JPH10156494A - Method for continuously casting molten steel - Google Patents

Method for continuously casting molten steel

Info

Publication number
JPH10156494A
JPH10156494A JP28255497A JP28255497A JPH10156494A JP H10156494 A JPH10156494 A JP H10156494A JP 28255497 A JP28255497 A JP 28255497A JP 28255497 A JP28255497 A JP 28255497A JP H10156494 A JPH10156494 A JP H10156494A
Authority
JP
Japan
Prior art keywords
molten steel
mold
electromagnetic
current value
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28255497A
Other languages
Japanese (ja)
Other versions
JP3507304B2 (en
Inventor
Ryusuke Miura
龍介 三浦
Naohisa Honda
尚久 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28255497A priority Critical patent/JP3507304B2/en
Publication of JPH10156494A publication Critical patent/JPH10156494A/en
Application granted granted Critical
Publication of JP3507304B2 publication Critical patent/JP3507304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method of molten steel which prevents the development of stagnant point in meniscus flow surely corresponding to the disturbance and the variation of molten steel surface caused by nozzle clogging and a stopper head, etc., of a tundish and can obtain a cast slab having good quality. SOLUTION: Plural electromagnetic stirring devices 31-34 are arranged at both sides of a mold 13, respectively and thrust for forming the meniscus flow circulatedly shifted along the mold wall 18 on the meniscus surface 16 of the molten steel 12, is given. Further, the intensity of the thrust generated with plural electromagnetic stirring devices 31-34 is adjusted according to the casting quantity of the molten steel 12 poured in the mold 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法、特に電磁攪拌によりモールド内側の溶鋼に推力を付
与して、溶鋼のメニスカス流を制御することにより欠陥
の少ない鋳片を製造する溶鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting molten steel, and more particularly to a method for producing cast iron with less defects by controlling the meniscus flow of molten steel by applying thrust to the molten steel inside a mold by electromagnetic stirring. A continuous casting method.

【0002】[0002]

【従来の技術】従来、高級薄板材の製造に際して、鋳片
の品質改善のためにモールド内の溶鋼の電磁攪拌が有効
である。このような電磁攪拌では、モールド内の溶鋼に
電磁攪拌による推力を付与することにより、モールド内
の溶鋼を流動させて、鋳片の表層部に発生するピンホー
ル(気泡)や鋳片の表層部に捕捉される介在物を洗い流
して低減している。従来の電磁攪拌方法として特開昭5
8−100955号公報には、連続鋳造鋳型壁に取付け
た電磁攪拌装置により、該鋳型内溶鋼を周壁に沿う水平
方向の循環流として流動させ攪拌するに当たり、複数個
の上記電磁攪拌装置で磁界強度を変化させることによ
り、該循環流を流れの方向に加速し、又は減速させて攪
拌を行う方法、及び連続鋳造鋳型の両長辺壁水平方向に
沿ってそれぞれ磁界強度の異なる複数個の電磁攪拌装置
を配設した溶鋼の攪拌装置が記載されている。さらに、
特開平8−174164号公報には、鋳片の表層部の気
泡や捕捉される介在物を効果的に除去するために、モー
ルド内のステンレス溶鋼の水平旋回流の流速v(cm/
sec)とモールドの広面幅w(cm)の積v・wが、
103(cm2 /sec)以上104 (cm2 /se
c)以下となるように電磁攪拌装置への印加電流を調整
し、ステンレス溶鋼の水平旋回流の流速vを制御する方
法が示されている。
2. Description of the Related Art Conventionally, in the production of high-grade sheet materials, electromagnetic stirring of molten steel in a mold has been effective for improving the quality of cast slabs. In such electromagnetic stirring, the molten steel in the mold is caused to flow by applying a thrust to the molten steel in the mold by electromagnetic stirring, thereby causing pinholes (bubbles) generated in the surface layer of the slab or the surface layer of the slab. The inclusions trapped in the water are washed away and reduced. As a conventional electromagnetic stirring method,
Japanese Patent Application Laid-Open No. 8-100955 discloses that when a molten steel in a mold is caused to flow as a horizontal circulating flow along a peripheral wall and stirred by an electromagnetic stirrer attached to a continuous casting mold wall, a plurality of the magnetic stirrers described above use a magnetic field strength. A method of performing agitation by accelerating or decelerating the circulating flow in the direction of the flow by changing the flow rate, and a plurality of electromagnetic agitation having different magnetic field strengths along both horizontal sides of the long side wall of the continuous casting mold. A stirrer for molten steel provided with the device is described. further,
Japanese Patent Application Laid-Open No. 8-174164 discloses that in order to effectively remove air bubbles and inclusions trapped in the surface layer of a slab, the flow rate v (cm / cm /
sec) and the wide surface width w (cm) of the mold, v · w,
10 3 (cm 2 / sec) or more and 10 4 (cm 2 / sec)
c) A method is described in which the current applied to the electromagnetic stirrer is adjusted as described below to control the flow velocity v of the horizontal swirling flow of the molten stainless steel.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記鋳
型(モールド)内に形成させる循環流(メニスカス流)
を鋳型内の複数箇所に設けた電磁攪拌装置により加速又
は減速して制御する特開昭58−100955号公報に
記載の方法では、以下に示すような問題点があった。 浸漬ノズルにおけるノズル詰まり、タンディッシュの
ストッパーヘッドの損耗等に起因した外乱、及び品質調
整作業上の理由等により鋳造速度あるいは鋳造量が変動
した場合には、メニスカス流を適正かつ安定な状態に維
持する手段がなく、モールド内の溶鋼に介在物が巻き込
まれて、鋳片の品質を低下させる。 電磁攪拌装置を用いて、モールド内の溶鋼の減速域に
おいて溶鋼流に急激なブレーキをかけるため、加速域と
減速域との境界部分で流れに淀みを発生し易い。
However, a circulating flow (meniscus flow) to be formed in the mold (mold).
The method described in Japanese Patent Application Laid-Open No. 58-100955 in which is controlled by accelerating or decelerating by electromagnetic stirrers provided at a plurality of locations in a mold has the following problems. Maintain a proper and stable meniscus flow when the casting speed or casting volume fluctuates due to nozzle clogging in the immersion nozzle, disturbance due to wear of the tundish stopper head, etc., or reasons for quality adjustment work. There is no means to do this, and inclusions are entangled in the molten steel in the mold, deteriorating the quality of the slab. Since the molten steel flow is suddenly braked in the deceleration region of the molten steel in the mold by using the electromagnetic stirring device, stagnation is easily generated in the flow at the boundary between the acceleration region and the deceleration region.

【0004】また、モールド内の溶鋼の水平旋回流の流
速とモールドの幅との積を指標として印加電流を制御す
る特開平8−174164号公報に記載のステンレス鋼
の連続鋳造方法では、以下のような問題点があった。 同じ電流値でもモールドの形状、サイズ毎にその電磁
攪拌装置により発生する攪拌推力が異なるため、これら
の効果を補正した上で電流値の制御を行う必要があっ
た。 単に溶鋼の水平旋回流の流速とモールドの幅との積を
指標としているので、浸漬ノズルの詰まり、タンディッ
シュのストッパーヘッド等に起因した外乱が発生した場
合に、水平旋回流が大きく変動して、前記v・wが、1
3 〜104 cm2 /secの範囲でも、溶鋼の加速域
と減速域との境界等にメニスカス流の淀みが発生する。 モールド内の水平旋回流の流速を正確に測定すること
が困難であり、実際に流速が変動した場合に、この変動
に迅速に対応して各電磁攪拌装置の電流値を制御するこ
とが困難である。 本発明はこのような事情に鑑みてなされたもので、ノズ
ル詰まり、タンディッシュのストッパーヘッド等に起因
した外乱、湯面変動等に的確に対応して、メニスカス流
における淀み点の発生を防止して、良好な品質の鋳片を
得ることができる溶鋼の連続鋳造方法を提供することを
目的とする。
Further, in the continuous casting method for stainless steel described in Japanese Patent Application Laid-Open No. 8-174164, in which the applied current is controlled using the product of the flow velocity of the horizontal swirling flow of molten steel in the mold and the width of the mold as an index, the following method is used. There was such a problem. Even with the same current value, the stirring thrust generated by the electromagnetic stirrer differs depending on the shape and size of the mold. Therefore, it is necessary to control the current value after correcting these effects. Since the product is simply the product of the flow velocity of the horizontal swirling flow of the molten steel and the width of the mold, the horizontal swirling flow will fluctuate greatly if disturbance occurs due to clogging of the immersion nozzle, stopper head of the tundish, etc. , The v · w is 1
Even in the range of 0 3 to 10 4 cm 2 / sec, meniscus flow stagnation occurs at the boundary between the acceleration region and the deceleration region of the molten steel. It is difficult to accurately measure the flow velocity of the horizontal swirling flow in the mold, and when the flow velocity actually fluctuates, it is difficult to quickly respond to this fluctuation and control the current value of each electromagnetic stirrer. is there. The present invention has been made in view of such circumstances, and prevents nozzle clogging, disturbance caused by a tundish stopper head, and the like, and accurately prevents stagnation points in a meniscus flow in response to fluctuations in molten metal level. Accordingly, it is an object of the present invention to provide a continuous casting method of molten steel capable of obtaining a cast of good quality.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の溶鋼の連続鋳造方法は、タンディッシュに保持す
る溶鋼を浸漬ノズルを介してモールドに注入して、該モ
ールドの鋳型壁に配置された電磁攪拌装置により該鋳型
壁に沿う方向の移動磁界を発生させ、前記モールド内の
溶鋼に推力を付与しながら該溶鋼を攪拌して鋳片を製造
する溶鋼の連続鋳造方法において、前記モールドの長辺
の両側にそれぞれ前記電磁攪拌装置を複数配置して、前
記溶鋼のメニスカス面に前記鋳型壁に沿って旋回移動す
るメニスカス流を形成させる推力を付与すると共に、前
記モールドに注入される溶鋼の鋳造量に応じて、前記複
数の電磁攪拌装置で発生させる前記推力の大きさを調整
する。電磁攪拌装置は、複数の電磁コイルを直線上に展
開し、該複数の電磁コイルにそれぞれ位相の異なる交流
電圧を印加して、それぞれの電磁コイルに発生する磁力
を周期的に変動させることにより、一定方向に移動する
磁界を生成する装置である。そして、該磁界の移動方向
に溶鋼を移動させる推力を発生することができ、その推
力の大きさ、及びその正逆の方向を電磁攪拌装置に流す
電流値、及び交流の位相移動速度によって制御すること
ができる。
According to the present invention, there is provided a semiconductor device comprising:
The continuous casting method of molten steel according to the description is to inject molten steel held in a tundish into a mold through an immersion nozzle, and to move a moving magnetic field in a direction along the mold wall by an electromagnetic stirrer arranged on the mold wall of the mold. In the continuous casting method of molten steel for producing and producing a slab by stirring the molten steel while applying a thrust to the molten steel in the mold, a plurality of the electromagnetic stirring devices are arranged on both sides of the long side of the mold, respectively. And applying a thrust to the meniscus surface of the molten steel to form a meniscus flow swirling along the mold wall, and generating the meniscus flow by the plurality of electromagnetic stirring devices according to the casting amount of the molten steel injected into the mold. The magnitude of the thrust is adjusted. The electromagnetic stirring device develops a plurality of electromagnetic coils on a straight line, applies alternating voltages having different phases to the plurality of electromagnetic coils, and periodically fluctuates the magnetic force generated in each of the electromagnetic coils, This is a device that generates a magnetic field that moves in a certain direction. Then, a thrust for moving the molten steel in the moving direction of the magnetic field can be generated, and the magnitude of the thrust, and the opposite direction thereof are controlled by the current value flowing through the electromagnetic stirrer and the phase movement speed of the alternating current. be able to.

【0006】請求項2記載の溶鋼の連続鋳造方法は、請
求項1記載の溶鋼の連続鋳造方法において、前記モール
ドに注入される溶鋼の鋳造量V(kg/sec)の変動
に応じて、該モールドの各長辺側における前記メニスカ
ス流の上流側及び下流側にそれぞれ配置される電磁攪拌
装置の電流値iu (アンペア)、電流値id (アンペ
ア)を下式(1)〜(4)に従って定める。 iu =β・i0 ----------------------------------------- (1)式 id =α・β・i0 ------------------------------------- (2)式 α=A1 ・V2 +B1 ・V+C1 、(0<α<1)----------(3)式 β=A2 ・V2 +B2 ・V+C2 、(0<β≦1)----------(4)式 但し、i0 は基準電流値(アンペア)、A1 、B1 及び
1 はそれぞれ強弱攪拌比α(id /iu )を規定する
強弱攪拌制御式(3)の定数、A2 、B2 及びC2 はそ
れぞれ電流制御係数βを規定する電流制御式(4)の定
数である。ここで、基準電流値i0 は、鋼種に応じて必
要とする値であり、300〜800アンペアとなるよう
に設定される。
[0006] The continuous casting method of molten steel according to the second aspect of the present invention is the continuous casting method of molten steel according to the first aspect, wherein the molten steel is cast according to a variation in a casting amount V (kg / sec) of the molten steel injected into the mold. current value of the electromagnetic stirring device disposed respectively upstream and downstream of the meniscus flow at each long side of the mold i u (ampere), the following equation a current value i d (amps) (1) to (4) Determine according to. i u = β · i 0 ----------------------------------------- (1 ) Equation id = α · β · i 0 ------------------------------------- (2 ) Equation α = A 1 · V 2 + B 1 · V + C 1 , (0 <α <1) ---------- (3) Equation β = A 2 · V 2 + B 2 · V + C 2 , ( 0 <β ≦ 1) ---------- (4) where i 0 is a reference current value (ampere), and A 1 , B 1 and C 1 are strong and weak stirring ratios α ( id / i u ) are constants of the strong and weak stirring control formula (3), and A 2 , B 2 and C 2 are constants of the current control formula (4) which define the current control coefficient β. Here, the reference current value i 0 is a value required according to the type of steel, and is set to be 300 to 800 amperes.

【0007】請求項3記載の溶鋼の連続鋳造方法は、請
求項1記載の溶鋼の連続鋳造方法において、前記モール
ドに注入される溶鋼の鋳造量V(kg/sec)の変動
に応じて、該モールドの各長辺側における前記メニスカ
ス流の上流側及び下流側にそれぞれ配置される電磁攪拌
装置の電流値iu (アンペア)、電流値id (アンペ
ア)を下式(5)〜(8)に従って定める。 iu =β・i0 ----------------------------------------- (5)式 id =α・β・i0 ------------------------------------- (6)式 α=A1 ・V2 +B1 ・V+C1 、( α=1) -------- (7)式 β=A2 ・V2 +B2 ・V+C2 、(0<β≦1) -------- (8)式 但し、i0 は基準電流値(アンペア)、A1 、B1 及び
1 はそれぞれ強弱攪拌比α(id /iu )を規定する
強弱攪拌制御式(7)の定数、A2 、B2 及びC2 はそ
れぞれ電流制御係数βを規定する電流制御式(8)の定
数である。また、この発明においても、基準電流値i0
は、鋼種に応じて必要とする値であり、300〜800
アンペアとなるように設定される。そして、請求項4記
載の溶鋼の連続鋳造方法は、請求項1〜3のいずれか1
項に記載の溶鋼の連続鋳造方法において、前記メニスカ
ス流の上流側及び下流側にそれぞれ対に配置される電磁
攪拌装置が、それぞれ独立した電源装置により駆動され
る。
According to a third aspect of the present invention, in the continuous casting method of molten steel according to the first aspect, the molten steel is cast according to a variation in a casting amount V (kg / sec) of the molten steel injected into the mold. current value i u of the electromagnetic stirring device disposed respectively upstream and downstream of the meniscus flow at each long side of the mold (ampere), the following equation a current value i d (amps) (5) - (8) Determine according to. i u = β · i 0 ----------------------------------------- (5 ) Equation id = α · β · i 0 ------------------------------------- (6 ) Equation α = A 1 · V 2 + B 1 · V + C 1 , (α = 1) --- (7) Equation β = A 2 · V 2 + B 2 · V + C 2 , (0 <β ≦ 1) -------- (8) where i 0 specifies the reference current value (ampere), and A 1 , B 1 and C 1 each specify the strong / weak agitation ratio α ( id / iu ). The constants A 2 , B 2, and C 2 in the strong and weak stirring control formula (7) are constants in the current control formula (8) that define the current control coefficient β. Also in the present invention, the reference current value i 0
Is a value required according to the type of steel, and 300 to 800
It is set to be in amps. And the continuous casting method of molten steel according to claim 4 is the method according to any one of claims 1 to 3.
In the continuous casting method for molten steel described in the paragraph, the electromagnetic stirring devices arranged in pairs on the upstream side and the downstream side of the meniscus flow are driven by independent power supply devices.

【0008】[0008]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1(a)、(b)はそれ
ぞれ本発明の一実施の形態に係る溶鋼の連続鋳造方法を
適用する連続鋳造設備の側断面図及び平断面図、図2
(a)、(b)はそれぞれ、電磁攪拌装置を用いない場
合のモールドの長辺方向における溶鋼の流れの説明図、
及び電磁攪拌装置の配置図、図3はメニスカス流の回転
モードを示す図、図4(a)、(b)、(c)、(d)
はそれぞれ連続鋳造における鋳造量、強弱攪拌比、電流
制御係数、及び電流値の時間変化を示す模式図、図5は
本実施の形態におけるメニスカス流速の説明図、図7は
鋳片の鋳片表面疵指標の比較図、図8は鋳片の介在物指
標の比較図、図9は鋳片の製品品質指標の比較図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. 1 (a) and 1 (b) are a side sectional view and a plan sectional view of a continuous casting facility to which a continuous casting method for molten steel according to an embodiment of the present invention is applied, respectively.
(A), (b) is an explanatory diagram of the flow of molten steel in the long side direction of the mold when the electromagnetic stirrer is not used,
And FIG. 3 is a view showing a rotation mode of the meniscus flow, and FIGS. 4 (a), (b), (c), and (d).
FIG. 5 is a schematic diagram showing a casting amount, a high / low stirring ratio, a current control coefficient, and a time change of a current value in continuous casting, respectively. FIG. 5 is an explanatory diagram of a meniscus flow rate in the present embodiment, and FIG. FIG. 8 is a comparison diagram of the index of inclusions in the slab, and FIG. 9 is a comparison diagram of the product quality index of the slab.

【0009】本発明の一実施の形態に係る溶鋼の連続鋳
造方法を適用する連続鋳造設備10は、図1に示すよう
に、溶鋼12を保持して、その下部に浸漬ノズル14が
設けられたタンディッシュ11と、該溶鋼12を吐出孔
15を介してモールド13に注入するための浸漬ノズル
14と、モールド13のメニスカス面16の近傍の溶鋼
に必要な方向及び大きさの推力を付与するためにモール
ド13の長辺の両側に設けられた電磁攪拌装置31、3
2、33、34と、注入された溶鋼を冷却するモールド
13の幅と、溶鋼12の鋳造量あるいはメニスカス面1
6のデータが入力され、入力されたデータに基づいて電
磁攪拌装置31、32、33、34に流す電流値等を制
御するための制御装置17とを有する。
As shown in FIG. 1, a continuous casting facility 10 to which a continuous casting method of molten steel according to an embodiment of the present invention is applied is provided with a molten steel 12 and an immersion nozzle 14 provided below. A tundish 11, an immersion nozzle 14 for injecting the molten steel 12 into the mold 13 through the discharge hole 15, and a thrust of a required direction and size to the molten steel near the meniscus surface 16 of the mold 13. Electromagnetic stirring devices 31 and 3 provided on both sides of the long side of the mold 13
2, 33, 34, the width of the mold 13 for cooling the injected molten steel, the casting amount of the molten steel 12, or the meniscus surface 1
6, and a control device 17 for controlling a current value or the like flowing through the electromagnetic stirrers 31, 32, 33, 34 based on the input data.

【0010】タンディッシュ11は、マグネシア等の耐
火物で内張りされた溶鋼容器であり、図示しない転炉等
で精錬され、所定の温度、成分に調整された溶鋼12を
保持する。浸漬ノズル14は、アルミナ黒鉛質からなる
略円筒型の耐火物であり、モールド13への溶鋼12の
注入の際に溶鋼12と大気とを遮断すると共に、底部に
設けられた吐出孔15から溶鋼12を吐出して、モール
ド13内に形成される溶鋼流及びメニスカス流を安定的
に制御する。ここで、図2(a)は、電磁攪拌装置3
1、32、33、34を用いない場合のモールド13の
長辺方向における断面の模式図である。浸漬ノズル14
の吐出孔15からモールド13の下部に向かって吐出さ
れる溶鋼流が鋳型壁18の下部で上昇して、溶鋼12の
メニスカス面16でモールド13の中心位置(浸漬ノズ
ル位置)に向かうメニスカス流となって、該中心位置の
近傍で下降することを示している。
The tundish 11 is a molten steel vessel lined with a refractory such as magnesia, and holds the molten steel 12 which has been refined in a converter (not shown) or the like and adjusted to a predetermined temperature and component. The immersion nozzle 14 is a substantially cylindrical refractory made of alumina-graphite. The immersion nozzle 14 shuts off the molten steel 12 and the atmosphere when the molten steel 12 is injected into the mold 13, and forms the molten steel through a discharge hole 15 provided at the bottom. 12 is discharged to stably control the molten steel flow and meniscus flow formed in the mold 13. Here, FIG. 2A shows the electromagnetic stirrer 3
It is a schematic diagram of a section in the long side direction of mold 13 when 1, 32, 33, and 34 are not used. Immersion nozzle 14
The molten steel flow discharged from the discharge hole 15 toward the lower part of the mold 13 rises at the lower part of the mold wall 18 and the meniscus flow toward the center position (immersion nozzle position) of the mold 13 on the meniscus surface 16 of the molten steel 12. Thus, it is shown that the vehicle descends near the center position.

【0011】このような溶鋼流、又はメニスカス流が鋳
型壁18に形成される凝固殻あるいはメニスカス面に配
置されるパウダー、浸漬ノズル14の表面と過剰に接触
して、表面疵を生成したり介在物を卷き込んだりして欠
陥の発生要因となる。また、図2(b)は図2(a)と
同一の方向から見た2台の電磁攪拌装置31、32の配
置図であり、電磁攪拌装置31、32に電流を流すこと
により溶鋼12のメニスカス面16に長辺側の鋳型壁1
8に沿って旋回移動するメニスカス流をそれぞれ制御す
ることができ、反対側の鋳型壁18にも図示しない2台
の電磁攪拌装置34、33が電磁攪拌装置31、32に
対向して設けられており、移動磁界を発生させることに
より溶鋼に旋回流速を付与する。この移動磁界の強さ及
び移動磁界の正逆方法は電磁攪拌装置31、32、3
3、34にそれぞれ流す電流値i1 、i2 、i3 、i4
によりそれぞれ制御でき、移動速度は、各周期変動の位
相移動速度(周波数)により定められる。ここで、図3
はメニスカス面16をモールド13の上方から見た概念
図であり、鋳型壁18を巡る旋回流となるようなメニス
カス流を形成させる回転モードを示している。なお、こ
こでは各電磁コイル間の位相移動速度(周波数)を例え
ば4.4Hz相当となるように設定した。
The molten steel flow or meniscus flow excessively contacts the surface of the solidified shell formed on the mold wall 18 or the powder disposed on the meniscus surface or the surface of the immersion nozzle 14 to generate surface flaws or intervene. An object may be rolled in and cause a defect. FIG. 2B is a layout view of two electromagnetic stirrers 31 and 32 viewed from the same direction as FIG. 2A. The mold wall 1 on the long side on the meniscus surface 16
8 can be controlled respectively, and two electromagnetic stirrers 34, 33 (not shown) are also provided on the opposite mold wall 18 in opposition to the electromagnetic stirrers 31, 32. Thus, a swirling flow velocity is given to molten steel by generating a moving magnetic field. The strength of the moving magnetic field and the method of reversing the moving magnetic field are determined by electromagnetic stirrers 31, 32, 3
Current values i 1 , i 2 , i 3 , i 4
, And the moving speed is determined by the phase moving speed (frequency) of each periodic variation. Here, FIG.
Is a conceptual view of the meniscus surface 16 as viewed from above the mold 13, and shows a rotation mode in which a meniscus flow is formed so as to form a swirling flow around the mold wall 18. Here, the phase movement speed (frequency) between the respective electromagnetic coils was set to be, for example, 4.4 Hz.

【0012】次に、連続鋳造設備10を用いた本発明の
一実施の形態に係る溶鋼の連続鋳造方法について説明す
る。図1に示す前記電磁攪拌装置31、32、33、3
4にそれぞれ流す電流値i1 、i2 、i3 、i4 におい
て、iu =i1 =i3 、id =i2 =i4 として設定す
る。但し、それぞれの電磁攪拌装置31、32、33、
34により発生する移動磁界は、図1(b)に示すよう
にメニスカス面16の鋳型壁18に沿う、例えば右回り
の旋回流が形成されるようにする。そして、電流値id
とiu との比(id /iu )を強弱攪拌比(α)、また
電磁攪拌装置31、33に流す電流値i1 、i3
(iu )とその最大電流値である基準電流値i0 との比
(iu /i0 )を電流制御係数(β)と定義する。この
電流制御係数(β)は電磁コイルに流れる電流の絶対値
を制御する係数である。従って、上流側となる電磁攪拌
装置31、33に通電されるそれぞれの電流値はiu
1 =i3 =β・i0 となり、一方下流側となる電磁攪
拌装置32、34にそれぞれ通電される電流値はid
2 =i4 =α・β・i0 となる。
Next, a method for continuously casting molten steel according to an embodiment of the present invention using the continuous casting facility 10 will be described. The electromagnetic stirring devices 31, 32, 33, 3 shown in FIG.
4 are set as i u = i 1 = i 3 and id = i 2 = i 4 for the current values i 1 , i 2 , i 3 , and i 4 respectively. However, each of the electromagnetic stirring devices 31, 32, 33,
The moving magnetic field generated by 34 causes, for example, a clockwise swirling flow to be formed along the mold wall 18 of the meniscus surface 16 as shown in FIG. And the current value id
The ratio of the i u (i d / i u ) the strength stirred ratio (alpha), and the current value i 1 to flow to the electromagnetic stirrer 31 and 33, i 3
The ratio (i u / i 0 ) between (i u ) and the reference current value i 0 which is the maximum current value is defined as a current control coefficient (β). This current control coefficient (β) is a coefficient for controlling the absolute value of the current flowing through the electromagnetic coil. Therefore, the respective current values supplied to the electromagnetic stirring devices 31 and 33 on the upstream side are i u =
i 1 = i 3 = β · i 0 . On the other hand the current value is energized respectively to the electromagnetic stirring device 32, 34 on the downstream side is i d =
i 2 = i 4 = α · β · i 0 .

【0013】このように電磁攪拌制御においては、各電
磁攪拌装置31、32、33、34に流れる電流値i
1 、i2 、i3 、i4 を制御するものであり、前記の強
弱攪拌比αと電流制御係数βを制御パラメーターとして
いる。これらの制御パラメーターα、βは、鋳造量Vを
変数とする以下の二次式(3)、(4)によってそれぞ
れ表わすことができる。なお、鋳造量V(kg/se
c)は鋳片の引き抜き速度Vc (m/sec)、鋳造鋳
型の長辺の長さW(m)、鋳造鋳型の短辺の長さL
(m)、及び溶鋼の密度D(kg/m3 )とのそれぞれ
の積(D・Vc ・W・L)である。 α=A1 ・V2 +B1 ・V+C1 、(0<α<1)・・・・・・(3)式 β=A2 ・V2 +B2 ・V+C2 、(0<β≦1)・・・・・・(4)式 ここで、A1 、B1 、C1 、A2 、B2 、及びC2 の各
係数は、実操業でのデータに基づいて決定される定数値
である。
As described above, in the electromagnetic stirring control, the current value i flowing through each of the electromagnetic stirring devices 31, 32, 33, 34
1 , i 2 , i 3 , and i 4 are controlled, and the above-mentioned strong and weak stirring ratio α and current control coefficient β are used as control parameters. These control parameters α and β can be expressed by the following quadratic expressions (3) and (4) using the casting amount V as a variable. The casting amount V (kg / sec)
c) is the drawing speed V c (m / sec) of the slab, the length W (m) of the long side of the casting mold, and the length L of the short side of the casting mold.
(M) and the product (D · Vc · W · L) of the molten steel with the density D (kg / m 3 ). α = A 1 · V 2 + B 1 · V + C 1 (0 <α <1) (3) Expression β = A 2 · V 2 + B 2 · V + C 2 (0 <β ≦ 1) (4) Here, each coefficient of A 1 , B 1 , C 1 , A 2 , B 2 , and C 2 is a constant value determined based on data in actual operation. is there.

【0014】例えば、各鋳造量V毎に淀み点のない所望
のメニスカス流を与えるα、βの値を実験的に測定し
て、多数の(V、α)及び(V、β)からなる二次元デ
ータを蓄積しておく。このように鋳型壁18に沿う旋回
流が形成され、かつ淀み点のないメニスカス流の状態に
おいては、溶鋼12の凝固した鋳片の中心部分(内質)
における介在物等を必要以上に増加させて悪化させるこ
となく、しかも鋳片の表層部分の介在物を分散させて均
一化させることができる。そして、前記Vと、α又はβ
との関係が二次元座標上の二次式で近似されるものとし
て、それぞれの二次式の係数A1 、B1 、C1 と、A
2 、B2 、及びC2を例えば最小自乗法を用いて定める
ことができる。なお、前記鋳造量V(=D・Vc ・W・
L)の代わりに、Vc とWとの積(Vc ・W)を変数と
見なして、即ち、V=K・(Vc ・W)(但しKはDと
Lの積である定数)を前記二次式に代入してこれを用い
ることもできる。溶鋼12の密度Dは鋼種毎のデータに
基づいて決定される定数である。
For example, the values of α and β that give a desired meniscus flow without a stagnation point for each casting amount V are experimentally measured, and two (V, α) and (V, β) Dimension data is stored. As described above, in the state of the swirling flow along the mold wall 18 and the meniscus flow without a stagnation point, the central portion (inner material) of the solidified slab of the molten steel 12.
In this case, the inclusions in the surface layer portion of the cast slab can be dispersed and made uniform without deteriorating the inclusions and the like more than necessary. And V and α or β
Is approximated by a quadratic expression on the two-dimensional coordinates, the coefficients A 1 , B 1 , C 1 and A
2 , B 2 , and C 2 can be determined, for example, using a least squares method. The casting amount V (= D · V c · W ·
Instead of L), considered the product of the V c and W (V c · W) and variable, i.e., V = K · (V c · W) ( where the constant K is the product of D and L) Can be used by substituting into the above quadratic equation. The density D of the molten steel 12 is a constant determined based on data for each steel type.

【0015】ここで、図4は連続鋳造における鋳造量
V、強弱攪拌比α、電流制御係数β、及び電流値i1
3 (=iu )、i2 、i4 (=id )の時間変化を示
す模式図である。まず、鋳造開始後の任意の時刻t0
おいて、鋳造量V0 を取得する。なお、鋳造量V0 は、
浸漬ノズル14とタンディッシュ11の底部の間に配置
された図示しないスライディングノズルの開度、あるい
は図示しないストッパーヘッドの位置制御等から求める
こともできるが、タンディッシュ11へ注入される溶鋼
量及びタンディッシュ重量の変化量に基づいて算出して
もよい。また、引き抜き速度Vc を測定して、この引き
抜き速度Vc に鋳造面積(W・L)及び溶鋼密度Dを乗
じることにより鋳造量Vを設定することもできる。そし
て、時刻t0 における強弱攪拌比α0 、電流制御係数β
0 を強弱攪拌制御式(3)及び電流制御式(4)に鋳造
量V0 を代入してそれぞれ算出して、その時刻t0 にお
ける電磁攪拌装置31、33、32、34に流す電流値
1 、i3、i2 、i4 をそれぞれ図4(d)に示すよ
うに設定することができる。
FIG. 4 shows the casting amount V in continuous casting, the high / low stirring ratio α, the current control coefficient β, and the current value i 1 ,
i 3 (= i u), is a schematic diagram showing the time variation of i 2, i 4 (= i d). First, at any time t 0 after the start of casting to obtain a cast amount V 0. The casting amount V 0 is
It can be obtained from the opening of a sliding nozzle (not shown) arranged between the immersion nozzle 14 and the bottom of the tundish 11 or the position control of a stopper head (not shown). It may be calculated based on the change in the dish weight. Also, by measuring the withdrawal speed V c, it is also possible to set the casting amount V by multiplying the casting area withdrawal speed V c (W · L) and the molten steel density D. Then, at time t 0, the strong / weak stirring ratio α 0 and the current control coefficient β
0 the intensity agitation control (3) and is calculated respectively by substituting the cast amount V 0 to the current control type (4), the current value i flowing through the electromagnetic stirring device 31,33,32,34 at that time t 0 1 , i 3 , i 2 , and i 4 can be set as shown in FIG.

【0016】そして、設定される電流値i1 、i2 、i
3 、i4 に基づいて電磁攪拌装置31、32、33、3
4を作動させ、このような操作を時間的に連続して行う
ことにより、鋳造量Vの変動に対応した連続鋳造を行う
ことができる。表1にZnめっき鋼板、一般ブリキ材に
対して適用した場合の諸元、及び鋳造結果を示す。ここ
で電流値iu (=i1 =i3 )、id (=i2 =i
4 )、及び鋳造量等は実施例中における代表値(平均
値)であり、いずれの場合でも従来例(特開昭58−1
00955号公報に記載)による適用結果に較べて極め
て良好な結果(◎)を得ることができた。
The set current values i 1 , i 2 , i
3 , electromagnetic stirring devices 31, 32, 33, 3 based on i 4
4 is operated, and such an operation is performed continuously in time, so that continuous casting corresponding to the variation of the casting amount V can be performed. Table 1 shows the specifications when applied to Zn-plated steel sheets and general tin materials, and the casting results. Here, the current values i u (= i 1 = i 3 ) and id (= i 2 = i
4 ) and the casting amount are representative values (average values) in the examples.
(Described in Japanese Patent Application Laid-Open No. 009555), a very good result (◎) could be obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】ここでは制御装置17に鋳造量Vを入力し
て予め組み込まれているプログラムに従って強弱攪拌比
α、電流制御係数βを算出する制御方法を適用したが、
制御装置17を用いることなく、オペレータが自身で計
算して、この計算結果に基づいて各電流値i1 、i2
3 、i4 を制御してもよい。また、高推力を発生させ
る電磁攪拌装置31、33と、低推力を発生させる電磁
攪拌装置32、34とはそれぞれ独立した2基の図示し
ない電源装置を用いて駆動させることができ、より簡単
に安定した制御を行うことができる。この結果、図5に
示すように、モールド13の一長辺側における溶鋼12
の鋳型壁18に沿う方向のメニスカス流速の分布(実線
で示す、最大速度は約25〜50cm/sec)は緩や
かな逆U字型となって、淀み点及び巻き込みのない理想
的な制御が可能となった。なお、実線で示す矢印は電磁
攪拌装置33、34により発生させる推力の大きさ及び
その方向を示しており、破線で示す曲線はモールド13
内に形成されるメニスカス流の動きを示している。他方
の長辺側にもモールド中心(浸漬ノズル位置)を点対称
とするような旋回流となるメニスカス流が形成される。
また、図5における及びの一点鎖線はそれぞれ電磁
攪拌装置33、34による溶鋼の加速の様子を概念的に
表わしており、立ち上がり角度θ1 、θ2 はそれぞれ電
磁攪拌装置33、34の推力の大きさに相当する。
Here, a control method is applied in which the casting amount V is input to the control device 17 and the weak stirring ratio α and the current control coefficient β are calculated according to a program incorporated in advance.
Without using the control device 17, the operator calculates by himself and based on the calculation result, the current values i 1 , i 2 ,
i 3 and i 4 may be controlled. In addition, the electromagnetic stirrers 31 and 33 that generate high thrust and the electromagnetic stirrers 32 and 34 that generate low thrust can be driven by using two independent power supply devices (not shown), respectively, so that it is easier. Stable control can be performed. As a result, as shown in FIG.
The distribution of the meniscus flow velocity in the direction along the mold wall 18 (shown by a solid line, the maximum velocity is about 25 to 50 cm / sec) is a gentle inverted U-shape, and ideal control without stagnation points and entanglement is possible. It became. The arrows shown by solid lines indicate the magnitude and direction of the thrust generated by the electromagnetic stirrers 33 and 34, and the curve shown by the broken line is the mold 13
3 shows the movement of a meniscus flow formed in the inside. A swirling meniscus flow is also formed on the other long side such that the mold center (immersion nozzle position) is point-symmetric.
Further, the dashed line in FIG. 5 and the one-dot chain line conceptually show the acceleration of molten steel by the electromagnetic stirring devices 33 and 34, respectively, and the rising angles θ 1 and θ 2 are the magnitudes of the thrusts of the electromagnetic stirring devices 33 and 34, respectively. Equivalent to

【0019】このように、本実施の形態においては、長
辺側鋳型壁の上流側においてメニスカス流に付与する推
力、及び下流側における推力の大きさを、鋳造量Vに応
じて前記の強弱攪拌比αと電流制御係数βを決定して、
調整することによりメニスカス流の極端な変動を抑制す
ることができる。これにより、メニスカス流の短辺側鋳
型壁への衝突流が緩和されて、メニスカス面16に存在
するパウダーの溶鋼中への巻き込みを少なくして、鋳片
中への介在物の混入が抑制される。次に、電磁攪拌装置
31〜34の各電流値をそれぞれi1 〜i4 とした場合
に、各電磁攪拌装置31〜34の電流値をi1 =i2
3 =i4 とし、電流の絶対値の電流制御係数(β)
を、鋳造量V(kg/sec)に対応して可変を行って
自動車用鋼板の鋳造に適応した場合の諸元、及び鋳造結
果について表2に示す。ここで、鋳造量は50.7(k
g/sec)とし、その時の電流値はiu (i1
3 )=id (i2 、i4 )として、前述の攪拌と同様
にメニスカス面16の鋳型壁18に沿った右回りの旋回
流を形成して鋳造を行った。その結果は、表面疵、介在
物、製品品質共に良好(○)であった。
As described above, in the present embodiment, the magnitude of the thrust applied to the meniscus flow on the upstream side of the long side mold wall and the magnitude of the thrust on the downstream side are changed according to the casting amount V as described above. Determine the ratio α and the current control coefficient β,
The adjustment can suppress an extreme fluctuation of the meniscus flow. Thereby, the collision flow of the meniscus flow to the short side mold wall is moderated, the powder existing on the meniscus surface 16 is reduced into the molten steel, and the inclusion of inclusions in the slab is suppressed. You. Next, assuming that the current values of the electromagnetic stirring devices 31 to 34 are i 1 to i 4 , respectively, the current values of the electromagnetic stirring devices 31 to 34 are i 1 = i 2 =
i 3 = i 4, and the current control coefficient (β) of the absolute value of the current
Table 2 shows the specifications and the casting results in the case where it was adapted to the casting of a steel sheet for an automobile by performing a variable in accordance with the casting amount V (kg / sec). Here, the casting amount is 50.7 (k
g / sec), and the current value at that time is i u (i 1 ,
With i 3 ) = id (i 2 , i 4 ), casting was performed by forming a clockwise swirling flow along the mold wall 18 of the meniscus surface 16 in the same manner as the stirring described above. As a result, the surface flaws, inclusions, and product quality were all good (○).

【0020】[0020]

【表2】 [Table 2]

【0021】因みに、図6は従来例の方法(特開昭58
−100955号公報に記載)の長辺側の鋳型壁におけ
るメニスカス流速の分布図を示しており、この場合には
メニスカス流の上流側に電磁攪拌装置51、52を用い
て加速域を形成して、その下流側にメニスカス流に対し
て逆向きとなるような推力を付与する減速域を電磁攪拌
装置53により発生させるので、前記加速域との境界部
に淀み点が生成し易くなることを示している。
FIG. 6 shows a conventional method (Japanese Patent Laid-Open No. 58-1983).
FIG. 2 shows a distribution diagram of the meniscus flow velocity on the mold wall on the long side of the mold side. In this case, an acceleration region is formed on the upstream side of the meniscus flow by using electromagnetic stirring devices 51 and 52. Since the electromagnetic stirrer 53 generates a deceleration region on the downstream side that gives a thrust in the opposite direction to the meniscus flow, the stagnation point is easily generated at the boundary with the acceleration region. ing.

【0022】また、図7、図8、図9は、それぞれ従
来例の連続鋳造の場合、鋳造量Vの所定期間内におけ
る平均の実績値に基づいて強弱攪拌比α、電流制御係数
βを調整して連続鋳造を行った場合、及び鋳造量Vに
応じて強弱攪拌比α、電流制御係数βを調整した連続鋳
造の場合についてそれぞれ得られる鋳片の鋳片表面疵指
標、介在物指標、及びヘゲ、スリバー等の製品品質指標
を比較したものである。図から明らかなように本実施の
形態における及びは、従来例のに較べて、顕著な
改善効果を奏することが分かる。
FIGS. 7, 8 and 9 respectively show that in the case of the conventional continuous casting, the strong / weak stirring ratio α and the current control coefficient β are adjusted based on the average actual value of the casting amount V within a predetermined period. In the case of continuous casting, and in the case of continuous casting in which the strong and weak stirring ratio α, the current control coefficient β is adjusted according to the casting amount V, the slab surface flaw index, inclusion index, and It is a comparison of product quality indicators such as barbs and slivers. As is clear from the drawing, it can be seen that the present embodiment has a remarkable improvement effect as compared with the conventional example.

【0023】以上、本発明の実施の形態を説明したが、
本発明はこのような実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。例えば、本実施の形態においては、上流側
と下流側のそれぞれ2台の電磁攪拌装置を設ける場合に
ついて述べたが、両者間に3台以上の電磁攪拌装置を配
置して、より細かくメニスカス流の制御を行うことも可
能である。また、本実施の形態においては、強弱攪拌比
α、電流制御係数βを定めるに際して特定の関係式を用
いたが、これに限定されることなく鋳造速度あるいは鋳
造量を変数として、メニスカス流の淀み点を抑制するよ
うな強弱攪拌比α、電流制御係数βを規定するその他の
関係式を適用することもできる。
The embodiment of the present invention has been described above.
The present invention is not limited to such an embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, in the present embodiment, the case where two electromagnetic stirrers are provided on the upstream side and the downstream side, respectively, has been described. However, three or more electromagnetic stirrers are arranged between the two to further finely control the meniscus flow. It is also possible to perform control. Further, in the present embodiment, a specific relational expression is used in determining the strong / weak stirring ratio α and the current control coefficient β. However, the present invention is not limited to this. Other relational expressions that define the strong / weak agitation ratio α and the current control coefficient β that suppress the point can also be applied.

【0024】[0024]

【発明の効果】請求項1〜4記載の溶鋼の連続鋳造方法
においては、モールドの長辺の両側にそれぞれ電磁攪拌
装置を複数配置して、溶鋼のメニスカス面に鋳型壁に沿
って旋回移動するメニスカス流を形成させる推力を付与
するので、メニスカス流の状態をきめ細かく制御するこ
とができ、鋳型壁とメニスカス流との過剰な接触によ
る、溶鋼中への介在物の混入を抑制できる。そして、前
記モールドに注入される溶鋼の鋳造量に応じて、複数の
前記電磁攪拌装置で発生させる前記推力の大きさを調整
するので、前記メニスカス流の淀み点の発生を抑制し
て、生産調整、浸漬ノズル詰まり等の要因により鋳造量
が大幅に変動しても、パウダーあるいは介在物の巻き込
みのない鋳片を安定的に製造することができる。
In the method for continuously casting molten steel according to the present invention, a plurality of electromagnetic stirrers are arranged on both sides of the long side of the mold, and the electromagnetic stirring device is swung along the mold wall on the meniscus surface of the molten steel. Since the thrust for forming the meniscus flow is applied, the state of the meniscus flow can be finely controlled, and the inclusion of inclusions into the molten steel due to excessive contact between the mold wall and the meniscus flow can be suppressed. Then, since the magnitude of the thrust generated by the plurality of electromagnetic stirrers is adjusted in accordance with the casting amount of the molten steel injected into the mold, production of a stagnation point of the meniscus flow is suppressed, and production adjustment is performed. Even if the casting amount fluctuates significantly due to factors such as clogging of the immersion nozzle, it is possible to stably produce a slab without powder or inclusions.

【0025】特に、請求項2記載の溶鋼の連続鋳造方法
においては、モールドに注入される溶鋼の鋳造量Vの変
動に応じて、モールドの各長辺側におけるメニスカス流
の上流側及び下流側にそれぞれ配置される電磁攪拌装置
の電流値iu 、電流値id を特定の関係式に従って定め
るので、迅速かつ効率的にメニスカス流の適正制御が可
能となり、さらに品質の良好な鋳片を製造できる。請求
項3記載の溶鋼の連続鋳造方法においては、モールドに
注入される溶鋼の鋳造量Vの変動に応じて、電磁攪拌装
置の電流値iu とid を一定にし、電流制御係数βによ
って制御されているので、容易にメニスカス流の制御が
可能となり、鋳片の品質が向上する。そして、請求項4
記載の溶鋼の連続鋳造方法においては、メニスカス流の
上流側及び下流側にそれぞれ対に配置される電磁攪拌装
置が、それぞれ独立した電源装置により駆動されるの
で、電流値による電磁攪拌装置の制御を簡単に行える。
In particular, in the method for continuously casting molten steel according to the second aspect of the present invention, in accordance with the variation of the casting amount V of the molten steel injected into the mold, the upstream and downstream sides of the meniscus flow on each long side of the mold are provided. current value i u of the electromagnetic stirring device is arranged, so determining the current value i d according to a particular relationship, quickly and efficiently enables proper control of the meniscus flow, can be further prepared a good slab quality . In the continuous casting method of claim 3, wherein the molten steel, in accordance with a variation in casting amount V of the molten steel to be poured into a mold, and the current value i u and i d of the electromagnetic stirring device constant, controlled by the current control coefficient β As a result, the meniscus flow can be easily controlled, and the quality of the cast slab is improved. And Claim 4
In the continuous casting method of molten steel described, the electromagnetic stirrers arranged in pairs on the upstream side and the downstream side of the meniscus flow are driven by independent power supply devices, respectively. Easy to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)はそれぞれ、本発明の一実施の
形態に係る溶鋼の連続鋳造方法を適用する連続鋳造設備
の側断面図及び平断面図である。
FIGS. 1 (a) and 1 (b) are a side sectional view and a plan sectional view, respectively, of a continuous casting facility to which a method for continuously casting molten steel according to an embodiment of the present invention is applied.

【図2】(a)、(b)はそれぞれ、電磁攪拌装置を用
いない場合のモールドの長辺方向における溶鋼の流れの
説明図、及び電磁攪拌装置の配置図である。
FIGS. 2 (a) and 2 (b) are an explanatory view of a flow of molten steel in a long side direction of a mold when an electromagnetic stirrer is not used, and an arrangement diagram of the electromagnetic stirrer, respectively.

【図3】メニスカス流の回転モードを示す図である。FIG. 3 is a diagram showing a rotation mode of a meniscus flow.

【図4】(a)、(b)、(c)、(d)はそれぞれ連
続鋳造における鋳造量、強弱攪拌比、電流制御係数、及
び電流値の時間変化を示す模式図である。
FIGS. 4 (a), (b), (c), and (d) are schematic diagrams respectively showing a change over time in a casting amount, a weak stirring ratio, a current control coefficient, and a current value in continuous casting.

【図5】本実施の形態におけるメニスカス流速の説明図
である。
FIG. 5 is an explanatory diagram of a meniscus flow velocity in the present embodiment.

【図6】従来例におけるメニスカス流速の説明図であ
る。
FIG. 6 is an explanatory diagram of a meniscus flow velocity in a conventional example.

【図7】鋳片の鋳片表面疵指標の比較図である。FIG. 7 is a comparison diagram of a slab surface flaw index of a slab.

【図8】鋳片の介在物指標の比較図である。FIG. 8 is a comparison diagram of an inclusion index of a slab.

【図9】鋳片の製品品質指標の比較図である。FIG. 9 is a comparison diagram of a product quality index of a slab.

【符号の説明】[Explanation of symbols]

10 連続鋳造設備 11 タンディ
ッシュ 12 溶鋼 13 モールド 14 浸漬ノズル 15 吐出孔 16 メニスカス面 17 制御装置 18 鋳型壁 31 電磁攪拌
装置 32 電磁攪拌装置 33 電磁攪拌
装置 34 電磁攪拌装置 51 電磁攪拌
装置 52 電磁攪拌装置 53 電磁攪拌
装置
DESCRIPTION OF SYMBOLS 10 Continuous casting equipment 11 Tundish 12 Molten steel 13 Mold 14 Immersion nozzle 15 Discharge hole 16 Meniscus surface 17 Control device 18 Mold wall 31 Electromagnetic stirring device 32 Electromagnetic stirring device 33 Electromagnetic stirring device 34 Electromagnetic stirring device 51 Electromagnetic stirring device 52 Electromagnetic stirring device 53 electromagnetic stirring device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュに保持する溶鋼を浸漬ノ
ズルを介してモールドに注入して、該モールドの鋳型壁
に配置された電磁攪拌装置により該鋳型壁に沿う方向の
移動磁界を発生させ、前記モールド内の溶鋼に推力を付
与しながら該溶鋼を攪拌して鋳片を製造する溶鋼の連続
鋳造方法において、 前記モールドの長辺の両側にそれぞれ前記電磁攪拌装置
を複数配置して、前記溶鋼のメニスカス面に前記鋳型壁
に沿って旋回移動するメニスカス流を形成させる推力を
付与すると共に、前記モールドに注入される溶鋼の鋳造
量に応じて、前記複数の電磁攪拌装置で発生させる前記
推力の大きさを調整することを特徴とする溶鋼の連続鋳
造方法。
1. A molten steel held in a tundish is injected into a mold through an immersion nozzle, and a moving magnetic field in a direction along the mold wall is generated by an electromagnetic stirrer arranged on the mold wall of the mold. In a continuous casting method of molten steel for producing a slab by stirring the molten steel while applying a thrust to the molten steel in the mold, a plurality of the electromagnetic stirring devices are disposed on both sides of a long side of the mold, respectively. A force is applied to the meniscus surface to form a meniscus flow that swirls along the mold wall, and a magnitude of the thrust generated by the plurality of electromagnetic stirrers according to a casting amount of molten steel injected into the mold. A continuous casting method for molten steel, characterized by adjusting the length.
【請求項2】 前記モールドに注入される溶鋼の鋳造量
V(kg/sec)の変動に応じて、該モールドの各長
辺側における前記メニスカス流の上流側及び下流側にそ
れぞれ配置される電磁攪拌装置の電流値iu (アンペ
ア)、電流値id (アンペア)を下式(1)〜(4)に
従って定めることを特徴とする請求項1記載の溶鋼の連
続鋳造方法。 iu =β・i0 ----------------------------------------- (1)式 id =α・β・i0 ------------------------------------- (2)式 α=A1 ・V2 +B1 ・V+C1 、(0<α<1) -------- (3)式 β=A2 ・V2 +B2 ・V+C2 、(0<β≦1) -------- (4)式 但し、i0 は基準電流値(アンペア)、A1 、B1 及び
1 はそれぞれ強弱攪拌比α(id /iu )を規定する
強弱攪拌制御式(3)の定数、A2 、B2 及びC2 はそ
れぞれ電流制御係数βを規定する電流制御式(4)の定
数である。
2. A method according to claim 1, further comprising the step of: providing electromagnetic waves arranged on each of the long sides of said mold on the upstream side and downstream side of said meniscus flow in accordance with a variation in a casting amount V (kg / sec) of molten steel injected into said mold. current value of the stirrer i u (amps), the current value i d (amps) the formula (1) to a continuous casting method of molten steel according to claim 1, wherein the determining in accordance with (4). i u = β · i 0 ----------------------------------------- (1 ) Equation id = α · β · i 0 ------------------------------------- (2 ) Equation α = A 1 · V 2 + B 1 · V + C 1 , (0 <α <1) --- (3) Equation β = A 2 · V 2 + B 2 · V + C 2 , (0 < β ≦ 1) (4) where i 0 is the reference current value (ampere), and A 1 , B 1 and C 1 are the strong and weak stirring ratios α ( id / iu ), respectively. The constants of the defined strong and weak stirring control formula (3), A 2 , B 2 and C 2 are the constants of the current control formula (4) that define the current control coefficient β.
【請求項3】 前記モールドに注入される溶鋼の鋳造量
V(kg/sec)の変動に応じて、該モールドの各長
辺側における前記メニスカス流の上流側及び下流側にそ
れぞれ配置される電磁攪拌装置の電流値iu (アンペ
ア)、電流値id (アンペア)を下式(5)〜(8)に
従って定めることを特徴とする請求項1記載の溶鋼の連
続鋳造方法。 iu =β・i0 ----------------------------------------- (5)式 id =α・β・i0 ------------------------------------- (6)式 α=A1 ・V2 +B1 ・V+C1 、( α=1) -------- (7)式 β=A2 ・V2 +B2 ・V+C2 、(0<β≦1) -------- (8)式 但し、i0 は基準電流値(アンペア)、A1 、B1 及び
1 はそれぞれ強弱攪拌比α(id /iu )を規定する
強弱攪拌制御式(7)の定数、A2 、B2 及びC2 はそ
れぞれ電流制御係数βを規定する電流制御式(8)の定
数である。
3. An electromagnet disposed on an upstream side and a downstream side of the meniscus flow on each long side of the mold in accordance with a variation in a casting amount V (kg / sec) of molten steel injected into the mold. continuous casting process according to claim 1, wherein the molten steel, characterized in that to determine in accordance with the current value of the stirrer i u (ampere), the following equation a current value i d (amps) (5) to (8). i u = β · i 0 ----------------------------------------- (5 ) Equation id = α · β · i 0 ------------------------------------- (6 ) Equation α = A 1 · V 2 + B 1 · V + C 1 , (α = 1) --- (7) Equation β = A 2 · V 2 + B 2 · V + C 2 , (0 <β ≦ 1) -------- (8) where i 0 specifies the reference current value (ampere), and A 1 , B 1 and C 1 each specify the strong / weak agitation ratio α ( id / iu ). The constants A 2 , B 2, and C 2 in the strong and weak stirring control formula (7) are constants in the current control formula (8) that define the current control coefficient β.
【請求項4】 前記メニスカス流の上流側及び下流側に
それぞれ対に配置される電磁攪拌装置が、それぞれ独立
した電源装置により駆動されることを特徴とする請求項
1〜3のいずれか1項に記載の溶鋼の連続鋳造方法。
4. The electromagnetic stirrer arranged in pairs on the upstream side and the downstream side of the meniscus flow, respectively, is driven by independent power supplies. 3. The continuous casting method for molten steel according to item 1.
JP28255497A 1996-10-04 1997-09-29 Continuous casting method of molten steel Expired - Fee Related JP3507304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28255497A JP3507304B2 (en) 1996-10-04 1997-09-29 Continuous casting method of molten steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-283276 1996-10-04
JP28327696 1996-10-04
JP28255497A JP3507304B2 (en) 1996-10-04 1997-09-29 Continuous casting method of molten steel

Publications (2)

Publication Number Publication Date
JPH10156494A true JPH10156494A (en) 1998-06-16
JP3507304B2 JP3507304B2 (en) 2004-03-15

Family

ID=26554649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28255497A Expired - Fee Related JP3507304B2 (en) 1996-10-04 1997-09-29 Continuous casting method of molten steel

Country Status (1)

Country Link
JP (1) JP3507304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268578A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Electromagnetic stirring method for molten steel in casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268578A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp Electromagnetic stirring method for molten steel in casting mold
JP4714624B2 (en) * 2006-03-31 2011-06-29 新日本製鐵株式会社 Method of electromagnetic stirring of molten steel in mold

Also Published As

Publication number Publication date
JP3507304B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
US7967058B2 (en) Apparatus for controlling flow of molten steel in mold
KR20090033212A (en) Method and apparatus for controlling the flow of molten steel in a mould
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JPH10156494A (en) Method for continuously casting molten steel
JP2633764B2 (en) Method for controlling molten steel flow in continuous casting mold
JP3417906B2 (en) Electromagnetic stirring method in continuous casting mold
JPH10109146A (en) Method for continuously casting high oxygen steel
JP3257546B2 (en) Steel continuous casting method
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JP2006255759A (en) Method for continuously casting steel
JP4492333B2 (en) Steel continuous casting method
JPH05237621A (en) Continuous casting method
JP2633769B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH105945A (en) Method for controlling molten steel flow in continuous casting mold
JPH06605A (en) Controller for flow of molten steel in continuous casting mold
JP4432263B2 (en) Steel continuous casting method
JP2633765B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH06603A (en) Controller for flow of molten steel in continuous casting mold
JP2633768B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH06607A (en) Controller for flow of molten steel in continuous casting mold
JP4595351B2 (en) Steel continuous casting method
JP4569320B2 (en) Continuous casting method of ultra-low carbon steel slab slab
JP2013094835A (en) Control method of electromagnetic stirring device in mold at casting end
JP5018144B2 (en) Steel continuous casting method
JPH05329596A (en) Method for controlling molten steel flow in continuous casting mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees