JPH10156855A - Manufacture of thermoplastic resin foam - Google Patents

Manufacture of thermoplastic resin foam

Info

Publication number
JPH10156855A
JPH10156855A JP8325166A JP32516696A JPH10156855A JP H10156855 A JPH10156855 A JP H10156855A JP 8325166 A JP8325166 A JP 8325166A JP 32516696 A JP32516696 A JP 32516696A JP H10156855 A JPH10156855 A JP H10156855A
Authority
JP
Japan
Prior art keywords
temperature
thermoplastic resin
foaming agent
foaming
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8325166A
Other languages
Japanese (ja)
Inventor
Noritaka Tsujimoto
典孝 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8325166A priority Critical patent/JPH10156855A/en
Publication of JPH10156855A publication Critical patent/JPH10156855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoplastic resin foam even in the case where a foam is successively manufactured at a rapid feed speed, preceeding foaming at an end part of an expandable sheet is prevented, and foaming which produces cells having similar shapes as far as posible, can be executed. SOLUTION: In this manufacturing method, a long expandable sheet 6 containing a pyrolysis foaming agent is successively sent into a preheating oven 2. After preheating to a temperature just before decomposition start temperature of the pyrogenic foaming agent, the preheated expandable sheet 6 is successively sent into a foam oven 3, heated at a temperature or higher wherein the pyrogenic foaming agent is thoroughly decomposed to foam pyrogenic foaming agent thoroughly. In this case, for temperature at an outlet of the preheating oven 2 of the expandable sheet 6 the expandable sheet is preheated so that temperature distribution in a thickness direction becomes surface temperature-central temperature in thickness direction <=5 deg.C, temperature distribution in width direction of the expandable sheet 6 becomes temperature at end part < width direction center temperature, and temperature difference between both end parts <=3 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂発泡
体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic resin foam.

【0002】[0002]

【従来の技術】従来、シート状の熱可塑性樹脂発泡体
は、熱分解型発泡剤を含有する発泡性熱可塑性樹脂シー
ト(以下、「発泡性シート」と記す)を、熱分解型発泡
剤の熱分解開始温度の近傍まで予熱したのち、この予熱
された発泡性シートを加熱炉で熱分解型発泡剤の熱分解
温度以上にさらに加熱して発泡を完了させることで製造
されるようになっている。
2. Description of the Related Art Conventionally, a sheet-shaped thermoplastic resin foam is formed by expanding a foamable thermoplastic resin sheet containing a pyrolytic foaming agent (hereinafter referred to as an “expandable sheet”). After being preheated to a temperature close to the thermal decomposition start temperature, the preheated foamable sheet is heated in a heating furnace to a temperature higher than the thermal decomposition temperature of the thermal decomposition type foaming agent to complete the foaming. I have.

【0003】しかし、発泡性シートは、その両端部が上
下および側面からの三方向から加熱されるため、中央部
より熱を受けやすく、両端部の熱分解型発泡剤が先行発
泡しやすくなる。そして、熱分解型発泡剤の先行発泡し
た部分が巨大な皺を発生するため、発泡が不安定とな
り、また、皺同士が付着して、表面性を損ねる恐れがあ
る。
[0003] However, since the foamable sheet is heated in three directions from the top and bottom and from the side, both ends thereof are more susceptible to heat from the center, and the pyrolytic foaming agent at both ends tends to pre-foam. Then, since the pre-foamed portion of the thermal decomposition type foaming agent generates huge wrinkles, foaming becomes unstable, and wrinkles may adhere to each other to impair the surface properties.

【0004】そこで、特開昭57−126630号公報
では、発泡性シートを発泡開始まで、赤外線加熱炉で予
熱するとともに、予熱の際に発泡性シートの両端部の赤
外線密度をその他(幅方向中心)より低くする方法を提
案している。すなわち、発泡性シートの赤外線密度を下
げることによって両端部の加熱温度を中心部より低くし
て先行発泡を抑えるようにしている。
In Japanese Patent Application Laid-Open No. 57-126630, the foamable sheet is preheated in an infrared heating furnace until the start of foaming, and at the time of preheating, the infrared density at both ends of the foamable sheet is set to other values (center in the width direction). ) Suggest a way to lower it. That is, by lowering the infrared density of the foamable sheet, the heating temperature at both ends is made lower than that at the center to suppress the preceding foaming.

【0005】しかし、実際の発泡では端部の温度を中心
部より下げるだけでは端部の先行発泡を抑える事はでき
ないのが現状である。なぜなら、端部の温度が幅方向の
中心部より低くても、シートが厚み方向に温度分布を持
っていると、厚み方向中心の発泡が遅れるため、厚み方
向中心の未発泡部分に厚み方向全体の発泡が抑えこま
れ、結局、厚み方向の中心部の温度が一番上昇しやすい
発泡性シートの端部からの先行発泡が優先するからであ
る。
[0005] However, in actual foaming, it is not possible at present to suppress the preceding foaming at the end simply by lowering the temperature at the end from the center. This is because even if the temperature at the end is lower than the center in the width direction, if the sheet has a temperature distribution in the thickness direction, the foaming at the center in the thickness direction is delayed, and the unfoamed portion at the center in the thickness direction has the entire thickness direction. This is because the pre-foaming from the end of the foamable sheet, in which the temperature at the center in the thickness direction is most likely to rise most, is given priority.

【0006】そして、端部からの先行発泡が極端に優先
すると、端部、幅方向中心部の発泡速度の差から、巨大
な皺を発生し、発泡が不安定になるばかりでなく、皺の
部分が互いに付着し、表面に傷がつく、乃至は、発泡が
困難になるという不具合を発生する。
[0006] If the precedent foaming from the end is extremely prioritized, a huge wrinkle is generated due to the difference in the foaming speed between the end and the center in the width direction. The parts adhere to each other, and the surface is scratched, or the foaming becomes difficult.

【0007】そこで、本発明の発明者は、発泡工程にお
いて、厚み方向中央部と表面部分とが、ほぼ均一に発泡
し、安定した綺麗な発泡体を得ることができる製造方法
として、熱分解型発泡剤を含有する発泡性シートを前記
熱分解型発泡剤の分解開始温度直前の温度まで発泡性シ
ートの厚み方向の温度分布を表面温度−厚み中心温度≦
5℃の範囲で予熱したのち、この予熱された発泡性シー
トを、発泡剤が完全分解する温度以上に加熱し分解型発
泡剤を完全に発泡させるようにした製造方法を先に提案
している(特願平7−238417号参照)。
In view of the above, the inventor of the present invention has proposed a method for producing a stable and beautiful foam in a foaming step in which a central portion in the thickness direction and a surface portion are foamed almost uniformly, and a pyrolysis type is used. The temperature distribution in the thickness direction of the foamable sheet until the temperature immediately before the decomposition start temperature of the pyrolytic foaming agent is changed from the foamable sheet containing the foaming agent to the surface temperature−thickness center temperature ≦
After preheating in the range of 5 ° C., a production method has been proposed in which the preheated foamable sheet is heated to a temperature higher than the temperature at which the foaming agent is completely decomposed to completely foam the decomposable foaming agent. (See Japanese Patent Application No. 7-238417).

【0008】しかし、この製造方法は、バッチ式で用い
た場合、うまく発泡体を得ることができるのであるが、
長尺の発泡性シートを連続的に予熱炉から発泡炉へ送り
込み発泡体を得る連続式で用いた場合、発泡性シートの
送り速度、すなわち、生産速度を上げると、やはり幅方
向の一端から先行発泡したり、発泡が不安定になる恐れ
がある。
[0008] However, this production method can successfully obtain a foam when used in a batch system.
When a long foamable sheet is continuously fed from a preheating furnace to a foaming furnace to obtain a foam, and used in a continuous manner, when the feeding speed of the foamable sheet, that is, the production speed is increased, the foaming sheet is also advanced from one end in the width direction. Foaming or foaming may be unstable.

【0009】原因としては、連続的な製造方法では、ど
うしても予熱炉内で気流の流れが不規則に生じるため、
予熱炉内の熱バランスがくずれやすく、予熱炉内に温度
の低い部分ができ、十分に予熱できない部分ができるた
めである。
[0009] The cause is that in the continuous manufacturing method, the flow of the air stream is generated irregularly in the preheating furnace,
This is because the heat balance in the preheating furnace is easily lost, and a low-temperature part is formed in the preheating furnace, and a part that cannot be sufficiently preheated is formed.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みて、速い送り速度で連続的に発泡体を製造する場合
においても、発泡性シートの端部での先行発泡を防止し
て極力相似形となる発泡を行わせることができる熱可塑
性樹脂発泡体を製造する方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is intended to prevent foaming at the end of a foamable sheet as much as possible even when a foam is continuously produced at a high feed rate. It is an object of the present invention to provide a method for producing a thermoplastic resin foam capable of performing similar foaming.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、本発明にかかる熱可塑性樹脂発泡体の製造方
法は、熱分解型発泡剤を含有する長尺の発泡性シート
を、連続的に予熱炉に送り込み、前記熱分解型発泡剤の
分解開始温度直前の温度まで予熱したのち、予熱された
前記発泡性シートを、続いて発泡炉に送り込み前記熱分
解型発泡剤が完全分解する温度以上に加熱し熱分解型発
泡剤を完全に発泡させる熱可塑性樹脂発泡体の製造方法
であって、発泡性シートの予熱炉出口での温度が、厚み
方向の温度分布を表面温度−厚み方向中心温度≦5℃と
し、発泡性シートの幅方向の温度分布を端部温度<幅方
向中心温度、かつ、両端部間の温度差≦3℃となるよう
に予熱するようにした。
In order to achieve such an object, a method for producing a thermoplastic resin foam according to the present invention comprises the steps of: forming a long foamable sheet containing a pyrolytic foaming agent; After being preliminarily heated to a temperature immediately before the decomposition start temperature of the pyrolysis type foaming agent, the preheated foamable sheet is subsequently fed into a foaming furnace to completely decompose the pyrolysis type foaming agent. A method for producing a thermoplastic resin foam in which a pyrolytic foaming agent is completely foamed by heating to a temperature or higher, wherein the temperature of the foamable sheet at the outlet of a preheating furnace is obtained by calculating the temperature distribution in the thickness direction from the surface temperature to the thickness direction. The pre-heating was performed so that the center temperature was 5 ° C. and the temperature distribution in the width direction of the foamable sheet was such that the end temperature <the center temperature in the width direction and the temperature difference between both ends ≦ 3 ° C.

【0012】また、上記構成において、温度制御可能な
加熱手段を予熱炉内部で幅方向に複数台並設するととも
に、予熱炉から出てきた発泡性シートの幅方向の温度分
布を予熱炉出口に設けた温度測定装置で読み取り、読み
取ったデータを基に各加熱手段を温度制御しながら予熱
することが好ましい。
In the above structure, a plurality of heating means capable of controlling the temperature are arranged side by side in the width direction inside the preheating furnace, and the temperature distribution in the width direction of the foamable sheet coming out of the preheating furnace is output to the preheating furnace outlet. It is preferable to read the data with a temperature measuring device provided and preheat the respective heating means while controlling the temperature based on the read data.

【0013】本発明の発泡性シートは、特に限定されな
いが、たとえば、以下に述べる3つの代表的な製造方法
によって得ることができる。 熱可塑性樹脂及び熱分解型発泡剤、その他充填剤を
混合した後、押出機もしくはロールとプレスによりシー
トを賦形し、このシートを電子線を照射する事で架橋す
る方法。
The foamable sheet of the present invention is not particularly limited, but can be obtained, for example, by the following three typical production methods. A method of mixing a thermoplastic resin, a pyrolytic foaming agent, and other fillers, shaping the sheet with an extruder or a roll and a press, and irradiating the sheet with an electron beam to crosslink the sheet.

【0014】 熱可塑性樹脂及び熱分解型発泡剤、熱
分解型架橋剤、その他充填剤を混合した後、押出機もし
くはロールとプレスでシート成形後、熱分解型架橋剤が
分解する温度以上で、かつ熱分解型発泡剤が分解する温
度以下に加熱して架橋する方法。 加水分解および脱水縮合により、結合し得る珪素含
有化合物をグラフトまたは共重合した熱可塑性樹脂およ
び熱分解型発泡剤、その他充填剤を混合した後、押出機
もしくはロールプレスでシート成形して脱水縮合架橋す
る方法、所謂水架橋法。
After mixing a thermoplastic resin and a pyrolytic foaming agent, a pyrolytic crosslinker, and other fillers, form a sheet with an extruder or a roll and a press, at a temperature not lower than the temperature at which the pyrolytic crosslinker decomposes, And a method of crosslinking by heating to a temperature below the temperature at which the pyrolytic foaming agent decomposes. After mixing a thermoplastic resin grafted or copolymerized with a silicon-containing compound capable of bonding by hydrolysis and dehydration condensation, a pyrolytic foaming agent, and other fillers, the mixture is formed into a sheet by an extruder or a roll press to form a dehydration condensation crosslink. A so-called water crosslinking method.

【0015】本発明で使用される熱可塑性樹脂は、特に
限定されないが、たとえば、ポリエチレン,ポリプロピ
レン,ポリブテン等のオレフィン樹脂、オレフィン同士
のコポリマー、酢酸ビニル,アクリル酸,メタクリル酸
等のオレフィンと他のモノマーとのコポリマー、ポリ塩
化ビニル,ポリ塩化ビニリデン等のビニル系ホモポリマ
ー、アクリロニトリル,酢酸ビニル,塩化ビニリデン,
アクリル酸メチル等のビニル系コポリマー、スチレン−
ブタジエンゴム,天然ゴム等のジエン系ポリマー、ナイ
ロン6・6,ナイロン12等のアミド系ポリマー、ポリ
エチレンテレフタレート,ポリブチレンテレフタレート
等の熱可塑性エステル系ポリマーが挙げられ、これらの
中で、ポリエチレン、ポリプロピレンが特によく利用さ
れる。
The thermoplastic resin used in the present invention is not particularly limited. Examples thereof include olefin resins such as polyethylene, polypropylene and polybutene, copolymers of olefins, olefins such as vinyl acetate, acrylic acid and methacrylic acid and other olefin resins. Copolymers with monomers, vinyl homopolymers such as polyvinyl chloride and polyvinylidene chloride, acrylonitrile, vinyl acetate, vinylidene chloride,
Vinyl copolymer such as methyl acrylate, styrene
Diene polymers such as butadiene rubber and natural rubber; amide polymers such as nylon 6.6 and nylon 12; and thermoplastic ester polymers such as polyethylene terephthalate and polybutylene terephthalate. Of these, polyethylene and polypropylene are exemplified. Especially often used.

【0016】本発明で使用される熱分解型発泡剤として
は、特に限定されないが、通常、アゾジカルボアミド
(ADCA)、アゾビスイソブチロニトリル(AIB
N)、ジニトロソペンタメチレンテトラミン(DP
T)、p−トルエンスルホニルヒドラジド(TSH)、
ベンゼンスルホニルヒドラジド(BSH)及び、重炭酸
ナトリウムなとが利用される。
The pyrolytic blowing agent used in the present invention is not particularly limited, but is usually azodicarbonamide (ADCA), azobisisobutyronitrile (AIB).
N), dinitrosopentamethylenetetramine (DP
T), p-toluenesulfonyl hydrazide (TSH),
Benzenesulfonyl hydrazide (BSH) and sodium bicarbonate are utilized.

【0017】因に、上記に示した熱分解型発泡剤のそれ
ぞれの分解ピーク温度(分解が最も促進する温度)は、
ADCAが195℃、AIBN105℃、DPT190
℃、TSH110℃、BSH110℃、重炭酸ナトリウ
ム90℃である。
The decomposition peak temperature (temperature at which decomposition is most promoted) of each of the above pyrolytic foaming agents is as follows:
ADCA is 195 ° C, AIBN 105 ° C, DPT190
° C, TSH110 ° C, BSH110 ° C, and sodium bicarbonate 90 ° C.

【0018】なお、発泡剤は樹脂の溶融温度以上に分解
温度を持ち、コスト的に安いものが好ましく、ポリエチ
レン(融点105℃)、ポリプロピレン(融点145
℃)が熱可塑性樹脂としてよく利用されることを考慮す
ると、通常発泡剤としてADCAの使用が好ましい。
The foaming agent preferably has a decomposition temperature higher than the melting temperature of the resin and is inexpensive, and is preferably made of polyethylene (melting point 105 ° C.), polypropylene (melting point 145).
C) is often used as a thermoplastic resin, and it is usually preferable to use ADCA as a foaming agent.

【0019】また、これら発泡剤と共に、発泡速度を調
節する発泡助剤を添加してもよい。因に、発泡速度を速
める発泡助剤として、ステアリン酸亜鉛,ステアリン酸
カルシウム等の金属石けん、亜鉛華,硝酸亜鉛等の無機
塩、アジピン酸,シュウ酸等の酸類が挙げられ、発泡速
度を遅延する発泡助剤として、マレイン酸,フタル酸等
の有機酸、無水マレイン酸,無水フタル酸等の有機酸無
水物、ジブチル錫マレート,塩化錫等の錫化合物が挙げ
られる。
A foaming aid for controlling the foaming speed may be added together with these foaming agents. As foaming aids for increasing the foaming speed, metal soaps such as zinc stearate and calcium stearate, inorganic salts such as zinc white and zinc nitrate, and acids such as adipic acid and oxalic acid are used, and the foaming speed is retarded. Examples of the foaming assistant include organic acids such as maleic acid and phthalic acid, organic acid anhydrides such as maleic anhydride and phthalic anhydride, and tin compounds such as dibutyltin malate and tin chloride.

【0020】発泡助剤は、使用する樹脂,発泡剤,助剤
の種類によって異なるが、通常熱可塑性樹脂100重量
部に対して0.1〜2重量部程度の添加割合で添加され
ることが好ましい。すなわち、添加量が0.1重量部以
下では、効果が小さく、2重量部以上では飽和状態とな
り、それ以上の添加効果がなくなる恐れがある。
The foaming auxiliary varies depending on the type of resin, foaming agent and auxiliary used, but is usually added in an amount of about 0.1 to 2 parts by weight based on 100 parts by weight of the thermoplastic resin. preferable. That is, when the amount is 0.1 part by weight or less, the effect is small, and when the amount is 2 parts by weight or more, the state is saturated, and there is a possibility that the effect of further addition may be lost.

【0021】架橋剤としては、発泡性シートを構成する
熱可塑性樹脂の軟化点以上の分解温度を有するもので、
樹脂の架橋に適したものを適宜選択すればよく、例え
ば、ジクミルパーオキサイド、α,α’−ビス(t−ブ
チルパーオキシーIII −イソプロピル)ベンゼン、2,
5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘ
キサン−3、t−ブチルパーオキシベンゾエート、t−
ブチルクミルパーオキサイド、シクロヘキサンパーオキ
サイド、1,1−ビス(t−ブチルパーオキシ)シクロ
ヘキサン、1,1−ビス(t−ブチルパーオキシ)3,
3,5−トリメチルシクロヘキサン、2,2−ビス(t
−ブチルパーオキシ)オクタン、n−ブチル−4,4−
ビス(t−ブチルパーオキシ)ベルレート、ジ−t−ブ
チルパーオキサイド、ベンゾイルパーオキサイド、クミ
ルパーオキシネオデカネート、2,5−ジメチル−2,
5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチル
パーオキシイソプロピルカーボネート、t−ブチルパー
オキシアリルカーボネート、t−ブチルパーオキシアセ
テート、2,2−ビス(t−ブチルパーオキシ)ブタ
ン、ジ−t−ブチルパーオキシイソフタレート、t−ブ
チルパーオキシマレイン酸等が挙げられる。
The crosslinking agent has a decomposition temperature equal to or higher than the softening point of the thermoplastic resin constituting the foamable sheet.
A resin suitable for crosslinking the resin may be appropriately selected, for example, dicumyl peroxide, α, α′-bis (t-butylperoxy-III-isopropyl) benzene,
5-dimethyl-2,5-di (t-butylperoxy) hexane-3, t-butylperoxybenzoate, t-
Butylcumyl peroxide, cyclohexane peroxide, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) 3,
3,5-trimethylcyclohexane, 2,2-bis (t
-Butylperoxy) octane, n-butyl-4,4-
Bis (t-butylperoxy) berrate, di-t-butylperoxide, benzoyl peroxide, cumylperoxyneodecanate, 2,5-dimethyl-2,
5-di (benzoylperoxy) hexane, t-butylperoxyisopropyl carbonate, t-butylperoxyallyl carbonate, t-butylperoxyacetate, 2,2-bis (t-butylperoxy) butane, di-t -Butylperoxyisophthalate, t-butylperoxymaleic acid and the like.

【0022】なお、熱可塑性樹脂の混練温度は種類によ
り異なるが、通常130℃以上である。したがって、通
常130℃より高い分解温度を有する架橋剤を用いるこ
とが好ましく、このような架橋剤として、ジクミルパー
オキサイド、α,α´−ビス(t−ブチルパーオキシー
III −イソプロピル)ベンゼン、t−ブチルクミルパー
オキサイド、2,5−ジメチル−2,5−ジ(t−ブチ
ルパーオキシ)ヘキサン等が挙げられ、ジクミルパーオ
キサイド、α,α´−ビス(t−ブチルパーオキシーII
I −イソプロピル)ベンゼンがより好ましい。
The kneading temperature of the thermoplastic resin varies depending on the kind, but is usually 130 ° C. or higher. Therefore, it is usually preferable to use a crosslinking agent having a decomposition temperature higher than 130 ° C., and as such a crosslinking agent, dicumyl peroxide, α, α′-bis (t-butylperoxy-
III-isopropyl) benzene, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and the like, and dicumyl peroxide, α, α′-bis (t -Butyl peroxy II
I-isopropyl) benzene is more preferred.

【0023】これらは単独で使用してもよいし、又2種
以上併用してもよい。上記の水架橋法において、珪素
含有化合物の使用割合は、所望の架橋度に応じて適宜定
めることができるが、通常、熱可塑性樹脂100重量部
に対して0.5〜3重量部である。
These may be used alone or in combination of two or more. In the above water crosslinking method, the use ratio of the silicon-containing compound can be appropriately determined according to a desired degree of crosslinking, but is usually 0.5 to 3 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0024】このような加水分解および脱水結合により
相互に結合し得る珪素含有化合物としては、ラジカルま
たはグラフトまたは共重合できるビニル基と加水分解お
よび脱水縮合を起こすアルコキシ基を有するものであれ
ば、特に限定されないが、たとえば、下式で示す化合物
が挙げられ、
As the silicon-containing compound capable of bonding to each other through the hydrolysis and dehydration bonds, a silicon-containing compound having a vinyl group capable of undergoing radical or graft or copolymerization and an alkoxy group causing hydrolysis and dehydration condensation can be used. Without limitation, for example, a compound represented by the following formula:

【0025】[0025]

【化1】 Embedded image

【0026】これらの化合物の中でも、ビニルトリメト
キシシラン、ビニルトリエトキシシラン、γ−メタクリ
ルオキシプロピルトリメトキシシラン等が好ましい。ま
た、上記化合物に反応性珪素含有基間の縮合架橋触媒と
して、ジブチル錫ジラウリレートおよびジブチル錫ジマ
レートから選ばれる少なくとも1種の有機錫化合物を添
加することが好ましい。
Among these compounds, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane and the like are preferable. It is preferable that at least one organic tin compound selected from dibutyltin dilaurate and dibutyltin dimaleate is added to the above compound as a condensation crosslinking catalyst between the reactive silicon-containing groups.

【0027】これらの有機錫化合物の添加量は、熱可塑
性樹脂100重量部に対して0.1〜1重量部程度が好
ましい。
The addition amount of these organotin compounds is preferably about 0.1 to 1 part by weight based on 100 parts by weight of the thermoplastic resin.

【0028】また、発泡性シートには、上記配合物以外
に、気泡核形成剤、酸化防止剤、顔料、難燃剤等を必要
に応じて添加してもよい。気泡核形成剤としては、炭酸
カルシウム、タルク、クレー、酸化マグネシウム、酸化
亜鉛、カーボンブラック、二酸化珪素、酸化チタン、ク
エン酸、重炭酸ナトリウム、オルトホウ酸、滑石、脂肪
酸のアルカリ土類金属塩等が挙げられる。
Further, in addition to the above composition, a foam nucleating agent, an antioxidant, a pigment, a flame retardant and the like may be added to the foamable sheet as required. Examples of the foam nucleating agent include calcium carbonate, talc, clay, magnesium oxide, zinc oxide, carbon black, silicon dioxide, titanium oxide, citric acid, sodium bicarbonate, orthoboric acid, talc, and alkaline earth metal salts of fatty acids. No.

【0029】酸化防止剤としては一般に用いられるもの
であれば特に限定されず、たとえば、テトラキス〔メチ
レン(3,5−ジ−t−ブチル−4−ヒドロキシハイド
ロシンナメート)〕メタン、チオジプロピロン酸ジラウ
リル、1,1,3−トリス(2−メチル−4−ヒドロキ
シ−5−t−ブチルフェニル)ブタン等が挙げられる。
The antioxidant is not particularly limited as long as it is generally used. Examples thereof include tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane, dilauryl thiodipropionate, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane and the like.

【0030】難燃剤としては、ヘキサブロモフェニルエ
ーテル,デカブロモジフェニルエーテル等の臭素系難燃
剤、ポリリン酸アンモニウム,トリメチルホスフェー
ト,トリエチルホスフェート等の含リン酸系難燃剤、メ
ラミン誘導体、無機系難燃剤等の1種または2種以上の
混合物が挙げられる。
Examples of the flame retardant include brominated flame retardants such as hexabromophenyl ether and decabromodiphenyl ether, phosphoric acid-containing flame retardants such as ammonium polyphosphate, trimethyl phosphate and triethyl phosphate, melamine derivatives, inorganic flame retardants and the like. One or a mixture of two or more kinds may be mentioned.

【0031】予熱工程での発泡性シートの加熱方法とし
ては、特に限定されないが、たとえば、放射型ヒータ
ー、熱風ヒーター、伝熱ヒーター、塩浴を用いた加熱炉
に発泡性シートを導入して加熱する方法が挙げられる。
また、予熱工程で発泡性シートは、ベルト搬送により連
続的に予熱用加熱炉に送り混んで加熱してもよいし、バ
ッチ式で一定単位毎に加熱しても構わない。
The method for heating the foamable sheet in the preheating step is not particularly limited. For example, the foamable sheet is introduced into a heating furnace using a radiant heater, a hot air heater, a heat transfer heater, or a salt bath and heated. Method.
Further, in the preheating step, the foamable sheet may be continuously fed to a heating furnace for preheating by belt conveyance and heated by mixing, or may be heated in fixed units by a batch method.

【0032】なお、上記でいう発泡剤が分解開始する温
度というのは、発泡剤がごくわずかでもガスを発生開始
する時の温度で、発泡剤の種類、粒径、添加剤によって
様々に変化するが、因に、発泡剤としてADCAを用
い、発泡剤に他の添加剤を加えない場合だと、150〜
200℃が分解開始温度となる。
The temperature at which the foaming agent starts to decompose is the temperature at which even a very small amount of the foaming agent starts to generate gas, and varies depending on the type, particle size and additives of the foaming agent. However, when ADCA is used as a foaming agent and no other additive is added to the foaming agent, 150 to
200 ° C. becomes the decomposition start temperature.

【0033】予熱炉に用いる加熱手段としては、特に限
定されないが、たとえば、遠赤外線ヒーターなどの放射
(輻射)型ヒーターやノズル式の熱風ヒーター等が挙げ
られ、これらを併用することもできる。すなわち、放射
型ヒーターで分解開始温度付近まで加熱後に、分解開始
温度より若干低めに温度設定した熱風を吹き付けるよう
にすれば、放射型ヒーターによる加熱によって生じた表
面温度−厚み中心温度>5℃となっている温度勾配を、
熱風でならして、表面温度−厚み中心温度≦5℃にする
ことができる。
The heating means used in the preheating furnace is not particularly limited, and includes, for example, a radiation (radiation) heater such as a far infrared heater, a nozzle type hot air heater, and the like, and these can be used in combination. That is, after heating to about the decomposition start temperature by the radiant heater, if hot air set at a temperature slightly lower than the decomposition start temperature is blown, the surface temperature caused by heating by the radiant heater-the thickness center temperature> 5 ° C. Temperature gradient,
By using hot air, it is possible to set the surface temperature−the thickness center temperature ≦ 5 ° C.

【0034】また、放射型ヒーターと加熱したい温度よ
り低めに設定した熱風ヒーターを同時使用しながら加熱
すれば、内部加熱効果に優れた放射型ヒーターによって
厚み方向中心部の加熱を促進しつつ熱風ヒーターによっ
て表面の温度を低く抑えることができる。なお、分解開
始温度より若干低めの温度とは、加熱条件によって異な
るが通常分解開始温度より5〜10℃程度低い温度が好
ましい。すなわち、5℃以下では効果が小さく、10℃
以上では、シートが冷えすぎる恐れがある。
If heating is performed while simultaneously using a radiant heater and a hot air heater set at a temperature lower than the temperature to be heated, the radiant heater having an excellent internal heating effect promotes heating of the central portion in the thickness direction while providing a hot air heater. Thereby, the surface temperature can be kept low. The temperature slightly lower than the decomposition start temperature varies depending on the heating conditions, but is preferably a temperature lower by about 5 to 10 ° C. than the normal decomposition start temperature. In other words, the effect is small at 5 ° C. or less,
Above, the sheet may be too cold.

【0035】なお、端部温度と中心部温度との温度差
は、発泡性シートの配合にもよるが、最大10℃までの
温度差にすることが好ましい。すなわち、温度差が10
℃以上となると、中心部からの先行発泡が開始され、加
熱過剰による面荒れを発生し、良品を得ることができな
くなる恐れがある。
The temperature difference between the end portion temperature and the center portion temperature is preferably up to a maximum of 10 ° C., although it depends on the composition of the foamable sheet. That is, if the temperature difference is 10
When the temperature is higher than or equal to ° C., pre-foaming from the central portion is started, and the surface is roughened due to excessive heating, and there is a possibility that a good product cannot be obtained.

【0036】発泡炉で使用される加熱手段としては、遠
赤外線ヒーターなどの放射型ヒーター、熱風ヒーター、
伝熱ヒーター、塩浴等が挙げられる。熱分解型発泡剤が
完全分解する温度とは、その温度の時、未分解の発泡剤
が残らない分解温度を意味する。
As the heating means used in the foaming furnace, a radiation heater such as a far infrared heater, a hot air heater,
Examples include a heat transfer heater and a salt bath. The temperature at which the pyrolytic foaming agent is completely decomposed means a decomposition temperature at which the undecomposed foaming agent does not remain.

【0037】[0037]

【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。図1および図2は本
発明にかかる熱可塑性樹脂発泡体の製造方法に使用する
装置の実施の形態をあらわしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings. 1 and 2 show an embodiment of an apparatus used for a method for producing a thermoplastic resin foam according to the present invention.

【0038】図1および図2に示すように、この製造装
置1は、予熱炉2と、発泡炉3と、放射温度計4と、巻
取機5とを備えている。
As shown in FIGS. 1 and 2, the manufacturing apparatus 1 includes a preheating furnace 2, a foaming furnace 3, a radiation thermometer 4, and a winder 5.

【0039】すなわち、予熱炉2は、中央に発泡性シー
ト6の通路が設けられていて、炉内に図3に示すような
配置で、2つの加熱ゾーンA,Bに分かれている。そし
て、第1ゾーンAでは、加熱手段として予熱炉2の内幅
と略同じ幅の遠赤外線ヒーター21がそれぞれ上下に配
置されている。一方、第2ゾーンBでは、加熱手段とし
て予熱炉2の幅方向に3つに分割され、それぞれの分割
部22a,22b,22cが温度制御可能な遠赤外線ヒ
ーター22と、熱風ダクト23とが上下に設けられてい
る。また、予熱炉2の出口側壁面には、ガラス窓20が
設けられている。
That is, the preheating furnace 2 is provided with a passage for the foamable sheet 6 in the center, and is divided into two heating zones A and B in the furnace as shown in FIG. In the first zone A, far-infrared heaters 21 having substantially the same width as the inner width of the preheating furnace 2 are arranged vertically as heating means. On the other hand, in the second zone B, the heating unit is divided into three in the width direction of the preheating furnace 2, and each of the divisions 22 a, 22 b, and 22 c has a far-infrared heater 22 whose temperature can be controlled and a hot air duct 23 which is vertically moved. It is provided in. Further, a glass window 20 is provided on the outlet side wall surface of the preheating furnace 2.

【0040】発泡炉3は、予熱炉2の出口で予熱炉2に
直交するようにつながっていて、中央に予熱炉2で予熱
された発泡性シート(以下、「予熱シート」と記す)6
´の通路が設けられ、この通路を両側から挟むように多
数の熱風ダクト31・・・31が内部に設けられてい
る。放射温度計4は、予熱炉2出口側に送られてきた予
熱シート6´の表面温度をガラス窓20越しに炉外から
測定し、遠赤外線ヒーター22の制御装置(図示せず)
にその結果を送るようになっている。そして、制御装置
が測定結果から遠赤外線ヒーター22の各分割部22
a,22b,22cの発熱を制御するようになってい
る。
The foaming furnace 3 is connected to the outlet of the preheating furnace 2 so as to be orthogonal to the preheating furnace 2, and has a foaming sheet (hereinafter referred to as “preheating sheet”) 6 preheated in the center of the preheating furnace 2.
′ Are provided, and a large number of hot air ducts 31... 31 are provided inside so as to sandwich the passage from both sides. The radiation thermometer 4 measures the surface temperature of the preheating sheet 6 ′ sent to the exit side of the preheating furnace 2 from outside the furnace through the glass window 20, and controls the far infrared heater 22 (not shown).
The result is sent to. Then, the control device determines from the measurement result that each of the divided portions 22 of the far-infrared heater 22
a, 22b, and 22c are controlled.

【0041】そして、以上のような製造装置1を用い
て、以下のようにして発泡体シートを連続的に製造する
ことができる。まず、予め、ロール状に巻かれた熱分解
型発泡剤を含有する長尺の発泡性シート6を用意し、予
備実験によって、この予熱シート6´が予熱炉2出口で
厚み方向の表面温度−厚み方向中心温度≦5℃、予熱シ
ート6´の幅方向の表面温度を端部温度<幅方向中心温
度、かつ、両端部間の温度差≦3℃となる温度分布に維
持できるような2つの加熱ゾーンA,Bの加熱条件を求
める。
Using the manufacturing apparatus 1 as described above, a foam sheet can be manufactured continuously as follows. First, a long foamable sheet 6 containing a pyrolytic foaming agent wound in a roll shape is prepared in advance, and a preliminary experiment shows that the preheated sheet 6 ′ has a surface temperature in the thickness direction at the outlet of the preheating furnace 2 − Two temperature distributions that can maintain the temperature in the thickness direction ≦ 5 ° C. and the surface temperature in the width direction of the preheating sheet 6 ′ such that the edge temperature <the center temperature in the width direction and the temperature difference between both ends ≦ 3 ° C. The heating conditions for the heating zones A and B are determined.

【0042】そして、予備実験で求めた加熱条件に設定
した予熱炉2および発泡炉3に発泡性シート6を連続し
て通し、予熱炉2で予熱したのち、予熱シート6´を発
泡炉3で加熱発泡させシート状発泡体7を得て、このシ
ート状発泡体7を巻取機5によって連続的に巻き取るよ
うになっている。しかも、予熱炉2の出口では、ガラス
窓20越しに予熱シート6´の表面温度を放射温度計4
によって測定し、その結果、予熱シート6´が厚み方向
の表面温度−厚み方向中心温度≦5℃、予熱シート6´
の幅方向の表面温度を端部温度<幅方向中心温度、か
つ、両端部間の温度差≦3℃となる設定温度分布になっ
ていない場合、設定温度分布になるように第2ゾーンB
の放射ヒーター22の各分割部22a,22b,22c
の加熱温度を調整するようになっている。
Then, the foaming sheet 6 is continuously passed through the preheating furnace 2 and the foaming furnace 3 set to the heating conditions determined in the preliminary experiment, and is preheated in the preheating furnace 2. Heat-foaming is performed to obtain a sheet-like foam 7, and the sheet-like foam 7 is continuously wound by a winder 5. Moreover, at the exit of the preheating furnace 2, the surface temperature of the preheating sheet 6 ′ is measured through the glass window 20 by the radiation thermometer 4.
As a result, the preheated sheet 6 ′ has a surface temperature in the thickness direction−a center temperature in the thickness direction ≦ 5 ° C.
When the surface temperature in the width direction is not the set temperature distribution such that the end temperature <the center temperature in the width direction and the temperature difference between both ends ≦ 3 ° C., the second zone B is set so that the set temperature distribution is obtained.
Divided portions 22a, 22b, 22c of the radiant heater 22
The heating temperature is adjusted.

【0043】以上のように、この製造方法によれば、常
に、予熱炉2の出口で予熱シート6´が厚み方向の表面
温度−厚み方向中心温度≦5℃、幅方向の表面温度を端
部温度<幅方向中心温度、かつ、両端部間の温度差≦3
℃を満足する予熱状態にされている。したがって、シー
ト状発泡体の送り速度を上げても常に端部の先行発泡を
完全に抑え、中心と端部とが同時に発泡する相似形発泡
とすることができ、生産性よく良質な発泡体を連続して
得ることができる。
As described above, according to this manufacturing method, at the outlet of the preheating furnace 2, the preheating sheet 6 ′ always has the surface temperature in the thickness direction−the center temperature in the thickness direction ≦ 5 ° C. and the surface temperature in the width direction at the end. Temperature <center temperature in the width direction, and temperature difference between both ends ≦ 3
It has been preheated to satisfy ° C. Therefore, even if the feed rate of the sheet-like foam is increased, the preceding foam at the end is always completely suppressed, and a similar foam can be obtained in which the center and the end are foamed at the same time. Can be obtained continuously.

【0044】[0044]

【実施例】以下に、本発明を、その実施例を参照しつつ
より詳しく説明する。
The present invention will be described below in more detail with reference to examples.

【0045】(実施例1、比較例1〜4)熱可塑性樹脂
としてのポリエチレン(三菱油化社製 YK−40)1
00重量部に発泡剤としてのADCA(大塚化学社製
AZ−40)15重量部、白色の顔料1重量部を添加
し、φ120mm単軸押出機で100Kg/hで混練しな
がら押し出し、厚み1.5mm*幅800mmの連続原
反シートを作成した。次に、この連続原反シートを、日
新ハイボルテージ社製電子線照射機で600KeV*6
Mradの電子線を照射し架橋させて発泡性シートを得
た。
(Example 1, Comparative Examples 1-4) Polyethylene (YK-40 manufactured by Mitsubishi Yuka Co., Ltd.) as a thermoplastic resin 1
ADCA (manufactured by Otsuka Chemical Co., Ltd.)
AZ-40) 15 parts by weight and 1 part by weight of a white pigment were added, and the mixture was extruded with a φ120 mm single screw extruder while kneading at 100 kg / h to prepare a continuous raw sheet having a thickness of 1.5 mm and a width of 800 mm. Next, the continuous raw sheet was subjected to 600 KeV * 6 with an electron beam irradiator manufactured by Nissin High Voltage.
The foamed sheet was obtained by irradiating with an electron beam of Mrad and crosslinking.

【0046】得られた発泡性シートを図1および図2示
すような予熱炉と発泡炉を備えた製造装置に導入し、予
熱炉出口の予熱シートの幅方法の温度分布を赤外線放射
温度計を走査させながら測定しつつ、各条件を様々に変
化させ、そのときの発泡の安定性を評価した。この結果
を表1に示した。なお、計測した温度は次のような手順
で定義した。
The obtained foamable sheet is introduced into a manufacturing apparatus having a preheating furnace and a foaming furnace as shown in FIGS. 1 and 2, and the temperature distribution of the width of the preheating sheet at the outlet of the preheating furnace is measured by an infrared radiation thermometer. While measuring while scanning, each condition was changed variously, and the stability of foaming at that time was evaluated. The results are shown in Table 1. The measured temperature was defined by the following procedure.

【0047】予熱シート6´を図4に示すように、幅方
向に9分割したa〜iの各部の温度を計測し、左端温度
をa,b,cの各部温度の平均値、中央温度をd,e,
fの各部温度の平均値、右端温度=g,h,iの各部温
度の平均値として求め、両端温度差=左(右)端温度−
右(左)端温度とした。
As shown in FIG. 4, the preheated sheet 6 'is divided into nine parts in the width direction, and the temperatures of the respective parts a to i are measured. d, e,
The average value of the temperature of each part of f, the right end temperature = g, the average value of the temperature of each part of h, i are obtained, and the temperature difference between both ends = left (right) end temperature−
The right (left) end temperature was used.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から本発明の製造方法によれば、生産
速度を上げても、常に良好な発泡体を連続的に得られる
ことが明らかである。
It is clear from Table 1 that the production method of the present invention can always provide a good foam continuously even when the production rate is increased.

【0050】[0050]

【発明の効果】本発明にかかる熱可塑性樹脂発泡体の製
造方法は、以上のように構成されているので、速い送り
速度で連続的に発泡体を製造する場合においても、発泡
性シートの端部での先行発泡を防止して極力相似形とな
る発泡を行わせることができる。すなわち、製造コスト
を低減することができる。
The method for producing a thermoplastic resin foam according to the present invention is constituted as described above. Therefore, even when the foam is continuously produced at a high feed rate, the end of the foam sheet can be obtained. Pre-foaming in the part can be prevented, and foaming that is as similar as possible can be performed. That is, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる熱可塑性発泡体の製造方法を実
施するのに用いる製造装置の1例をあらわす断面図であ
る。
FIG. 1 is a cross-sectional view showing an example of a manufacturing apparatus used to carry out a method for manufacturing a thermoplastic foam according to the present invention.

【図2】図1の製造装置の要部拡大図である。FIG. 2 is an enlarged view of a main part of the manufacturing apparatus of FIG.

【図3】図1の製造装置の予熱炉の加熱手段の配置図で
ある。
FIG. 3 is a layout view of heating means of a preheating furnace of the manufacturing apparatus of FIG.

【図4】実施例1および比較例1〜4での予熱シートの
表面温度の測定点をあらわす説明図である。
FIG. 4 is an explanatory diagram showing measurement points of the surface temperature of a preheated sheet in Example 1 and Comparative Examples 1 to 4.

【符号の説明】[Explanation of symbols]

2 予熱炉 21 遠赤外線ヒーター(加熱手段) 22 遠赤外線ヒーター(加熱手段) 22a 分割体(加熱手段) 22b 分割体(加熱手段) 22c 分割体(加熱手段) 3 加熱炉 5 温度測定装置 6 発泡性シート(発泡性熱可塑性樹脂シート) 6´ 予熱シート(予熱された前記発泡性熱可塑性樹脂
シート)
2 Preheating furnace 21 Far infrared heater (heating means) 22 Far infrared heater (heating means) 22a Split body (heating means) 22b Split body (heating means) 22c Split body (heating means) 3 Heating furnace 5 Temperature measuring device 6 Foaming property Sheet (foamable thermoplastic resin sheet) 6 'Preheated sheet (preheated foamable thermoplastic resin sheet)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱分解型発泡剤を含有する長尺の発泡性熱
可塑性樹脂シートを、連続的に予熱炉に送り込み、前記
熱分解型発泡剤の分解開始温度直前の温度まで予熱した
のち、予熱された前記発泡性熱可塑性樹脂シートを、続
いて発泡炉に送り込み前記熱分解型発泡剤が完全分解す
る温度以上に加熱し熱分解型発泡剤を完全に発泡させる
熱可塑性樹脂発泡体の製造方法であって、予熱された発
泡性熱可塑性樹脂シートが、加熱炉直前まできた時に、
厚み方向の温度を表面温度−厚み方向中心温度≦5℃、
幅方向の表面温度を端部温度<幅方向中心温度かつ両端
部間の温度差≦3℃の各温度条件を満足する温度に予熱
することを特徴とする熱可塑性樹脂発泡体の製造方法。
1. A long foamable thermoplastic resin sheet containing a thermal decomposition type foaming agent is continuously fed into a preheating furnace and preheated to a temperature immediately before the decomposition start temperature of the thermal decomposition type foaming agent. Production of a thermoplastic resin foam in which the preheated foamable thermoplastic resin sheet is subsequently fed into a foaming furnace and heated to a temperature at which the pyrolytic foaming agent is completely decomposed to completely foam the pyrolytic foaming agent. The method, wherein the preheated foamable thermoplastic resin sheet, just before the heating furnace,
The temperature in the thickness direction is defined as the surface temperature−the center temperature in the thickness direction ≦ 5 ° C.
A method for producing a thermoplastic resin foam, comprising preheating a surface temperature in a width direction to a temperature satisfying each temperature condition of an end portion temperature <a center temperature in a width direction and a temperature difference between both end portions ≦ 3 ° C.
【請求項2】温度制御可能な加熱手段を予熱炉内部で幅
方向に複数台並設するとともに、予熱炉から出てきた発
泡性熱可塑性樹脂シートの幅方向の表面温度分布を予熱
炉出口に設けた温度測定装置で読み取り、読み取ったデ
ータを基に各加熱手段を温度制御しながら予熱する請求
項1に記載の熱可塑性樹脂発泡体の製造方法。
2. A plurality of heating means capable of controlling the temperature are arranged side by side in the width direction inside the preheating furnace, and the surface temperature distribution in the width direction of the expandable thermoplastic resin sheet coming out of the preheating furnace is output to the preheating furnace outlet. The method for producing a thermoplastic resin foam according to claim 1, wherein the heating means is read by a provided temperature measuring device, and the heating means is preheated while controlling the temperature based on the read data.
JP8325166A 1996-12-05 1996-12-05 Manufacture of thermoplastic resin foam Pending JPH10156855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8325166A JPH10156855A (en) 1996-12-05 1996-12-05 Manufacture of thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8325166A JPH10156855A (en) 1996-12-05 1996-12-05 Manufacture of thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JPH10156855A true JPH10156855A (en) 1998-06-16

Family

ID=18173759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8325166A Pending JPH10156855A (en) 1996-12-05 1996-12-05 Manufacture of thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JPH10156855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019768A (en) * 2012-07-17 2014-02-03 Sekisui Chem Co Ltd Method and device of producing thermoplastic resin foam
WO2020175120A1 (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foamed product, method for manufacturing foamed product, and foaming device
JP2020138499A (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foam product, and, manufacturing method of foam product
JP2020138488A (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foaming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019768A (en) * 2012-07-17 2014-02-03 Sekisui Chem Co Ltd Method and device of producing thermoplastic resin foam
WO2020175120A1 (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foamed product, method for manufacturing foamed product, and foaming device
JP2020138499A (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foam product, and, manufacturing method of foam product
JP2020138488A (en) * 2019-02-28 2020-09-03 株式会社ミマキエンジニアリング Foaming device

Similar Documents

Publication Publication Date Title
US4252906A (en) Process for preparing foamed and crosslinked shaped articles having improved heat-sealability and foamable and crosslinkable polyethylene resin composition used therefor
US4160072A (en) Foamable and crosslinkable polyethylene composition, process for its production, and process for producing crosslinked polyethylene foams using said composition
JP2004330464A (en) Polypropylene resin foamed sheet, its manufacturing method and molded object of the foamed sheet
US4578231A (en) Process for the production of polyolefin foams
JPH10156855A (en) Manufacture of thermoplastic resin foam
JP2003327732A (en) Polypropylene resin foamed sheet, and molded product
JPS6124976B2 (en)
JPH10287762A (en) Production of thermoplastic resin foam
JPH0976270A (en) Preparation of thermoplastic resin foam
JP3727182B2 (en) Foamed sheet comprising modified polypropylene resin composition, method for producing the same, and molded article thereof
JP3423365B2 (en) Composition for producing open-cell resin foam
JP3706753B2 (en) Foamed sheet and molded article comprising modified polypropylene resin composition
JP2507202B2 (en) Polyolefin resin cross-linked foam
JPS636032A (en) Production of polypropylene foam
JPS5849566B2 (en) Manufacturing method of polyolefin resin foam
JPH0976269A (en) Preparation of thermoplastic resin foam
JPH01272442A (en) Manufacture of thermoplastic polymer crosslinked foam
JP2004160671A (en) Method for molding foamed polypropylene resin sheet and molded product
JPH11279315A (en) Polyolefinic resin foamed body and preparation thereof
JP2003306565A (en) Polypropylene resin foamed sheet and its molding
JPH09300381A (en) Apparatus and method for manufacturing foam
JPH0415234A (en) Production of crosslikned polyolefin resin foam
JPH0458499B2 (en)
JPH0735446B2 (en) Composition for open-cell olefin resin foam
JPH11349722A (en) Foamed sheet composed of modified polypropylene-based resin and its production