JPH10152756A - Plasted steel sheet small in secular deterioration in impact resistance - Google Patents

Plasted steel sheet small in secular deterioration in impact resistance

Info

Publication number
JPH10152756A
JPH10152756A JP32789196A JP32789196A JPH10152756A JP H10152756 A JPH10152756 A JP H10152756A JP 32789196 A JP32789196 A JP 32789196A JP 32789196 A JP32789196 A JP 32789196A JP H10152756 A JPH10152756 A JP H10152756A
Authority
JP
Japan
Prior art keywords
steel sheet
impact resistance
phase
plating
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32789196A
Other languages
Japanese (ja)
Other versions
JP3721675B2 (en
Inventor
Tadashi Inoue
正 井上
Masaya Morita
正哉 森田
Akihide Yoshitake
明英 吉武
Takeshi Fujita
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32789196A priority Critical patent/JP3721675B2/en
Publication of JPH10152756A publication Critical patent/JPH10152756A/en
Application granted granted Critical
Publication of JP3721675B2 publication Critical patent/JP3721675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plated steel sheet in which secular deterioration in impact resistance is effectively suppressed and, by being utilized as an automotive steel sheet, capable of suitable securing collision stability even after the passage of a long period from the production the car body. SOLUTION: The cleanliness (dt) at least in the surface layer of this steel sheet is regulated to <=0.05%, and the skewness (Rsk) which is the index of deviation in the height direction of the roughness curve in the plated surface is regulated to -1.5 to +1.0. The plating in the steel sheet is composed of galvanizing, galvannealing or electrogalvanizing. By regulating the cleanliness in the surface layer of the steel sheet, the starting points of rust generation are extremely reduced, and by regulating the surface roughness (Rsk) in the plated surface to the prescribed range, its lubricity at the time of press working is improved to suppress the peeling of the plating, by which secular deterioration in its impact resistance can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐衝撃特性の優れた
めっき鋼板、特にプレス加工後における耐衝撃特性の経
時的劣化が小さいめっき鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plated steel sheet having excellent impact resistance, and more particularly to a plated steel sheet having a small deterioration with time in impact resistance after pressing.

【0002】[0002]

【従来の技術】近年、自動車の安全性に関する法規制強
化が背景となって自動車の衝突安全性に対する要求が高
まりつつあり、耐衝撃特性に優れた自動車用薄鋼板の開
発が盛ん行われている。そのような技術の一つとして、
特開平8−3678号公報では特定の成分組成の下で、
フェライト相+マルテンサイト相からなる組織の各金属
相の体積比とフェライト相中の転位密度を規定した自動
車用鋼板が提案されている。
2. Description of the Related Art In recent years, demands for collision safety of automobiles have been increasing due to the tightening of laws and regulations on automobile safety, and thin steel sheets for automobiles having excellent impact resistance have been actively developed. . As one of such technologies,
JP-A-8-3678 discloses that under a specific component composition,
2. Description of the Related Art A steel sheet for automobiles has been proposed in which the volume ratio of each metal phase in the structure composed of a ferrite phase and a martensite phase and the dislocation density in the ferrite phase are specified.

【0003】[0003]

【発明が解決しようとする課題】この技術は鋼板の成分
および組織制御により鋼板の耐衝撃特性の改善を図ろう
とするものであるが、本発明者らが調査、検討したとこ
ろによれば、薄鋼板を表面処理鋼板とした後にプレス成
形した材料の耐衝撃特性は経年劣化を生じ、上記従来技
術のように成分や組織制御を行っても、自動車の衝突安
全性に寄与する実質的な耐衝撃特性(つまり、車体製造
から長期間経過した後の耐衝撃特性)が十分に得られな
いことが判った。すなわち、本発明者らはモデル的に自
動車用の表面処理鋼板をプレス成形した試料に対して腐
食促進試験を行ない、この試料について後述する高速変
形特性(圧壊する際の平均崩壊荷重)を調査した結果、
腐食促進試験により発錆した試料の平均崩壊荷重が、腐
食促進試験前の試料のそれに較べて著しく劣っているこ
と、つまり耐衝撃特性が経時的に劣化していることを見
い出した。
This technique is intended to improve the impact resistance of a steel sheet by controlling the composition and structure of the steel sheet. The impact resistance of the material pressed after forming the steel sheet into a surface-treated steel sheet deteriorates over time, and even if the composition and structure are controlled as in the above-mentioned conventional technology, substantial impact resistance that contributes to the collision safety of automobiles It was found that the characteristics (that is, the impact resistance after a long period of time from the manufacture of the vehicle body) were not sufficiently obtained. That is, the present inventors conducted a corrosion acceleration test on a sample obtained by press-molding a surface-treated steel sheet for an automobile as a model, and investigated a high-speed deformation characteristic (average collapse load when crushed) described later for this sample. result,
It was found that the average decay load of the sample that rusted in the corrosion promotion test was significantly inferior to that of the sample before the corrosion promotion test, that is, the impact resistance deteriorated with time.

【0004】従来、このような耐衝撃特性の経時的な劣
化を抑制するという観点から、表面処理鋼板の耐衝撃特
性の改善を図ろうとする技術は知られていない。したが
って本発明の目的は、耐衝撃特性の経時的な劣化が効果
的に抑制され、自動車用鋼板として利用することによ
り、車体製造から長期間経過した後も衝突安定性を適切
に確保することができるめっき鋼板を提供することにあ
る。
Conventionally, there is no known technique for improving the impact resistance of a surface-treated steel sheet from the viewpoint of suppressing such deterioration of the impact resistance over time. Therefore, an object of the present invention is to effectively suppress the deterioration of the impact resistance over time, and to use the steel sheet as a steel sheet for automobiles to appropriately secure the collision stability even after a long period of time from the manufacture of the vehicle body. It is to provide a plated steel sheet that can be formed.

【0005】[0005]

【課題を解決するための手段】本発明者らは上述した課
題に鑑み、耐衝撃特性の経時的な劣化が抑制される表面
処理鋼板を得るべく研究を重ねた結果、まず、耐衝撃特
性の経時的劣化の有無を評価する方法としては、高速変
形において成形部材が圧壊する際の平均崩壊荷重を測定
する方法が最も適していることが判明した。このため、
特に犠牲防食作用の良好な亜鉛系めっき鋼板を対象に、
様々な金属組織(金属相)を有する鋼板の内質、表面性
状およびめっき条件を種々変化させ、プレス加工後の各
めっき鋼板に腐食促進試験を行った後、上記平均崩壊荷
重を測定することにより耐衝撃特性の経時的劣化の有無
を調べた。その結果、耐衝撃特性の経時的劣化は鋼板表
層での錆発生により引き起こされること、そして、この
ような発錆に起因した耐衝撃特性の経時的劣化を抑える
ためには、下記の(1)〜(3)の条件を満足する必要がある
ことを見い出した。
Means for Solving the Problems In view of the above-mentioned problems, the present inventors have conducted repeated studies to obtain a surface-treated steel sheet in which the deterioration of impact resistance over time is suppressed. As a method for evaluating the presence or absence of deterioration over time, it has been found that a method of measuring an average collapse load when a molded member is crushed in high-speed deformation is most suitable. For this reason,
Especially for galvanized steel sheets with good sacrificial corrosion protection,
By variously changing the inner quality, surface texture and plating conditions of steel sheets having various metal structures (metal phases), performing a corrosion promotion test on each plated steel sheet after press working, and measuring the above average collapse load The presence or absence of deterioration with time of the impact resistance was examined. As a result, the time-dependent deterioration of the impact resistance is caused by the occurrence of rust on the surface of the steel sheet, and in order to suppress the time-dependent deterioration of the impact resistance due to such rust, the following (1) It has been found that the conditions of ~ (3) need to be satisfied.

【0006】(1) 少なくとも鋼板表層における清浄度
(dt)を所定のレベル以下とすることにより、発錆の
起点を極力少なくする必要がある。 (2) めっき表面の表面粗度(Rsk)を所定の範囲に規
制することでプレス加工時の潤滑性を向上させ、めっき
剥離を抑制する必要がある。 (3) また、鋼板表層の清浄度(dt)の規制による作用
効果を適切に得るためには、鋼板の金属相を主にフェラ
イト相、フェライト相+パーライト相、フェライト相+
ベイナイト相、フェライト相+マルテンサイト相、ベイ
ナイト相、フェライト相+オーステナイト相+ベイナイ
ト相、フェライト相+オーステナイト相+ベイナイト相
+マルテンサイト相のうちのいずれかにすることが好ま
しい。 (4) めっき鋼板としては、特に犠牲防食作用の良好な亜
鉛系めっき鋼板が好ましい。
(1) It is necessary to minimize the starting point of rusting by minimizing the cleanliness (dt) of at least the surface layer of the steel sheet to a predetermined level or less. (2) It is necessary to control the surface roughness (Rsk) of the plating surface within a predetermined range to improve lubricity at the time of press working and to suppress plating peeling. (3) In order to properly obtain the function and effect of the regulation of the cleanliness (dt) of the steel sheet surface layer, the metal phase of the steel sheet is mainly composed of a ferrite phase, a ferrite phase + a pearlite phase, and a
It is preferable to use any of bainite phase, ferrite phase + martensite phase, bainite phase, ferrite phase + austenite phase + bainite phase, ferrite phase + austenite phase + bainite phase + martensite phase. (4) As the galvanized steel sheet, a zinc-based galvanized steel sheet having particularly good sacrificial corrosion prevention action is preferable.

【0007】本発明はこのような知見に基づきなされた
もので、その構成は、少なくとも鋼板表層における清浄
度(dt)が0.05%以下で、且つめっき表面の粗さ
曲線の高さ方向における片寄り指標であるスキューネス
(Rsk)が−1.5〜+1.0であることを特徴とす
る耐衝撃特性の経時的劣化が小さいめっき鋼板である。
ここで、スキューネス(Rsk)は粗さ曲線の振幅分布
曲線分布の中心線に対する対称性を示すものであり、下
式により与えられる。
The present invention has been made on the basis of such findings, and the structure is such that at least the cleanliness (dt) in the surface layer of the steel sheet is 0.05% or less and the roughness of the plating surface in the height direction of the roughness curve. A plated steel sheet having a small deterioration over time in impact resistance, characterized in that a skewness (Rsk) as a deviation index is -1.5 to +1.0.
Here, the skewness (Rsk) indicates the symmetry of the roughness curve with respect to the center line of the amplitude distribution curve distribution, and is given by the following equation.

【数1】 (Equation 1)

【0008】[0008]

【発明の実施の形態】以下、本発明の詳細と限定理由に
ついて説明する。鋼板表層の清浄度(dt)と耐衝撃特
性の経時的劣化との関係を調べるため、以下のような試
験を行った。供試鋼板として化学成分、金属相および強
度が同一で、表層の清浄度(dt)が種々異なる薄鋼板
(板厚1.6mm)を作製し、これらを溶融亜鉛めっき
(めっき目付量:60g/m2/60g/m2)した後、
合金化処理を施し、引き続き調質圧延によりめっき表面
のスキューネス(Rsk)が−1.5〜+1.0となる
ように調整した。これら鋼板の表層の清浄度(dt)
は、鋼の精錬及び鋳造条件を制御することで調整し、ま
た、圧延以降の製造条件を同じにすることで金属相およ
び強度がほぼ同一になるようにした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention and the reasons for limitation will be described below. The following test was conducted to examine the relationship between the cleanliness (dt) of the steel sheet surface layer and the deterioration over time of the impact resistance. As test steel sheets, thin steel sheets (sheet thickness: 1.6 mm) having the same chemical composition, metal phase and strength and different surface cleanliness (dt) were prepared, and these were subjected to hot-dip galvanizing (coating weight: 60 g / weight). m 2 / 60g / m 2). after that,
An alloying treatment was performed, and then temper rolling was performed to adjust the skewness (Rsk) of the plating surface to be -1.5 to +1.0. Cleanliness (dt) of the surface layer of these steel sheets
Was adjusted by controlling the refining and casting conditions of the steel, and by making the manufacturing conditions after rolling the same, the metal phase and the strength were made substantially the same.

【0009】これらのめっき鋼板をプレス加工した後、
複合サイクル腐食試験(「0.5%NaCl水溶液(3
5℃)によるSST試験を3時間→65℃、湿度10〜
15%雰囲気にて乾燥を6時間→55℃、湿度90%以
上の雰囲気にて3時間」を1サイクルとし、計200サ
イクル実施)を実施し、試験後の各めっき鋼板について
高速変形(変形速度:11m/sec)により圧壊する
際の平均崩壊荷重を測定した。また、同様の条件で上記
プレス加工ままのめっき鋼板についても平均崩壊荷重を
測定した。これら平均崩壊荷重の測定値に基づき、耐衝
撃特性の経時的劣化の度合いの指標となるΔFave
(=[複合サイクル腐食試験後のめっき鋼板の平均崩壊
荷重]−[プレス加工ままのめっき鋼板の平均崩壊荷
重])を求め、このΔFave(このΔFave値のマ
イナス値が大きい程、耐衝撃特性の経時的劣化が大き
い)と鋼板表層の清浄度(dt)との関係を調べた。そ
の結果を図1に示す。なお、鋼板表層の清浄度(dt)
はJIS G 0555の方法により測定された、鋼板表
面から板厚方向でt/8(但し、t:板厚)の深さまで
の部分の測定値である。
After pressing these coated steel sheets,
Complex cycle corrosion test (“0.5% NaCl aqueous solution (3
5 ° C) SST test for 3 hours → 65 ° C, humidity 10
Drying in a 15% atmosphere for 6 hours → 3 hours in an atmosphere of 55 ° C. and a humidity of 90% or more is performed as one cycle, and a total of 200 cycles are implemented). : 11 m / sec), and the average collapse load at the time of crushing was measured. The average collapse load was also measured for the as-pressed plated steel sheet under the same conditions. Based on the measured values of the average collapse load, ΔFave, which is an index of the degree of deterioration of the impact resistance over time, is used.
(= [Average collapse load of plated steel sheet after combined cycle corrosion test] − [Average collapse load of plated steel sheet as pressed]), and this ΔFave (the larger the negative value of this ΔFave value, the greater the impact resistance property). (Deterioration over time is large) and the cleanliness (dt) of the steel sheet surface layer were examined. The result is shown in FIG. The cleanliness (dt) of the steel sheet surface layer
Is a measured value of a portion from the surface of the steel sheet to a depth of t / 8 (where t: sheet thickness) in the thickness direction, measured by the method of JIS G 0555.

【0010】図1によれば、鋼板表層の清浄度(dt)
が0.05%以下ではΔFaveのマイナス値は低いレ
ベルを示し、耐衝撃特性の劣化はほとんど見られない
が、清浄度(dt)が0.05%を超えるとΔFave
のマイナス値が急激に増大し、耐衝撃特性の劣化が生じ
ている。このような表層の清浄度(dt)が0.05%
を超えるめっき鋼板の複合サイクル腐食試験後の表面を
観察した結果、多数の点錆が認められ、断面検鏡では錆
発生部からのクラック発生も観察された。以上の結果か
ら本発明では、耐衝撃特性の経時的劣化を生じさせない
条件として、鋼板表層の清浄度(dt)を0.05%以
下と定めた。なお、このように清浄度を規制する“鋼板
表層”とは、鋼板表面から板厚方向で最大でもt/8
(但し、t:鋼板板厚)を超えない範囲の鋼板表層を対
象とすることが好ましい。
According to FIG. 1, the cleanliness (dt) of the surface layer of the steel sheet is shown.
Is less than 0.05%, the negative value of ΔFave indicates a low level, and almost no deterioration of the impact resistance is observed. However, when the cleanness (dt) exceeds 0.05%, ΔFave exceeds 0.05%.
Negative value sharply increases, and the impact resistance is deteriorated. The cleanliness (dt) of such a surface layer is 0.05%
As a result of observing the surface of the coated steel sheet after the combined cycle corrosion test, a large number of spot rusts were observed, and cracks were also observed from the rusted portions on the cross-sectional microscope. From the above results, in the present invention, the cleanliness (dt) of the surface layer of the steel sheet is set to 0.05% or less as a condition that does not cause the deterioration of the impact resistance over time. The “surface layer of the steel sheet” that regulates the cleanliness in this way is at most t / 8 in the thickness direction from the steel sheet surface.
(However, it is preferable to target a steel sheet surface layer within a range not exceeding t: steel sheet thickness).

【0011】このような鋼板表層の清浄度(dt):
0.05%以下は、鋼の溶製後の二次精錬および鋳造時
の介在物の巻込み対策を適切に行なうことにより達成で
きる。なお、本発明では鋼板の板厚中央部(板厚方向に
おいて上記“鋼板表層”以外の部分)の清浄度(dt)
は特に規定しないが、特に厳しいプレス成形が行われる
用途の鋼板については、上述した点錆の発生を抑制する
という観点から、板厚中央部の清浄度(dt)について
も0.05%以下とすることが好ましい。
The cleanliness (dt) of the surface layer of such a steel sheet is as follows:
0.05% or less can be achieved by appropriately performing secondary refining after smelting of steel and measures against inclusion of inclusions during casting. In the present invention, the cleanliness (dt) of the central part of the steel sheet in the thickness direction (the part other than the “surface layer of the steel sheet” in the thickness direction).
Although not particularly specified, for a steel sheet for use in which particularly severe press forming is performed, the cleanliness (dt) at the center of the sheet thickness is set to 0.05% or less from the viewpoint of suppressing the above-described generation of rust. Is preferred.

【0012】次に、めっき鋼板のプレス加工後のめっき
剥離を通じた錆発生とそれに伴う耐衝撃特性の経時的劣
化を抑制するという観点から、めっき鋼板表面の粗さパ
ターンと上記耐衝撃特性の経時的劣化との関係を調べる
ため、以下のような試験を行った。供試鋼板として化学
成分、金属相および強度が同一で、表面の粗さパターン
が種々異なる亜鉛系めっき鋼板(板厚1.6mm)を作
製した。これらのめっき鋼板は、薄鋼板を溶融亜鉛めっ
き(めっき目付量:60g/m2/60g/m2)した
後、合金化処理を施し、引き続き調質圧延することによ
り作製した。めっき鋼板表面の粗さパターンはめっき条
件と最終での調質圧延により調整し、また、圧延以降の
他の製造条件を同じにすることで金属相および強度がほ
ぼ同一になるようにした。また、各鋼板表層の清浄度
(dt)は、鋼の精錬および鋳造条件を制御することで
0.05%以下に調整した。
Next, from the viewpoint of suppressing the generation of rust through the peeling of the plated steel sheet after the press working of the plated steel sheet and the accompanying deterioration of the impact resistance property over time, the roughness pattern of the surface of the plated steel sheet and the aging of the impact resistance property are considered. The following test was performed to examine the relationship with the thermal degradation. As test steel sheets, galvanized steel sheets (sheet thickness 1.6 mm) having the same chemical composition, metal phase, and strength and having various surface roughness patterns were produced. These plated steel sheets, galvanized thin steel sheet (plating unit weight: 60g / m 2 / 60g / m 2) and then, subjected to alloying treatment, was produced by rolling subsequently temper. The roughness pattern of the surface of the plated steel sheet was adjusted by the plating conditions and the temper rolling at the final stage, and the other production conditions after the rolling were made the same so that the metal phase and the strength were almost the same. Further, the cleanliness (dt) of each steel sheet surface layer was adjusted to 0.05% or less by controlling the refining and casting conditions of the steel.

【0013】これらのめっき鋼板をプレス加工した後、
図1の試験と同様に複合サイクル腐食試験(試験条件も
図1の試験と同様)を実施しためっき鋼板とプレス加工
ままのめっき鋼板について、高速変形(変形速度:11
m/sec)により圧壊する際の平均崩壊荷重を測定し
た。これら平均崩壊荷重の測定値に基づき、耐衝撃特性
の経時的劣化の度合いの指標となるΔFave(=[複
合サイクル腐食試験後のめっき鋼板の平均崩壊荷重]−
[プレス加工ままのめっき鋼板の平均崩壊荷重])を求
め、このΔFaveとめっき鋼板表面のスキューネス
(Rsk)との関係を調べた。その結果を図2に示す。
After pressing these coated steel sheets,
High-speed deformation (deformation speed: 11) was performed on the plated steel sheet subjected to the combined cycle corrosion test (the test conditions were also the same as the test of FIG. 1) and the as-pressed plated steel sheet as in the test of FIG.
m / sec), the average collapse load at the time of crushing was measured. Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test], which is an index of the degree of deterioration of impact resistance over time, is −
[Average collapse load of as-pressed plated steel sheet]) was determined, and the relationship between ΔFave and skewness (Rsk) of the surface of the plated steel sheet was examined. The result is shown in FIG.

【0014】図2によれば、めっき表面のスキューネス
(Rsk)が−1.5未満および+1.0超になるとΔ
Faveが急激に増加し、耐衝撃特性の著しい経時的劣
化を生じている。特に、めっき表面のスキューネス(R
sk)が−1.5未満の場合にはプレス加工によりめっ
きの面状の剥離が発生し、その部位で発錆が多く認めら
れたことから、Rsk<−1.5において耐衝撃特性が
劣化した原因は、スキューネス(Rsk)の過度の低下
によってプレス加工時の潤滑性が悪化し、めっき剥離が
発生したためであると考えられる。またこのようなめっ
き剥離が生じる原因は、スキューネス(Rsk)が低く
なりすぎるとプレス加工時の潤滑油の油だまりが少なく
なって摺動抵抗が増し、この結果、プレス加工時の面圧
が高くなってめっき剥離が発生するものと考えられる。
一方、スキューネス(Rsk)が+1.0超の場合には
めっきの点状の剥離が発生し、その部位で発錆が認めら
れたことから、Rsk>+1.0において耐衝撃特性が
劣化する原因は、このような局部的なめっき剥離による
ものと考えられる。またこのような局部的なめっき剥離
を生じる原因は、スキューネス(Rsk)が高くなりす
ぎると粗さ曲線のパターンが凸型で局部的にとがった状
態になるため、プレス加工時に上記凸型の先端部が接触
する金型との面圧が高くなり、その部分でめっきが剥離
しやすくなるためであると考えられる。
According to FIG. 2, when the skewness (Rsk) of the plating surface is less than -1.5 and more than +1.0, Δ
Fave increases sharply, and the impact resistance is significantly deteriorated with time. In particular, the skewness (R
When sk) is less than -1.5, the surface of the plating is peeled off by press working, and a lot of rust is observed at the site. Therefore, the impact resistance is deteriorated at Rsk <-1.5. It is considered that the reason for this is that the lubricity at the time of press working deteriorated due to an excessive decrease in skewness (Rsk), and plating peeling occurred. Also, the cause of such plating peeling is that if the skewness (Rsk) is too low, the oil pool of the lubricating oil during press working is reduced and the sliding resistance is increased. As a result, the surface pressure during press working is increased. It is considered that plating peeling occurs.
On the other hand, when the skewness (Rsk) is more than +1.0, spot-like peeling of the plating occurs, and rusting is observed at the site. Is considered to be due to such local plating exfoliation. The cause of such local plating exfoliation is that if the skewness (Rsk) is too high, the pattern of the roughness curve becomes convex and locally sharpened. This is considered to be because the surface pressure with the mold in contact with the portion increases, and the plating is easily peeled off at that portion.

【0015】以上の結果から本発明では、耐衝撃特性の
経時的劣化を生じさせない条件として、めっき表面の粗
さ曲線の高さ方向における片寄り指標であるスキューネ
ス(Rsk)を−1.5〜+1.0と定めた。このよう
なスキューネス(Rsk)で規定される表面粗度は、め
っき条件を調整するとともに、めっき前またはめっき後
の調質圧延等において、適切にダル加工されたロールを
用いて鋼板を圧延することによって得ることができる。
また、上記した鋼板表層の清浄度(dt)を規制するこ
とによる作用効果を適切に得るためには、鋼板の金属組
織が主にフェライト相、フェライト相+パーライト相、
フェライト相+ベイナイト相、フェライト相+マルテン
サイト相、ベイナイト相、フェライト相+オーステナイ
ト相+ベイナイト相、フェライト相+オーステナイト相
+ベイナイト相+マルテンサイト相のいずれかであるこ
とが好ましい。なお、これらの金属相中には、一般に鋼
中に不可避的に存在する金属間化合物や非金属介在物等
の相が含まれていることを妨げない。
From the above results, in the present invention, the skewness (Rsk), which is an index of deviation in the height direction of the roughness curve of the plating surface, is set to -1.5 to less than 1.5 as a condition for preventing the deterioration of impact resistance over time. +1.0. The surface roughness specified by the skewness (Rsk) is determined by adjusting the plating conditions and rolling the steel sheet using a dulled roll before or after plating. Can be obtained by
Further, in order to properly obtain the above-mentioned effect by regulating the cleanliness (dt) of the surface layer of the steel sheet, the metal structure of the steel sheet mainly includes a ferrite phase, a ferrite phase + a pearlite phase,
It is preferably any of ferrite phase + bainite phase, ferrite phase + martensite phase, bainite phase, ferrite phase + austenite phase + bainite phase, and ferrite phase + austenite phase + bainite phase + martensite phase. In addition, these metal phases do not prevent the inclusion of phases such as intermetallic compounds and nonmetallic inclusions generally inevitably present in steel.

【0016】また、本発明は様々な強度を有するめっき
鋼板に適用することができる。すなわち、自動車用鋼板
としては上記した様々な金属組織を有するめっき鋼板が
使用されるが、所望の強度に応じて、例えば以下のよう
な使い分がなされる。 フェライト相→270〜500N/mm2 フェライト相+パーライト相→400〜800N/mm
2 フェライト相+ベイナイト相→450〜750N/mm
2 フェライト相+マルテンサイト相→500〜900N/
mm2 ベイナイト相→500〜900N/mm2 フェライト相+オーステナイト相+ベイナイト相→70
0〜900N/mm2 フェライト相+オーステナイト相+ベイナイト相+マル
テンサイト相→700〜900N/mm2
The present invention can be applied to plated steel sheets having various strengths. That is, plated steel sheets having the above-described various metal structures are used as automotive steel sheets. For example, the following uses are made according to the desired strength. Ferrite phase → 270-500N / mm 2 Ferrite phase + pearlite phase → 400-800N / mm
2 Ferrite phase + bainite phase → 450 to 750 N / mm
2 Ferrite phase + martensite phase → 500 to 900 N /
mm 2 bainite phase → 500~900N / mm 2 ferrite phase + austenite phase + bainite phase → 70
0 to 900 N / mm 2 ferrite phase + austenite phase + bainite phase + martensite phase → 700 to 900 N / mm 2

【0017】また、本発明のめっき鋼板は、同じ強度レ
ベルであっても要求される加工性の種類に応じて金属組
織が適宜選択されることが好ましい。すなわち、鋼板に
高い伸びフランジ性(バーリング性)が要求される場合
には、フェライト相よりもフェライト相+マルテンサイ
ト相、フェライト相+オーステナイト相+ベイナイト相
またはフェライト相+オーステナイト相+ベイナイト相
+マルテンサイト相の方が好ましく、また上記フェライ
ト相+マルテンサイト相よりもフェライト相+ベイナイ
ト相の方がより好ましく、さらにはこのフェライト相+
ベイナイト相よりもベイナイト相の方がより好ましい。
また、鋼板に高い延性(全伸び)が要求される場合に
は、ベイナイト相よりもフェライト相の方が好ましく、
またこのフェライト相よりもフェライト相+マルテンサ
イト相またはフェライト相+ベイナイト相の方が好まし
く、さらにはこのフェライト相+ベイナイト相よりもフ
ェライト相+オーステナイト相+ベイナイト相またはフ
ェライト相+オーステナイト相+ベイナイト相+マルテ
ンサイト相の方が好ましい。また、本発明の作用効果
は、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板ま
たは電気亜鉛めっき鋼板において特に効果的に得られる
が、他のめっき鋼板、例えば耐熱めっき(Crめっき、
Niめっき、Alめっき)、Zn−Ni合金めっき、Z
n−Mn合金めっき、Zn−Al合金めっき等の各種め
っき鋼板においても得ることができる。
It is preferable that the metallographic structure of the plated steel sheet of the present invention is appropriately selected according to the type of workability required even at the same strength level. That is, when a steel sheet is required to have high stretch flangeability (burring property), a ferrite phase + martensite phase, a ferrite phase + austenite phase + bainite phase or a ferrite phase + austenite phase + bainite phase + maltenite rather than a ferrite phase. The site phase is more preferable, and the ferrite phase + bainite phase is more preferable than the ferrite phase + martensite phase.
The bainite phase is more preferable than the bainite phase.
Further, when high ductility (total elongation) is required for the steel sheet, the ferrite phase is more preferable than the bainite phase,
A ferrite phase + martensite phase or a ferrite phase + bainite phase is more preferable than the ferrite phase, and a ferrite phase + austenite phase + bainite phase or a ferrite phase + austenite phase + bainite phase is more preferable than the ferrite phase + bainite phase. + The martensite phase is preferred. The effects of the present invention can be obtained particularly effectively in a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, or an electro-galvanized steel sheet.
Ni plating, Al plating), Zn-Ni alloy plating, Z
It can also be obtained in various plated steel sheets such as n-Mn alloy plating and Zn-Al alloy plating.

【0018】[0018]

【実施例】【Example】

[実施例1]化学成分が0.09%C−0.01%Si
−0.50%Mn−0.100%Pの440MPa級の
フェライト+パーライト鋼からなり、表1に示すような
表層の清浄度(dt)を有する溶融亜鉛めっき鋼板(板
厚:1.6mm,めっき目付量:60g/m2/60g
/m2)を合金化処理し、引き続き調質圧延して同表に
示す表面粗度(Rsk)に調整した。これらのめっき鋼
板をプレス加工した後、複合サイクル腐食試験(試験条
件は図1の試験と同様)を実施し、錆の発生状況を観察
した。また、図1の試験と同様に、複合サイクル腐食試
験を実施した上記めっき鋼板とプレス加工ままのめっき
鋼板について、高速変形(変形速度:11m/sec)
により圧壊する際の平均崩壊荷重を測定した。これら平
均崩壊荷重の測定値に基づき、耐衝撃特性の経時的劣化
の度合いを示すΔFave(=[複合サイクル腐食試験
後のめっき鋼板の平均崩壊荷重]−[プレス加工ままの
めっき鋼板の平均崩壊荷重])を求めた。その結果を表
1に示す。
[Example 1] The chemical components are 0.09% C-0.01% Si
Hot-dip galvanized steel sheet (sheet thickness: 1.6 mm, made of 440 MPa class ferrite + pearlite steel of −0.50% Mn−0.100% P and having a surface cleanliness (dt) as shown in Table 1. plating basis weight: 60g / m 2 / 60g
/ M 2 ) was subjected to alloying treatment, followed by temper rolling to adjust the surface roughness (Rsk) shown in the table. After press-working these plated steel sheets, a combined cycle corrosion test (test conditions were the same as the test in FIG. 1) was performed, and the occurrence of rust was observed. Also, as in the test of FIG. 1, the above-described plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed are subjected to high-speed deformation (deformation speed: 11 m / sec).
The average collapse load at the time of crushing was measured. Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]). Table 1 shows the results.

【0019】表1によれば、本発明例であるNo.1〜
No.3では複合サイクル腐食試験後でも発錆はみられ
ず、したがってΔFaveも小さい値となっており、耐
衝撃特性の経時的劣化が効果的に抑制されていることが
判る。これに対して比較例であるNo.4〜No.6
は、本発明の規定する鋼板表層の清浄度(dt)、めっ
き表面のスキューネス(Rsk)のいずれかを満足して
いないため、複合サイクル腐食試験後に発錆し、このた
めΔFaveも大きくなっており、耐衝撃特性の経時的
劣化が生じていることが判る。
According to Table 1, No. 1 of the present invention was used. 1 to
No. In No. 3, no rust was observed even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. 4-No. 6
Does not satisfy any of the cleanliness (dt) of the surface layer of the steel sheet and the skewness (Rsk) of the plating surface specified by the present invention, and therefore rusts after the combined cycle corrosion test, and thus ΔFave is also large. It can be seen that the impact resistance has deteriorated with time.

【0020】[0020]

【表1】 [Table 1]

【0021】[実施例2]化学成分が0.003%C−
0.25%Si−2.00%Mn−0.075%P−
0.07%Tiの440MPa級のフェライト鋼からな
り、表2に示すような表層の清浄度(dt)を有する溶
融亜鉛めき鋼板(板厚:1.6mm,めっき目付量:6
0g/m2/60g/m2)を調質圧延して、同表に示す
表面粗度(Rsk)に調整した。これらのめっき鋼板を
プレス加工した後、複合サイクル腐食試験(試験条件は
図1の試験と同様)を実施し、錆の発生状況を観察し
た。また、図1の試験と同様に、複合サイクル腐食試験
を実施した上記めっき鋼板とプレス加工ままのめっき鋼
板について、高速変形(変形速度:11m/sec)に
より圧壊する際の平均崩壊荷重を測定した。これら平均
崩壊荷重の測定値に基づき、耐衝撃特性の経時的劣化の
度合いを示すΔFave(=[複合サイクル腐食試験後
のめっき鋼板の平均崩壊荷重]−[プレス加工ままのめ
っき鋼板の平均崩壊荷重])を求めた。その結果を表2
に示す。
Example 2 0.003% C-
0.25% Si-2.00% Mn-0.075% P-
Hot-dip galvanized steel sheet made of 0.07% Ti 440 MPa class ferritic steel and having a surface cleanliness (dt) as shown in Table 2 (sheet thickness: 1.6 mm, plating weight: 6)
0g / m 2 / 60g / m 2) rolled to temper, and adjusted to a surface roughness (Rsk) shown in the same table. After press-working these plated steel sheets, a combined cycle corrosion test (test conditions were the same as the test in FIG. 1) was performed, and the occurrence of rust was observed. Also, as in the test of FIG. 1, the average collapse load when the above-mentioned plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed was crushed by high-speed deformation (deformation speed: 11 m / sec). . Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]). Table 2 shows the results.
Shown in

【0022】表2によれば、本発明例であるNo.7で
は複合サイクル腐食試験後でも発錆はみられず、したが
ってΔFaveも小さい値となっており、耐衝撃特性の
経時的劣化が効果的に抑制されていることが判る。これ
に対して比較例であるNo.8は、めっき表面のスキュ
ーネス(Rsk)が本発明の規定する上限を超えている
ため、複合サイクル腐食試験後に発錆し、このためΔF
aveも大きくなっており、耐衝撃特性の経時的劣化が
生じていることが判る。
According to Table 2, No. 1 which is an example of the present invention. In No. 7, no rust was observed even after the combined cycle corrosion test, and thus ΔFave was also a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. No. 8 rusted after the combined cycle corrosion test because the skewness (Rsk) of the plating surface exceeded the upper limit specified in the present invention, and thus ΔF
The ave is also large, which indicates that the impact resistance has deteriorated with time.

【0023】[0023]

【表2】 [Table 2]

【0024】[実施例3]化学成分が0.10%C−
0.50%Si−1.40%Mn−0.015%Pの5
90MPa級のフェライト+パーライト鋼からなり、表
3に示すような表層の清浄度(dt)を有する電気亜鉛
っめっき鋼板(板厚:1.6mm,めっき目付量:30
g/m2/30g/m2)を調質圧延して、同表に示す表
面粗度(Rsk)に調整した。これらのめっき鋼板をプ
レス加工した後、複合サイクル腐食試験(試験条件は図
1の試験と同様)を実施し、錆の発生状況を観察した。
また、図1の試験と同様に、複合サイクル腐食試験を実
施した上記めっき鋼板とプレス加工ままのめっき鋼板に
ついて、高速変形(変形速度:11m/sec)により
圧壊する際の平均崩壊荷重を測定した。これら平均崩壊
荷重の測定値に基づき、耐衝撃特性の経時的劣化の度合
いを示すΔFave(=[複合サイクル腐食試験後のめ
っき鋼板の平均崩壊荷重]−[プレス加工ままのめっき
鋼板の平均崩壊荷重])を求めた。その結果を表3に示
す。
Example 3 Chemical component is 0.10% C-
0.50% Si-1.40% Mn-0.015% P5
Electrogalvanized steel sheet (sheet thickness: 1.6 mm, basis weight: 30) which is made of 90 MPa class ferrite + pearlite steel and has a surface cleanliness (dt) as shown in Table 3.
g / m 2 / 30g / m 2) by temper rolling was adjusted to a surface roughness (Rsk) shown in the same table. After press-working these plated steel sheets, a combined cycle corrosion test (test conditions were the same as the test in FIG. 1) was performed, and the occurrence of rust was observed.
Also, as in the test of FIG. 1, the average collapse load when the above-mentioned plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed was crushed by high-speed deformation (deformation speed: 11 m / sec). . Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]). Table 3 shows the results.

【0025】表3によれば、本発明例であるNo.9は
複合サイクル腐食試験後でも発錆はみられず、したがっ
てΔFaveも小さい値となっており、耐衝撃特性の経
時的劣化が効果的に抑制されていることが判る。これに
対して比較例であるNo.10は、鋼板表層の清浄度
(dt)が本発明の規定する上限を超えているため、複
合サイクル腐食試験後に発錆し、このためΔFaveも
大きくなっており、耐衝撃特性の経時的劣化が生じてい
ることが判る。
According to Table 3, No. 1 of the present invention was used. No. 9 showed no rust even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that the deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. In No. 10, since the cleanliness (dt) of the steel sheet surface layer exceeded the upper limit specified by the present invention, rust occurred after the combined cycle corrosion test, and thus ΔFave was also large. You can see that it is occurring.

【0026】[0026]

【表3】 [Table 3]

【0027】[実施例4]化学成分が0.09%C−
0.08%Si−1.55%Mn−0.010%Pの5
90MPa級のフェライト+ベイナイト鋼からなり、表
4に示すような表層の清浄度(dt)を有する電気亜鉛
めっき鋼板(板厚:3.0mm,めっき目付量:30g
/m2/30g/m2)を調質圧延して、同表に示す表面
粗度(Rsk)に調整した。これらのめっき鋼板をプレ
ス加工した後、複合サイクル腐食試験(試験条件は図1
の試験と同様)を実施し、錆の発生状況を観察した。ま
た、図1の試験と同様に、複合サイクル腐食試験を実施
した上記めっき鋼板とプレス加工ままのめっき鋼板につ
いて、高速変形(変形速度:11m/sec)により圧
壊する際の平均崩壊荷重を測定した。これら平均崩壊荷
重の測定値に基づき、耐衝撃特性の経時的劣化の度合い
を示すΔFave(=[複合サイクル腐食試験後のめっ
き鋼板の平均崩壊荷重]−[プレス加工ままのめっき鋼
板の平均崩壊荷重])を求めた。その結果を表4に示
す。
Example 4 The chemical composition was 0.09% C-
0.08% Si-1.55% Mn-0.010% P5
Electrogalvanized steel sheet made of 90 MPa class ferrite + bainite steel and having a surface cleanliness (dt) as shown in Table 4 (sheet thickness: 3.0 mm, plating weight: 30 g)
/ M 2 / 30g / m 2 ) by temper rolling was adjusted to a surface roughness (Rsk) shown in the same table. After press working these plated steel sheets, a combined cycle corrosion test (test conditions are shown in FIG.
(Similar to the above test), and the occurrence of rust was observed. Also, as in the test of FIG. 1, the average collapse load when the above-mentioned plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed was crushed by high-speed deformation (deformation speed: 11 m / sec). . Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]). Table 4 shows the results.

【0028】表4によれば、本発明例であるNo.11
は複合サイクル腐食試験後でも発錆はみられず、したが
ってΔFaveも小さい値となっており、耐衝撃特性の
経時的劣化が効果的に抑制されていることが判る。これ
に対して比較例であるNo.12は、めっき表面のスキ
ューネス(Rsk)が本発明の規定する上限を超えてい
るため、複合サイクル腐食試験後に発錆し、このためΔ
Faveも大きくなっており、耐衝撃特性の経時的劣化
が生じていることが判る。
According to Table 4, No. 1 of the present invention was used. 11
No rusting was observed even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. Sample No. 12 rusted after the combined cycle corrosion test because the skewness (Rsk) of the plating surface exceeded the upper limit specified in the present invention, and therefore Δ
Fave is also large, and it can be seen that the impact resistance has deteriorated with time.

【0029】[0029]

【表4】 [Table 4]

【0030】[実施例5]化学成分が0.09%C−
0.20%Si−0.75%Mn−0.070%Pから
なる590MPa級のフェライト+マルテンサイト鋼か
らなり、表5に示すような表層の清浄度(dt)を有す
る電気亜鉛めっき鋼板(板厚:1.6mm,めっき目付
量:30g/m2/30g/m2)を合金化処理した後、
引き続き調質圧延して同表に示す表面粗度(Rsk)に
調整した。これらのめっき鋼板をプレス加工した後、複
合サイクル腐食試験(試験条件は図1の試験と同様)を
実施し、錆の発生状況を観察した。また、図1の試験と
同様に、複合サイクル腐食試験を実施した上記めっき鋼
板とプレス加工ままのめっき鋼板について、高速変形
(変形速度:11m/sec)により圧壊する際の平均
崩壊荷重を測定した。これら平均崩壊荷重の測定値に基
づき、耐衝撃特性の経時的劣化の度合いを示すΔFav
e(=[複合サイクル腐食試験後のめっき鋼板の平均崩
壊荷重]−[プレス加工ままのめっき鋼板の平均崩壊荷
重])を求めた。その結果を表5に示す。
Example 5 The chemical composition is 0.09% C-
Electrogalvanized steel sheet made of 590 MPa class ferrite and martensite steel composed of 0.20% Si-0.75% Mn-0.070% P and having a surface cleanliness (dt) as shown in Table 5 ( thickness: 1.6 mm, plating weight per unit area: after 30g / m 2 / 30g / m 2) was treated alloyed,
Subsequently, temper rolling was performed to adjust the surface roughness (Rsk) shown in the table. After press-working these plated steel sheets, a combined cycle corrosion test (test conditions were the same as the test in FIG. 1) was performed, and the occurrence of rust was observed. Also, as in the test of FIG. 1, the average collapse load when the above-mentioned plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed was crushed by high-speed deformation (deformation speed: 11 m / sec). . Based on the measured values of these average collapse loads, ΔFav indicating the degree of deterioration of the impact resistance over time is shown.
e (= [average collapse load of plated steel sheet after combined cycle corrosion test] − [average collapse load of plated steel sheet as pressed]) was determined. Table 5 shows the results.

【0031】表5によれば、本発明例であるNo.13
は複合サイクル腐食試験後でも発錆はみられず、したが
ってΔFaveも小さい値となっており、耐衝撃特性の
経時的劣化が効果的に抑制されていることが判る。これ
に対して比較例であるNo.14は、鋼板表層の清浄度
(dt)が本発明の規定する上限を超えているため、複
合サイクル腐食試験後に発錆し、このためΔFaveも
大きくなっており、耐衝撃特性の経時的劣化が生じてい
ることが判る。
According to Table 5, No. 1 of the present invention was used. 13
No rusting was observed even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. In No. 14, since the cleanliness (dt) of the steel sheet surface layer exceeded the upper limit specified in the present invention, rust occurred after the combined cycle corrosion test, and thus ΔFave was also large. You can see that it is occurring.

【0032】[0032]

【表5】 [Table 5]

【0033】[実施例6]化学成分が0.10%C−
1.08%Si−1.64%Mn−0.010%Pの5
90MPa級のフェライト+オーステナイト+ベイナイ
ト鋼からなり、表6に示すような表層の清浄度(dt)
を有する電気亜鉛めっき鋼板(板厚:1.6mm,めっ
き目付量:30g/m2/30g/m2)を調質圧延し
て、同表に示す表面粗度(Rsk)に調整した。これら
のめっき鋼板をプレス加工した後、複合サイクル腐食試
験(試験条件は図1の試験と同様)を実施し、錆の発生
状況を観察した。また、図1の試験と同様に、複合サイ
クル腐食試験を実施した上記めっき鋼板とプレス加工ま
まのめっき鋼板について、高速変形(変形速度:11m
/sec)により圧壊する際の平均崩壊荷重を測定し
た。これら平均崩壊荷重の測定値に基づき、耐衝撃特性
の経時的劣化の度合いを示すΔFave(=[複合サイ
クル腐食試験後のめっき鋼板の平均崩壊荷重]−[プレ
ス加工ままのめっき鋼板の平均崩壊荷重])を求めた。
その結果を表6に示す。
Example 6 The chemical composition is 0.10% C-
1.08% Si-1.64% Mn-0.010% P5
Cleanliness (dt) of the surface layer as shown in Table 6 consisting of 90 MPa class ferrite + austenite + bainite steel
Electro-galvanized steel sheet having a (plate thickness: 1.6 mm, plating basis weight: 30g / m 2 / 30g / m 2) by temper rolling was adjusted to a surface roughness (Rsk) shown in the same table. After press-working these plated steel sheets, a combined cycle corrosion test (test conditions were the same as the test in FIG. 1) was performed, and the occurrence of rust was observed. Also, as in the test of FIG. 1, the above-described plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed were subjected to high-speed deformation (deformation speed: 11 m).
/ Sec), the average collapse load at the time of crushing was measured. Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]).
Table 6 shows the results.

【0034】表6によれば、本発明例であるNo.15
は複合サイクル腐食試験後でも発錆はみられず、したが
ってΔFaveも小さい値となっており、耐衝撃特性の
経時的劣化が効果的に抑制されていることが判る。これ
に対して比較例であるNo.16は、めっき表面のスキ
ューネス(Rsk)が本発明の規定する上限を超えてい
るため、複合サイクル腐食試験後に発錆し、このためΔ
Faveも大きくなっており、耐衝撃特性の経時的劣化
が生じていることが判る。
According to Table 6, No. 1 of the present invention example. Fifteen
No rusting was observed even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. No. 16 rusted after the combined cycle corrosion test because the skewness (Rsk) of the plating surface exceeded the upper limit specified in the present invention, and therefore Δ
Fave is also large, and it can be seen that the impact resistance has deteriorated with time.

【0035】[0035]

【表6】 [Table 6]

【0036】[実施例7]化学成分が0.15%C−
0.15%Si−2.30%Mn−0.100%Pから
なる780MPa級のフェライト+パーライト鋼からな
り、表7に示すような表層の清浄度(dt)を有する電
気亜鉛めっき鋼板(板厚:3.0mm,めっき目付量:
30g/m2/30g/m2)を調質圧延して、同表に示
す表面粗度(Rsk)に調整した。これらの鋼板をプレ
ス加工した後、複合サイクル腐食試験(試験条件は図1
の試験と同様)を実施し、錆の発生状況を観察した。ま
た、図1の試験と同様に、複合サイクル腐食試験を実施
した上記めっき鋼板とプレス加工ままのめっき鋼板につ
いて、高速変形(変形速度:11m/sec)により圧
壊する際の平均崩壊荷重を測定した。これら平均崩壊荷
重の測定値に基づき、耐衝撃特性の経時的劣化の度合い
を示すΔFave(=[複合サイクル腐食試験後のめっ
き鋼板の平均崩壊荷重]−[プレス加工ままのめっき鋼
板の平均崩壊荷重])を求めた。その結果を表7に示
す。
Example 7 The chemical component is 0.15% C-
Electrogalvanized steel sheet (sheet) made of 780 MPa class ferrite + pearlite steel consisting of 0.15% Si-2.30% Mn-0.100% P and having a surface cleanliness (dt) as shown in Table 7 Thickness: 3.0mm, plating weight:
30g / m 2 / 30g / m 2) by temper rolling was adjusted to a surface roughness (Rsk) shown in the same table. After pressing these steel plates, a combined cycle corrosion test (test conditions are shown in FIG.
(Similar to the above test), and the occurrence of rust was observed. Also, as in the test of FIG. 1, the average collapse load when the above-mentioned plated steel sheet subjected to the combined cycle corrosion test and the plated steel sheet as pressed was crushed by high-speed deformation (deformation speed: 11 m / sec). . Based on the measured values of these average collapse loads, ΔFave (= [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed] indicating the degree of deterioration of impact resistance over time ]). Table 7 shows the results.

【0037】表7によれば、本発明例であるNo.17
は複合サイクル腐食試験後でも発錆はみられず、したが
ってΔFaveも小さい値となっており、耐衝撃特性の
経時的劣化が効果的に抑制されていることが判る。これ
に対して比較例であるNo.18は、鋼板表層の清浄度
(dt)が本発明の規定する上限を超えているため、複
合サイクル腐食試験後に発錆し、このためΔFaveも
大きくなっており、耐衝撃特性の経時的劣化が生じてい
ることが判る。
According to Table 7, No. 1 of the present invention was used. 17
No rusting was observed even after the combined cycle corrosion test, and thus ΔFave was a small value, indicating that deterioration with time of the impact resistance was effectively suppressed. On the other hand, in Comparative Example No. In No. 18, since the cleanliness (dt) of the surface layer of the steel sheet exceeded the upper limit specified in the present invention, rust occurred after the combined cycle corrosion test, and thus ΔFave also increased. You can see that it is occurring.

【0038】[0038]

【表7】 [Table 7]

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、鋼板
表層の清浄度(dt)とめっき面の表面粗度(Rsk)
を適正化することによって、耐衝撃特性の経時的劣化の
小さい表面処理鋼板を提供することができ、これを自動
車用鋼板として利用することにより、製造から長期間経
過した車体についても衝突安全性の向上を図ることがで
きる。
As described above, according to the present invention, the cleanliness (dt) of the surface layer of the steel sheet and the surface roughness (Rsk) of the plated surface are obtained.
By optimizing the impact resistance, it is possible to provide a surface-treated steel sheet with little deterioration in impact resistance over time. Improvement can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板表層の清浄度(dt)と亜鉛系めっき鋼板
の耐衝撃特性の経時的劣化の指標となるΔFave(=
[複合サイクル腐食試験後のめっき鋼板の平均崩壊荷
重]−[プレス加工ままのめっき鋼板の平均崩壊荷
重])との関係を示すグラフ
FIG. 1 shows ΔFave (=) which is an index of deterioration with time of the cleanliness (dt) of the surface layer of a steel sheet and the impact resistance of a galvanized steel sheet
Graph showing the relationship between [average collapse load of plated steel sheet after combined cycle corrosion test]-[average collapse load of plated steel sheet as pressed])

【図2】めっき表面のスキューネス(Rsk)と亜鉛系
めっき鋼板の耐衝撃特性の経時的劣化の指標となるΔF
ave(=[複合サイクル腐食試験後のめっき鋼板の平
均崩壊荷重]−[プレス加工ままのめっき鋼板の平均崩
壊荷重])との関係を示すグラフ
FIG. 2 is a graph showing a skewness (Rsk) of a plating surface and ΔF which is an index of a deterioration with time of an impact resistance property of a galvanized steel sheet.
ave (= [Average collapse load of plated steel sheet after combined cycle corrosion test]-[Average collapse load of plated steel sheet as pressed])

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 毅 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Takeshi Fujita 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも鋼板表層における清浄度(d
t)が0.05%以下で、且つめっき表面の粗さ曲線の
高さ方向における片寄り指標であるスキューネス(Rs
k)が−1.5〜+1.0であることを特徴とする耐衝
撃特性の経時的劣化が小さいめっき鋼板。
1. The cleanness (d) of at least the surface layer of a steel sheet
t) is 0.05% or less, and a skewness (Rs) which is a deviation index in the height direction of the roughness curve of the plating surface.
k) is -1.5 to +1.0, a plated steel sheet having a small deterioration over time in impact resistance.
【請求項2】 めっきが溶融亜鉛めっきまたは合金化溶
融亜鉛めっき若しくは電気亜鉛めっきであることを特徴
とする請求項1に記載の耐衝撃特性の経時的劣化が小さ
いめっき鋼板。
2. The coated steel sheet according to claim 1, wherein the plating is hot-dip galvanized, alloyed hot-dip galvanized, or electrogalvanized.
JP32789196A 1996-11-22 1996-11-22 Plated steel sheet Expired - Fee Related JP3721675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32789196A JP3721675B2 (en) 1996-11-22 1996-11-22 Plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32789196A JP3721675B2 (en) 1996-11-22 1996-11-22 Plated steel sheet

Publications (2)

Publication Number Publication Date
JPH10152756A true JPH10152756A (en) 1998-06-09
JP3721675B2 JP3721675B2 (en) 2005-11-30

Family

ID=18204145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32789196A Expired - Fee Related JP3721675B2 (en) 1996-11-22 1996-11-22 Plated steel sheet

Country Status (1)

Country Link
JP (1) JP3721675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677390B1 (en) * 2015-09-23 2016-11-18 주식회사 포스코 Method for manufacturing coated steel sheet having excellent surface quality and press moldability and coated steel sheet produced using the same
US11873561B2 (en) 2016-12-14 2024-01-16 Posco Co., Ltd Method for producing hot-dip galvanized steel sheet having excellent press formability and image clarity after painting, and hot-dip galvanized steel sheet produced thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677390B1 (en) * 2015-09-23 2016-11-18 주식회사 포스코 Method for manufacturing coated steel sheet having excellent surface quality and press moldability and coated steel sheet produced using the same
WO2017052306A1 (en) * 2015-09-23 2017-03-30 주식회사 포스코 Method for manufacturing plated steel sheet having excellent surface quality and press formability, and plated steel sheet manufactured thereby
CN108136454A (en) * 2015-09-23 2018-06-08 Posco公司 The manufacturing method of surface quality and the excellent coated steel sheet of punching formation property and the coated steel sheet manufactured by this method
EP3354360A4 (en) * 2015-09-23 2018-08-01 Posco Method for manufacturing plated steel sheet having excellent surface quality and press formability, and plated steel sheet manufactured thereby
CN108136454B (en) * 2015-09-23 2020-11-24 Posco公司 Method for producing plated steel sheet having excellent surface quality and press formability, and plated steel sheet produced by the method
US11873561B2 (en) 2016-12-14 2024-01-16 Posco Co., Ltd Method for producing hot-dip galvanized steel sheet having excellent press formability and image clarity after painting, and hot-dip galvanized steel sheet produced thereby

Also Published As

Publication number Publication date
JP3721675B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
US11377708B2 (en) High-strength galvanized steel sheet and method for producing the same
US10006099B2 (en) Process for manufacturing iron-carbon-maganese austenitic steel sheet with excellent resistance to delayed cracking
CN111511945B (en) High-strength cold-rolled steel sheet and method for producing same
EP2594656B1 (en) High-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability and method for manufacturing the same.
JP6705560B2 (en) High-strength steel sheet and method for manufacturing the same
CN111527223B (en) High-strength cold-rolled steel sheet and method for producing same
KR20180043331A (en) ZINC PLATED STEEL SHEET FOR HOT-PRESSING AND METHOD OF MANUFACTURING HOT-PRESSED SHEET
KR20180095668A (en) High strength steel sheet and manufacturing method thereof
CN114981457B (en) High-strength galvanized steel sheet and method for producing same
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
WO2019188643A1 (en) High-strength steel sheet and production method thereof
CN111902552B (en) Alloyed hot-dip galvanized steel sheet
US11939642B2 (en) High-strength steel sheet and method for manufacturing same
JP7028379B1 (en) Steel sheets, members and their manufacturing methods
WO2020174805A1 (en) High-strength steel sheet and method for manufacturing same
KR100267624B1 (en) Galvannealed steel sheet and manufacturing method thereof
CN114585761A (en) High-strength steel sheet and method for producing same
JPH10152756A (en) Plasted steel sheet small in secular deterioration in impact resistance
EP4074847A1 (en) High-strength steel sheet and method for producing same
EP0694625B9 (en) High tension alloyed molten zinc-plated steel plate having excellent plating characteristics and method off manufacturing the same
JP3309771B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3620183B2 (en) Steel sheet for automobiles with little deterioration over time in impact resistance
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
WO2024157552A1 (en) Galvanized steel sheet and member, and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees