, the production rate is improved.

【0036】 溶融金属の粒がスラグ中に吹き上げら
れることがないため、スラグの熱容量及び熱伝導率が小
さくなり、スラグに接する炉壁及び下部羽口を水冷構造
にでき、半永久的に使用できることで、耐火物、羽口コ
スト及び補修、交換のための操業停止頻度が激減する。 金属浴面下の羽口が必要でないため、耐火物、羽口
コスト及び補修、交換のための操業停止頻度が激減す
る。
Since the molten metal particles are not blown up into the slag, the heat capacity and the thermal conductivity of the slag are reduced, and the furnace wall and the lower tuyere in contact with the slag can be water-cooled and can be used semi-permanently. , Refractories, tuyere costs and the frequency of outages for repairs and replacements are drastically reduced. Since the tuyere below the metal bath is not required, refractories, tuyere costs and the frequency of shutdowns for repair and replacement are drastically reduced.

【0037】[0037]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]以下、本発明の第1の実施例を図1〜図5
に基づいて説明する。図1は、本発明に係わる溶融還元
設備の実施例の炉体構造立断面図であり、図2はその側
面図、図3は図1のA−A断面図である。
[Embodiment 1] Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
It will be described based on. FIG. 1 is a vertical sectional view of a furnace body structure of an embodiment of a smelting reduction facility according to the present invention, FIG. 2 is a side view thereof, and FIG. 3 is a sectional view taken along line AA of FIG.

【0038】本実施例は、鉄の還元の場合について説明
するが、本発明が同様の溶融還元法によって製造される
非鉄金属及び鉄合金(例えばクロム、ニッケル、マンガ
ン等)の溶融還元設備についても適用されることは言う
までもない。
Although the present embodiment describes the case of iron reduction, the present invention also applies to a smelting reduction facility for non-ferrous metals and iron alloys (for example, chromium, nickel, manganese, etc.) produced by a similar smelting reduction method. It goes without saying that it applies.

【0039】炉内2次燃焼率を上昇したときの炭材原単
位の減少代を大きくするためには、前述の様に2次燃焼
帯16における前記の式(4),(5)の反応熱のスラ
グ8への移動量を高める、即ちスラグの上下方向の攪拌
を十分に行うことが有効であるが、2次燃焼帯16から
スラグ8への熱移動量は2次燃焼帯16の雰囲気温度と
スラグ8の温度の差の関数でもあるため、溶融金属7と
スラグ8の温度差を極力小さくし、スラグ8の温度を下
げることも極めて有効である。
In order to increase the reduction of the carbon unit consumption when the in-furnace secondary combustion rate is increased, the reaction of the above equations (4) and (5) in the secondary combustion zone 16 is performed as described above. It is effective to increase the amount of heat transferred to the slag 8, that is, to sufficiently agitate the slag in the vertical direction, but the amount of heat transferred from the secondary combustion zone 16 to the slag 8 depends on the atmosphere in the secondary combustion zone 16. Since it is also a function of the difference between the temperature and the temperature of the slag 8, it is also very effective to reduce the temperature difference between the molten metal 7 and the slag 8 as much as possible to lower the temperature of the slag 8.

【0040】また、鉄原料の一部として鉄スクラップを
使用する場合、前述のように、溶融金属7を攪拌し、溶
融金属とスクラップ17の相対速度を増大し、溶融金属
7からスクラップ17への熱移動量を増加することも極
めて有効である。
When iron scrap is used as a part of the iron raw material, the molten metal 7 is agitated as described above to increase the relative speed between the molten metal and the scrap 17 so that the molten metal 7 Increasing the amount of heat transfer is also very effective.

【0041】そこで、図1に示す本発明に係わる溶融還
元設備では、前記炉本体1の底部に、多層巻線を施した
コイル19に交流電流を流して平行移動磁界を生じせし
めるいわゆるリニア型の電磁誘導攪拌装置15を配設し
ている。
Therefore, in the smelting reduction equipment according to the present invention shown in FIG. 1, a so-called linear type in which an alternating current is applied to the bottom of the furnace main body 1 through a coil 19 provided with a multilayer winding to generate a parallel moving magnetic field. An electromagnetic induction stirrer 15 is provided.

【0042】図4は電磁誘導攪拌装置15の電気系統
図、図5は電磁誘導攪拌装置15のコイル19の構造図
の1例である(図中の矢印は電流の方向を示す)。
FIG. 4 is an electric system diagram of the electromagnetic induction stirrer 15, and FIG. 5 is an example of a structural diagram of the coil 19 of the electromagnetic induction stirrer 15 (arrows in the figure indicate directions of current).

【0043】コイル19により発生する磁界による溶銑
7に働く電磁力は、コイル19からの距離、コイル19
と溶銑7の間にある耐火物4及び炉体鉄皮20等の透磁
率、及びコイル19の周波数に依存する。このため、周
波数は耐火物4及び炉体鉄皮20等の透磁率を考慮し
て、0.3〜10Hz程度の低周波数にするのが望まし
い。従って、図4に示すようにトランス21と電磁誘導
攪拌装置15の間に周波数変換器22を設置する。
The electromagnetic force acting on the hot metal 7 due to the magnetic field generated by the coil 19 depends on the distance from the coil 19 and the coil 19
It depends on the magnetic permeability of the refractory 4 and the furnace shell 20 and the like between the iron and the hot metal 7 and the frequency of the coil 19. For this reason, the frequency is desirably set to a low frequency of about 0.3 to 10 Hz in consideration of the magnetic permeability of the refractory 4, the furnace shell 20, and the like. Therefore, as shown in FIG. 4, a frequency converter 22 is provided between the transformer 21 and the electromagnetic induction stirrer 15.

【0044】電磁誘導攪拌装置15のコイル19は図5
に示すように配置されているため、コイル19に0.3
〜10Hzの低周波数の交流電流を流すと、磁界は図5に
示す方向に0.3〜10Hzの周期で水平方向に移動し、
その磁界により溶銑7に働く電磁力により、溶銑7に図
1及び図3に示すように炉の底に平行な流動が発生す
る。
The coil 19 of the electromagnetic induction stirrer 15 is shown in FIG.
As shown in FIG.
When a low-frequency alternating current of 10 to 10 Hz is applied, the magnetic field moves horizontally in the direction shown in FIG.
Due to the electromagnetic force acting on the hot metal 7 by the magnetic field, a flow parallel to the bottom of the furnace is generated in the hot metal 7 as shown in FIGS.

【0045】それにより、溶銑7とスクラップ17、及
びスラグ8と溶銑7の相対速度が増大し、溶銑7からス
クラップ17、及びスラグ8から溶銑7への熱移動量が
増加する。炉の底に平行な流動が溶銑7に発生するた
め、溶銑露出部が形成され、溶銑7が2次燃焼帯16の
雰囲気ガスもしくは上部羽口14から吹き込まれる酸素
と直接接触し、再酸化される心配はない。また、溶銑7
がスラグ8に吹き上げられ、下部羽口13から吹き込ま
れる酸素と直接接触し、再酸化される心配もない。
As a result, the relative speed between the hot metal 7 and the scrap 17 and between the slag 8 and the hot metal 7 increases, and the heat transfer amount from the hot metal 7 to the scrap 17 and from the slag 8 to the hot metal 7 increases. Since a flow parallel to the bottom of the furnace occurs in the hot metal 7, a hot metal exposed portion is formed, and the hot metal 7 comes into direct contact with the atmospheric gas in the secondary combustion zone 16 or the oxygen blown from the upper tuyere 14 and is reoxidized. Don't worry. In addition, hot metal 7
Is blown up by the slag 8 and directly comes into contact with oxygen blown from the lower tuyere 13, so that there is no fear of re-oxidation.

【0046】スクラップ17は、前述のように鉄鉱石等
の他の鉄原料と同様に原料投入口5から投入されるた
め、電磁誘導攪拌装置15は、図2に示すように炉本体
1底部の原料投入口5の真下付近にのみ設置することで
充分である。また、スクラップ17を原料投入口5とは
別のスクラップ投入口から投入する場合には、電磁誘導
攪拌装置15は、炉体1の底部のスクラップ投入口の真
下付近にのみ設置することが適当である。
As described above, the scrap 17 is charged from the raw material charging port 5 in the same manner as other iron raw materials such as iron ore, so that the electromagnetic induction stirring device 15 is provided at the bottom of the furnace main body 1 as shown in FIG. It is sufficient to set it just below the raw material inlet 5. In addition, when the scrap 17 is charged from a scrap input port different from the raw material input port 5, it is appropriate that the electromagnetic induction stirrer 15 is installed only near the bottom of the furnace body 1 directly below the scrap input port. is there.

【0047】表1に、特開平1−502276号公報で
提案された従来技術及び本発明に係わる溶融還元設備の
炭材及び酸素原単位の1例を示す。大型スクラップの溶
解が困難な従来技術に対し、本発明に係わる溶融還元設
備においては、投入鉄原料中のスクラップ比率を30〜
50%に増加することで、従来技術に対し、炭材原単位
が35〜50%、酸素原単位が40〜55%も低下し
た。また、スラグ8体積当たりの溶銑生産速度、即ち同
一形状の炉本体1における溶銑生産速度は、約1.5〜
2倍に向上した。
Table 1 shows one example of the carbonaceous material and the oxygen consumption rate of the smelting reduction facility according to the prior art and the present invention proposed in Japanese Patent Application Laid-Open No. 1-502276. In contrast to the conventional technology in which large-scale scrap is difficult to dissolve, in the smelting reduction facility according to the present invention, the scrap ratio in the input iron raw material is 30 to
By increasing to 50%, the carbonaceous unit consumption and the oxygen consumption unit were reduced by 35 to 50% and 40 to 55%, respectively, compared to the prior art. The hot metal production rate per 8 volumes of slag, that is, the hot metal production rate in the furnace body 1 having the same shape is about 1.5 to 1.5.
Improved by a factor of two.

【0048】[0048]

【表1】 [Table 1]

【0049】[実施例2]本発明の第2の実施例を図
6、図7に基づいて説明する。図6は、本発明に係わる
溶融還元設備の第二の実施例の炉体構造立断面図であ
り、図7はその側面図である。
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a vertical sectional view of a furnace body structure of a second embodiment of the smelting reduction facility according to the present invention, and FIG. 7 is a side view thereof.

【0050】図6に示す本発明に係わる溶融還元設備で
は、炉本体1の底部側面に商用周波数を利用したチャン
ネル型の電磁誘導加熱装置18を配設したことにより、
溶融金属7に図6に示すような流動が発生し、溶融金属
とスクラップ17間では、相対速度が増大し、溶銑7か
らスクラップ17への熱移動量が増えると共に、更にス
ラグ8と溶銑7の相対速度の増大による熱移動の促進及
び溶銑7の誘導加熱による温度補償により、スラグ8と
溶銑7の温度差を少なくすることができる。本実施例で
は、実施例1で示した溶銑7の攪拌による効果に加えて
更に、誘導加熱による溶銑7の加熱の程度に見合った石
炭原単位の削減を可能としている。
In the smelting reduction facility according to the present invention shown in FIG. 6, a channel-type electromagnetic induction heating device 18 utilizing a commercial frequency is provided on the bottom side surface of the furnace main body 1.
6 occurs in the molten metal 7, the relative velocity between the molten metal and the scrap 17 increases, the amount of heat transfer from the hot metal 7 to the scrap 17 increases, and furthermore, the slag 8 and the hot metal 7 The temperature difference between the slag 8 and the hot metal 7 can be reduced by promoting the heat transfer by increasing the relative speed and by compensating the temperature by the induction heating of the hot metal 7. In the present embodiment, in addition to the effect of stirring the hot metal 7 shown in the first embodiment, it is possible to further reduce the unit consumption of coal in accordance with the degree of heating of the hot metal 7 by induction heating.

【0051】[0051]

【発明の効果】本発明の溶融還元炉の炉体構造において
は、前記炉本体の底部に電磁誘導攪拌装置を配設したこ
とにより、金属を攪拌するために金属浴面下の羽口から
ガスを吹き込むことなしに、溶融金属を攪拌し、溶融金
属とスクラップ及びスラグと溶融金属の相対速度を増大
し、溶融金属からスクラップ及びスラグから溶融金属へ
の熱移動量を増大することが可能となることで、以下の
効果が期待できる。
In the furnace body structure of the smelting reduction furnace according to the present invention, the electromagnetic induction stirrer is provided at the bottom of the furnace body, so that the gas is introduced from the tuyere below the metal bath surface to stir the metal. Without blowing the molten metal, it is possible to increase the relative speed between the molten metal and the scrap and the slag and the molten metal, and to increase the heat transfer amount from the molten metal to the scrap and the slag to the molten metal. Thus, the following effects can be expected.

【0052】 鉄原料の一部として大型スクラップを
使用可能となる。 鉄原料中のスクラップ比率を増加できることによ
り、鉄原料中の金属鉄比率を増加でき、炭材及び酸素原
単位が低下すると共に、溶銑生産速度を増加できる。
[0052] Large scrap can be used as a part of the iron raw material. Since the scrap ratio in the iron raw material can be increased, the metal iron ratio in the iron raw material can be increased, the carbon material and the oxygen consumption rate can be reduced, and the hot metal production rate can be increased.

【0053】 スラグと溶融金属の温度差が小さくな
り、その分だけスラグと炉から排出される燃焼性ガスの
温度を低下でき、その熱量の分だけ炭材及び酸素原単位
が低下する。 スラグと炉から排出される燃焼性ガスの温度を低下
でき、炉内面の2次燃焼帯及びスラグに面した範囲に水
冷パネルを内張りした場合には、水冷パネルの抜熱量が
低下し、その熱量の分だけ炭材及び酸素原単位が低下す
る。
The temperature difference between the slag and the molten metal is reduced, the temperature of the slag and the temperature of the combustible gas discharged from the furnace can be reduced by that much, and the amount of carbon material and oxygen consumption can be reduced by the amount of heat. When the temperature of the slag and the combustible gas discharged from the furnace can be reduced, and the water-cooled panel is lined in the area facing the secondary combustion zone and the slag inside the furnace, the heat removal of the water-cooled panel decreases and the heat , The amount of carbonaceous material and oxygen consumption decreases.

【0054】 炉から排出される燃焼性ガスの温度を
低下でき、炉内面の2次燃焼帯に面した範囲に耐火物を
内張りした場合には、耐火物の損耗速度を低減できるこ
とで、補修又は張り替えの頻度が低下する。 溶融金属の粒がスラグ中に吹き上げられることがな
いため、下部羽口からスラグ内に吹き込まれる酸素又は
酸素富化ガスにより再酸化されることがなく、還元速度
向上、即ち生産速度が向上する。
When the temperature of the combustible gas discharged from the furnace can be lowered and the refractory is lined in a region facing the secondary combustion zone on the inner surface of the furnace, the wear rate of the refractory can be reduced, so that repair or repair can be performed. The frequency of replacement is reduced. Since the molten metal particles are not blown up into the slag, they are not reoxidized by oxygen or oxygen-enriched gas blown into the slag from the lower tuyere, so that the reduction rate, that is, the production rate is improved.

【0055】 溶融金属の粒がスラグ中に吹き上げら
れることがないため、スラグの熱容量及び熱伝導率が小
さくなり、スラグに接する炉壁及び下部羽口を水冷構造
にでき、半永久的に使用できることで、耐火物、羽口コ
スト及び補修、交換のための操業停止頻度が激減する。 金属浴面下の羽口が必要でないため、耐火物、羽口
コスト及び補修、交換のための操業停止頻度が激減す
る。
Since the molten metal particles are not blown up into the slag, the heat capacity and the thermal conductivity of the slag are reduced, and the furnace wall and the lower tuyere in contact with the slag can be water-cooled and can be used semipermanently. , Refractories, tuyere costs and the frequency of outages for repairs and replacements are drastically reduced. Since the tuyere below the metal bath is not required, refractories, tuyere costs and the frequency of shutdowns for repair and replacement are drastically reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる溶融還元設備の第1の実施例を
示す炉体構造立断面図。
FIG. 1 is a vertical sectional view of a furnace body structure showing a first embodiment of a smelting reduction facility according to the present invention.

【図2】図1の側面断面図。FIG. 2 is a side sectional view of FIG.

【図3】図1のA−A断面図。FIG. 3 is a sectional view taken along line AA of FIG. 1;

【図4】図1の電磁誘導攪拌装置の電気系統を示す図。FIG. 4 is a diagram showing an electric system of the electromagnetic induction stirrer of FIG. 1;

【図5】図1の電磁誘導攪拌装置のコイル構造の1例を
示す説明図。
FIG. 5 is an explanatory view showing one example of a coil structure of the electromagnetic induction stirrer of FIG. 1;

【図6】本発明に係わる溶融還元設備の第2の実施例を
示す炉体構造立断面図。
FIG. 6 is a vertical sectional view of a furnace structure showing a second embodiment of the smelting reduction facility according to the present invention.

【図7】図4の側面図。FIG. 7 is a side view of FIG. 4;

【図8】従来技術の溶融還元設備の炉体構造立断面図。FIG. 8 is a vertical sectional view of a furnace structure of a conventional smelting reduction facility.

【図9】図6の側面図。FIG. 9 is a side view of FIG. 6;

【符号の説明】 1:炉体 2:基礎 3:水冷パネル 4:耐火物 5:原料投入口 6:ガス排出口 7:溶銑 8:スラグ 9:溶銑溜まり 10:スラグ溜まり 11:出銑口 12:出滓口 13:下部羽口 14:上部羽口 15:電磁誘導攪拌装置 16:2次燃焼帯 17:スクラップ 18:電磁誘導加熱装置 19:コイル 20:炉体鉄皮 21:トランス 22:周波数変換器[Description of Signs] 1: Furnace 2: Base 3: Water-cooled panel 4: Refractory 5: Raw material input port 6: Gas discharge port 7: Hot metal 8: Slag 9: Hot metal pool 10: Slag pool 11: Tap hole 12 : Slag port 13: Lower tuyere 14: Upper tuyere 15: Electromagnetic induction stirrer 16: Secondary combustion zone 17: Scrap 18: Electromagnetic induction heating device 19: Coil 20: Furnace shell 21: Transformer 22: Frequency converter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉本体に金属原料、炭材、及び媒溶剤を
添加し、炉体の側面を水平方向に貫通してスラグに向け
て配設された下部羽口を通じてスラグ中に酸素及び/又
は酸素付加ガスを吹き込んで、溶融金属を直接製造する
設備において、炉本体の底部に水平な方向の移動磁界を
発生せしめるリニア型の電磁誘導攪拌装置を前記炉本体
の底部に配設したことを特徴とする溶融還元設備の炉体
構造。
1. A metal raw material, a carbonaceous material, and a medium solvent are added to a furnace body, and oxygen and / or oxygen is contained in the slag through a lower tuyere penetrating a side surface of the furnace body in a horizontal direction toward the slag. Or, by blowing oxygen-added gas, in a facility for directly producing molten metal, a linear electromagnetic induction stirrer that generates a moving magnetic field in the horizontal direction at the bottom of the furnace body is provided at the bottom of the furnace body. The furnace structure of the smelting reduction facility.
【請求項2】 炉本体に金属原料、炭材、及び媒溶剤を
添加し、炉体の側面を水平方向に貫通してスラグに向け
て配設された下部羽口を通じてスラグ中に酸素及び/又
は酸素付加ガスを吹き込んで、溶融金属を直接製造する
設備において、前記炉本体の底部に電磁誘導加熱装置を
配設したことを特徴とする溶融還元設備の炉体構造。
2. A metal raw material, a carbonaceous material, and a medium solvent are added to a furnace body, and oxygen and / or oxygen is contained in the slag through a lower tuyere that penetrates horizontally through a side surface of the furnace body and is disposed toward the slag. Alternatively, in a facility for directly producing molten metal by blowing an oxygen-added gas, an electromagnetic induction heating device is provided at a bottom portion of the furnace main body, wherein a furnace body structure of the smelting reduction facility is provided.
JP31245696A 1996-11-22 1996-11-22 Structure of furnace body in smelting reduction equipment Pending JPH10152709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31245696A JPH10152709A (en) 1996-11-22 1996-11-22 Structure of furnace body in smelting reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31245696A JPH10152709A (en) 1996-11-22 1996-11-22 Structure of furnace body in smelting reduction equipment

Publications (1)

Publication Number Publication Date
JPH10152709A true JPH10152709A (en) 1998-06-09

Family

ID=18029417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31245696A Pending JPH10152709A (en) 1996-11-22 1996-11-22 Structure of furnace body in smelting reduction equipment

Country Status (1)

Country Link
JP (1) JPH10152709A (en)

Similar Documents

Publication Publication Date Title
KR100325652B1 (en) Production method of metallic iron
JPS6199637A (en) Production of metal and/or formation of slag
US4504307A (en) Method for carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
CA2335753C (en) A direct smelting process
US4414026A (en) Method for the production of ferrochromium
JP3814046B2 (en) How to operate a vertical furnace
JPH10152709A (en) Structure of furnace body in smelting reduction equipment
JPH09272907A (en) Furnace structure in smelting reduction plant
JP4047422B2 (en) How to operate a vertical furnace
EP0950117B1 (en) A method for producing metals and metal alloys
JP2003105452A (en) Method for producing reduced metal
Bergman et al. DC arc furnace technology applied to smelting applications
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
US20240026476A1 (en) Method and apparatus for metals, alloys, mattes, or enriched and cleaned slags production from predominantly oxide feeds
JP4005682B2 (en) How to operate a vertical furnace
JPH10183213A (en) Operation of smelting reduction equipment and furnace body structure therefor
JPH10158707A (en) Structure for furnace body of smelting reduction equipment
Bleloch The electric smelting of iron ores for production of alloy irons and steels and recovery of chromium and vanadium
JPH09263811A (en) Method for melting tinned steel plate scrap
JPH1150118A (en) Smelting reduction equipment and its operation
JP4005683B2 (en) Vertical furnace operation method for treating powdered waste
JP2968142B2 (en) How to operate a shared melting and refining furnace
JPH09272908A (en) Operation of smelting reduction plant
JPH10330812A (en) Smelting reduction equipment and operating method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516