JPH10153497A - Foundation pile bearing power evaluation system - Google Patents
Foundation pile bearing power evaluation systemInfo
- Publication number
- JPH10153497A JPH10153497A JP31027096A JP31027096A JPH10153497A JP H10153497 A JPH10153497 A JP H10153497A JP 31027096 A JP31027096 A JP 31027096A JP 31027096 A JP31027096 A JP 31027096A JP H10153497 A JPH10153497 A JP H10153497A
- Authority
- JP
- Japan
- Prior art keywords
- foundation pile
- bearing power
- evaluation system
- pile
- loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は基礎杭支持力評価シ
ステムに関し、特に基礎杭の支持力を簡易且つ精確に評
価する場合に用いて有用なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foundation pile supporting force evaluation system, and is particularly useful for simply and accurately evaluating the foundation pile supporting force.
【0002】[0002]
【従来の技術】基礎杭の支持力を評価する載荷試験法と
しては、図2に示す静的載荷試験法、図3に示す動的載
荷試験法、図4に示す急速載荷試験法が知られている。2. Description of the Related Art As a load test method for evaluating the bearing capacity of a foundation pile, a static load test method shown in FIG. 2, a dynamic load test method shown in FIG. 3, and a rapid load test method shown in FIG. 4 are known. ing.
【0003】これらのうち静的載荷試験法は、図2に示
すように、試験対象の基礎杭1の周辺に反力杭9を打設
し、反力杭載荷フレームを組んで油圧ジャッキ8による
載荷試験を行って支持力を評価するものである。動的載
荷試験法は、図3に示すように、試験対象の基礎杭1の
上にクッションブロック11を設置し、その上にハンマ
ー10を落下させ、衝撃時のハンマー10の加速度をも
とに基礎杭1の波動理論解析により支持力を推定するも
のである。急速載荷試験法は、図4に示すように、反力
体12を火薬により爆発させ、その衝撃反力を基礎杭1
の杭頭に載荷する試験法である。載荷時には杭頭変位を
レーザにより計測すると共に、載荷荷重をロードセル1
3により計測し、計測データをもとに一次元波動理論を
用いて支持力を推定する。In the static loading test method, as shown in FIG. 2, a reaction force pile 9 is cast around a foundation pile 1 to be tested, and a reaction force pile loading frame is assembled and a hydraulic jack 8 is used. A load test is performed to evaluate the bearing capacity. In the dynamic loading test method, as shown in FIG. 3, a cushion block 11 is installed on a foundation pile 1 to be tested, a hammer 10 is dropped thereon, and the acceleration of the hammer 10 at the time of impact is used. The bearing capacity is estimated by the wave theory analysis of the foundation pile 1. In the rapid loading test method, as shown in FIG. 4, a reaction body 12 is exploded by explosives, and the impact reaction force is applied to the foundation pile 1.
This is a test method to be loaded on the pile head. At the time of loading, the pile head displacement is measured by a laser, and the loading load is measured by the load cell 1.
3, and the supporting force is estimated using the one-dimensional wave theory based on the measured data.
【0004】[0004]
【発明が解決しようとする課題】上述の3種類の載荷試
験の内、現状では静的載荷試験法が最も信頼度が高い
が、載荷装置が大がかりで、1回の試験に相当の期間と
費用を要する。動的載荷試験法は波動理論による解析が
必要であり、杭頭から得られる情報に限界があるため、
静的支持力の推定値がかなり変動する。また、急速載荷
試験法は設計荷重レベルでは比較的杭の静的挙動を表現
できると言われているが、火薬を爆発させてその衝撃反
力を杭頭に載荷するため、都市部での試験は振動・騒音
等の環境問題に起因する制限が厳しく、載荷装置の運搬
等の手間もかかる。また、動的載荷試験法の場合と同
様、静的支持力を解析的に評価する必要があり、現状で
はその推定精度が未だ不十分である。Of the three types of loading tests described above, the static loading test method is currently the most reliable, but the loading equipment is large and the time and cost required for one test are considerable. Cost. The dynamic loading test method requires analysis based on wave theory, and the information obtained from the pile head is limited.
Estimates of static bearing capacity vary considerably. It is said that the rapid loading test method can relatively express the static behavior of the pile at the design load level.However, the explosive is exploded and the impact reaction force is loaded on the pile head. Is severely restricted due to environmental problems such as vibration and noise, and it takes time to transport the loading device. In addition, as in the case of the dynamic loading test method, it is necessary to analytically evaluate the static bearing capacity, and at present, the estimation accuracy is still insufficient.
【0005】本発明は、上記従来技術に鑑み、比較的運
搬が容易な油圧加振装置により精確に支持力の推定を行
うことができる基礎杭支持力評価システムを提供するこ
とを目的とする。In view of the above prior art, an object of the present invention is to provide a foundation pile supporting force evaluation system capable of accurately estimating a supporting force using a hydraulic exciter which is relatively easy to carry.
【0006】[0006]
【課題を解決するための手段】上記目的を達成する本発
明の構成は、基礎杭の杭頭に油圧加振装置を装着し、こ
れを打撃することにより弾性波を生じさせ、杭頭の応答
とあらかじめボーリングした計測孔から得られる弾性波
データをもとに、一次元波動理論や有限要素法等の解析
モデルを用いて逆解析的に基礎杭の支持力を推定するよ
うに構成したことを特徴とする。According to the structure of the present invention, which achieves the above object, a hydraulic exciter is mounted on a pile head of a foundation pile and an elastic wave is generated by striking the hydraulic exciter to generate an elastic wave. And the elastic wave data obtained from the pre-drilled measurement holes, using an analytical model such as the one-dimensional wave theory or the finite element method to estimate the bearing capacity of the foundation pile by inverse analysis. Features.
【0007】[0007]
【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。本実施の形態は基礎杭の支持力
を評価する場合である。Embodiments of the present invention will be described below in detail with reference to the drawings. The present embodiment is a case where the bearing capacity of a foundation pile is evaluated.
【0008】図1に示すように、油圧加振装置2は基礎
杭1の頭部を打撃するように構成してある。ここで、入
力パルス幅が小さい場合には防振ゴム等の減衰材3を杭
頭部に装着して打撃するように構成してある。また、基
礎杭1の近傍に鉛直方向に計測孔4をボーリングしてお
き、この計測孔4の孔壁に密着するように加速度計であ
るセンサ5を設置し、杭打撃時に地盤を伝搬する弾性波
を受信するように構成してある。。かくして、センサ5
で得られたデータをもとに、あらかじめボーリングした
際に得られた地盤情報をもとに層毎に周面特性を変化さ
せた一次元波動理論に基づく解析モデルを作成し、層毎
の周面摩擦特性や先端特性を逆解析により同定する。As shown in FIG. 1, the hydraulic exciter 2 is configured to strike the head of the foundation pile 1. Here, when the input pulse width is small, the damping material 3 such as a vibration-proof rubber is mounted on the pile head and hit. In addition, a measurement hole 4 is bored in the vertical direction near the foundation pile 1 and a sensor 5 which is an accelerometer is installed so as to be in close contact with the hole wall of the measurement hole 4. It is configured to receive waves. . Thus, the sensor 5
Based on the data obtained in the above, an analytical model based on the one-dimensional wave theory, in which the surface characteristics are changed for each layer based on the ground information obtained when drilling in advance, was created, and the Identify surface friction characteristics and tip characteristics by inverse analysis.
【0009】このときセンサ5を介して得るデータは地
盤を介して得られたもので、S/N比が悪いためこのま
までは逆解析が困難である。そのため、カルマンフィル
タ等のフィルタリング手法を適用し、同定精度を向上さ
せ、その結果をもとに、静的な支持力特性を推定する。
かかる処理は計測システム6及びデータ評価システム7
で行う。At this time, the data obtained through the sensor 5 is obtained through the ground, and the S / N ratio is poor, so that it is difficult to perform the reverse analysis as it is. Therefore, a filtering technique such as a Kalman filter is applied to improve identification accuracy, and a static bearing force characteristic is estimated based on the result.
Such processing is performed by the measurement system 6 and the data evaluation system 7
Do with.
【0010】上述の如き本実施の形態によれば、油圧加
振装置2により載荷するため、荷重レベル及びパルス幅
の制御も容易であり、載荷方向の自由度も大きい。ま
た、地中に埋め込んだセンサ5から得られるデータを利
用して、層毎の杭・地盤間の特性を精度良く推定できる
ため、静的な支持力の評価精度が向上する。According to the present embodiment as described above, since the loading is performed by the hydraulic vibration device 2, the control of the load level and the pulse width is easy, and the degree of freedom in the loading direction is large. In addition, since the characteristics between the pile and the ground for each layer can be accurately estimated using the data obtained from the sensor 5 embedded in the ground, the accuracy of static support force evaluation is improved.
【0011】[0011]
【発明の効果】以上実施の形態とともに詳細に説明した
通り、本発明によれば比較的運搬が容易な油圧加振装置
により、入力荷重を制御することができるため、適切な
荷重設定が可能である。また通常の杭頭の弾性波データ
のみを用いて評価する手法に比べ杭周辺の地盤データを
利用して逆解析を行うため、杭周面摩擦特性及び先端抵
抗を精度良く同定することが可能である。As described in detail with the above embodiment, according to the present invention, the input load can be controlled by the hydraulic exciter which is relatively easy to carry, so that an appropriate load can be set. is there. In addition, since the reverse analysis is performed using the ground data around the pile compared with the method of evaluating using only the elastic wave data of the normal pile head, it is possible to accurately identify the pile surface friction characteristics and tip resistance. is there.
【図1】本発明の実施の形態に係る基礎杭支持力評価シ
ステムを概念的に示す説明図。FIG. 1 is an explanatory view conceptually showing a foundation pile supporting force evaluation system according to an embodiment of the present invention.
【図2】従来の方法である静的載荷試験法を概念的に示
す説明図。FIG. 2 is an explanatory view conceptually showing a static load test method which is a conventional method.
【図3】従来の方法である動的載荷試験法を概念的に示
す説明図。FIG. 3 is an explanatory view conceptually showing a conventional dynamic load test method.
【図4】従来の方法である急速載荷試験法を概念的に示
す説明図。FIG. 4 is an explanatory view conceptually showing a conventional rapid load test method.
1 基礎杭 2 油圧加振装置 3 減衰材 4 計測孔 5 センサ 6 計測システム 7 データ評価システム DESCRIPTION OF SYMBOLS 1 Foundation pile 2 Hydraulic excitation device 3 Damping material 4 Measurement hole 5 Sensor 6 Measurement system 7 Data evaluation system
Claims (1)
これを打撃することにより弾性波を生じさせ、杭頭の応
答とあらかじめボーリングした計測孔から得られる弾性
波データをもとに、一次元波動理論や有限要素法等の解
析モデルを用いて逆解析的に基礎杭の支持力を推定する
ように構成したことを特徴とする基礎杭支持力評価シス
テム。A hydraulic exciter is mounted on a pile head of a foundation pile,
By hitting this, an elastic wave is generated, and based on the response of the pile head and the elastic wave data obtained from the pre-drilled measurement hole, an inverse analysis is performed using an analytical model such as the one-dimensional wave theory or the finite element method. A bearing capacity evaluation system for foundation piles, which is configured to estimate the bearing capacity of foundation piles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31027096A JPH10153497A (en) | 1996-11-21 | 1996-11-21 | Foundation pile bearing power evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31027096A JPH10153497A (en) | 1996-11-21 | 1996-11-21 | Foundation pile bearing power evaluation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10153497A true JPH10153497A (en) | 1998-06-09 |
Family
ID=18003223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31027096A Withdrawn JPH10153497A (en) | 1996-11-21 | 1996-11-21 | Foundation pile bearing power evaluation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10153497A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6804994B2 (en) * | 2001-12-27 | 2004-10-19 | Mitsubishi Denki Kabushiki Kaisha | Dynamic loading system, dynamic loading method and dynamic loading test method for piles |
CN101846561A (en) * | 2010-06-18 | 2010-09-29 | 长沙理工大学 | Mollisol area friction pile load transference curve tester |
JP2010223894A (en) * | 2009-03-25 | 2010-10-07 | Kowa:Kk | Compact load tester and testing method of the same |
CN115233753A (en) * | 2022-08-31 | 2022-10-25 | 湖北工业大学 | Method for rapidly obtaining bearing capacity of foundation pile based on reverse self-balancing pile testing method |
-
1996
- 1996-11-21 JP JP31027096A patent/JPH10153497A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6804994B2 (en) * | 2001-12-27 | 2004-10-19 | Mitsubishi Denki Kabushiki Kaisha | Dynamic loading system, dynamic loading method and dynamic loading test method for piles |
JP2010223894A (en) * | 2009-03-25 | 2010-10-07 | Kowa:Kk | Compact load tester and testing method of the same |
CN101846561A (en) * | 2010-06-18 | 2010-09-29 | 长沙理工大学 | Mollisol area friction pile load transference curve tester |
CN115233753A (en) * | 2022-08-31 | 2022-10-25 | 湖北工业大学 | Method for rapidly obtaining bearing capacity of foundation pile based on reverse self-balancing pile testing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bruno et al. | Dynamic and static load testing of model piles driven into dense sand | |
US6988417B2 (en) | Displacement and force sensor | |
JP6731309B2 (en) | Pile performance evaluation method | |
JPH10153497A (en) | Foundation pile bearing power evaluation system | |
Chai et al. | Some observations on the performance of the signal matching technique in assessment of pile integrity | |
US7650962B2 (en) | Rotary actuated seismic source and methods for continuous direct-push downhole seismic testing | |
JP5087425B2 (en) | Structure health diagnosis method | |
JP7550680B2 (en) | Pile driving construction management method | |
JP2018017112A (en) | Ground investigation device and ground investigation method | |
Akal et al. | An expendable penetrometer for rapid assessment of seafloor parameters | |
Rausche et al. | Comparison of pulse echo and transient response pile integrity test methods | |
JPH10183659A (en) | Evaluation system and method for pile-foundation | |
Heinisch et al. | Testing and characterization of shock and vibration loads to enhance drilling tool reliability and efficiency | |
US7152467B2 (en) | Parallel seismic depth testing using a cone penetrometer | |
KR100767595B1 (en) | In-hole seismic testing device for measuring dynamic stiffness of subsurface materials | |
JP2000337070A (en) | Determination method for geology and stratum change in drilling or boring | |
CN111042215A (en) | Existing building foundation pile quality detection method and device | |
JP2007139454A (en) | Capacity evaluation device of pile | |
US5610336A (en) | Method for estimating frequencies of machine foundations | |
Mog et al. | Dynamic properties of surface liquefied site silty-sand of Tripura, India | |
JPH1078333A (en) | Measuring monitoring system for driven pile | |
Tandon et al. | Vertical vibration tests to study the effect of foundation geometry and embedment on the non-linear response of block foundations | |
EP1235082A1 (en) | Method and apparatus to generate shear wave signals and measure seismic parameters in penetrable media | |
Lin et al. | Capacity evaluation of statnamic tested long piles | |
RIVEROS et al. | An Innovative Approach of Vibration Testing of Concrete Structures Using Performance Based Evaluation Techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |