JPH10153355A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10153355A
JPH10153355A JP8311631A JP31163196A JPH10153355A JP H10153355 A JPH10153355 A JP H10153355A JP 8311631 A JP8311631 A JP 8311631A JP 31163196 A JP31163196 A JP 31163196A JP H10153355 A JPH10153355 A JP H10153355A
Authority
JP
Japan
Prior art keywords
oil
compressor
compressors
amount
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8311631A
Other languages
Japanese (ja)
Inventor
Takashi Kaneko
孝 金子
Masao Kurachi
正夫 蔵地
Kazuo Nakatani
和生 中谷
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP8311631A priority Critical patent/JPH10153355A/en
Priority to EP97112592A priority patent/EP0838640A3/en
Priority to US08/905,729 priority patent/US5996363A/en
Priority to CA002217514A priority patent/CA2217514A1/en
Priority to KR1019970055536A priority patent/KR100242810B1/en
Publication of JPH10153355A publication Critical patent/JPH10153355A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a proper amount of oil of each compressor in the case where a plurality of compressors include different volumes or a variable volume system-based compressor. SOLUTION: An oil equalizer pipe connection pipelines 12a to 12c are provided near the shell standard oil level elevation of each of compressors 2a to 2c where there are provided an oil equalizer pipe 11 communicated with one end of each of the oil equalizer pipe connection pipelines 12a to 12c and a communication pipeline which is communicated with the upper part in an accumulator 20 and the oil equalizer pipeline 11 in structure. This construction makes it possible to increase the pressure of the oil equalizer pipe 11 higher than the pressure in the shell of each of the compressors 2a to 2c and eliminate the movement of oil by way of the oil equalizer pipe during the operation of the compressors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の低圧シェル
方式の圧縮機を備えた空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a plurality of low-pressure shell type compressors.

【0002】[0002]

【従来の技術】従来、この種の空気調和機としては、実
開平4−19675号公報に開示されている。
2. Description of the Related Art A conventional air conditioner of this type is disclosed in Japanese Utility Model Laid-Open No. 19675/1992.

【0003】以下、図面を参照しながら上述した空気調
和機について説明する。図8において、空気調和機の室
外機1は、複数の低圧シェル方式の圧縮機2,四方弁
3,室外側熱交換器4,室外側膨張弁5,アキュームレ
ータ20から構成されている。また、室内機6は、室内
側膨張弁7,室内側熱交換器8から構成されている。さ
らに、室外機1と室内機6は連接され、環状の冷媒回路
が構成されている。また、アキュームレータ20の出口
側配管はU字形状となっており、出口配管の下部には油
戻し穴を備えている。また、各圧縮機2のシェルの標準
油面高さ近傍には均油管接続配管12が設けられ、各均
油管接続配管12の一端は均油管11に連通している。
尚、圧縮機2は本従来例では3台接続されており、区別
する場合は添字a,b,cを付けることにする。
Hereinafter, the air conditioner described above will be described with reference to the drawings. In FIG. 8, the outdoor unit 1 of the air conditioner includes a plurality of low-pressure shell-type compressors 2, four-way valves 3, outdoor heat exchangers 4, outdoor expansion valves 5, and accumulators 20. The indoor unit 6 includes an indoor expansion valve 7 and an indoor heat exchanger 8. Further, the outdoor unit 1 and the indoor unit 6 are connected to form an annular refrigerant circuit. The outlet pipe of the accumulator 20 has a U-shape, and an oil return hole is provided below the outlet pipe. An oil equalizing pipe connection pipe 12 is provided near the standard oil level of the shell of each compressor 2, and one end of each oil equalizing pipe connection pipe 12 communicates with the oil equalizing pipe 11.
Incidentally, three compressors 2 are connected in the conventional example, and suffixes a, b, and c are added to distinguish them.

【0004】次に、上記構成の空気調和機における各圧
縮機の油量制御方法について説明する。まず、圧縮機2
のシェル内の油量が増加し油面高さが上昇すると、圧縮
機2の均油管接続配管12の接続部の圧力が上昇する。
また、圧縮機2のシェル内の油量が減少し油面高さが低
下すると、圧縮機2の均油管接続配管12の接続部の圧
力が低下する。従って、例えば、圧縮機2aの油量が起
動時のオイルフォーミング等のために減少した場合、圧
縮機2aの油面高さが低下し、圧縮機2aの均油管接続
配管12aの接続部の圧力が、圧縮機2b,2cの均油
管接続配管12b,12cの接続部の圧力より低くな
る。このため、圧縮機2b,2cのシェル内の油が均油
管11を介して圧縮機2aのシェル内に移動し、圧縮機
2aの油量不足を防止できる。このように、各圧縮機の
油量を適正量に制御できる。
Next, a method of controlling the oil amount of each compressor in the air conditioner having the above configuration will be described. First, the compressor 2
When the oil amount in the shell increases and the oil level rises, the pressure at the connection of the oil equalizing pipe connection pipe 12 of the compressor 2 increases.
Further, when the oil amount in the shell of the compressor 2 decreases and the oil level decreases, the pressure at the connection part of the oil equalizing pipe connection pipe 12 of the compressor 2 decreases. Therefore, for example, when the oil amount of the compressor 2a decreases due to oil forming or the like at the time of startup, the oil level height of the compressor 2a decreases, and the pressure of the connection portion of the oil equalizing pipe connection pipe 12a of the compressor 2a decreases. However, the pressure becomes lower than the pressure at the connection between the oil equalizing pipe connection pipes 12b and 12c of the compressors 2b and 2c. For this reason, the oil in the shells of the compressors 2b and 2c moves into the shell of the compressor 2a via the oil equalizing pipe 11, and the shortage of the oil amount of the compressor 2a can be prevented. Thus, the oil amount of each compressor can be controlled to an appropriate amount.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、複数の圧縮機に異なる容量の圧縮機が含
まれている場合、或いは、複数の圧縮機に可変容量方式
の圧縮機が含まれている場合には、各圧縮機が低圧シェ
ル方式であるため、高容量側の圧縮機のシェル内の圧力
は低くなり、そして、低容量側の圧縮機のシェル内の圧
力は高くなる。従って、例えば、圧縮機2aが圧縮機2
b,2cよりも低容量である場合、圧縮機2aのシェル
内の圧力は、圧縮機2b,2cのシェル内の圧力より高
くなり、圧縮機2aの均油管接続配管12aの接続部の
圧力が圧縮機2b,2cの均油管接続配管12b,12
cの接続部の圧力より高くなる。このため、圧縮機2a
のシェル内の油が均油管11を介して圧縮機2b,2c
のシェル内に移動し、圧縮機2aの油量が減少する。こ
の時、圧縮機2aのシェル内には、回転部品により撹拌
された油、或いは、圧縮室から落下した油がミスト状と
なって浮遊しており、このミスト状の油も冷媒とともに
圧縮機2b,2cに移動してしまう。従って、圧縮機2
aの油面高さが均油管接続配管12aの接続位置より下
になっても油量は減少し続け、やがて、油量不足とな
る。このように、低容量側の圧縮機の油量不足が発生す
るという問題があった。
However, in the above configuration, a plurality of compressors include compressors of different capacities, or a plurality of compressors include a variable capacity compressor. In this case, the pressure in the shell of the high-capacity compressor is low, and the pressure in the shell of the low-capacity compressor is high because each compressor is of the low-pressure shell type. Therefore, for example, the compressor 2a
When the capacity is lower than b and 2c, the pressure in the shell of the compressor 2a becomes higher than the pressure in the shell of the compressors 2b and 2c, and the pressure at the connection part of the oil equalizing pipe connection pipe 12a of the compressor 2a is reduced. Oil equalizing pipe connection pipes 12b, 12 of the compressors 2b, 2c
The pressure is higher than the pressure at the connection point c. For this reason, the compressor 2a
The oil in the shell of the compressor 2b, 2c
And the oil amount of the compressor 2a decreases. At this time, in the shell of the compressor 2a, the oil stirred by the rotating parts or the oil dropped from the compression chamber floats in the form of a mist, and the mist-like oil is cooled together with the refrigerant in the compressor 2b. , 2c. Therefore, the compressor 2
Even if the oil level height a becomes lower than the connection position of the oil equalizing pipe connection pipe 12a, the oil amount continues to decrease, and eventually the oil amount becomes insufficient. As described above, there is a problem that the oil amount of the compressor on the low capacity side becomes insufficient.

【0006】本発明は従来の課題を解決するもので、複
数の圧縮機に異なる容量の圧縮機が含まれている場合、
或いは、複数の圧縮機に可変容量方式の圧縮機が含まれ
ている場合でも、各圧縮機の適正油量調節が可能な空気
調和機を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the conventional problem. In the case where a plurality of compressors include compressors having different capacities,
Alternatively, it is another object of the present invention to provide an air conditioner capable of adjusting a proper oil amount of each compressor even when a plurality of compressors include a variable displacement compressor.

【0007】[0007]

【課題を解決するための手段】本発明は、複数の低圧シ
ェル方式の圧縮機のシェルの標準油面高さ近傍に均油管
接続配管を設け、前記各均油管接続配管の一端を連通し
た均油管と、アキュームレータ内の上部と前記均油管を
連通する連通管を備え、前記均油管の圧力を前記各圧縮
機のシェルの圧力より高くしたものである。
SUMMARY OF THE INVENTION The present invention provides an equalizing pipe connecting pipe near a standard oil level of a plurality of low pressure shell type shells, and an equalizing pipe connected to one end of each of the equalizing pipe connecting pipes. An oil pipe, a communication pipe communicating the upper part in the accumulator and the oil equalizing pipe, and the pressure of the oil equalizing pipe is higher than the pressure of the shell of each of the compressors.

【0008】また、本発明は、複数の低圧シェル方式の
圧縮機のシェルの標準油面高さ近傍に均油管接続配管を
設け、前記各均油管接続配管の一端を連通した均油管
と、アキュームレータ内の上部と前記均油管を連通する
連通管と、前記連通管に備えられた二方弁と、冷房、或
いは、暖房の連続運転時間が所定の時間以上となると、
一定時間だけ前記二方弁を閉止する二方弁制御手段を備
え、前記二方弁の閉止時は前記均油管の圧力を前記各圧
縮機のシェルの圧力より高くしたものである。
Further, the present invention provides an oil equalizing pipe connecting pipes near one of the standard oil level of a plurality of low pressure shell type compressor shells, and one end of each oil equalizing pipe connecting pipe, and an accumulator. A communication pipe communicating the upper part of the inside and the oil equalizing pipe, a two-way valve provided in the communication pipe, and cooling, or, when the continuous operation time of heating becomes a predetermined time or more,
There is provided a two-way valve control means for closing the two-way valve for a predetermined time, and when the two-way valve is closed, the pressure of the oil equalizing pipe is higher than the pressure of the shell of each compressor.

【0009】また、本発明は、複数の低圧シェル方式の
圧縮機のシェルの標準油面高さ近傍に均油管接続配管を
設け、前記各均油管接続配管の一端を連通した均油管
と、アキュームレータ内の上部と前記均油管を連通する
連通管と、前記連通管に備えられた二方弁と、各圧縮機
のシェル上部とシェル下部の差圧を検出する差圧検出装
置を備え、少なくとも1台の圧縮機の前記差圧検出装置
が検出したシェル上部とシェル下部の差圧が所定の下限
差圧未満となると、前記二方弁を閉止し、その後、全て
の圧縮機の前記差圧検出装置が検出したシェル上部とシ
ェル下部の差圧が所定の標準差圧以上となると、前記二
方弁を開口する二方弁制御手段を備え、前記二方弁の閉
止時は前記均油管の圧力を前記各圧縮機のシェルの圧力
より高くしたものである。
Further, the present invention provides an oil equalizing pipe connecting pipe near the standard oil level of a plurality of low pressure shell type compressor shells, and an oil equalizing pipe communicating with one end of each oil equalizing pipe connecting pipe, and an accumulator. A communication pipe that communicates the upper part of the inside with the oil equalizing pipe, a two-way valve provided in the communication pipe, and a differential pressure detection device that detects a differential pressure between a shell upper part and a shell lower part of each compressor. When the differential pressure between the upper shell and the lower shell detected by the differential pressure detecting device of one compressor is less than a predetermined lower differential pressure, the two-way valve is closed, and then the differential pressure detection of all the compressors is performed. When the differential pressure between the upper shell portion and the lower shell portion detected by the device is equal to or greater than a predetermined standard differential pressure, a two-way valve control means for opening the two-way valve is provided, and when the two-way valve is closed, the pressure of the oil equalizing pipe is increased. Is higher than the shell pressure of each compressor. That.

【0010】また、本発明は、複数の低圧シェル方式の
圧縮機のシェルの標準油面高さ近傍に均油管接続配管を
設け、前記各均油管接続配管の一端を連通した均油管
と、アキュームレータ内の上部と前記均油管を連通する
連通管と、前記連通管に備えられた二方弁と、各圧縮機
の油面高さを検出する油面高さ検出装置を備え、少なく
とも1台の圧縮機の前記油面高さ検出装置が検出した油
面高さが所定の下限油面高さ未満となると、前記二方弁
を閉止し、その後、全ての圧縮機の前記油面高さ検出装
置が検出した油面高さが所定の油面高さ以上となると、
前記二方弁を開口する二方弁制御手段を備え、前記二方
弁の閉止時は前記均油管の圧力を前記各圧縮機のシェル
の圧力より高くしたものである。
[0010] The present invention also provides an oil equalizing pipe connecting pipes near the standard oil level of a plurality of low pressure shell type compressor shells, one end of each of the oil equalizing pipe connecting pipes, and an accumulator. A communication pipe that communicates the upper part of the inside and the oil equalizing pipe, a two-way valve provided in the communication pipe, and an oil level detection device that detects an oil level of each compressor, and at least one When the oil level detected by the oil level detector of the compressor is less than a predetermined lower limit oil level, the two-way valve is closed, and then the oil level detection of all compressors is performed. When the oil level detected by the device is equal to or higher than the predetermined oil level,
There is provided two-way valve control means for opening the two-way valve, and when the two-way valve is closed, the pressure of the oil equalizing pipe is higher than the pressure of the shell of each of the compressors.

【0011】この本発明によれば、複数の圧縮機に異な
る容量の圧縮機が含まれている場合、或いは、複数の圧
縮機に可変容量方式の圧縮機が含まれている場合でも、
各圧縮機の油量を適正量に制御できる。
According to the present invention, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a variable capacity compressor,
The oil amount of each compressor can be controlled to an appropriate amount.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、複数の低圧シェル方式の圧縮機,四方弁,室外側熱
交換器,室外側膨張弁,アキュームレータから成る室外
機と、室内側膨張弁,室内側熱交換器から成る室内機と
を連接して環状の冷媒回路を構成し、前記各圧縮機のシ
ェルの標準油面高さ近傍に均油管接続配管を設け、前記
各均油管接続配管の一端を連通した均油管と、前記各圧
縮機への吸入ガス分岐部より上流側の吸入ガス配管と前
記均油管を連通する連通管を備え、前記均油管の圧力を
前記各圧縮機のシェルの圧力より高くしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to an outdoor unit comprising a plurality of low-pressure shell-type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator; An annular refrigerant circuit is formed by connecting an inner expansion valve and an indoor unit including an indoor heat exchanger, and an oil equalizing pipe connection pipe is provided near a standard oil level of a shell of each of the compressors. An oil pipe connected to one end of an oil pipe connection pipe; and a communication pipe connecting the suction gas pipe upstream of a suction gas branch section to each of the compressors and the oil equalization pipe. Higher than the shell pressure of the machine.

【0013】従って、複数の圧縮機に異なる容量の圧縮
機が含まれている場合、或いは、複数の圧縮機に可変容
量方式の圧縮機が含まれている場合でも、圧縮機の運転
中は、低容量側の前記圧縮機のシェルから前記均油管を
介して高容量側の前記圧縮機に油が移動することがなく
なり、低容量側の前記圧縮機の油量不足を防止できる。
Therefore, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a compressor of a variable capacity system, during operation of the compressor, Oil does not move from the shell of the compressor on the low-capacity side to the compressor on the high-capacity side via the oil equalizing pipe, and it is possible to prevent shortage of oil in the compressor on the low-capacity side.

【0014】また、前記連通管に流れるガス冷媒に含ま
れている油は、ガス冷媒とともに前記均油管から前記各
均油管接続配管を介して前記各圧縮機に分配される。こ
の時、分配されるガス冷媒の量は、前記均油管と前記各
圧縮機のシェル内の差圧の平方根に比例し、分配される
油の量も同じく前記均油管と前記各圧縮機のシェル内の
差圧の平方根に比例する。しかし、前記均油管と前記各
圧縮機のシェル内の差圧は前記連通管の圧力損失により
変動するため、分配される油量の比は、前記各圧縮機の
容量によって決まる吐出油量の比とは異なる。従って、
一部の前記圧縮機では、吐出油量の比に対して前記連通
管から前記均油管を介して分配される油量の比が小さ
く、長時間にわたり連続運転を続けると、油量が減少し
ていき、やがて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to the compressors via the oil equalizing pipe connection pipes. At this time, the amount of the gas refrigerant to be distributed is proportional to the square root of the differential pressure in the oil equalizing pipe and the shell of each of the compressors, and the amount of the oil to be distributed is also the same as that of the oil equalizing pipe and the shell of each of the compressors. Is proportional to the square root of the differential pressure. However, since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil distributed is determined by the ratio of the discharge oil amount determined by the capacity of each compressor. And different. Therefore,
In some of the compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing tube to the ratio of the amount of discharged oil is small, and if the continuous operation is continued for a long time, the oil amount decreases. The oil will eventually run out.

【0015】しかし、前記連通管の入口は、油が分離さ
れガス冷媒のみが存在する前記アキュームレータ内の上
部にあるため、前記連通管には油の含まれていないガス
冷媒のみが流れる。従って、前記圧縮機の油吐出量の比
に対して前記連通管から前記均油管を介して分配される
油量の比が小さいための、長時間運転後の油量不足を防
止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator in which oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, it is possible to prevent shortage of the oil amount after a long operation because the ratio of the oil amount distributed from the communication pipe through the oil equalizing pipe to the oil discharge amount ratio of the compressor is small.

【0016】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の前記圧縮機では吐出油量に対して返油量が少なく、連
続運転を続けると、油量が減少していく。
In general, the high-capacity compressor has a larger amount of oil supply to the compression chamber than the low-capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the compressor on the high capacity side, the amount of oil returned is smaller than the amount of discharged oil, and the amount of oil decreases as continuous operation is continued.

【0017】しかし、全ての前記圧縮機が停止すると、
サイクル内が均圧され、前記均油管により、前記各圧縮
機の油量が、油面高さが等しくなるように調節される。
従って、高容量側の前記圧縮機の油吐出量より返油量が
少ないための油量不足を防止できる。このように、各圧
縮機の油量を適正量に制御できる。
However, when all the compressors stop,
The pressure in the cycle is equalized, and the oil level of the compressors is adjusted by the oil equalizing pipe so that the oil level is equal.
Therefore, it is possible to prevent an oil shortage due to the oil return amount being smaller than the oil discharge amount of the compressor on the high capacity side. Thus, the oil amount of each compressor can be controlled to an appropriate amount.

【0018】本発明の請求項2に記載の発明は、複数の
低圧シェル方式の圧縮機,四方弁,室外側熱交換器,室
外側膨張弁,アキュームレータから成る室外機と、室内
側膨張弁,室内側熱交換器から成る室内機とを連接して
環状の冷媒回路を構成し、前記各圧縮機のシェルの標準
油面高さ近傍に均油管接続配管を設け、前記各均油管接
続配管の一端を連通した均油管と、前記各圧縮機への吸
入ガス分岐部より上流側の吸入ガス配管と前記均油管を
連通する連通管と、前記連通管に備えられた二方弁と、
冷房、或いは、暖房の連続運転時間が所定の時間以上と
なると、一定時間だけ前記二方弁を閉止する二方弁制御
手段を備え、前記二方弁の閉止時は前記均油管の圧力を
前記各圧縮機のシェルの圧力より高くしたものである。
According to a second aspect of the present invention, there is provided an outdoor unit comprising a plurality of low pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator; An annular refrigerant circuit is formed by connecting an indoor unit including an indoor heat exchanger, and an oil equalizing pipe connection pipe is provided near a standard oil level of a shell of each of the compressors. An oil equalizing pipe having one end connected thereto, a communication pipe communicating the suction gas pipe upstream of a suction gas branch to each of the compressors and the oil equalizing pipe, and a two-way valve provided in the communication pipe,
When the continuous operation time of the cooling or the heating is equal to or longer than a predetermined time, a two-way valve control unit that closes the two-way valve for a fixed time is provided, and when the two-way valve is closed, the pressure of the oil equalizing pipe is increased. The pressure is higher than the shell pressure of each compressor.

【0019】従って、複数の圧縮機に異なる容量の圧縮
機が含まれている場合、或いは、複数の圧縮機に可変容
量方式の圧縮機が含まれている場合でも、低容量側の前
記圧縮機のシェルから前記均油管を介して高容量側の前
記圧縮機に油が移動することがなくなり、低容量側の前
記圧縮機の油量不足を防止できる。
Therefore, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a compressor of a variable capacity type, the compressor having the lower capacity is used. No oil moves from the shell through the oil equalizing pipe to the compressor on the high-capacity side, and the shortage of oil in the compressor on the low-capacity side can be prevented.

【0020】また、前記連通管に流れるガス冷媒に含ま
れている油は、ガス冷媒とともに前記均油管から前記各
均油管接続配管を介して前記各圧縮機に分配される。こ
の時、分配されるガス冷媒の量は、前記均油管と前記各
圧縮機のシェル内の差圧の平方根に比例し、分配される
油の量も同じく前記均油管と前記各圧縮機のシェル内の
差圧の平方根に比例する。しかし、前記均油管と前記各
圧縮機のシェル内の差圧は前記連通管の圧力損失により
変動するため、分配される油量の比は、前記各圧縮機の
容量によって決まる吐出油量の比とは異なる。従って、
一部の前記圧縮機では、吐出油量の比に対して前記連通
管から前記均油管を介して分配される油量の比が小さ
く、長時間にわたり連続運転を続けると、油量が減少し
ていき、やがて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to the compressors via the oil equalizing pipe connection pipes. At this time, the amount of the gas refrigerant to be distributed is proportional to the square root of the differential pressure in the oil equalizing pipe and the shell of each of the compressors, and the amount of the oil to be distributed is also the same as that of the oil equalizing pipe and the shell of each of the compressors. Is proportional to the square root of the differential pressure. However, since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil distributed is determined by the ratio of the discharge oil amount determined by the capacity of each compressor. And different. Therefore,
In some of the compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing tube to the ratio of the amount of discharged oil is small, and if the continuous operation is continued for a long time, the oil amount decreases. The oil will eventually run out.

【0021】しかし、前記連通管の入口は、油が分離さ
れガス冷媒のみが存在する前記アキュームレータ内の上
部にあるため、前記連通管には油の含まれていないガス
冷媒のみが流れる。従って、前記圧縮機の油吐出量の比
に対して前記連通管から前記均油管を介して分配される
油量の比が小さいための、長時間運転後の油量不足を防
止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, it is possible to prevent shortage of the oil amount after a long operation because the ratio of the oil amount distributed from the communication pipe through the oil equalizing pipe to the oil discharge amount ratio of the compressor is small.

【0022】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の前記圧縮機では吐出油量に対して返油量が少なく、連
続運転を長時間にわたり続けると、油量が減少してい
き、やがて、油量不足となる。
In general, the higher capacity compressor has a larger oil supply amount to the compression chamber than the lower capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the compressor on the high-capacity side, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0023】しかし、冷房、或いは、暖房の連続運転時
間が所定の時間以上となると、一定時間だけ前記二方弁
を閉止するため、この前記二方弁の閉止時に、シェル内
の圧力が高い低容量側の前記圧縮機から、前記均油管を
介し、シェル内の圧力が低い高容量側の前記圧縮機に油
が移動する。従って、高容量側の前記圧縮機の油吐出量
より返油量が少ないための、長時間連続運転後の油量不
足を防止できる。このように、各圧縮機の油量を適正量
に制御できる。
However, when the continuous operation time of cooling or heating is equal to or longer than a predetermined time, the two-way valve is closed for a predetermined time, so that when the two-way valve is closed, the pressure in the shell becomes high and low. Oil moves from the compressor on the capacity side to the compressor on the high capacity side where the pressure in the shell is low via the oil equalizing pipe. Therefore, it is possible to prevent an insufficient amount of oil after a long-time continuous operation because the amount of oil returned is smaller than the amount of oil discharged from the compressor on the high capacity side. Thus, the oil amount of each compressor can be controlled to an appropriate amount.

【0024】本発明の請求項3に記載の発明は、複数の
低圧シェル方式の圧縮機,四方弁,室外側熱交換器,室
外側膨張弁,アキュームレータから成る室外機と、室内
側膨張弁,室内側熱交換器から成る室内機とを連接して
環状の冷媒回路を構成し、前記各圧縮機のシェルの標準
油面高さ近傍に均油管接続配管を設け、前記各均油管接
続配管の一端を連通した均油管と、前記各圧縮機への吸
入ガス分岐部より上流側の吸入ガス配管と前記均油管を
連通する連通管と、前記連通管に備えられた二方弁と、
前記各圧縮機のシェル上部とシェル下部の差圧を検出す
る差圧検出装置を備え、少なくとも1台の前記圧縮機の
前記差圧検出装置が検出したシェル上部とシェル下部の
差圧が所定の下限差圧未満となると、前記二方弁を閉止
し、その後、全ての前記圧縮機の前記差圧検出装置が検
出したシェル上部とシェル下部の差圧が所定の標準差圧
以上となると、前記二方弁を開口する二方弁制御手段を
備え、前記二方弁の閉止時は前記均油管の圧力を前記各
圧縮機のシェルの圧力より高くしたものである。
According to a third aspect of the present invention, there is provided an outdoor unit including a plurality of low-pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator; An annular refrigerant circuit is formed by connecting an indoor unit including an indoor heat exchanger, and an oil equalizing pipe connection pipe is provided near a standard oil level of a shell of each of the compressors. An oil equalizing pipe having one end connected thereto, a communication pipe communicating the suction gas pipe upstream of a suction gas branch to each of the compressors and the oil equalizing pipe, and a two-way valve provided in the communication pipe,
A differential pressure detector for detecting a differential pressure between a shell upper part and a shell lower part of each of the compressors, wherein a differential pressure between the shell upper part and the shell lower part detected by the differential pressure detector of at least one of the compressors is a predetermined value; When the pressure difference is less than the lower limit differential pressure, the two-way valve is closed, and thereafter, when the differential pressure between the upper shell and lower shell detected by the differential pressure detectors of all the compressors is equal to or more than a predetermined standard differential pressure, Two-way valve control means for opening the two-way valve is provided, and when the two-way valve is closed, the pressure of the oil equalizing pipe is higher than the pressure of the shell of each of the compressors.

【0025】従って、複数の圧縮機に異なる容量の圧縮
機が含まれている場合、或いは、複数の圧縮機に可変容
量方式の圧縮機が含まれている場合でも、低容量側の前
記圧縮機のシェルから前記均油管を介して高容量側の前
記圧縮機に油が移動することがなくなり、低容量側の前
記圧縮機の油量不足を防止できる。
Therefore, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a compressor of a variable capacity type, the compressor having a lower capacity is used. No oil moves from the shell through the oil equalizing pipe to the compressor on the high-capacity side, and the shortage of oil in the compressor on the low-capacity side can be prevented.

【0026】また、前記連通管に流れるガス冷媒に含ま
れている油は、ガス冷媒とともに前記均油管から前記各
均油管接続配管を介して前記各圧縮機に分配される。こ
の時、分配されるガス冷媒の量は、前記均油管と前記各
圧縮機のシェル内の差圧の平方根に比例し、分配される
油の量も同じく前記均油管と前記各圧縮機のシェル内の
差圧の平方根に比例する。しかし、前記均油管と前記各
圧縮機のシェル内の差圧は前記連通管の圧力損失により
変動するため、分配される油量の比は、前記各圧縮機の
容量によって決まる吐出油量の比とは異なる。従って、
一部の前記圧縮機では、吐出油量の比に対して前記連通
管から前記均油管を介して分配される油量の比が小さ
く、長時間にわたり連続運転を続けると、油量が減少し
ていき、やがて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to the compressors via the oil equalizing pipe connection pipes. At this time, the amount of the gas refrigerant to be distributed is proportional to the square root of the differential pressure in the oil equalizing pipe and the shell of each of the compressors, and the amount of the oil to be distributed is also the same as that of the oil equalizing pipe and the shell of each of the compressors. Is proportional to the square root of the differential pressure. However, since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil distributed is determined by the ratio of the discharge oil amount determined by the capacity of each compressor. And different. Therefore,
In some of the compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing tube to the ratio of the amount of discharged oil is small, and if the continuous operation is continued for a long time, the oil amount decreases. The oil will eventually run out.

【0027】しかし、前記連通管の入口は、油が分離さ
れガス冷媒のみが存在する前記アキュームレータ内の上
部にあるため、前記連通管には油の含まれていないガス
冷媒のみが流れる。従って、前記圧縮機の油吐出量の比
に対して前記連通管から前記均油管を介して分配される
油量の比が小さいための、長時間運転後の油量不足を防
止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator in which oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, it is possible to prevent shortage of the oil amount after a long operation because the ratio of the oil amount distributed from the communication pipe through the oil equalizing pipe to the oil discharge amount ratio of the compressor is small.

【0028】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の前記圧縮機では吐出油量に対して返油量が少なく、長
時間にわたり連続運転を続けると、油量が減少してい
き、やがて、油量不足となる。
In general, a high-capacity compressor has a larger amount of oil supply to the compression chamber than a low-capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the compressor on the high-capacity side, the amount of returned oil is small relative to the amount of discharged oil, and if the continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0029】しかし、少なくとも1台の前記圧縮機の前
記差圧検出装置が検出したシェル上部とシェル下部の差
圧が所定の下限差圧未満となると、その後、全ての前記
圧縮機の前記差圧検出装置が検出したシェル上部とシェ
ル下部の差圧が所定の標準差圧以上となるまで前記二方
弁を閉止するため、この前記二方弁の閉止時に、シェル
内の圧力が高い低容量側の前記圧縮機から、前記均油管
を介し、シェル内の圧力が低い高容量側の前記圧縮機に
油が移動する。従って、高容量側の前記圧縮機の油吐出
量より返油量が少ないための、長時間連続運転後の油量
不足を防止できる。
However, when the differential pressure between the upper shell portion and the lower shell portion detected by the differential pressure detecting device of at least one of the compressors becomes less than a predetermined lower limit differential pressure, thereafter, the differential pressure of all the compressors is reduced. In order to close the two-way valve until the differential pressure between the upper shell and the lower shell detected by the detection device is equal to or higher than a predetermined standard differential pressure, when the two-way valve is closed, the pressure in the shell is high and the low-capacity side is closed. The oil moves from the compressor through the oil equalizing pipe to the compressor on the high capacity side where the pressure in the shell is low. Therefore, it is possible to prevent an insufficient amount of oil after a long-time continuous operation because the amount of oil returned is smaller than the amount of oil discharged from the compressor on the high capacity side.

【0030】また、前記各圧縮機の油量不足をシェル上
部とシェル下部の差圧より検出するため、運転条件の違
いによる前記圧縮機の油吐出量、及び、油戻り量のばら
つきに影響されずに、精度良く前記二方弁を制御でき
る。従って、前記二方弁の閉止が遅すぎるか、或いは、
前記二方弁の閉止後の開口が早すぎるための高容量側の
前記圧縮機の油量不足、および前記二方弁の閉止後の開
口が早するか、或いは、前記二方弁の閉止後の開口が遅
すぎるための低容量側の前記圧縮機の油量不足を防止で
きる。このように、各圧縮機の油量を適正量に制御でき
る。
Further, since the shortage of the oil amount of each of the compressors is detected from the differential pressure between the upper shell and the lower shell, the oil discharge amount and the oil return amount of the compressor due to the difference in the operating conditions are affected. , The two-way valve can be controlled with high accuracy. Therefore, the closing of the two-way valve is too late, or
Insufficient oil amount of the compressor on the high capacity side because the opening after closing of the two-way valve is too early, and the opening after closing of the two-way valve is early, or after the closing of the two-way valve. Of the compressor on the low capacity side due to the opening of the compressor being too slow can be prevented. Thus, the oil amount of each compressor can be controlled to an appropriate amount.

【0031】本発明の請求項4に記載の発明は、複数の
低圧シェル方式の圧縮機,四方弁,室外側熱交換器,室
外側膨張弁,アキュームレータから成る室外機と、室内
側膨張弁,室内側熱交換器から成る室内機とを連接して
環状の冷媒回路を構成し、前記各圧縮機のシェルの標準
油面高さ近傍に均油管接続配管を設け、前記各均油管接
続配管の一端を連通した均油管と、前記各圧縮機への吸
入ガス分岐部より上流側の吸入ガス配管と前記均油管を
連通する連通管と、前記連通管に備えられた二方弁と、
前記各圧縮機の油面高さを検出する油面高さ検出装置を
備え、少なくとも1台の前記圧縮機の前記油面高さ検出
装置が検出した油面高さが所定の下限油面高さ未満とな
ると、前記二方弁を閉止し、その後、全ての前記圧縮機
の前記油面高さ検出装置が検出した油面高さが所定の標
準油面高さ以上となると、前記二方弁を開口する二方弁
制御手段を備えたものであり、前記二方弁の閉止時は前
記均油管の圧力を前記各圧縮機のシェルの圧力より高く
したものである。
According to a fourth aspect of the present invention, there is provided an outdoor unit including a plurality of low pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator; An annular refrigerant circuit is formed by connecting an indoor unit including an indoor heat exchanger, and an oil equalizing pipe connection pipe is provided near a standard oil level of a shell of each of the compressors. An oil equalizing pipe having one end connected thereto, a communication pipe communicating the suction gas pipe upstream of a suction gas branch to each of the compressors and the oil equalizing pipe, and a two-way valve provided in the communication pipe,
An oil level detector for detecting the oil level of each of the compressors, wherein the oil level detected by the oil level detector of at least one of the compressors is a predetermined lower limit oil level When the oil level is less than the predetermined standard oil level, the two-way valve is closed, and thereafter, when the oil level detected by the oil level detectors of all the compressors is equal to or more than a predetermined standard oil level. It is provided with two-way valve control means for opening the valve, and when the two-way valve is closed, the pressure of the oil equalizing pipe is higher than the pressure of the shell of each compressor.

【0032】従って、複数の圧縮機に異なる容量の圧縮
機が含まれている場合、或いは、複数の圧縮機に可変容
量方式の圧縮機が含まれている場合でも、低容量側の前
記圧縮機のシェルから前記均油管を介して高容量側の前
記圧縮機に油が移動することがなくなり、低容量側の前
記圧縮機の油量不足を防止できる。
Therefore, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a compressor of a variable capacity type, the compressor having a lower capacity is used. No oil moves from the shell through the oil equalizing pipe to the compressor on the high-capacity side, and the shortage of oil in the compressor on the low-capacity side can be prevented.

【0033】また、前記連通管に流れるガス冷媒に含ま
れている油は、ガス冷媒とともに前記均油管から前記各
均油管接続配管を介して前記各圧縮機に分配される。こ
の時、分配されるガス冷媒の量は、前記均油管と前記各
圧縮機のシェル内の差圧の平方根に比例し、分配される
油の量も同じく前記均油管と前記各圧縮機のシェル内の
差圧の平方根に比例する。しかし、前記均油管と前記各
圧縮機のシェル内の差圧は前記連通管の圧力損失により
変動するため、分配される油量の比は、前記各圧縮機の
容量によって決まる吐出油量の比とは異なる。従って、
一部の前記圧縮機では、吐出油量の比に対して前記連通
管から前記均油管を介して分配される油量の比が小さ
く、長時間にわたり連続運転を続けると、油量が減少し
ていき、やがて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to the compressors via the oil equalizing pipe connection pipes. At this time, the amount of the gas refrigerant to be distributed is proportional to the square root of the differential pressure in the oil equalizing pipe and the shell of each of the compressors, and the amount of the oil to be distributed is also the same as that of the oil equalizing pipe and the shell of each of the compressors. Is proportional to the square root of the differential pressure. However, since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil distributed is determined by the ratio of the discharge oil amount determined by the capacity of each compressor. And different. Therefore,
In some of the compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing tube to the ratio of the amount of discharged oil is small, and if the continuous operation is continued for a long time, the oil amount decreases. The oil will eventually run out.

【0034】しかし、前記連通管の入口は、油が分離さ
れガス冷媒のみが存在する前記アキュームレータ内の上
部にあるため、前記連通管には油の含まれていないガス
冷媒のみが流れる。従って、前記圧縮機の油吐出量の比
に対して前記連通管から前記均油管を介して分配される
油量の比が小さいための、長時間運転後の油量不足を防
止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only the gas refrigerant is present, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, it is possible to prevent shortage of the oil amount after a long operation because the ratio of the oil amount distributed from the communication pipe through the oil equalizing pipe to the oil discharge amount ratio of the compressor is small.

【0035】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
前記圧縮機では吐出油量に対して返油量が少なく、長時
間にわたり連続運転を続けると、油量が減少していき、
やがて、油量不足となる。
In general, the high-capacity compressor has a larger oil supply amount to the compression chamber than the low-capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the compressor on the high capacity side, the amount of oil returned is small relative to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil will decrease,
Eventually, the amount of oil will be insufficient.

【0036】しかし、少なくとも1台の前記圧縮機の前
記油面高さ検出装置が検出した油面高さが所定の下限油
面高さ未満となると、その後、全ての前記圧縮機の前記
油面高さ検出装置が検出した油面高さが所定の油面高さ
以上となるまで前記二方弁を閉止するため、前記二方弁
の閉止時に、シェル内の圧力が高い低容量側の前記圧縮
機から、前記均油管を介し、シェル内の圧力が低い高容
量側の前記圧縮機に油が移動する。従って、高容量側の
前記圧縮機の油吐出量より返油量が少ないための、長時
間連続運転後の油量不足を防止できる。
However, when the oil level detected by the oil level detector of at least one of the compressors is less than a predetermined lower limit oil level, thereafter, the oil level of all the compressors is reduced. In order to close the two-way valve until the oil level detected by the height detection device is equal to or higher than a predetermined oil level, when the two-way valve is closed, the pressure in the shell is higher on the low-capacity side. Oil moves from the compressor via the oil equalizing pipe to the compressor on the high capacity side where the pressure in the shell is low. Therefore, it is possible to prevent an insufficient amount of oil after a long-time continuous operation because the amount of oil returned is smaller than the amount of oil discharged from the compressor on the high capacity side.

【0037】また、前記各圧縮機の油量不足を油面高さ
より検出するため、運転条件の違いによる前記圧縮機の
油吐出量、及び、油戻り量のばらつき、及び前記圧縮機
のシェル内の圧力分布のばらつきに影響されずに、精度
良く前記二方弁を制御できる。従って、前記二方弁の閉
止が遅すぎるか、或いは、前記二方弁の閉止後の開口が
早すぎるための高容量側の前記圧縮機の油量不足、及
び、前記二方弁の閉止後の開口が早すぎるか、或いは、
前記二方弁の閉止後の開口が遅すぎるための低容量側の
前記圧縮機の油量不足を防止できる。このように、各圧
縮機の油量を適正量に制御できる。
Further, in order to detect the shortage of the oil amount of each of the compressors from the oil level, variations in the oil discharge amount and the oil return amount of the compressor due to the difference in operating conditions, and in the shell of the compressor. The two-way valve can be accurately controlled without being affected by the variation in the pressure distribution. Therefore, the closing of the two-way valve is too late, or the opening after the closing of the two-way valve is too early, the oil amount of the compressor on the high capacity side is insufficient, and after the closing of the two-way valve. Opening too early, or
Insufficient oil amount of the compressor on the low-capacity side due to too late opening of the two-way valve after closing can be prevented. Thus, the oil amount of each compressor can be controlled to an appropriate amount.

【0038】[0038]

【実施例】以下、本発明の実施例について図1から図7
を用いて説明する。尚、従来と同一部分については同一
符号を付しその詳細な説明を省略する。
FIG. 1 to FIG. 7 show an embodiment of the present invention.
This will be described with reference to FIG. The same parts as those in the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0039】(実施例1)本発明の実施例1について図
1を用いて説明する。
(Embodiment 1) Embodiment 1 of the present invention will be described with reference to FIG.

【0040】図1は本発明の実施例1における空気調和
機の冷凍サイクル図である。図1において、13はアキ
ュームレータ20内の上部と均油管11を連通する連通
管であり、均油管11の圧力を各圧縮機2のシェルの圧
力より高くしている。尚、圧縮機2は本従来例では3台
接続されており、区別する場合は添字a,b,cを付け
ることにする。
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, a communication pipe 13 communicates the upper part of the accumulator 20 with the oil equalizing pipe 11. The pressure of the oil equalizing pipe 11 is higher than the pressure of the shell of each compressor 2. Incidentally, three compressors 2 are connected in the conventional example, and suffixes a, b, and c are added to distinguish them.

【0041】次に、上記構成の空気調和機における各圧
縮機の適正油量調節方法について説明する。ここで、複
数の圧縮機には異なる容量の圧縮機が含まれているか、
或いは、可変容量方式の圧縮機が含まれているものと
し、圧縮機2aが圧縮機2b,2cよりも低容量である
とする。
Next, a method of adjusting an appropriate oil amount of each compressor in the air conditioner having the above configuration will be described. Here, whether the multiple compressors include compressors with different capacities,
Alternatively, it is assumed that a compressor of a variable capacity system is included, and the compressor 2a has a lower capacity than the compressors 2b and 2c.

【0042】まず、圧縮機2の運転中は、連通管13に
よりアキュームレータ20内の上部と連通されている均
油管11の圧力は、圧縮機2のシェルの圧力より高くな
る。従って、低容量側の圧縮機2aから均油管接続配管
12aに油が流出することはない。
First, during the operation of the compressor 2, the pressure of the oil equalizing pipe 11 which is communicated with the upper part in the accumulator 20 by the communication pipe 13 becomes higher than the pressure of the shell of the compressor 2. Therefore, oil does not flow out from the low-capacity compressor 2a to the oil equalizing pipe connection pipe 12a.

【0043】また、連通管13の入口は、油が分離され
ガス冷媒のみが存在するアキュームレータ20内の上部
にあるため、連通管13は油の含まれていないガス冷媒
のみが流れる。
Since the inlet of the communication pipe 13 is located in the upper part of the accumulator 20 where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe 13.

【0044】また、全ての圧縮機2が停止している場合
は、サイクル内が均圧され、均油管11を介した各圧縮
機2の間の油の移動が可能となり、各圧縮機2の油量
は、全ての各圧縮機2の油面高さが等しくなるように調
節される。
When all the compressors 2 are stopped, the pressure in the cycle is equalized, and the oil can be moved between the compressors 2 through the oil equalizing pipe 11. The oil amount is adjusted so that the oil level of all the compressors 2 becomes equal.

【0045】この実施例によれば、複数の圧縮機に異な
る容量の圧縮機が含まれている場合、或いは、複数の圧
縮機に可変容量方式の圧縮機から含まれている場合で
も、圧縮機の運転中は、均油管を介して低容量側の圧縮
機から高容量側の圧縮機に油が移動することがない。従
って、均油管を介して高容量側の圧縮機に油が移動する
ための、低容量側の圧縮機の油量不足を防止できる。
According to this embodiment, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a variable capacity compressor, During the operation, the oil does not move from the compressor on the low capacity side to the compressor on the high capacity side via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0046】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed to each compressor together with the gas refrigerant from the oil equalizing pipe through each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0047】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して通管から
均油管を介して分配される油量の比が小さいための、長
時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, it is possible to prevent shortage of oil amount after long-time continuous operation because the ratio of the amount of oil distributed from the pipe through the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small.

【0048】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
圧縮機では吐出油量に対して返油量が少なく、連続運転
を続けると、油量が減少している。
In general, the high-capacity compressor has a larger oil supply amount to the compression chamber than the low-capacity compressor, and therefore has a higher oil content of the discharged refrigerant than the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is smaller than the amount of discharged oil, and the amount of oil decreases as continuous operation is continued.

【0049】しかし、全ての圧縮機が停止すると、サイ
クル内が均圧され、均油管により、各圧縮機の油面高さ
が等しくなるように油量が調節される。従って、高容量
側の圧縮機の油吐出量より返油量が少ないための油量不
足を防止できる。このように、各圧縮機を適正油量に保
つことができる。
However, when all the compressors are stopped, the pressure in the cycle is equalized, and the oil level is adjusted by the oil equalizing pipe so that the oil level of each compressor becomes equal. Therefore, it is possible to prevent an oil shortage due to the oil return amount being smaller than the oil discharge amount of the compressor on the high capacity side. Thus, each compressor can be maintained at an appropriate oil amount.

【0050】(実施例2)本発明の実施例2について図
2〜3を用いて説明する。
(Embodiment 2) Embodiment 2 of the present invention will be described with reference to FIGS.

【0051】図2は本発明の実施例2における空気調和
機の冷凍サイクル図であり、図2において、13はアキ
ュームレータ20内の上部と均油管11と連通する連通
管であり、14は連通管13に備えられた二方弁であ
り、二方弁14の閉止時は均油管11の圧力を各圧縮機
2のシェルの圧力より高くしている。ここで、二方弁制
御手段15は、冷房、或いは、暖房の連続運転時間が所
定の時間に達すると、一定時間だけ二方弁14を閉止す
る。尚、圧縮機2は本従来例では3台接続されており、
区別する場合は添字a,b,cを付けることにする。
FIG. 2 is a refrigeration cycle diagram of an air conditioner according to a second embodiment of the present invention. In FIG. 2, reference numeral 13 denotes a communication pipe that communicates with the upper part of the accumulator 20 and the oil leveling pipe 11, and reference numeral 14 denotes a communication pipe. The pressure in the oil equalizing pipe 11 is higher than the pressure in the shell of each compressor 2 when the two-way valve 14 is closed. Here, the two-way valve control means 15 closes the two-way valve 14 for a fixed time when the continuous operation time of cooling or heating reaches a predetermined time. Incidentally, three compressors 2 are connected in the conventional example,
To distinguish them, subscripts a, b, and c are added.

【0052】図3は本発明の実施例2における空気調和
機の二方弁14の制御方法を示すフローチャートであ
る。図3より、まず、ステップ1では、冷房、或いは、
暖房の連続運転時間Trを検知する。ステップ2では、
ステップ1で検知した連続運転時間Trが所定の上限連
続運転時間Tro未満であるとステップ1に戻り、所定
の上限連続運転時間Tro以上であるとステップ3に進
む。ステップ3では、二方弁14を閉止する。ステップ
4では、二方弁14の閉止時間Tvを検知する。ステッ
プ5では、ステップ4で検知した二方弁閉止時間Tvが
所定の上限二方弁閉止時間Tvo未満であるとステップ
4に戻り、所定の上限二方弁閉止時間Tvo以上である
とステップ6に進む。ステップ6では、二方弁14を開
口する。ステップ7では、連続運転時間Trを0に戻
し、ステップ1に戻る。
FIG. 3 is a flowchart showing a method for controlling the two-way valve 14 of the air conditioner according to the second embodiment of the present invention. From FIG. 3, first, in Step 1, cooling or
The continuous operation time Tr of heating is detected. In step 2,
If the continuous operation time Tr detected in step 1 is shorter than the predetermined upper limit continuous operation time Tro, the process returns to step 1. If the continuous operation time Tr is longer than the predetermined upper limit continuous operation time Tro, the process proceeds to step 3. In step 3, the two-way valve 14 is closed. In step 4, the closing time Tv of the two-way valve 14 is detected. In step 5, when the two-way valve closing time Tv detected in step 4 is shorter than the predetermined upper limit two-way valve closing time Tvo, the process returns to step 4, and when it is longer than the predetermined upper limit two-way valve closing time Tvo, the process proceeds to step 6. move on. In step 6, the two-way valve 14 is opened. In step 7, the continuous operation time Tr is returned to 0, and the process returns to step 1.

【0053】次に、上記構成の空気調和機における各圧
縮機の適正油量調節方法について説明する。ここで、複
数の圧縮機には異なる容量の圧縮機が含まれているか、
或いは、可変容量方式の圧縮機が含まれているものと
し、圧縮機2aが圧縮機2b,2cよりも低容量である
とする。
Next, a description will be given of a method for adjusting an appropriate oil amount of each compressor in the air conditioner having the above configuration. Here, whether the multiple compressors include compressors with different capacities,
Alternatively, it is assumed that a compressor of a variable capacity system is included, and the compressor 2a has a lower capacity than the compressors 2b and 2c.

【0054】まず、圧縮機2が運転を開始すると、二方
弁14が開口しているため、連通管13によりアキュー
ムレータ20内の上部と連通されている均油管11の圧
力は、圧縮機2のシェルの圧力より高くなる。従って、
低容量側の圧縮機2aから均油管接続配管12aに油が
流出することはない。
First, when the compressor 2 starts operating, since the two-way valve 14 is open, the pressure of the oil equalizing pipe 11 connected to the upper part in the accumulator 20 by the communication pipe 13 is reduced. Higher than the shell pressure. Therefore,
Oil does not flow out from the low-capacity compressor 2a to the oil equalizing pipe connection pipe 12a.

【0055】また、連通管13の入口は、油が分離され
ガス冷媒のみが存在するアキュームレータ20内の上部
にあるため、連通管13は油の含まれていないガス冷媒
のみが流れる。
Since the inlet of the communication pipe 13 is located in the upper part of the accumulator 20 where oil is separated and only the gas refrigerant is present, only the gas refrigerant containing no oil flows through the communication pipe 13.

【0056】また、冷房、或いは、暖房の連続運転時間
が所定の時間に達すると、二方弁14が閉止され、シェ
ル内の圧力が高い低容量側の圧縮機2aから、均油管1
1を介し、シェル内の圧力が低い高容量側の圧縮機2
b,2cに油が移動する。そして、二方弁14閉止後、
一定時間経過すると二方弁を開口し、均油管11を介す
る油の移動をなくす。
When the continuous operation time of the cooling or the heating reaches a predetermined time, the two-way valve 14 is closed, and the compressor 2a on the low-capacity side where the pressure in the shell is high passes from the oil equalizing pipe 1
1, a high-capacity compressor 2 with a low pressure in the shell
Oil moves to b and 2c. And, after the two-way valve 14 is closed,
After a lapse of a certain time, the two-way valve is opened, and the movement of oil through the oil equalizing pipe 11 is eliminated.

【0057】この実施例によれば、複数の圧縮機に異な
る容量の圧縮機が含まれている場合、或いは、複数の圧
縮機に可変容量方式の圧縮機が含まれている場合でも、
圧縮機の運転中で、二方弁が開口している間は、均油管
を介して低容量側の圧縮機から高容量側の圧縮機に油が
移動することがない。従って、均油管を介して高容量側
の圧縮機に油が移動するための、低容量側の圧縮機の油
量不足を防止できる。
According to this embodiment, even when a plurality of compressors include compressors having different capacities, or when a plurality of compressors include a variable capacity compressor,
During operation of the compressor, while the two-way valve is open, no oil moves from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0058】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to each compressor via each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0059】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator in which oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0060】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
圧縮機では吐出油量に対して返油量が少なく、長時間に
わたり連続運転を続けると、油量が減少していき、やが
て、油量不足となる。
In general, the compressor on the high capacity side has a larger amount of oil supply to the compression chamber than the compressor on the low capacity side, so that the oil content of the discharged refrigerant is larger than that of the compressor on the low capacity side. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0061】しかし、連続運転時間が上限連続運転時間
に達すると、一定時間だけ二方弁を閉止し、低容量側の
圧縮機から、均油管を介し、高容量側の圧縮機に油が移
動する。従って、高容量側の圧縮機の油吐出量より返油
量が少ないための、長時間連続運転後の油量不足を防止
できる。このように、各圧縮機を適正油量に保つことが
できる。
However, when the continuous operation time reaches the upper limit continuous operation time, the two-way valve is closed for a fixed time, and the oil moves from the compressor on the low capacity side to the compressor on the high capacity side via the oil equalizing pipe. I do. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor. Thus, each compressor can be maintained at an appropriate oil amount.

【0062】(実施例3)本発明の実施例3について図
4〜5を用いて説明する。
(Embodiment 3) Embodiment 3 of the present invention will be described with reference to FIGS.

【0063】図4は本発明の実施例3における空気調和
機の冷凍サイクル図であり、図5において、13はアキ
ュームレータ20内の上部と均油管11を連通する連通
管であり、14は連通管13に備えられた二方弁であ
り、二方弁14の閉止時は均油管11の圧力を各圧縮機
2のシェルの圧力より高くしている。また、16は圧縮
機2のシェル上部とシェル下部の差圧を検出する差圧検
出装置(例えば差圧センサー、或いは、2つの圧力セン
サー)である。ここで、二方弁制御手段17は、少なく
とも1台の圧縮機2の差圧検出装置16が検出したシェ
ル上部とシェル下部の差圧が、所定の下限差圧未満とな
ると、二方弁14を閉止し、その後、全ての圧縮機2の
差圧検出装置16が検出したシェル上部とシェル下部の
差圧が、所定の標準差圧以上となると、二方弁14を開
口する。尚、圧縮機2は本従来例では3台接続されてお
り、区別する場合は添字a,b,cを付けることにす
る。
FIG. 4 is a refrigeration cycle diagram of the air conditioner according to the third embodiment of the present invention. In FIG. 5, reference numeral 13 denotes a communication pipe for connecting the upper part of the accumulator 20 to the oil equalizing pipe 11, and reference numeral 14 denotes a communication pipe. The pressure in the oil equalizing pipe 11 is higher than the pressure in the shell of each compressor 2 when the two-way valve 14 is closed. Reference numeral 16 denotes a differential pressure detecting device (for example, a differential pressure sensor or two pressure sensors) that detects a differential pressure between the upper shell and the lower shell of the compressor 2. Here, the two-way valve control means 17 starts the two-way valve 14 when the differential pressure between the upper shell portion and the lower shell portion detected by the differential pressure detecting device 16 of at least one compressor 2 becomes lower than a predetermined lower limit differential pressure. Then, when the differential pressure between the upper shell and the lower shell detected by the differential pressure detectors 16 of all the compressors 2 becomes equal to or higher than a predetermined standard differential pressure, the two-way valve 14 is opened. Incidentally, three compressors 2 are connected in the conventional example, and suffixes a, b, and c are added to distinguish them.

【0064】図5は本発明の実施例3における空気調和
機の二方弁14の制御方法を示すフローチャートであ
る。図5より、まず、ステップ11では、差圧検出装置
16が圧縮機2のシェル上部とシェル下部の差圧Pを検
出する。ステップ12では、少なくとも1台の圧縮機2
のステップ11で検知した差圧Pが、所定の下限差圧P
1以上であるとステップ11に戻り、所定の下限差圧P
1未満であるとステップ13に進む。ステップ13で
は、二方弁14を閉止する。ステップ14では、差圧検
出装置16が圧縮機2のシェル上部とシェル下部の差圧
Pを検出する。ステップ15では、全ての圧縮機2のス
テップ14で検知した差圧Pが、所定の標準差圧Ps未
満であるとステップ14に戻り、所定の標準差圧Ps以
上であるとステップ16に進む。ステップ16では、二
方弁を開口し、ステップ1に戻る。
FIG. 5 is a flowchart showing a method for controlling the two-way valve 14 of the air conditioner according to the third embodiment of the present invention. As shown in FIG. 5, first, at step 11, the differential pressure detecting device 16 detects the differential pressure P between the upper shell portion and the lower shell portion of the compressor 2. In step 12, at least one compressor 2
The differential pressure P detected in the step 11 of the above is the predetermined lower limit differential pressure P
If it is 1 or more, the process returns to step 11, and the predetermined lower limit differential pressure P
If it is less than 1, the process proceeds to step 13. In step 13, the two-way valve 14 is closed. In step 14, the differential pressure detecting device 16 detects the differential pressure P between the upper part and the lower part of the shell of the compressor 2. In step 15, if the differential pressure P detected in step 14 of all the compressors 2 is less than the predetermined standard differential pressure Ps, the process returns to step 14, and if it is equal to or more than the predetermined standard differential pressure Ps, the process proceeds to step 16. In step 16, the two-way valve is opened, and the process returns to step 1.

【0065】次に、上記構成の空気調和機における各圧
縮機の適正油量調節方法について説明する。ここで、複
数の圧縮機には異なる容量の圧縮機が含まれているか、
或いは、可変容量方式の圧縮機が含まれているものと
し、圧縮機2aが圧縮機2b,2cよりも低容量である
とする。
Next, a description will be given of a method for adjusting an appropriate oil amount of each compressor in the air conditioner having the above configuration. Here, whether the multiple compressors include compressors with different capacities,
Alternatively, it is assumed that a compressor of a variable capacity system is included, and the compressor 2a has a lower capacity than the compressors 2b and 2c.

【0066】まず、圧縮機2が運転を開始すると、二方
弁14が開口しているため、連通管13によりアキュー
ムレータ20内の上部と連通されている均油管11の圧
力は、圧縮機2のシェルの圧力より高くなる。従って、
低容量側の圧縮機2aから均油管接続配管12aに油が
流出することはない。
First, when the compressor 2 starts operating, since the two-way valve 14 is open, the pressure of the oil equalizing pipe 11 connected to the upper part in the accumulator 20 by the communication pipe 13 is reduced. Higher than the shell pressure. Therefore,
Oil does not flow out from the low-capacity compressor 2a to the oil equalizing pipe connection pipe 12a.

【0067】また、連通管13の入口は、油が分離され
ガス冷媒のみが存在するアキュームレータ20内の上部
にあるため、連通管13は油の含まれていないガス冷媒
のみが流れる。
Since the inlet of the communication pipe 13 is located in the upper part of the accumulator 20 where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe 13.

【0068】また、圧縮機の油量が減少すると、油面高
さが低下し、シェル上部とシェル下部の差圧が小とな
り、また、圧縮機の油量が増加すると、油面高さが上昇
し、シェル上部とシェル下部の差圧が大となる。従っ
て、圧縮機2b,2cの油量が減少し、シェル上部とシ
ェル下部の差圧が下限差圧未満となると、二方弁14が
閉止され、シェル内の圧力が高い低容量側の前記圧縮機
2aから、均油管11を介し、シェル内の圧力が低い高
容量側の圧縮機2b,2cに油が移動する。そして、圧
縮機2b,2cの油量が増加し、シェル上部とシェル下
部の差圧が標準以上となると、二方弁14を開口し、均
油管11を介する油の移動をなくす。
When the oil amount of the compressor decreases, the oil level decreases, the pressure difference between the upper shell and the lower shell decreases, and when the oil amount of the compressor increases, the oil level decreases. As a result, the pressure difference between the upper shell and the lower shell increases. Accordingly, when the oil amount of the compressors 2b and 2c decreases and the pressure difference between the upper shell and the lower shell becomes less than the lower limit pressure, the two-way valve 14 is closed, and the compression in the low capacity side where the pressure in the shell is high. Oil moves from the compressor 2a via the oil equalizing pipe 11 to the compressors 2b and 2c on the high capacity side where the pressure in the shell is low. Then, when the oil amount of the compressors 2b and 2c increases and the differential pressure between the upper shell and the lower shell becomes higher than the standard, the two-way valve 14 is opened, and the movement of oil through the oil equalizing pipe 11 is eliminated.

【0069】この実施例によれば、複数の圧縮機に異な
る容量の圧縮機が含まれている場合、或いは、複数の圧
縮機に可変容量方式の圧縮機が含まれている場合でも、
圧縮機の運転中で、二方弁が開口している間は、均油管
を介して低容量側の圧縮機から高容量側の圧縮機に油が
移動することがない。従って、均油管を介して高容量側
の圧縮機に油が移動するための、低容量側の圧縮機の油
量不足を防止できる。
According to this embodiment, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a variable capacity compressor,
During operation of the compressor, while the two-way valve is open, no oil moves from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0070】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed to the compressors together with the gas refrigerant from the oil equalizing pipe via each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0071】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where the oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0072】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
圧縮機では吐出油量に対して返油量が少なく、長時間に
わたり連続運転を続けると、油量が減少していき、やが
て、油量不足となる。
In general, the higher capacity compressor has a larger oil supply to the compression chamber than the lower capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0073】しかし、高容量側の圧縮機の油量が減少
し、シェル上部とシェル下部の差圧が下限差圧未満とな
ると、油量が増加しシェル上部とシェル下部の差圧が標
準差圧以上となるまで、二方弁を閉止し、低容量側の圧
縮機から、均油管を介し、高容量側の圧縮機に油が移動
する。従って、高容量側の圧縮機の油吐出量より返油量
が少ないための、長時間連続運転後の油量不足を防止で
きる。
However, when the oil amount of the compressor on the high-capacity side decreases and the differential pressure between the upper shell and the lower shell becomes less than the lower differential pressure, the oil amount increases and the differential pressure between the upper shell and the lower shell becomes the standard differential. Until the pressure exceeds the pressure, the two-way valve is closed, and oil moves from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor.

【0074】また、各圧縮機の油量不足をシェル上部と
シェル下部の差圧から検出するため、運転条件の違いに
よる圧縮機の油吐出量、及び、油戻り量のばらつきに影
響されずに、精度良く二方弁を制御できる。従って、二
方弁の閉止が遅すぎるか、或いは、二方弁の閉止後の開
口が早すぎるための高容量側の圧縮機の油量不足、及
び、二方弁の閉止後の開口が早するか、或いは、二方弁
の閉止後の開口が遅すぎるための低容量側の圧縮機の油
量不足を防止できる。このように、各圧縮機を適正油量
に保つことができる。
Further, since the shortage of the oil amount of each compressor is detected from the differential pressure between the upper shell and the lower shell, the oil discharge amount and the oil return amount of the compressor due to the difference in the operating conditions are not affected. The two-way valve can be controlled accurately. Therefore, the closing of the two-way valve is too slow, or the opening after the closing of the two-way valve is too early, and the amount of oil in the compressor on the high capacity side is insufficient, and the opening after the closing of the two-way valve is too early. Alternatively, the shortage of the oil amount of the compressor on the low-capacity side due to the opening of the two-way valve after closing is too slow can be prevented. Thus, each compressor can be maintained at an appropriate oil amount.

【0075】(実施例4)本発明の実施例4について図
6〜7を用いて説明する。
Embodiment 4 Embodiment 4 of the present invention will be described with reference to FIGS.

【0076】図6は本発明の実施例4における空気調和
機の冷凍サイクル図であり、図6において、13はアキ
ュームレータ20内の上部と均油管11を連通する連通
管であり、14は連通管13に備えられた二方弁であ
り、二方弁14の閉止時は均油管11の圧力を各圧縮機
2のシェルの圧力より高くしている。また、18は圧縮
機2の油面高さを検出する油面高さ検出装置(例えば複
数のフロートスイッチ)である。ここで、二方弁制御手
段19は、少なくとも1台の圧縮機2の油面高さ検出装
置18が検出した油面高さが、所定の下限油面高さ未満
となると、二方弁14を閉止し、その後、全ての圧縮機
2の油面高さ検出装置18が検出した油面高さが、所定
の標準油面高さ以上となると、二方弁14を開口する。
尚、圧縮機2は本従来例では3台接続されており、区別
する場合は添字a,b,cを付けることにする。
FIG. 6 is a refrigeration cycle diagram of an air conditioner according to a fourth embodiment of the present invention. In FIG. 6, reference numeral 13 denotes a communication pipe that connects the upper part of the accumulator 20 with the oil equalizing pipe 11, and reference numeral 14 denotes a communication pipe. The pressure in the oil equalizing pipe 11 is higher than the pressure in the shell of each compressor 2 when the two-way valve 14 is closed. Reference numeral 18 denotes an oil level detector (for example, a plurality of float switches) for detecting the oil level of the compressor 2. Here, when the oil level detected by the oil level detector 18 of at least one of the compressors 2 becomes less than a predetermined lower limit oil level, the two-way valve controller 19 controls the two-way valve 14. Is closed, and when the oil level detected by the oil level detectors 18 of all the compressors 2 becomes equal to or higher than a predetermined standard oil level, the two-way valve 14 is opened.
Incidentally, three compressors 2 are connected in the conventional example, and suffixes a, b, and c are added to distinguish them.

【0077】図7は本発明の実施例4における空気調和
機の二方弁14の制御方法を示すフローチャートであ
る。図7より、まず、ステップ21では、油面高さ検出
装置18が圧縮機2の油面高さHを検出する。ステップ
22では、少なくとも1台の圧縮機2のステップ21で
検知した油面高さHが、所定の下限油面高さHo以上で
あるとステップ21に戻り、所定の下限油面高さHo未
満であるとステップ23に進む。ステップ23では、二
方弁14を閉止する。ステップ24では、油面高さ検出
装置18が圧縮機2の油面高さHを検出する。ステップ
25では、全ての圧縮機2のステップ24で検知した油
面高さHが、所定の標準油面高さHs未満であるとステ
ップ24に戻り、所定の標準油面高さHs以上であると
ステップ26に進む。ステップ26では、二方弁を開口
し、ステップ21に戻る。
FIG. 7 is a flowchart showing a method for controlling the two-way valve 14 of the air conditioner according to the fourth embodiment of the present invention. As shown in FIG. 7, first, in step 21, the oil level detector 18 detects the oil level H of the compressor 2. In step 22, when the oil level H detected in step 21 of at least one of the compressors 2 is equal to or more than the predetermined lower limit oil level Ho, the process returns to step 21 and is smaller than the predetermined lower limit oil level Ho. If so, the process proceeds to step 23. In step 23, the two-way valve 14 is closed. In step 24, the oil level detector 18 detects the oil level H of the compressor 2. In step 25, if the oil level H detected in step 24 of all the compressors 2 is less than the predetermined standard oil level Hs, the process returns to step 24 and is equal to or more than the predetermined standard oil level Hs. And proceeds to step 26. In step 26, the two-way valve is opened, and the process returns to step 21.

【0078】次に、上記構成の空気調和機における各圧
縮機の適正油量調節方法について説明する。ここで、複
数の圧縮機には異なる容量の圧縮機が含まれているか、
或いは、可変容量方式の圧縮機が含まれているものと
し、圧縮機2aが圧縮機2b,2cよりも低容量である
とする。
Next, a method of adjusting an appropriate oil amount of each compressor in the air conditioner having the above configuration will be described. Here, whether the multiple compressors include compressors with different capacities,
Alternatively, it is assumed that a compressor of a variable capacity system is included, and the compressor 2a has a lower capacity than the compressors 2b and 2c.

【0079】まず、圧縮機2が運転を開始すると、二方
弁14が開口しているため、連通管13によりアキュー
ムレータ20内の上部と連通されている均油管11の圧
力は、圧縮機2のシェルの圧力より高くなる。従って、
低容量側の圧縮機2aから均油管接続配管12aに油が
流出することはない。
First, when the compressor 2 starts operating, since the two-way valve 14 is open, the pressure of the oil equalizing pipe 11 connected to the upper part in the accumulator 20 by the communication pipe 13 is reduced. Higher than the shell pressure. Therefore,
Oil does not flow out from the low-capacity compressor 2a to the oil equalizing pipe connection pipe 12a.

【0080】また、連通管13の入口は、油が分離され
ガス冷媒のみが存在するアキュームレータ20内の上部
にあるため、連通管13は油の含まれていないガス冷媒
のみが流れる。
Since the inlet of the communication pipe 13 is located in the upper part of the accumulator 20 where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe 13.

【0081】また、圧縮機2b,2cの油量が減少し、
油面高さが、下限油面高さ未満となると、二方弁14が
閉止され、シェル内の圧量が高い低容量側の前記圧縮機
2aから、均油管11を介し、シェル内の圧力が低い高
容量側の圧縮機2b,2cに油が移動する。そして、圧
縮機2b,2cの油量が増加し、油面高さが標準油面高
さ以上となると、二方弁14を開口し、均油管11を介
する油の移動をなくす。
Further, the oil amount of the compressors 2b and 2c decreases,
When the oil level becomes lower than the lower limit oil level, the two-way valve 14 is closed, and the pressure in the shell from the compressor 2a on the low capacity side where the pressure in the shell is high is increased via the oil equalizing pipe 11. The oil moves to the compressors 2b and 2c on the high capacity side where the pressure is low. When the oil amount of the compressors 2b and 2c increases and the oil level becomes equal to or higher than the standard oil level, the two-way valve 14 is opened, and the movement of the oil through the oil level pipe 11 is eliminated.

【0082】この実施例によれば、複数の圧縮機に異な
る容量の圧縮機が含まれている場合、或いは、複数の圧
縮機に可変容量方式の圧縮機が含まれている場合でも、
圧縮機の運転中で、二方弁が開口している間は、均油管
を介して低容量側の圧縮機から高容量側の圧縮機に油が
移動することがない。従って、均油管を介して高容量側
の圧縮機に油が移動するための、低容量側の圧縮機の油
量不足を防止できる。
According to this embodiment, even when a plurality of compressors include compressors of different capacities, or when a plurality of compressors include a variable capacity compressor,
During operation of the compressor, while the two-way valve is open, no oil moves from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0083】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to each compressor via each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0084】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0085】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
圧縮機では吐出油量に対して返油量が少なく、長時間に
わたり連続運転を続けると、油量が減少していき、やが
て、油量不足となる。
In general, the compressor of the high capacity side has a larger amount of oil supply to the compression chamber than the compressor of the low capacity side, so that the oil content of the discharged refrigerant is larger than the compressor of the low capacity side. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0086】しかし、高容量側の圧縮機の油量が減少
し、油面高さが下限油面高さ未満となると、油量が増加
し油面高さが標準油面高さ以上となるまで、二方弁を閉
止し、低容量側の圧縮機から、均油管を介し、高容量側
の圧縮機に油が移動する。従って、高容量側の圧縮機の
油吐出量より返油量が少ないための、長時間連続運転後
の油量不足を防止できる。
However, when the oil amount of the compressor on the high capacity side decreases and the oil level becomes lower than the lower limit oil level, the oil level increases and the oil level becomes higher than the standard oil level. Until the two-way valve is closed, the oil moves from the compressor on the low capacity side to the compressor on the high capacity side via the oil equalizing pipe. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor.

【0087】また、各圧縮機の油量不足を油面高さから
検出するため、運転条件の違いによる圧縮機の油吐出
量、及び、油戻り量のばらつき、及び、圧縮機のシェル
内の圧力分布のばらつきに影響されずに、精度良く二方
弁を制御できる。従って、二方弁の閉止が遅すぎるか、
或いは、二方弁の閉止後の開口が早すぎるための高容量
側の圧縮機の油量不足、及び、二方弁の閉止後の開口が
早するか、或いは、二方弁の閉止後の開口が遅すぎるた
めの低容量側の圧縮機の油量不足を防止できる。このよ
うに、各圧縮機を適正油量に保つことができる。
Further, since the shortage of the oil amount of each compressor is detected from the oil level, variations in the oil discharge amount and the oil return amount of the compressor due to the difference in the operating conditions, and in the shell of the compressor, The two-way valve can be accurately controlled without being affected by variations in the pressure distribution. Therefore, the closing of the two-way valve is too late,
Alternatively, the opening of the two-way valve after closing is too early, the oil amount of the compressor on the high-capacity side is insufficient, and the opening after closing of the two-way valve is early, or after the closing of the two-way valve. Insufficient oil amount of the compressor on the low capacity side due to the opening being too slow can be prevented. Thus, each compressor can be maintained at an appropriate oil amount.

【0088】[0088]

【発明の効果】以上のように本発明は、複数の低圧シェ
ル方式の圧縮機,四方弁,室外側熱交換器,室外側膨張
弁,アキュームレータから成る室外機と、室内側膨張
弁,室内側熱交換器から成る室内機とを連接して環状の
冷媒回路を構成し、前記各圧縮機のシェルの標準油面高
さ近傍に均油管接続配管を設け、前記各均油管接続配管
の一端を連通した均油管と、前記アキュームレータ内の
上部と前記均油管を連通する連通管を備え、前記均油管
の圧力を前記各圧縮機のシェルの圧力より高くしたもの
である。
As described above, the present invention provides an outdoor unit including a plurality of low-pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, an indoor expansion valve, and an indoor side. An annular refrigerant circuit is formed by connecting an indoor unit comprising a heat exchanger, an oil equalizing pipe connection pipe is provided near a standard oil level of a shell of each compressor, and one end of each oil equalizing pipe connection pipe is connected. An oil equalizing pipe communicated with the oil equalizing pipe and a communication pipe communicating the upper part of the accumulator with the oil equalizing pipe are provided, and a pressure of the oil equalizing pipe is higher than a pressure of a shell of each of the compressors.

【0089】これにより、複数の圧縮機に異なる容量の
圧縮機が含まれている場合、或いは、複数の圧縮機に可
変容量方式の圧縮機が含まれている場合でも、圧縮機の
運転中は、均油管を介して低容量側の圧縮機から高容量
側の圧縮機に油が移動することがない。従って、均油管
を介して高容量側の圧縮機に油が移動するための、低容
量側の圧縮機の油量不足を防止できる。
Accordingly, even when a plurality of compressors include compressors having different capacities, or when a plurality of compressors include a compressor of a variable capacity type, the compressor is operated during operation. The oil does not move from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0090】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to each compressor via each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0091】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0092】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の圧縮機では吐出油量に対して返油量が少なく、連続運
転を続けると、油量が減少していく。
In general, the compressor on the high capacity side has a larger amount of oil supply to the compression chamber than the compressor on the low capacity side, so that the oil content of the discharged refrigerant is larger than that of the compressor on the low capacity side. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small relative to the amount of discharged oil, and the amount of oil decreases as continuous operation is continued.

【0093】しかし、全ての圧縮機が停止すると、サイ
クル内が均圧され、均油管により、各圧縮機の油量が油
面高さが等しくなるように調節される。従って、高容量
側の圧縮機の油吐出量より返油量が少ないための油量不
足を防止できる。このように、各圧縮機を適正油量に保
つことができる。
However, when all the compressors are stopped, the pressure in the cycle is equalized, and the oil level of each compressor is adjusted by the oil equalizing pipe so that the oil level becomes equal. Therefore, it is possible to prevent an oil shortage due to the oil return amount being smaller than the oil discharge amount of the compressor on the high capacity side. Thus, each compressor can be maintained at an appropriate oil amount.

【0094】また、複数の低圧シェル方式の圧縮機,四
方弁,室外側熱交換器、室外側膨張弁,アキュームレー
タから成る室外機と、室内側膨張弁,室内側熱交換器か
ら成る室内機とを連接して環状の冷媒回路を構成し、前
記各圧縮機のシェルの標準油面高さ近傍に均油管接続配
管を設け、前記各均油管接続配管の一端を連通した均油
管と、前記アキュームレータ内の上部と前記均油管を連
通する連通管と、前記連通管に備えられた二方弁と、冷
房、或いは、暖房の連続運転時間が所定の時間に達する
と、一定時間だけ前記二方弁を閉止する二方弁制御手段
を備え、前記二方弁の閉止時は前記均油管の圧力を前記
各圧縮機のシェルの圧力より高くしたものである。
An outdoor unit comprising a plurality of low-pressure shell compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside with the oil equalizing pipe, a two-way valve provided in the communication pipe, and when the continuous operation time of cooling or heating reaches a predetermined time, the two-way valve for a predetermined time A two-way valve control means for closing the two-way valve, wherein when the two-way valve is closed, the pressure of the oil equalizing pipe is higher than the pressure of the shell of each of the compressors.

【0095】これにより、複数の圧縮機に異なる容量の
圧縮機が含まれている場合、或いは、複数の圧縮機に可
変容量方式の圧縮機が含まれている場合でも、圧縮機の
運転中で、二方弁が開口している間は、均油管を介して
低容量側の圧縮機から高容量側の圧縮機に油が移動する
ことがない。従って、均油管を介して高容量側の圧縮機
に油が移動するための、低容量側の圧縮機の油量不足を
防止できる。
Thus, even when a plurality of compressors include compressors of different capacities, or a plurality of compressors include a variable capacity compressor, the operation of the While the two-way valve is open, oil does not move from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0096】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed from the oil equalizing pipe to the compressors via the oil equalizing pipe connecting pipes together with the gas refrigerant. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0097】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出力の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator in which oil is separated and only the gas refrigerant exists, only the gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the oil discharge force of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0098】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の各圧縮機への吸入
冷媒の油含有率はそれぞれ等しい。従って、高容量側の
圧縮機では吐出油量に対して返油量が少なく、長時間に
わたり連続運転を続けると、油量が減少していき、やが
て、油量不足となる。
In general, the high-capacity compressor has a larger amount of oil supply to the compression chamber than the low-capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0099】しかし、連続運転時間が連続運転上限時間
に達すると、一定時間だけ二方弁を閉止し、低容量側の
圧縮機から、均油管を介し、高容量側の圧縮機に油が移
動する。従って、高容量側の圧縮機の油吐出量より返油
量が少ないための、長時間連続運転後の油量不足を防止
できる。このように、各圧縮機を適正油量に保つことが
できる。
However, when the continuous operation time reaches the continuous operation upper limit time, the two-way valve is closed for a fixed time, and the oil moves from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. I do. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor. Thus, each compressor can be maintained at an appropriate oil amount.

【0100】また、複数の低圧シェル方式の圧縮機,四
方弁,室外側熱交換器、室外側膨張弁,アキュームレー
タから成る室外機と、室内側膨張弁,室内側熱交換器か
ら成る室内機とを連接して環状の冷媒回路を構成し、前
記各圧縮機のシェルの標準油面高さ近傍に均油管接続配
管を設け、前記各均油管接続配管の一端を連通した均油
管と、前記アキュームレータ内の上部と前記均油管を連
通する連通管と、前記連通管に備えられた二方弁と、前
記各圧縮機のシェル上部とシェル下部の差圧を検出する
差圧検出装置を備え、少なくとも1台の前記圧縮機の前
記差圧検出装置が検出したシェル上部とシェル下部の差
圧が所定の下限差圧未満となると前記二方弁を閉止し、
その後、全ての各圧縮機の前記差圧検出装置が検出した
シェル上部とシェル下部の差圧が所定の標準差圧以上と
なると前記二方弁を開口する二方弁制御手段を備え、前
記二方弁の閉止時は前記均油管の圧力を前記各圧縮機の
シェルの圧力より高くしたものである。
An outdoor unit comprising a plurality of low-pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside and the oil equalizing pipe, a two-way valve provided in the communication pipe, and a differential pressure detection device that detects a differential pressure between a shell upper part and a shell lower part of each of the compressors. Closing the two-way valve when the differential pressure between the shell upper part and the shell lower part detected by the differential pressure detecting device of one of the compressors is less than a predetermined lower limit differential pressure,
Thereafter, a two-way valve control means for opening the two-way valve when the differential pressure between the upper shell portion and the lower shell portion detected by the differential pressure detecting devices of all the compressors is equal to or more than a predetermined standard differential pressure, When the direction valves are closed, the pressure of the oil equalizing pipe is set higher than the pressure of the shell of each compressor.

【0101】これにより、複数の圧縮機に異なる容量の
圧縮機が含まれている場合、或いは、複数の圧縮機に可
変容量方式の圧縮機が含まれている場合でも、圧縮機の
運転中で、二方弁が開口している間は、均油管を介して
低容量側の圧縮機から高容量側の圧縮機に油が移動する
ことがない。従って、均油管を介して高容量側の圧縮機
に油が移動するための、低容量側の圧縮機の油量不足を
防止できる。
Thus, even when a plurality of compressors include compressors of different capacities, or a plurality of compressors include a compressor of a variable capacity type, the operation of the compressor is not affected. While the two-way valve is open, oil does not move from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe. Therefore, it is possible to prevent the low-capacity compressor from running out of oil due to the oil moving to the high-capacity compressor via the oil equalizing pipe.

【0102】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed from the oil equalization pipe to the compressors via the oil equalization pipe connection pipes together with the gas refrigerant. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0103】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only gas refrigerant exists, only gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0104】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の圧縮機では吐出油量に対して返油量が少なく、長時間
連続運転を続けると、油量が減少していき、やがて、油
量不足となる。
In general, the high-capacity compressor has a larger oil supply amount to the compression chamber than the low-capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low-capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is smaller than the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0105】しかし、高容量側の圧縮機の油量が減少し
シェル上部とシェル下部の差圧が下限差圧より小となる
と、油量が増加しシェル上部とシェル下部の差圧が標準
差圧より大となるまで二方弁を閉止し、低容量側の圧縮
機から、均油管を介し、高容量側の圧縮機に油が移動す
る。従って、高容量側の圧縮機の油吐出量より返油量が
少ないための、長時間連続運転後の油量不足を防止でき
る。
However, when the oil amount of the compressor on the high capacity side decreases and the differential pressure between the upper shell and the lower shell becomes smaller than the lower differential pressure, the oil amount increases and the differential pressure between the upper shell and the lower shell becomes equal to the standard pressure difference. The two-way valve is closed until the pressure becomes higher than the pressure, and oil moves from the compressor on the low capacity side to the compressor on the high capacity side via the oil equalizing pipe. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor.

【0106】また、各圧縮機の油量不足をシェル上部と
シェル下部の差圧より検出するため、運転条件の違いに
よる圧縮機の油吐出量、及び、油戻り量のばらつきに影
響されずに、精度良く二方弁を制御できる。従って、二
方弁の閉止が遅すぎるか、或いは、二方弁の閉止後の開
口が早すぎるための高容量側の圧縮機の油量不足、及
び、二方弁の閉止後の開口が早するか、或いは、二方弁
の閉止後の開口が遅すぎるための低容量側の圧縮機の油
量不足を防止できる。従って、各圧縮機を適正油量に保
つことができる。
Further, since the shortage of the oil amount of each compressor is detected from the differential pressure between the upper shell and the lower shell, the oil discharge amount and the oil return amount of the compressor due to the difference in the operating conditions are not affected. The two-way valve can be controlled accurately. Therefore, the closing of the two-way valve is too slow, or the opening after the closing of the two-way valve is too early, and the amount of oil in the compressor on the high capacity side is insufficient, and the opening after the closing of the two-way valve is too early. Alternatively, the shortage of the oil amount of the compressor on the low-capacity side due to the opening of the two-way valve after closing is too slow can be prevented. Therefore, each compressor can be maintained at an appropriate oil amount.

【0107】また、複数の低圧シェル方式の圧縮機,四
方弁,室外側熱交換器、室外側膨張弁,アキュームレー
タから成る室外機と、室内側膨張弁,室内側熱交換器か
ら成る室内機とを連接して環状の冷媒回路を構成し、前
記各圧縮機のシェルの標準油面高さ近傍に均油管接続配
管を設け、前記各均油管接続配管の一端を連通した均油
管と、前記アキュームレータ内の上部と前記均油管を連
通する連通管と、前記連通管に備えられた二方弁と、前
記各圧縮機の油面高さを検出する油面高さ検出装置を備
え、少なくとも1台の前記圧縮機の前記油面高さ検出装
置が検出した油面高さが所定の下限油面高さ未満となる
と前記二方弁を閉止し、その後、全ての各圧縮機の前記
油面高さ検出装置が検出した油面高さが所定の油面高さ
以上となると前記二方弁を開口する二方弁制御手段を備
え、前記二方弁の閉止時は前記均油管の圧力を前記各圧
縮機のシェルの圧力より高くしたものである。
An outdoor unit comprising a plurality of low-pressure shell type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside with the oil equalizing pipe, a two-way valve provided in the communication pipe, and an oil level detector that detects the oil level of each of the compressors, and at least one When the oil level detected by the oil level detector of the compressor is less than a predetermined lower limit oil level, the two-way valve is closed, and then the oil level of all the compressors is closed. When the oil level detected by the sensor is equal to or higher than a predetermined oil level, Comprising a two-way valve control means for opening the-way valve, when closed the two-way valve is obtained by higher than the pressure of the shell of the pressure the compressors of the oil equalizing tube.

【0108】これにより、複数の圧縮機に異なる容量の
圧縮機が含まれている場合、或いは、複数の圧縮機に可
変容量方式の圧縮機が含まれている場合でも、圧縮機の
運転中で、二方弁が開口している間は、均油管を介して
低容量側の圧縮機から高容量側の圧縮機に油が移動する
ことがないため、均油管を介して高容量側の圧縮機に油
が移動するための、低容量側の圧縮機の油量不足を防止
できる。
Thus, even when a plurality of compressors include compressors of different capacities, or a plurality of compressors include a variable capacity compressor, the operation of the compressor is not possible. While the two-way valve is open, the oil does not move from the low-capacity compressor to the high-capacity compressor via the oil equalizing pipe, so that the high-capacity compression via the oil equalizing pipe does not occur. Insufficient oil amount of the compressor on the low capacity side due to the movement of oil to the compressor can be prevented.

【0109】また、連通管に流れるガス冷媒に含まれて
いる油は、ガス冷媒とともに均油管から各均油管接続配
管を介して各圧縮機に分配される。この時、分配される
ガス冷媒の量は、均油管と各圧縮機のシェル内の差圧の
平方根に比例し、分配される油の量も同じく均油管と各
圧縮機のシェル内の差圧の平方根に比例する。しかし、
均油管と各圧縮機のシェル内の差圧は連通管の圧力損失
により変動するため、分配される油量の比は、各圧縮機
の容量によって決まる吐出油量の比とは異なる。従っ
て、一部の圧縮機では、吐出油量の比に対して連通管か
ら均油管を介して分配される油量の比が小さく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて油量不足となる。
The oil contained in the gas refrigerant flowing through the communication pipe is distributed together with the gas refrigerant from the oil equalizing pipe to each compressor via each oil equalizing pipe connection pipe. At this time, the amount of gas refrigerant to be distributed is proportional to the square root of the differential pressure between the oil equalizing pipe and the shell of each compressor, and the amount of oil to be distributed is also the same as the differential pressure between the oil equalizing pipe and the shell of each compressor. It is proportional to the square root of. But,
Since the pressure difference between the oil equalizing pipe and the shell of each compressor fluctuates due to the pressure loss of the communication pipe, the ratio of the amount of oil to be distributed is different from the ratio of the amount of discharged oil determined by the capacity of each compressor. Therefore, in some compressors, the ratio of the amount of oil distributed from the communication pipe through the oil equalizing pipe to the ratio of the amount of discharged oil is small, and if continuous operation is continued for a long time, the oil amount decreases. Suddenly, the amount of oil will run short.

【0110】しかし、連通管の入口は、油が分離されガ
ス冷媒のみが存在するアキュームレータ内の上部にある
ため、連通管には油の含まれていないガス冷媒のみが流
れる。従って、圧縮機の油吐出量の比に対して連通管か
ら均油管を介して分配される油量の比が小さいための、
長時間連続運転後の油量不足を防止できる。
However, since the inlet of the communication pipe is located in the upper part of the accumulator where oil is separated and only gas refrigerant exists, only gas refrigerant containing no oil flows through the communication pipe. Therefore, since the ratio of the amount of oil distributed from the communication pipe via the oil equalizing pipe to the ratio of the oil discharge amount of the compressor is small,
Insufficient oil amount after long continuous operation can be prevented.

【0111】また、一般的に、高容量側の圧縮機は低容
量側の圧縮機に比べ圧縮室への給油量が多いため、吐出
冷媒の油含有率が低容量側の圧縮機より大きい。しか
し、吐出冷媒は各圧縮機からの吐出後に合流されるた
め、吸入ガス分岐部で分岐された後の、各圧縮機への吸
入冷媒の油含有率はそれぞれ等しい。従って、高容量側
の圧縮機では吐出油量に対して返油量が少なく、長時間
にわたり連続運転を続けると、油量が減少していき、や
がて、油量不足となる。
In general, the higher capacity compressor has a larger oil supply to the compression chamber than the lower capacity compressor, so that the oil content of the discharged refrigerant is larger than that of the low capacity compressor. However, since the discharged refrigerant is merged after being discharged from each compressor, the oil content of the refrigerant sucked into each compressor after being branched at the suction gas branch portion is equal. Therefore, in the high-capacity compressor, the amount of oil returned is small with respect to the amount of discharged oil, and if continuous operation is continued for a long time, the amount of oil decreases, and eventually the amount of oil becomes insufficient.

【0112】しかし、高容量側の圧縮機の油量が減少
し、油面高さが下限油面高さ未満となると、油量が増加
し油面高さが標準油面高さ以上となるまで二方弁を閉止
し、低容量側の圧縮機から、均油管を介し、高容量側の
圧縮機に油が移動する。従って、高容量側の圧縮機の油
吐出量より返油量が少ないための、長時間連続運転後の
油量不足を防止できる。
However, when the oil amount of the compressor on the high capacity side decreases and the oil level becomes lower than the lower limit oil level, the oil level increases and the oil level becomes higher than the standard oil level. The two-way valve is closed until the oil moves from the compressor on the low capacity side to the compressor on the high capacity side via the oil equalizing pipe. Therefore, it is possible to prevent an insufficient oil amount after a long-time continuous operation because the oil return amount is smaller than the oil discharge amount of the high-capacity compressor.

【0113】また、各圧縮機の油量不足を油面高さから
検出するため、運転条件の違いによる圧縮機の油吐出
量、及び、油戻り量のばらつき、及び、圧縮機のシェル
内の圧力分布のばらつきに影響されずに、精度良く二方
弁を制御できる。従って、二方弁の閉止が遅すぎるか、
或いは、二方弁の閉止後の開口が早すぎるための高容量
側の圧縮機の油量不足、及び、二方弁の閉止後の開口が
早するか、或いは、二方弁の閉止後の開口が遅すぎるた
めの低容量側の圧縮機の油量不足を防止できる。このよ
うに、各圧縮機を適正油量に保つことができる。
Further, since the shortage of the oil amount of each compressor is detected from the oil level, variations in the oil discharge amount and the oil return amount of the compressor due to the difference in the operating conditions, and in the shell of the compressor, The two-way valve can be accurately controlled without being affected by variations in the pressure distribution. Therefore, the closing of the two-way valve is too late,
Alternatively, the opening of the two-way valve after closing is too early, the oil amount of the compressor on the high-capacity side is insufficient, and the opening after closing of the two-way valve is early, or after the closing of the two-way valve. Insufficient oil amount of the compressor on the low capacity side due to the opening being too slow can be prevented. Thus, each compressor can be maintained at an appropriate oil amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における空気調和機の冷凍サ
イクル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention.

【図2】本発明の実施例2における空気調和機の冷凍サ
イクル図
FIG. 2 is a refrigeration cycle diagram of an air conditioner according to Embodiment 2 of the present invention.

【図3】本発明の実施例2における空気調和機の二方弁
の制御方法を示すフローチャート
FIG. 3 is a flowchart illustrating a method for controlling a two-way valve of an air conditioner according to a second embodiment of the present invention.

【図4】本発明の実施例3における空気調和機の冷凍サ
イクル図
FIG. 4 is a refrigeration cycle diagram of an air conditioner according to a third embodiment of the present invention.

【図5】本発明の実施例3における空気調和機の二方弁
の制御方法を示すフローチャート
FIG. 5 is a flowchart illustrating a method for controlling a two-way valve of an air conditioner according to a third embodiment of the present invention.

【図6】本発明の実施例4における空気調和機の冷凍サ
イクル図
FIG. 6 is a refrigeration cycle diagram of an air conditioner according to a fourth embodiment of the present invention.

【図7】本発明の実施例4における空気調和機の二方弁
の制御方法を示すフローチャート
FIG. 7 is a flowchart illustrating a method for controlling a two-way valve of an air conditioner according to a fourth embodiment of the present invention.

【図8】従来の空気調和機の冷凍サイクル図FIG. 8 is a refrigeration cycle diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 室外機 2 圧縮機 3 四方弁 4 室外側熱交換器 5 室外側膨張弁 6 室外機 7 室内側膨張弁 8 室内側熱交換器 9 吸入ガス配管 10 吸入ガス分岐管 11 均油管 12 均油管接続配管 13 連通管 14 二方弁 15 二方弁制御手段 16 差圧検出装置 17 二方弁制御手段 18 油面高さ検出装置 19 二方弁制御手段 20 アキュームレータ REFERENCE SIGNS LIST 1 outdoor unit 2 compressor 3 four-way valve 4 outdoor heat exchanger 5 outdoor expansion valve 6 outdoor unit 7 indoor expansion valve 8 indoor heat exchanger 9 intake gas pipe 10 intake gas branch pipe 11 oil equalizing pipe 12 equalizing oil pipe connection Piping 13 Communication pipe 14 Two-way valve 15 Two-way valve control means 16 Differential pressure detection device 17 Two-way valve control means 18 Oil level detection device 19 Two-way valve control means 20 Accumulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下 道美 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michimi Kusaka 4-5-2-5 Takaidahondori, Higashiosaka-shi, Osaka Matsushita Refrigeration Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の低圧シェル方式の圧縮機,四方
弁,室外側熱交換器,室外側膨張弁,アキュームレータ
から成る室外機と、室内側膨張弁,室内側熱交換器から
成る室内機とを連接して環状の冷媒回路を構成し、前記
各圧縮機のシェルの標準油面高さ近傍に均油管接続配管
を設け、前記各均油管接続配管の一端を連通した均油管
と、前記アキュームレータ内の上部と前記均油管を連通
する連通管を備え、前記均油管の圧力を前記各圧縮機の
シェルの圧力より高くする空気調和機。
1. An outdoor unit comprising a plurality of low-pressure shell compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. An air conditioner, comprising: a communication pipe that communicates an upper portion of the inside with the oil equalizing pipe, wherein a pressure of the oil equalizing pipe is higher than a pressure of a shell of each compressor.
【請求項2】 複数の低圧シェル方式の圧縮機,四方
弁,室外側熱交換器,室外側膨張弁,アキュームレータ
から成る室外機と、室内側膨張弁,室内側熱交換器から
成る室内機とを連接して環状の冷媒回路を構成し、前記
各圧縮機のシェルの標準油面高さ近傍に均油管接続配管
を設け、前記各均油管接続配管の一端を連通した均油管
と、前記アキュームレータ内の上部と前記均油管を連通
する連通管と、前記連通管に設けられた二方弁と、冷
房、或いは、暖房の連続運転時間が所定の時間以上とな
ると、一定時間だけ前記二方弁を閉止する二方弁制御手
段を備え、前記二方弁の閉止時は前記均油管の圧力を前
記各圧縮機のシェルの圧力より高くする空気調和機。
2. An outdoor unit comprising a plurality of low-pressure shell-type compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside with the oil equalizing pipe, a two-way valve provided in the communication pipe, and a cooling or heating continuous operation time that is equal to or longer than a predetermined time, the two-way valve for a predetermined time. An air conditioner comprising a two-way valve control means for closing the oil pressure equalizing pipe when the two-way valve is closed.
【請求項3】 複数の低圧シェル方式の圧縮機,四方
弁,室外側熱交換器,室外側膨張弁,アキュームレータ
から成る室外機と、室内側膨張弁,室内側熱交換器から
成る室内機とを連接して環状の冷媒回路を構成し、前記
各圧縮機のシェルの標準油面高さ近傍に均油管接続配管
を設け、前記各均油管接続配管の一端を連通した均油管
と、前記アキュームレータ内の上部と前記均油管を連通
する連通管と、前記連通管に設けられた二方弁と、前記
各圧縮機のシェル上部とシェル下部の差圧を検出する差
圧検出装置を備え、少なくとも1台の前記圧縮機の前記
差圧検出装置が検出したシェル上部とシェル下部の差圧
が所定の下限差圧未満となると前記二方弁を閉止し、そ
の後、全ての各圧縮機の前記差圧検出装置が検出したシ
ェル上部とシェル下部の差圧が所定の標準差圧以上とな
ると前記二方弁を開口する二方弁制御手段を備え、前記
二方弁の閉止時は前記均油管の圧力を前記各圧縮機のシ
ェルの圧力より高くする空気調和機。
3. An outdoor unit comprising a plurality of low-pressure shell compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside and the oil equalizing pipe, a two-way valve provided in the communication pipe, and a differential pressure detecting device that detects a differential pressure between a shell upper part and a shell lower part of each of the compressors. When the differential pressure between the shell upper part and the shell lower part detected by the differential pressure detecting device of one of the compressors becomes less than a predetermined lower limit differential pressure, the two-way valve is closed, and then the differential pressure of all the compressors is reduced. Upper and lower shells detected by the pressure detector A two-way valve control means for opening the two-way valve when the differential pressure is equal to or higher than a predetermined standard differential pressure, and when the two-way valve is closed, the pressure of the oil equalizing pipe is determined by the pressure of the shell of each of the compressors. Air conditioner to raise.
【請求項4】 複数の低圧シェル方式の圧縮機,四方
弁,室外側熱交換器,室外側膨張弁,アキュームレータ
から成る室外機と、室内側膨張弁,室内側熱交換器から
成る室内機とを連接して環状の冷媒回路を構成し、前記
各圧縮機のシェルの標準油面高さ近傍に均油管接続配管
を設け、前記各均油管接続配管の一端を連通した均油管
と、前記アキュームレータ内の上部と前記均油管を連通
する連通管と、前記連通管に設けられた二方弁と、前記
各圧縮機の油面高さを検出する油面高さ検出装置を備
え、少なくとも1台の各圧縮機の前記油面高さ検出装置
が検出した油面高さが所定の下限油面高さ未満となると
前記二方弁を閉止し、その後、全ての各圧縮機の前記油
面高さ検出装置が検出した油面高さが所定の油面高さ以
上となると前記二方弁を開口する二方弁制御手段を備
え、前記二方弁の閉止時は前記均油管の圧力を前記各圧
縮機のシェルの圧力より高くする空気調和機。
4. An outdoor unit comprising a plurality of low-pressure shell compressors, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, and an indoor unit comprising an indoor expansion valve and an indoor heat exchanger. Are connected to each other to form an annular refrigerant circuit, an oil equalizing pipe connection pipe is provided near the standard oil level of the shell of each of the compressors, and an oil equalizing pipe communicating one end of each of the oil equalizing pipe connecting pipes; and the accumulator. A communication pipe that communicates the upper part of the inside with the oil equalizing pipe, a two-way valve provided in the communication pipe, and an oil level detector that detects an oil level of each of the compressors; When the oil level detected by the oil level detector of each of the compressors is less than a predetermined lower limit oil level, the two-way valve is closed, and then the oil level of all the compressors When the oil level detected by the sensor is equal to or higher than a predetermined oil level, the two-way valve is turned off. An air conditioner comprising a two-way valve control means that opens, wherein when the two-way valve is closed, the pressure in the oil equalizing pipe is higher than the pressure in the shells of the compressors.
JP8311631A 1996-10-28 1996-11-22 Air conditioner Pending JPH10153355A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8311631A JPH10153355A (en) 1996-11-22 1996-11-22 Air conditioner
EP97112592A EP0838640A3 (en) 1996-10-28 1997-07-23 Oil level equalizing system for plural compressors
US08/905,729 US5996363A (en) 1996-10-28 1997-08-04 Oil level equalizing system for plural compressors
CA002217514A CA2217514A1 (en) 1996-10-28 1997-10-06 Oil level equalizing system for plural compressors
KR1019970055536A KR100242810B1 (en) 1996-10-28 1997-10-28 Oil level equalization system for multi-compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311631A JPH10153355A (en) 1996-11-22 1996-11-22 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10153355A true JPH10153355A (en) 1998-06-09

Family

ID=18019597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311631A Pending JPH10153355A (en) 1996-10-28 1996-11-22 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10153355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597672B1 (en) 2003-12-25 2006-07-10 삼성전자주식회사 Refrigeration cycle and A operation control system of refrigeration cycle
JP2010127481A (en) * 2008-11-25 2010-06-10 Fujitsu General Ltd Air conditioner
CN104236166A (en) * 2013-06-20 2014-12-24 珠海格力电器股份有限公司 Compression module for air conditioning system, air conditioning system and oil balancing method of compression module
CN104236166B (en) * 2013-06-20 2016-11-30 珠海格力电器股份有限公司 The oily balance method of the compression module of air conditioning system, air conditioning system and compression module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597672B1 (en) 2003-12-25 2006-07-10 삼성전자주식회사 Refrigeration cycle and A operation control system of refrigeration cycle
JP2010127481A (en) * 2008-11-25 2010-06-10 Fujitsu General Ltd Air conditioner
CN104236166A (en) * 2013-06-20 2014-12-24 珠海格力电器股份有限公司 Compression module for air conditioning system, air conditioning system and oil balancing method of compression module
CN104236166B (en) * 2013-06-20 2016-11-30 珠海格力电器股份有限公司 The oily balance method of the compression module of air conditioning system, air conditioning system and compression module

Similar Documents

Publication Publication Date Title
CN105910357B (en) Air-conditioning system and its valve body control method
US20060117770A1 (en) Multi-air condition system and method for controlling the same
KR20150050710A (en) Air conditioner and control method of the same
JPH11248266A (en) Air conditioner and condenser
JP6628911B1 (en) Refrigeration cycle device
CN106440273A (en) Air conditioner system and control method thereof
JPH10232056A (en) Air-conditioning device
CN110440489A (en) A kind of defrosting control method of adjustable pressure difference, device and heating unit
JP4333044B2 (en) Air conditioner
JPH10153355A (en) Air conditioner
JPH085169A (en) Air conditioner
JP2001132645A (en) Oil equalizing system for plural compressors
KR101166203B1 (en) Multi-Type Air conditioner and the controlling method
JPH10132397A (en) Air conditioner
JP2001324236A (en) Air conditioner
JPH04324069A (en) Refrigerating plant
JPH1182345A (en) Oil unifying system for plurality of compressors
JPH10205897A (en) Oil balancing system for a plurality of compressors
JP2692894B2 (en) Air conditioner
CN100394125C (en) Air conditioner
JP2002147876A (en) Air conditioner
JPH1182344A (en) Oil equalizing system for plurality of compressors
JPH1163691A (en) Oil equalizing system for plural compressors
JP3550772B2 (en) Refrigeration equipment
JPH0733095Y2 (en) Accumulator oil return device