JPH1015739A - Manufacture of wire electric discharge machining electrode wire - Google Patents
Manufacture of wire electric discharge machining electrode wireInfo
- Publication number
- JPH1015739A JPH1015739A JP17949496A JP17949496A JPH1015739A JP H1015739 A JPH1015739 A JP H1015739A JP 17949496 A JP17949496 A JP 17949496A JP 17949496 A JP17949496 A JP 17949496A JP H1015739 A JPH1015739 A JP H1015739A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- electrode wire
- electric discharge
- discharge machining
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ワイヤ放電加工用
電極線の製造方法に係り、特に、ワイヤ放電加工用の極
細電極線の伸線・焼鈍方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode wire for wire electric discharge machining, and more particularly to a method for drawing and annealing an extremely fine electrode wire for wire electric discharge machining.
【0002】[0002]
【従来の技術】ワイヤ放電加工は、被加工物とワイヤと
の間にアーク放電を発生させ、被加工物を溶融させなが
らプログラミングされた所定任意形状に加工するもので
ある。2. Description of the Related Art In the wire electric discharge machining, an arc discharge is generated between a workpiece and a wire, and the workpiece is processed into a predetermined predetermined shape while melting the workpiece.
【0003】現状における一般的なワイヤ放電加工用電
極線として、線径が0.1〜0.3mmφの黄銅(Cu
−Zn)線、合金黄銅線(特公昭59−9298号公
報)、または黄銅に亜鉛(Zn)もしくは黄銅を被覆さ
せた複合線(特公昭57−5648号公報)などを使用
している。この他にも、リードフレーム金型などの微細
加工用電極線として、高強度を有するタングステン・モ
リブデン(W・Mo)線または鋼線に黄銅を被覆させた
複合線(特開昭62−259719号公報)などが挙げ
られ、いずれのワイヤ放電加工用電極線も、通常は伸線
加工によって作製される。[0003] As a general electrode wire for wire electric discharge machining at present, brass (Cu) having a wire diameter of 0.1 to 0.3 mmφ is used.
-Zn) wire, alloy brass wire (JP-B-59-9298), or a composite wire in which brass is coated with zinc (Zn) or brass (JP-B-57-5648). In addition, as a fine processing electrode wire such as a lead frame mold, a tungsten-molybdenum (W.Mo) wire having high strength or a composite wire obtained by coating a steel wire with brass (Japanese Patent Laid-Open No. 62-259719). Gazettes), etc., and any of the electrode wires for wire electric discharge machining is usually produced by wire drawing.
【0004】ワイヤ放電加工用電極線において重要視さ
れている特性としては、引張強度および放電加工性の他
に、真直性が挙げられる。ワイヤの真直性は、自動結線
性を左右し、ワイヤ放電加工のスタート時に、ワイヤ放
電加工機のダイスガイドなどへの線通しを容易にするた
めだけではなく、夜間の無人運転などワイヤ放電加工機
の稼働率を上げるためにも重要である。[0004] In addition to tensile strength and electric discharge machining, straightness is an important characteristic of the wire for wire electric discharge machining. The straightness of the wire affects the automatic wire connection, and not only facilitates the wire through the die guide of the wire EDM at the start of wire EDM, but also the wire EDM such as unmanned operation at night It is also important to increase the operating rate of
【0005】すなわち、ワイヤ放電加工においては、あ
る被加工物の加工から次の被加工物の加工へと移る際
に、使用した部分のワイヤ放電加工用電極線を切断し、
次の被加工物を加工スタート位置まで移動させると共
に、新たなワイヤ放電加工用電極線を送り出して自動結
線を行っているため、ワイヤ放電加工用電極線の真直性
が悪いと自動結線を行うことができず、ワイヤ放電加工
を連続して行うことができなくなる。[0005] That is, in the wire electric discharge machining, when moving from machining of one workpiece to machining of the next workpiece, an electrode wire for wire electric discharge machining of a used portion is cut off.
Since the next workpiece is moved to the machining start position and a new electrode wire for wire electric discharge machining is sent out and automatic connection is performed, automatic connection is performed if the straightness of the electrode wire for wire electric discharge machining is poor. And the wire electric discharge machining cannot be performed continuously.
【0006】従来におけるワイヤ放電加工用電極線の引
張強度と真直性を向上させるための方法として、以下の
ようなものが提案されている。The following methods have been proposed as conventional methods for improving the tensile strength and straightness of an electrode wire for wire electric discharge machining.
【0007】(a) 還元性ガスなどの中で通電加熱す
る方法 (b) 連続加熱炉を用いて加熱しながらワイヤ放電加
工用電極線に張力を与える方法(特開平5−17744
3号公報) (c) ワイヤ放電加工用電極線の伸線加工時にワイヤ
放電加工用電極線の真直性が最も良好となるように仕上
げダイスの位置を調整する方法(特開平3−35809
号公報)(A) A method in which current is heated in a reducing gas or the like. (B) A method in which tension is applied to an electrode wire for wire electric discharge machining while heating using a continuous heating furnace (Japanese Patent Laid-Open No. 17744/1993).
(Claim 3) (c) A method of adjusting the position of a finishing die so that the straightness of the electrode wire for wire electric discharge machining becomes the best during wire drawing of the electrode wire for wire electric discharge machining (Japanese Unexamined Patent Publication No. 3-35809).
No.)
【0008】[0008]
【発明が解決しようとする課題】しかしながら、微細加
工用として使用されているタングステン・モリブデン線
は、硬いために自動結線時のカッター切断がうまくいか
ないと共に、カッターの消耗が黄銅線などと比較して早
いといった問題がある。また、複合線の場合、線断面の
残留応力が不均一になり易く、ダイス伸線加工後に得ら
れるワイヤ放電加工用電極線の真直性にバラツキが生じ
ているのが実態である。However, the tungsten-molybdenum wire used for micromachining is hard, so that the cutting of the cutter during automatic connection is not successful, and the consumption of the cutter is faster than that of brass wire or the like. There is a problem. Further, in the case of a composite wire, the residual stress in the cross section of the wire tends to be non-uniform, and the straightness of the electrode wire for wire electric discharge machining obtained after the die drawing is uneven.
【0009】また、従来の真直性を付与する方法には以
下に示すような問題がある。[0009] The conventional method of imparting straightness has the following problems.
【0010】 例えば、管状炉などの外部加熱による
方法の場合、加熱速度(時間)が極めて遅く、作業効率
が非常に悪い。For example, in the case of a method using external heating such as a tubular furnace, the heating rate (time) is extremely low, and the working efficiency is very poor.
【0011】 還元性ガス(H2 、N2 など)雰囲気
中で加熱する方法の場合、還元性ガスの管理が難しく、
かつ、危険が伴い、特に、ワイヤ放電加工用極細電極線
における真直性付与方法としての実用化は難しい。In the case of the method of heating in a reducing gas (H 2 , N 2, etc.) atmosphere, it is difficult to control the reducing gas,
In addition, there is a danger, and it is difficult to put it to practical use as a method for imparting straightness particularly to an extra-fine electrode wire for wire electric discharge machining.
【0012】 伸線機の仕上げダイス位置を調整して
真直性を向上させる方法の場合、の方法と比較すると
経済的・作業効率的なメリットは大きいものの、仕上げ
ダイスの位置を調整することによりワイヤ放電加工用電
極線の真直性を出すためには、作業者のノウハウおよび
熟練を必要とする。また、ワイヤ放電加工用電極線のサ
イズを変更するごとに仕上げダイスの位置を調整し、線
断面・残留応力分布が点対称となる位置を探さなければ
ならないため、非常に時間がかかる。仮に、点対称とな
る位置を探すことができたとしても、ワイヤ放電加工用
電極線全体に残る残留応力を除去しないかぎり良好な真
直性を得にくい。In the case of a method of improving straightness by adjusting the finishing die position of a wire drawing machine, although there are great economical and working efficiency advantages as compared with the method described above, the wire is adjusted by adjusting the position of the finishing die. In order to achieve the straightness of the electrode wire for electric discharge machining, the know-how and skill of an operator are required. In addition, every time the size of the electrode wire for wire electric discharge machining is changed, the position of the finishing die must be adjusted, and a position where the line cross section and the residual stress distribution are point-symmetrical must be searched. Even if a point-symmetric position can be found, it is difficult to obtain good straightness unless residual stress remaining on the entire electrode wire for wire electric discharge machining is removed.
【0013】そこで本発明は、上記課題を解決し、加熱
速度または加熱時間が速く、加熱炉および還元性ガスを
必要としないと共に、仕上げダイスの位置調整に時間・
熟練を要さず、引張強度・高温引張強度に優れ、ネジレ
がなく、かつ、真直性が良好なワイヤ放電加工用電極線
の製造方法を提供することにある。Therefore, the present invention solves the above-mentioned problems, and does not require a heating furnace or a reducing gas, and requires time and time for adjusting the position of the finishing die.
An object of the present invention is to provide a method for manufacturing an electrode wire for wire electric discharge machining, which does not require skill, has excellent tensile strength and high-temperature tensile strength, has no twist, and has good straightness.
【0014】[0014]
【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、線径が0.01〜0.10mmφ
の極細領域サイズの黄銅電極線または複合電極線の製造
方法において、上記黄銅電極線または複合電極線の引張
強度および真直性を得るための走行通電加熱を行う際
に、 投入エネルギー:0.24×E×I×(1/31/2 ) (E:印加焼鈍電圧、I:印加焼鈍電流(=予熱電流+
加熱電流))で表される投入エネルギーが、15.0〜
17.0となるように印加焼鈍電圧および印加焼鈍電流
を調節するものである。In order to solve the above-mentioned problems, the invention according to claim 1 has a wire diameter of 0.01 to 0.10 mmφ.
In the method for producing a brass electrode wire or a composite electrode wire having the ultrafine region size described above, when conducting running heating for obtaining the tensile strength and straightness of the brass electrode wire or the composite electrode wire, the input energy: 0.24 × E × I × (1/3 1/2) (E: applied annealing voltage, I: applying annealing current (= preheating current +
The input energy represented by (heating current)) is 15.0 to
The applied annealing voltage and the applied annealing current are adjusted so as to be 17.0.
【0015】請求項2の発明は、走行通電加熱の際にお
ける上記黄銅電極線または複合電極線の線径が同じまま
で線速のみを変更する場合、変更後の印加焼鈍電圧E2
を、 E2 =(v´/v)1/2 ×E1 (v´:変更後の線速、v:変更前の線速、E1 :変更
前の印加焼鈍電圧)とする請求項1記載のワイヤ放電加
工用電極線の製造方法である。The invention according to a second aspect of the present invention provides a method for changing the applied annealing voltage E 2 when only the wire speed is changed while the wire diameter of the brass electrode wire or the composite electrode wire is the same during the running heating.
And E 2 = (v ′ / v) 1/2 × E 1 (v ′: linear velocity after change, v: linear velocity before change, E 1 : applied annealing voltage before change). It is a manufacturing method of the electrode wire for wire electric discharge machining described.
【0016】上記数値範囲を限定した理由を以下に述べ
る。The reason for limiting the above numerical range will be described below.
【0017】投入エネルギーの範囲を15.0〜17.
0に限定した理由は、投入エネルギーが15.0未満で
は引張強度には優れるものの、投入エネルギーが少なす
ぎてワイヤ放電加工用電極線の残留応力の除去が不完全
となり、ネジレが発生し易くなるためであり、投入エネ
ルギーが17.0よりも大きいと過焼鈍となり、ネジレ
は発生しないものの引張強度が大幅に低下し、また、真
直性(幅)のバラツキが大きくなるためである。The range of input energy is 15.0-17.
The reason for limiting to 0 is that when the input energy is less than 15.0, the tensile strength is excellent, but the input energy is too small, the removal of the residual stress of the electrode wire for wire electric discharge machining becomes incomplete, and the torsion easily occurs. If the input energy is larger than 17.0, over-annealing occurs and twisting does not occur, but the tensile strength is greatly reduced, and the variation in straightness (width) is large.
【0018】以上の構成によれば、線径が0.01〜
0.10mmφの極細領域サイズの黄銅電極線または複
合電極線の製造方法において、上記黄銅電極線または複
合電極線の引張強度および真直性を得るための走行通電
加熱を行う際に、 投入エネルギー:0.24×E×I×(1/31/2 ) (E:印加焼鈍電圧、I:印加焼鈍電流(=予熱電流+
加熱電流))で表される投入エネルギーが、15.0〜
17.0となるように印加焼鈍電圧および印加焼鈍電流
を調節したため、加熱速度または加熱時間が速く、加熱
炉および還元性ガスを必要としないと共に、仕上げダイ
スの位置調整に時間・熟練を要さず、引張強度・高温引
張強度に優れ、ネジレがなく、かつ、真直性が良好なワ
イヤ放電加工用電極線を得ることができる。According to the above construction, the wire diameter is 0.01 to
In the method for producing a brass electrode wire or a composite electrode wire having an ultra-fine area size of 0.10 mmφ, when performing energizing heating for traveling to obtain the tensile strength and straightness of the brass electrode wire or the composite electrode wire, the input energy: 0 .24 × E × I × (1/3 1/2) (E: applied annealing voltage, I: applying annealing current (= preheating current +
The input energy represented by (heating current)) is 15.0 to
Since the applied annealing voltage and the applied annealing current were adjusted to 17.0, the heating rate or the heating time was high, so that a heating furnace and a reducing gas were not required, and it took time and skill to adjust the position of the finishing die. In addition, it is possible to obtain an electrode wire for wire electric discharge machining that is excellent in tensile strength and high-temperature tensile strength, free from twisting, and has good straightness.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。Embodiments of the present invention will be described below.
【0020】本発明のワイヤ放電加工用電極線の製造装
置の概略図を図1に示す。FIG. 1 is a schematic view of an apparatus for manufacturing an electrode wire for wire electric discharge machining according to the present invention.
【0021】図1に示すように、本発明のワイヤ放電加
工用電極線の製造装置1は、連続伸線機3、通電加熱装
置(アニーラ)5、巻取装置9とで構成される。As shown in FIG. 1, an apparatus 1 for manufacturing an electrode wire for wire electric discharge machining according to the present invention comprises a continuous wire drawing machine 3, an electric heating device (annealer) 5, and a winding device 9.
【0022】連続伸線機3は、ワイヤ放電加工用電極線
(以下、ワイヤと呼ぶ)Wをボビン状の軸(図示せず)
に巻き付けてなるワイヤ母材2から供給されるワイヤW
を伸線すべく伸線ダイス4を複数個(図中では2個)備
え、各伸線ダイス4の前後にそれぞれプーリ11を備え
たものである。The continuous wire drawing machine 3 uses a bobbin-shaped shaft (not shown) to move an electrode wire W for wire electric discharge machining (hereinafter referred to as a wire).
W supplied from a wire base material 2 wound around
Are provided with a plurality of drawing dies 4 (two in the figure), and pulleys 11 are provided before and after each drawing die 4, respectively.
【0023】通電加熱装置5は、連続伸線機3から送給
されるワイヤWの歪みエネルギーを除去するための焼鈍
を行う通電加熱部5aと焼鈍後のワイヤWの冷却を行う
冷却部5bとで構成される。通電加熱部5aは、予熱ゾ
ーン6および加熱ゾーン7とでなる。The electric heating unit 5 includes an electric heating unit 5a for performing annealing for removing strain energy of the wire W supplied from the continuous wire drawing machine 3 and a cooling unit 5b for cooling the wire W after annealing. It consists of. The energization heating section 5 a includes a preheating zone 6 and a heating zone 7.
【0024】巻取装置9は、通電加熱装置5から送給さ
れるワイヤWを巻き取るべくボビン10を備えたもので
ある。The winding device 9 is provided with a bobbin 10 for winding the wire W fed from the electric heating device 5.
【0025】次に、本発明のワイヤ放電加工用電極線の
製造方法を説明する。Next, a method of manufacturing the electrode wire for wire electric discharge machining according to the present invention will be described.
【0026】本発明のワイヤ放電加工用電極線の製造方
法は、伸線工程、通電加熱工程、および巻取工程の3つ
の部分に大別される。The method for manufacturing an electrode wire for wire electric discharge machining according to the present invention is roughly divided into three parts: a wire drawing step, an electric heating step, and a winding step.
【0027】ワイヤ母材2から供給されるワイヤWを伸
線工程である連続伸線機3に送給し、伸線ダイス4aに
挿通して伸線加工を施す。伸線ダイス4aを挿通したワ
イヤWを、伸線ダイス4aの後方に位置するプーリ11
bを介して逆走行させると共に、伸線ダイス4aの前方
に位置するプーリ11aを介して伸線ダイス4aをもう
一度挿通させて仕上げ加工を施す。その後、ワイヤWを
ダイス径が伸線ダイス4aよりも小径な伸線ダイス4b
に挿通して伸線加工を施す。伸線ダイス4bを挿通した
ワイヤWを、伸線ダイス4bの後方に位置するプーリ1
1dを介して逆走行させると共に、伸線ダイス4bの前
方に位置するプーリ11cを介して伸線ダイス4bをも
う一度挿通させて所定の線径とする仕上げ加工を施す。The wire W supplied from the wire preform 2 is fed to a continuous wire drawing machine 3 which is a wire drawing process, and is passed through a wire drawing die 4a for wire drawing. The wire W passed through the wire drawing die 4a is pulled by a pulley 11 located behind the wire drawing die 4a.
b, and the wire drawing die 4a is inserted again through the pulley 11a located in front of the wire drawing die 4a to perform finishing. Thereafter, the wire W is drawn into a wire drawing die 4b having a smaller diameter than the wire drawing die 4a.
And wire drawing. The wire W inserted through the wire drawing die 4b is pulled into the pulley 1 located behind the wire drawing die 4b.
In addition to running backward through 1d, the wire drawing die 4b is inserted again through the pulley 11c located in front of the wire drawing die 4b to perform finishing processing to a predetermined wire diameter.
【0028】伸線加工を施したワイヤWは、通電加熱工
程である通電加熱装置5に送給され、ガイドプーリ12
を介して通電加熱部5a、冷却部5bを走行する。The wire W that has been subjected to the wire drawing is fed to an electric heating device 5 which is an electric heating step,
Through the heating section 5a and the cooling section 5b.
【0029】予熱電圧印加地点P1 においてワイヤWに
予熱電圧を印加することによって予熱電流が流れ、この
予熱電流によってワイヤWを予熱する。その後、印加焼
鈍電圧印加地点P2 においてワイヤWに印加焼鈍電圧E
を印加する。ここで、予熱電圧印加地点P1 〜印加焼鈍
電圧印加地点P2 間が予熱ゾーン6となる。The preheating current flows by applying a preheating voltage to the wire W at the preheating voltage application point P 1, to preheat the wire W by the preheating current. Then, at the point P 2 of the applied annealing voltage, the applied annealing voltage E
Is applied. Here, between the preheating voltage applying point P 1 ~ applied annealing voltage applying point P 2 is preheating zone 6.
【0030】印加焼鈍電圧Eを印加することによって、
ワイヤWにおける印加焼鈍電圧印加地点P2 の下流側に
は、予熱電流と加熱電流とが合わさって印加焼鈍電流I
が流れる。印加焼鈍電流Iを通電したワイヤWを冷却部
5bに送給し、アニーラ冷却水Cに浸漬すると共に、ア
ース地点P3 において放電する。ここで、印加焼鈍電圧
印加地点P2 〜アース地点間P3 が加熱ゾーン7とな
る。By applying the applied annealing voltage E,
On the downstream side of the applied annealing voltage application point P 2 on the wire W, the pre-heating current and the heating current are combined to apply the applied annealing current I
Flows. Feeding the wire W which is energized to apply annealing current I to the cooling unit 5b feeds, while immersed in annealer coolant C, and discharged at ground point P 3. Here, the heating zone 7 is between the point P 2 of applying the applied annealing voltage and the point P 3 between the ground point.
【0031】この時、通電加熱装置5の予熱ゾーン6、
加熱ゾーン7における通電加熱処理条件の内、投入エネ
ルギーが、 投入エネルギー:0.24×E×I×(1/31/2 )=
15.0〜17.0 (1/31/2 :エネルギー損失係数)となるように印加
焼鈍電圧Eおよび印加焼鈍電流Iを調節することによっ
て、ネジレがなく、真直性(カール率、幅、山など)が
良好で、硬質材としての引張強度(高温強度も含む)に
優れたワイヤ放電加工用電極線を得ることができる。こ
こで、エネルギー損失係数とは、アニーラ冷却水C中で
エネルギー(電流および電圧)を印加することによって
生じるエネルギーの損失の割合(無理数)を根号化した
ものである。At this time, the preheating zone 6,
Among the energization heat treatment conditions in the heating zone 7, the input energy is: input energy: 0.24 × E × I × (1/3 1/2 ) =
15.0 to 17.0: By adjusting the applied annealing voltage E and the applied annealing current I so that the (1/3 1/2 energy loss factor), without torsion, straightness (curl index, width, Thus, it is possible to obtain an electrode wire for wire electric discharge machining, which has good peaks and excellent tensile strength (including high-temperature strength) as a hard material. Here, the energy loss coefficient is a value obtained by applying a ratio of energy loss (irrational number) caused by applying energy (current and voltage) in the anneal cooling water C.
【0032】その後、ワイヤWを巻取装置9に送給する
と共にボビン10に巻取って、本発明のワイヤ放電加工
用電極線を得る。Thereafter, the wire W is fed to the winding device 9 and wound on the bobbin 10 to obtain the electrode wire for wire electric discharge machining of the present invention.
【0033】また、ワイヤWの線径は同じままで線速の
みを変更する場合、変更後の印加焼鈍電圧E2 は、 E2 =(v´/v)1/2 ×E1 (v´:変更後の線速、v:変更前の線速、E1 :変更
前の印加焼鈍電圧)で表される。When only the linear velocity is changed while keeping the wire diameter of the wire W the same, the applied annealing voltage E 2 after the change is: E 2 = (v ′ / v) 1/2 × E 1 (v ′) : Linear velocity after the change, v: linear velocity before the change, E 1 : applied annealing voltage before the change).
【0034】変更前の印加焼鈍電圧E1 に線速比(=変
更後の線速/変更前の線速)をそのまま乗しただけで
は、ワイヤWが過焼鈍となってしまうため、引張強度が
大幅に低下すると共に真直性のバラツキも大きくなる。
このため、変更前の通電加熱処理条件で得られていた真
直性(歪エネルギーの除去)を線速変更後においても確
保するために、変更前の印加焼鈍電圧E1 に線速比(=
変更後の線速/変更前の線速)の1/2乗を乗する。こ
れによって、線速変更後もネジレがなく、真直性が良好
で、引張強度(高温強度も含む)に優れたワイヤ放電加
工用電極線を得ることができる。If the linear velocity ratio (= the linear velocity after the modification / the linear velocity before the modification) is simply multiplied by the applied annealing voltage E 1 before the modification as it is, the wire W will be over-annealed. This greatly reduces the variation in straightness as well.
Therefore, in order also to ensure after the linear velocity change (removal of strain energy) obtained have a straightness in ohmic heating treatment conditions before the change, the linear velocity ratio to the applied annealing voltage E 1 before the change (=
The linear velocity after the change / the linear velocity before the change) is raised to the power of 1/2. As a result, it is possible to obtain an electrode wire for wire electric discharge machining which is free from twisting even after the change in the linear velocity, has good straightness, and has excellent tensile strength (including high-temperature strength).
【0035】[0035]
(実施例1)直径が115mmφ、長さが900mmの
ビレットを、熱間押出しによって直径6.5mmφの母
材を作製する。この母材に伸線・焼鈍加工を繰り返すこ
とによって、直径0.175mmφの中間材を作製す
る。この中間材に、線速が200m/min、印加焼鈍
電流が3.9A(予熱電流1.9A、加熱電流2.0
A)、印加焼鈍電圧が30.0V、投入エネルギーが1
6.21という条件の走行通電加熱を行い、直径0.0
7mmφのワイヤ放電加工用電極線を作製した。(Example 1) A billet having a diameter of 115 mm and a length of 900 mm is formed into a base material having a diameter of 6.5 mm by hot extrusion. By repeating wire drawing and annealing on this base material, an intermediate material having a diameter of 0.175 mmφ is produced. A linear velocity of 200 m / min, an applied annealing current of 3.9 A (a preheating current of 1.9 A, a heating current of 2.0
A), the applied annealing voltage is 30.0 V, and the input energy is 1
Electric heating for running under the condition of 6.21 is performed, and the diameter is 0.0
An electrode wire for wire electric discharge machining having a diameter of 7 mm was produced.
【0036】(実施例2)実施例1と同様の中間材に、
線速が200m/min、印加焼鈍電流が3.6A(予
熱電流1.8A、加熱電流1.8A)、印加焼鈍電圧が
30.3V、投入エネルギーが15.11という条件の
走行通電加熱を行い、直径0.07mmφのワイヤ放電
加工用電極線を作製した。Example 2 The same intermediate material as in Example 1 was used.
Running energization heating is performed under the conditions that the linear velocity is 200 m / min, the applied annealing current is 3.6 A (preheating current 1.8 A, heating current 1.8 A), the applied annealing voltage is 30.3 V, and the input energy is 15.11. And an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0037】(実施例3)実施例1と同様の中間材に、
線速が200m/min、印加焼鈍電流が3.7A(予
熱電流1.8A、加熱電流1.9A)、印加焼鈍電圧が
30.5V、投入エネルギーが15.64という条件の
走行通電加熱を行い、直径0.07mmφのワイヤ放電
加工用電極線を作製した。Example 3 The same intermediate material as in Example 1 was used.
Running energization heating is performed under the conditions that the linear velocity is 200 m / min, the applied annealing current is 3.7 A (preheating current 1.8 A, heating current 1.9 A), the applied annealing voltage is 30.5 V, and the input energy is 15.64. And an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0038】(比較例1)実施例1と同様の中間材に、
線速が200m/min、印加焼鈍電流が3.3A(予
熱電流1.6A、加熱電流1.7A)、印加焼鈍電圧が
24.0V、投入エネルギーが10.97という条件の
走行通電加熱を行い、直径0.07mmφのワイヤ放電
加工用電極線を作製した。Comparative Example 1 The same intermediate material as in Example 1
Running energization heating is performed under the conditions that the linear velocity is 200 m / min, the applied annealing current is 3.3 A (preheating current 1.6 A, heating current 1.7 A), the applied annealing voltage is 24.0 V, and the input energy is 10.97. And an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0039】(比較例2)実施例1と同様の中間材に、
線速が200m/minの伸線加工のみを施し、直径
0.07mmφのワイヤ放電加工用電極線を作製した。(Comparative Example 2) The same intermediate material as in Example 1
Only wire drawing at a linear speed of 200 m / min was performed to produce an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0040】(比較例3)実施例1と同様の中間材に、
線速が200m/min、印加焼鈍電流が4.3A(予
熱電流2.1A、加熱電流2.2A)、印加焼鈍電圧が
40.0V、投入エネルギーが23.83という条件の
走行通電加熱を行い、直径0.07mmφのワイヤ放電
加工用電極線を作製した。Comparative Example 3 The same intermediate material as in Example 1 was used.
Running energization heating is performed under the conditions that the linear velocity is 200 m / min, the applied annealing current is 4.3 A (preheating current 2.1 A, heating current 2.2 A), the applied annealing voltage is 40.0 V, and the input energy is 23.83. And an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0041】(比較例4)実施例1と同様の中間材に、
線速が200m/min、印加焼鈍電流が5.1A(予
熱電流2.5A、加熱電流2.6A)、印加焼鈍電圧が
48.5V、投入エネルギーが34.27という条件の
走行通電加熱を行い、直径0.07mmφのワイヤ放電
加工用電極線を作製した。(Comparative Example 4) The same intermediate material as in Example 1
Running energization heating is performed under the conditions that the linear velocity is 200 m / min, the applied annealing current is 5.1 A (preheating current 2.5 A, heating current 2.6 A), the applied annealing voltage is 48.5 V, and the input energy is 34.27. And an electrode wire for wire electric discharge machining having a diameter of 0.07 mmφ.
【0042】実施例1〜3および比較例1〜4のワイヤ
放電加工用電極線の諸元および評価結果を表1に示す。Table 1 shows the specifications and evaluation results of the electrode wires for wire electric discharge machining in Examples 1 to 3 and Comparative Examples 1 to 4.
【0043】[0043]
【表1】 [Table 1]
【0044】ここで、ワイヤ放電加工用電極線の評価
は、引張強度(MPa)、真直性(カール率(%)、カ
ール幅(mm)、カール山(個))、およびネジレの有
無について行った。カール率はワイヤ放電加工用電極線
の全長に対するカール部の割合であり、カール幅はワイ
ヤ放電加工用電極線の湾曲幅であり、カール山はワイヤ
放電加工用電極線の全長中における山の数である。Here, the evaluation of the electrode wire for wire electric discharge machining was performed with respect to tensile strength (MPa), straightness (curl rate (%), curl width (mm), curl peak (piece)), and presence or absence of twist. Was. The curl ratio is the ratio of the curl portion to the entire length of the electrode wire for wire electric discharge machining, the curl width is the curved width of the electrode wire for wire electric discharge machining, and the curl peak is the number of peaks in the entire length of the electrode wire for wire electric discharge machining. It is.
【0045】表1に示すように、実施例1〜3のワイヤ
放電加工用電極線は、投入エネルギーをそれぞれ16.
21、15.11、15.64と規定範囲(15.0〜
17.0)内に制御しているため、引張強度がいずれも
1,700MPa以上と良好であり、また、真直性につ
いてもカール率が約0.2%以下、幅が約15mm以
下、山が1個と良好であった。さらに、ネジレの発生は
全く認められなかった。As shown in Table 1, each of the electrode wires for wire electric discharge machining of Examples 1 to 3 had the input energy of 16.
21, 15.11, 15.64 and the specified range (15.0 to
17.0), the tensile strength is as good as 1,700 MPa or more, and the straightness is about 0.2% or less, the width is about 15 mm or less, and the peak is One was good. Furthermore, no twisting was observed.
【0046】これに対して、比較例1および比較例2の
ワイヤ放電加工用電極線の場合、引張強度はそれぞれ
1,872MPa、1,978MPaと良好であるが、
投入エネルギーがそれぞれ10.97、0と規定範囲よ
り小さいため、ワイヤ放電加工用電極線の残留応力の除
去が不完全であり、ネジレの発生が認められる。On the other hand, in the case of the electrode wires for wire electric discharge machining of Comparative Examples 1 and 2, the tensile strengths were as good as 1,872 MPa and 1,978 MPa, respectively.
Since the input energies are 10.97 and 0, respectively, smaller than the specified ranges, the residual stress of the electrode wire for wire electric discharge machining is incompletely removed, and twisting is observed.
【0047】比較例3および比較例4のワイヤ放電加工
用電極線の場合、ネジレの発生は認められないものの、
投入エネルギーがそれぞれ23.83、34.27と規
定範囲より大きいため、過焼鈍となってしまい引張強度
が大幅に低下すると共に真直性のバラツキも大きくな
る。In the case of the electrode wires for wire electric discharge machining of Comparative Examples 3 and 4, although no twisting was observed,
Since the input energies are 23.83 and 34.27, respectively, which are larger than the specified ranges, over-annealing occurs, the tensile strength is greatly reduced, and the variation in straightness is also large.
【0048】投入エネルギーと引張強度および投入エネ
ルギーと真直性・幅との関係を図2に示す。(a)の曲
線は引張強度を、(b)の曲線は真直性・幅を表してい
る。FIG. 2 shows the relationship between the input energy and the tensile strength and the relationship between the input energy and the straightness / width. The curve (a) shows the tensile strength, and the curve (b) shows the straightness / width.
【0049】図2の曲線(a)に示すように、引張強度
は投入エネルギーが約10の時にその最大値(約1,8
70MPa)を示し、その後は投入エネルギーの増加と
共に、低下している。これに対して、図2の曲線(b)
に示すように、真直性・幅は投入エネルギーが約15と
約17の時に極少値(それぞれ、約5mm、約10m
m)を示す。この時の引張強度は、それぞれ約1,72
0MPa、約1,740MPaである。投入エネルギー
が15〜17の範囲内においては、投入エネルギーが約
16の時に極大値を示し、真直性・幅が約14mm、引
張強度が約1,750MPaとなる。投入エネルギーが
約15〜17の範囲を少しでも外れる(<15または1
7<)と、真直性・幅は急激に悪化する(大きくな
る)。As shown by the curve (a) in FIG. 2, the tensile strength reaches its maximum value (about 1,8 when the input energy is about 10).
70 MPa), and thereafter decreases with an increase in the input energy. In contrast, the curve (b) in FIG.
As shown in the figure, the straightness and width are minimal when the input energy is about 15 and about 17 (about 5 mm and about 10 m, respectively).
m). The tensile strength at this time was about 1,72, respectively.
0 MPa, about 1,740 MPa. When the input energy is in the range of 15 to 17, the maximum value is exhibited when the input energy is about 16, the straightness / width is about 14 mm, and the tensile strength is about 1,750 MPa. The input energy is slightly out of the range of about 15 to 17 (<15 or 1
7 <), the straightness / width sharply deteriorates (increases).
【0050】ワイヤ放電加工用電極線においては、引張
強度および放電加工性は言うまでもなく、真直性(すな
わち、自動結線性)が重要視されている。このことか
ら、ワイヤ放電加工用電極線の通電加熱の際に印加する
投入エネルギーは、15.0〜17.0の範囲が最も望
ましい。また、この範囲におけるワイヤ放電加工用電極
線の引張強度は1,700MPa以上であり、十分な強
度を有していることは言うまでもない。In the electrode wire for wire electric discharge machining, straightness (that is, automatic connection) is regarded as important, not to mention tensile strength and electric discharge machinability. For this reason, it is most desirable that the input energy to be applied at the time of energizing and heating the electrode wire for wire electric discharge machining be in the range of 15.0 to 17.0. Further, it is needless to say that the tensile strength of the electrode wire for wire electric discharge machining in this range is 1,700 MPa or more, and has a sufficient strength.
【0051】[0051]
【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。In summary, according to the present invention, the following excellent effects are exhibited.
【0052】(1) 引張強度・高温引張強度に優れ、
ネジレがなく、かつ、真直性が良好なワイヤ放電加工用
電極線を得ることができる。(1) Excellent tensile strength and high temperature tensile strength,
It is possible to obtain an electrode wire for wire electric discharge machining which has no twist and has good straightness.
【0053】(2) ワイヤ放電加工用電極線の加熱
が、管状炉などの外部加熱による方法ではないため、加
熱速度または加熱時間が速い。(2) Since the heating of the electrode wire for wire electric discharge machining is not a method based on external heating such as a tubular furnace, the heating rate or the heating time is high.
【0054】(3) ワイヤ放電加工用電極線の加熱
が、還元性ガス雰囲気中による方法ではないため、還元
性ガスの管理が難しく、かつ、危険が伴うということが
ない。(3) Since the heating of the electrode wire for wire electric discharge machining is not performed in a reducing gas atmosphere, it is difficult to control the reducing gas and there is no danger.
【0055】(4) 本発明のワイヤ放電加工用電極線
の製造方法においては、真直性の向上のために伸線ダイ
スを用いるものの、ワイヤ放電加工用電極線全体に残る
残留応力の除去は通電加熱によって行っているため、仕
上げダイスの位置調整に時間・熟練を要さない。(4) In the method of manufacturing an electrode wire for wire electric discharge machining according to the present invention, although a wire drawing die is used for improving straightness, the residual stress remaining on the entire electrode wire for wire electric discharge machining is removed by energization. Since heating is performed, time and skill are not required for adjusting the position of the finishing die.
【図1】本発明のワイヤ放電加工用電極線の製造装置の
概略図である。FIG. 1 is a schematic view of an apparatus for manufacturing an electrode wire for wire electric discharge machining according to the present invention.
【図2】投入エネルギーと引張強度および真直性との関
係を示す図である。FIG. 2 is a diagram showing a relationship between input energy, tensile strength, and straightness.
【符号の説明】 1 製造装置 2 ワイヤ母材 3 連続伸線機 5 通電加熱装置 5a 通電加熱部 5b 冷却部 6 予熱ゾーン 7 加熱ゾーン 9 巻取装置 W ワイヤ放電加工用電極線(黄銅電極線または複合電
極線) C アニーラ冷却水 P1 予熱電圧印加地点 P2 印加焼鈍電圧印加地点 P3 アース地点[Description of Signs] 1 Manufacturing apparatus 2 Wire preform 3 Continuous wire drawing machine 5 Electric heating device 5a Electric heating unit 5b Cooling unit 6 Preheating zone 7 Heating zone 9 Winding device W Electrode wire for wire electric discharge machining (brass electrode wire or Composite electrode wire) C Annealer cooling water P 1 Preheating voltage application point P 2 Applied annealing voltage application point P 3 Earth point
Claims (2)
領域サイズの黄銅電極線または複合電極線の製造方法に
おいて、上記黄銅電極線または複合電極線の引張強度お
よび真直性を得るための走行通電加熱を行う際に、 投入エネルギー:0.24×E×I×(1/31/2 ) (E:印加焼鈍電圧、I:印加焼鈍電流(=予熱電流+
加熱電流))で表される投入エネルギーが、15.0〜
17.0となるように印加焼鈍電圧および印加焼鈍電流
を調節することを特徴とするワイヤ放電加工用電極線の
製造方法。1. A method for producing a brass electrode wire or a composite electrode wire having a wire diameter of 0.01 to 0.10 mmφ in an ultrafine region size, wherein the brass electrode wire or the composite electrode wire has a tensile strength and a straightness. when performing driving electric heating, input energy: 0.24 × E × I × ( 1/3 1/2) (E: applied annealing voltage, I: applying annealing current (= preheating current +
The input energy represented by (heating current)) is 15.0 to
A method for producing an electrode wire for wire electric discharge machining, wherein an applied annealing voltage and an applied annealing current are adjusted so as to be 17.0.
線または複合電極線の線径が同じままで線速のみを変更
する場合、変更後の印加焼鈍電圧E2 を、 E2 =(v´/v)1/2 ×E1 (v´:変更後の線速、v:変更前の線速、E1 :変更
前の印加焼鈍電圧)とする請求項1記載のワイヤ放電加
工用電極線の製造方法。2. In the case where only the wire speed is changed while the wire diameter of the brass electrode wire or the composite electrode wire is the same at the time of running electric heating, the applied annealing voltage E 2 after the change is expressed as E 2 = (v ′). / V) 1/2 × E 1 (v ′: linear velocity after change, v: linear velocity before change, E 1 : applied annealing voltage before change). Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17949496A JPH1015739A (en) | 1996-07-09 | 1996-07-09 | Manufacture of wire electric discharge machining electrode wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17949496A JPH1015739A (en) | 1996-07-09 | 1996-07-09 | Manufacture of wire electric discharge machining electrode wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1015739A true JPH1015739A (en) | 1998-01-20 |
Family
ID=16066813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17949496A Pending JPH1015739A (en) | 1996-07-09 | 1996-07-09 | Manufacture of wire electric discharge machining electrode wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1015739A (en) |
-
1996
- 1996-07-09 JP JP17949496A patent/JPH1015739A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4668672B2 (en) | Wet wire drawing method for metal wire | |
US3800405A (en) | Method for producing copper-clad aluminum wire | |
KR19980032838A (en) | Method of manufacturing stainless steel strip | |
CN116441345A (en) | Processing method of copper-clad aluminum composite material | |
JPH1015739A (en) | Manufacture of wire electric discharge machining electrode wire | |
EP0314667B2 (en) | Process and apparatus for manufacturing thin wires, rods, pipes or sections made of steels or alloys with a low deformability, particularly of hardenable steels | |
JP2644911B2 (en) | Wire-type electrode for electric discharge machining and method of manufacturing the same | |
US3802061A (en) | Process for splicing and drawing metallic strand and wire article made thereby | |
USRE28526E (en) | Method for producing copper-clad aluminum wire | |
JPH0857531A (en) | Wet type drawing method for metallic wire | |
JPH06154840A (en) | Drawing method for electrode wire used for wire-electrical discharge machining | |
JPH11285892A (en) | Manufacture of fine flux cored wire for welding stainless steel | |
JPH04274815A (en) | High speed wire drawing method for extra fine steel wire | |
JPS5938303B2 (en) | Improved solution heat treatment method for aluminum alloys such as 6201 | |
JPH08323440A (en) | Straightening method for bends of metal wire | |
CN115229700B (en) | Saw wire | |
EP0496726A2 (en) | Method and installation for continuous manufacture of coiled wire | |
JPS6366892B2 (en) | ||
JPH06158251A (en) | Method and apparatus for continuous annealing in plastic working | |
JPH10156584A (en) | Manufacture of flux-cored wire for welding | |
CN106926001A (en) | A kind of devices and methods therefor for improving high-carbon wire rod joint quality | |
JP3332196B2 (en) | Method of manufacturing electrode wire for electric discharge machining | |
RU2157304C1 (en) | Method for separating elongated rope blank | |
JPH09225748A (en) | Manufacture of electrode wire for electrical discharge machining | |
US3461471A (en) | Method of forming lock washers by rolling multiple sections from a single rod |