JPH10152730A - Method for removing positive metal in base metal - Google Patents
Method for removing positive metal in base metalInfo
- Publication number
- JPH10152730A JPH10152730A JP31465296A JP31465296A JPH10152730A JP H10152730 A JPH10152730 A JP H10152730A JP 31465296 A JP31465296 A JP 31465296A JP 31465296 A JP31465296 A JP 31465296A JP H10152730 A JPH10152730 A JP H10152730A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- metals
- oxygen
- positive
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の利用分野】本発明は、卑金属に含まれる陽性金
属を効率よく、かつ簡単に除去する方法に関する。本発
明は電池廃材のニッケル−コバルト合金等の脱鉄方法な
どとして好適である。The present invention relates to a method for efficiently and easily removing a positive metal contained in a base metal. INDUSTRIAL APPLICABILITY The present invention is suitable as a method for removing iron from a battery waste material such as a nickel-cobalt alloy.
【0002】[0002]
【従来技術】ニッケル−水素電池(Ni-MH電池)などには
水素吸蔵材料としてニッケル−コバルト合金が用いられ
ており、このNi-MH電池の製造工程において生じる不良
品や廃材あるいは使用済みNi-MH電池(これらを総称し
て電池廃材と云う)には、ニッケルおよびコバルトがか
なりの割合で含まれている。このため、資源の有効利用
および環境保護を図るため、これらの廃棄物からニッケ
ルおよびコバルトを効率良く回収して再利用することが
求められている。2. Description of the Related Art Nickel-cobalt alloys are used as hydrogen storage materials in nickel-hydrogen batteries (Ni-MH batteries) and the like. MH batteries (collectively referred to as battery waste) contain a significant proportion of nickel and cobalt. For this reason, in order to effectively utilize resources and protect the environment, it is required to efficiently recover and reuse nickel and cobalt from these wastes.
【0003】この場合、電池廃材には鉄が多量に含まれ
ており、ニッケルおよびコバルトを回収して再利用する
ためには鉄を効率よく除去する必要がある。従来知られ
ている脱鉄方法としては、(イ)ニッケル−コバルト合金
の熔体に塩素ガスを吹き込んで不純物の鉄を塩素化し、
塩化鉄として揮発除去させる方法、(ロ)塩素ガスに代え
て塩化物を加え、鉄を塩素化する方法。(ハ)ニッケル−
コバルト合金の熔体に酸素ガスを吹き込み、鉄を優先的
に酸化させてスラグ化する方法などが知られている。[0003] In this case, the waste battery material contains a large amount of iron, and it is necessary to remove iron efficiently in order to recover and reuse nickel and cobalt. As a conventionally known deironing method, (a) a chlorine gas is blown into a nickel-cobalt alloy solution to chlorinate the impurity iron,
(2) a method in which chloride is added instead of chlorine gas to chlorinate iron. (C) Nickel
There is known a method of blowing oxygen gas into a cobalt alloy melt to preferentially oxidize iron to form slag.
【0004】[0004]
【発明の解決課題】しかし、鉄を塩素化して揮発除去す
る方法は、鉄の含有量が多いと多量の塩化鉄が発生して
煙道に付着し閉塞する等の問題がある。しかも塩素ガス
を熔体に吹き込むものは、その反応効率が低く、また塩
化物を用いるものは添加した塩化物が揮発するのでやは
り反応効率が低い問題がある。酸素ガスを吹き込む方法
は、このような問題はないが、酸化が進行して熔体中の
鉄濃度が低くなるとコバルトやニッケルの酸化が進み、
これらの回収率が低下する。本発明は従来の処理方法に
おける上記問題を解決したものであり、卑金属含有金属
から効率よく卑金属を除去する方法を提供することを目
的とする。However, the method of chlorinating iron to volatilize and remove iron has a problem that if the iron content is large, a large amount of iron chloride is generated and adheres to the flue to block it. In addition, those in which chlorine gas is blown into the melt have a low reaction efficiency, and those using chloride have a problem in that the reaction efficiency is also low because the added chloride is volatilized. The method of blowing oxygen gas does not have such a problem, but when the oxidation proceeds and the iron concentration in the melt decreases, the oxidation of cobalt and nickel proceeds,
These recovery rates decrease. The present invention has solved the above-mentioned problems in the conventional treatment method, and has as its object to provide a method for efficiently removing a base metal from a base metal-containing metal.
【0005】[0005]
【課題の解決手段】本発明は、金属熔体に酸素ガスを直
接に導入して鉄を酸化するのではなく、塩化物のほうが
より安定な酸化物や炭酸塩などを酸素源として利用し、
この酸素源の存在下で金属熔体に塩素ガスを導入するこ
とにより、上記酸素源を塩化物に変え、この時に発生す
る高活性の酸素によって熔体中の陽性金属を効率よく酸
化してスラグ化し、金属熔体から除去できるようにした
ものである。According to the present invention, instead of directly introducing oxygen gas into a metal melt to oxidize iron, chlorides utilize oxides and carbonates, which are more stable, as an oxygen source.
By introducing chlorine gas into the metal melt in the presence of this oxygen source, the oxygen source is changed into chloride, and the highly active oxygen generated at this time efficiently oxidizes the positive metal in the melt to form slag. And can be removed from the metal melt.
【0006】すなわち本発明は、(1)陽性金属を含む卑
金属熔体に、アルカリ金属またはアルカリ土類金属の酸
化物、炭酸塩または水酸化物から選択される酸素源の存
在下で、塩素ガスを導入することにより該酸素源を塩素
化する際に発生する酸素によって熔体中の陽性金属を酸
化し、該金属酸化物をスラグに移行させて金属熔体から
除去することを特徴とする酸化性金属の除去方法であ
る。That is, the present invention relates to (1) chlorine gas in a base metal melt containing a positive metal in the presence of an oxygen source selected from oxides, carbonates or hydroxides of alkali metals or alkaline earth metals. Oxidation characterized by oxidizing the positive metal in the melt by oxygen generated when the oxygen source is chlorinated by introducing oxygen, transferring the metal oxide to slag and removing it from the metal melt. This is a method for removing the conductive metal.
【0007】本発明の上記除去方法は以下の態様を含
む。 (2)陽性金属を含有する卑金属をフラックスと共に溶融
し、これに酸素含有ガスを導入して陽性金属の酸化を進
めた後に、酸素源を添加して塩素ガスを導入する除去方
法、(3)陽性金属を含む卑金属が、鉄を含有するニッケ
ル、コバルトあるいはこれらの合金である除去方法、
(4)陽性金属を含む卑金属が鉄含有ニッケル−コバルト
合金からなる電池廃材である除去方法、(5)酸素源が、
酸化カルシウム 、酸化ナトリウム、炭酸カルシウム、
炭酸ナトリウムまたは水酸化ナトリウムから選択される
1種または2種の化合物である除去方法。[0007] The removal method of the present invention includes the following aspects. (2) a removal method in which a base metal containing a positive metal is melted together with a flux, an oxygen-containing gas is introduced into the base metal to promote oxidation of the positive metal, and then an oxygen source is added to introduce a chlorine gas; A removal method in which the base metal containing the positive metal is nickel, cobalt or an alloy thereof containing iron,
(4) a method of removing battery waste material in which the base metal containing a positive metal is an iron-containing nickel-cobalt alloy; (5) an oxygen source comprising:
Calcium oxide, sodium oxide, calcium carbonate,
A method for removing one or two compounds selected from sodium carbonate and sodium hydroxide.
【0008】[0008]
【具体的な説明】以下、本発明の除去方法について具体
的に説明する。なお、以下の説明において特に表示しな
い限り%は重量%である。[Detailed Description] The removal method of the present invention will be specifically described below. In the following description,% is% by weight unless otherwise indicated.
【0009】本発明の除去方法は、塩化物のほうが安定
である酸化物、炭酸塩または水酸化物を酸素源として用
い、この酸素源の存在下で陽性金属を含む卑金属熔体に
塩素ガスを導入することにより該酸素源を塩素化し、こ
の際に発生する高活性の酸素によって金属熔体に含まれ
る陽性金属を酸化し、該金属酸化物をスラグに移行させ
て金属熔体から除去する方法である。[0009] The removal method of the present invention uses an oxide, carbonate or hydroxide in which chloride is more stable as an oxygen source, and in the presence of this oxygen source, applies chlorine gas to a base metal solution containing a positive metal. A method of chlorinating the oxygen source by introducing the same, oxidizing a positive metal contained in the metal melt by highly active oxygen generated at this time, transferring the metal oxide to slag, and removing the metal oxide from the metal melt. It is.
【0010】本発明の除去方法において卑金属とは金、
銀、銅および白金族元素を除く金属元素であり、2種以
上の金属元素からなる合金を含む。また陽性金属とは該
陽性金属を含む卑金属よりもイオン化傾向が大きく酸化
され易い金属を云う。具体的には、例えば、電池廃材の
ように鉄を含むニッケル−コバルト合金やクロムを含有
する鉄などが挙げられる。上記除去方法において酸素源
として用いるものは、塩化物のほうが安定である酸化
物、炭酸塩または水酸化物である。これにはアルカリ金
属またはアルカリ土類金属の酸化物、炭酸塩または水酸
化物を用いることができる。具体的には、酸化カルシウ
ム 、酸化ナトリウム、炭酸カルシウム、炭酸ナトリウ
ムまたは水酸化ナトリウムから選択される1種または2
種の化合物が適当である。In the removing method of the present invention, the base metal is gold,
It is a metal element excluding silver, copper, and platinum group elements, and includes an alloy composed of two or more metal elements. The positive metal refers to a metal which has a higher ionization tendency and is more easily oxidized than a base metal containing the positive metal. Specifically, for example, a nickel-cobalt alloy containing iron, such as battery waste, and iron containing chromium, may be mentioned. The thing used as an oxygen source in the above-mentioned removal method is an oxide, carbonate or hydroxide in which chloride is more stable. For this, an oxide, carbonate or hydroxide of an alkali metal or alkaline earth metal can be used. Specifically, one or two selected from calcium oxide, sodium oxide, calcium carbonate, sodium carbonate or sodium hydroxide
Certain compounds are suitable.
【0011】以下、上記除去方法を処理工程ごとに説明
する。(I) 溶融 処理すべき卑金属を加熱溶融して金属熔体にする。な
お、材料に応じて前処理を適宜施すのが好ましい。例え
ば、電池廃材などを処理する場合には、外装缶の一部を
開口あるいは切断して、加熱時に電池に内蔵されている
水素吸蔵合金から発生する水素ガスが缶外に抜け出すよ
うにし、爆発などを生じないように窒素等の不活性ガス
雰囲気下で加熱するのが好ましい。Hereinafter, the removal method will be described for each processing step. (I) A base metal to be melted is heated and melted to form a metal melt. Note that pretreatment is preferably performed as appropriate depending on the material. For example, when treating battery waste, etc., part of the outer can is opened or cut so that the hydrogen gas generated from the hydrogen storage alloy built into the battery during heating escapes to the outside of the can. It is preferable to perform heating in an atmosphere of an inert gas such as nitrogen so as not to cause the generation of the gas.
【0012】(II)酸素源の添加 卑金属の溶融時あるいは溶融後に上記酸素源を添加す
る。好適な酸素源の例としては、酸化カルシウム(CaO)
、酸化ナトリウム(Na2O) 、水酸化ナトリウム(NaOH)、
炭酸カルシウム(CaCO3) 、炭酸ナトリウム(Na2CO3)など
が挙げられる。これらは単独で用いてもよく、2種類以
上の混合物として用いてもよい。なお、酸化カルシウム
は融点が高いので適当なフラックス、例えば、塩化カル
シウムなどと併用すると良い。酸素源の添加量は除去す
べき陽性金属が未酸化のまま残留しないように該陽性金
属に対する当量よりやや過剰に用いる。なお、当量を大
きく超えて用いると陽性金属の大部分が酸化した後に卑
金属の酸化が進行し、スラグロスが大きくなるので好ま
しくない。 (II) Addition of Oxygen Source The above oxygen source is added during or after the base metal is melted. Examples of suitable oxygen sources include calcium oxide (CaO)
, Sodium oxide (Na 2 O), sodium hydroxide (NaOH),
Examples include calcium carbonate (CaCO 3 ) and sodium carbonate (Na 2 CO 3 ). These may be used alone or as a mixture of two or more. Since calcium oxide has a high melting point, it is preferable to use it together with an appropriate flux, for example, calcium chloride. The amount of the oxygen source to be used is slightly larger than the equivalent to the positive metal so that the positive metal to be removed does not remain unoxidized. In addition, it is not preferable to use a large amount exceeding the equivalent because oxidation of the base metal proceeds after most of the positive metal is oxidized and slag loss increases.
【0013】(III)塩素ガスの導入 卑金属の熔体に上記酸素源の存在下で塩素ガスを導入す
る。塩素ガスの導入は卑金属熔体を溜めた密閉加熱炉な
どに塩素ガスを吹き込めばよいが、反応効率を高めるた
めに熔体中に吹き込むと良い。塩素ガスの導入により上
記酸化物等が塩素化され、これに伴い活性な酸素が放出
され、この酸素によって卑金属中の陽性金属が酸化され
てスラグ化する。 (III) Introduction of Chlorine Gas A chlorine gas is introduced into a base metal melt in the presence of the oxygen source. The introduction of chlorine gas may be performed by blowing chlorine gas into a closed heating furnace or the like in which the base metal melt is stored, but it is preferable to blow chlorine gas into the melt to increase the reaction efficiency. The introduction of chlorine gas chlorinates the above oxides and the like, thereby releasing active oxygen, and the oxygen oxidizes the positive metal in the base metal to form slag.
【0014】例えば、ニッケル−コバルト合金の溶融浴
に生石灰(CaO)を加えて塩素ガスを吹き込んだ場合に
は、次式に示すように、生石灰が塩化カルシウムとな
り、生じた酸素によって鉄が酸化される。酸化ナトリウ
ムを用いた場合にも同様に鉄がスラグ化される。 CaO +Fe+Cl2 −−→ CaCl2 +FeO Na2O+Fe+Cl2 −−→ 2NaCl +FeOFor example, when lime (CaO) is added to a nickel-cobalt alloy melting bath and chlorine gas is blown, as shown in the following equation, lime becomes calcium chloride and iron is oxidized by the generated oxygen. You. When sodium oxide is used, iron is similarly slagged. CaO + Fe + Cl 2 −− → CaCl 2 + FeO Na 2 O + Fe + Cl 2 −− → 2NaCl + FeO
【0015】塩素ガスの導入量は、酸化源が十分に塩素
化されるように、該酸化源に対する当量よりやや過剰に
用いると良い。やや過剰量程度であれば、塩素化反応の
後半で未反応の酸素源が減少するのに伴い鉄の一部が塩
素化され、塩化鉄を生じて揮発するが、その量は少なく
煙道閉塞などの障害を生じない。塩素ガスの導入量が少
ないと陽性金属の酸化が不十分になる。また、当量を大
きく超えて用いると酸化源の塩素化と共に卑金属が塩素
化される量が多くなるので好ましくない。[0015] The amount of chlorine gas introduced is preferably slightly larger than the equivalent to the oxidizing source so that the oxidizing source is sufficiently chlorinated. If the amount is slightly excessive, part of the iron will be chlorinated as the unreacted oxygen source decreases in the latter half of the chlorination reaction, and iron chloride will be generated and volatilized. Do not cause obstacles such as. When the introduction amount of chlorine gas is small, the oxidation of the positive metal becomes insufficient. Further, if the amount is more than the equivalent, the amount of chlorination of the base metal is increased together with the chlorination of the oxidation source, which is not preferable.
【0016】本発明の処理方法では、酸素源の塩素化に
よって生じた活性な酸素を利用して陽性金属を酸化する
ので酸化反応の効率が格段に良い。また陽性金属の酸化
物は副生した塩化物と共に安定なスラグを形成するの
で、揮発による煙道閉塞などの障害を引き起こす虞が無
く、金属熔体との分離も容易である。In the treatment method of the present invention, the positive metal is oxidized using active oxygen generated by chlorination of the oxygen source, so that the efficiency of the oxidation reaction is extremely high. In addition, since the oxide of the positive metal forms a stable slag together with the by-product chloride, there is no risk of causing a trouble such as obstruction of the flue due to volatilization, and the separation from the metal melt is easy.
【0017】(IV)2段階の処理法 塩素ガスの導入に先立ち、フラックスを熔体に加えて酸
素ガスあるいは空気を導入して大まかな酸化を行ない、
しかる後に酸素源の存在下で塩素ガスによる上記処理を
行なってもよい。酸素ガスないし空気の導入方法等は制
限されない。導入量等は処理する卑金属および陽性金属
の種類やその含有量などに応じて定めれば良い。 (IV) Two-Step Treatment Prior to the introduction of chlorine gas, a flux is added to the melt, and oxygen gas or air is introduced to perform rough oxidation.
Thereafter, the above treatment with chlorine gas may be performed in the presence of an oxygen source. The method of introducing oxygen gas or air is not limited. The amount to be introduced may be determined according to the type of base metal and positive metal to be treated and their contents.
【0018】フラックスは生成した酸化鉄を吸収するも
のであれば良く、塩化カルシウムなどのアルカリ金属な
いしアルカリ土類金属のハロゲン化物、或いは、シリカ
またはアルミナを含むものが好適である。特に鉄をスラ
グ化して除去する場合には、シリカ(SiO2)−アルミナ(A
l2O3)−石灰(CaO)からなる3成分系のフラックスが好ま
しい。このフラックスは安価であるうえに、比重および
粘性の点で鉄との分離性が良くメタル分とスラグの剥離
が良好である。また、アルミナ分を含むので、アルミナ
製の容器に対して侵蝕や溶損を防止するので安全に使用
できる利点がある。The flux may be any as long as it absorbs the generated iron oxide, and preferably contains a halide of an alkali metal or an alkaline earth metal such as calcium chloride, or silica or alumina. In particular, when iron is slagged and removed, silica (SiO 2 ) -alumina (A
A three-component flux consisting of l 2 O 3 ) -lime (CaO) is preferred. This flux is inexpensive and has good specific gravity and viscosity in terms of separability from iron, and good separation of metal and slag. In addition, since an alumina component is contained, corrosion and erosion of an alumina container are prevented, so that there is an advantage that the container can be used safely.
【0019】上記フラックの各成分の量比は、シリカ分
が55〜70%、石灰分が2〜10%およびアルミナ分
が20%以上からなるものが好ましい。シリカが55%
を下回るものは鉄の分離効果が低下し、特にシリカ分が
10%程度のものは鉄の熔体中への残留量が多くなる。
また、シリカ分が70%を上回ると相対的にアルミナ分
および石灰分が少なくなり、石灰分が2%未満では鉄の
分離効果が低くなる。一方、石灰分が15%を超えると
相対的にシリカ分およびアルミナ分が少なくなり、鉄の
分離効果が低下するので、石灰分は5%が適当である。
また、アルミナ分が10%程度ではやはり鉄の分離効果
が低く、従ってアルミナ分は20%以上が好ましい。一
方、アルミナ分が85%程度になると相対的にシリカ分
ないし石灰分が所定の量比を下回り、鉄の分離効果が低
下するので好ましくない。It is preferable that the proportions of the respective components of the above-mentioned flak be such that the silica content is 55 to 70%, the lime content is 2 to 10%, and the alumina content is 20% or more. 55% silica
If the ratio is lower than the above, the effect of separating iron is reduced. In particular, when the silica content is about 10%, the amount of iron remaining in the melt increases.
Further, when the silica content exceeds 70%, the alumina content and the lime content relatively decrease, and when the lime content is less than 2%, the effect of separating iron decreases. On the other hand, if the lime content exceeds 15%, the silica content and the alumina content are relatively reduced, and the iron separation effect is reduced. Therefore, the lime content is appropriately 5%.
When the alumina content is about 10%, the effect of separating iron is still low. Therefore, the alumina content is preferably 20% or more. On the other hand, when the alumina content is about 85%, the silica content or the lime content relatively falls below a predetermined ratio, and the iron separation effect is undesirably reduced.
【0020】フラックスの添加量は概ね卑金属100重
量部に対して20〜35重量部、好ましくは25〜30
重量部が適当である。フラックスの添加量が上記範囲よ
り少ないと金属の分離効果が十分ではなく、また該添加
量が上記範囲を上回ると処理コストの無駄が多くなる。The amount of the flux added is generally 20 to 35 parts by weight, preferably 25 to 30 parts by weight, per 100 parts by weight of the base metal.
Parts by weight are appropriate. If the added amount of the flux is less than the above range, the effect of separating the metal is not sufficient, and if the added amount exceeds the above range, the waste of the processing cost increases.
【0021】[0021]
【発明の実施形態】以下、本発明の実施例および比較例
を示す。なお、これらは例示であり発明の範囲を限定す
るものではない。Hereinafter, examples of the present invention and comparative examples will be described. In addition, these are illustrations and do not limit the scope of the invention.
【0022】実施例1 ニッケル水素電池廃材(Fe:25.5%、Ni:34.5%、Co:3.3
%)100kgに生石灰30kg(廃材中の鉄分に対して1.
2当量)および塩化カルシウム10kgを加えて溶融炉に
装入し、窒素ガス雰囲気中で1400〜1600℃に加熱して溶
融した後に該熔体に塩素ガスを吹き込み(導入塩素ガス
量:12.273Nm3、廃材中の鉄分に対して1.2倍当量)、ス
ラグ化処理を行った。冷却後、スラグ93.5kgとメタ
ル38kgを回収した。揮発減量は8.5kgであった。回
収したスラグとメタルの成分(量比)は表1のとおりであ
り、ニッケルの回収率は98.5%、コバルトの回収率
は87.5%と高く、しかも回収メタルの鉄残量は2.5
%と少なく、鉄の除去率は96.3%であった。 Example 1 Nickel hydrogen battery waste material (Fe: 25.5%, Ni: 34.5%, Co: 3.3
%) 100 kg and quick lime 30 kg (1 for iron in waste material)
(2 equivalents) and 10 kg of calcium chloride were added, and the mixture was charged into a melting furnace, heated to 1400 to 1600 ° C. in a nitrogen gas atmosphere, melted, and then blown with chlorine gas (introduced chlorine gas amount: 12.273 Nm 3). And 1.2 times equivalent to the iron content in the waste material), and the slag was treated. After cooling, 93.5 kg of slag and 38 kg of metal were recovered. The volatilization loss was 8.5 kg. The components (amount ratio) of the recovered slag and metal are as shown in Table 1. The recovery rate of nickel is as high as 98.5% and the recovery rate of cobalt is as high as 87.5%. .5
%, And the iron removal rate was 96.3%.
【0023】実施例2 フラックスの塩化カルシウムを用いず、生石灰に代えて
炭酸ナトリウム62.8kg(廃材中の鉄分に対して1.3当
量)を酸素源として用いた他は実施例1と同様にして加
熱溶融し、塩素ガスを吹き込んでスラグ化処理を行った
(導入塩素ガス量:12.273Nm3、廃材中の鉄分に対して1.
2倍当量)。冷却後、スラグ87.3kgとメタル37.5kg
を回収した。揮発減量は38kgであった。回収したスラ
グとメタルの成分(量比)は表1のとおりであり、ニッケ
ルの回収率は98.6%、コバルトの回収率は85.2%
と高く、しかも回収メタルの鉄残量は1.5%と少な
く、鉄の除去率は97.8%であった。 Example 2 Heating was carried out in the same manner as in Example 1 except that 62.8 kg of sodium carbonate (1.3 equivalent to iron in waste material) was used as an oxygen source instead of quicklime without using calcium chloride as a flux. Melted and chlorinated to blow slag
(Introduced chlorine gas amount: 12.273Nm 3 , 1.
2 equivalents). After cooling, 87.3 kg of slag and 37.5 kg of metal
Was recovered. The loss on volatilization was 38 kg. The components (amount ratio) of the recovered slag and metal are as shown in Table 1. The recovery rate of nickel is 98.6%, and the recovery rate of cobalt is 85.2%.
The amount of recovered metal was as low as 1.5%, and the iron removal rate was 97.8%.
【0024】実施例3 実施例1〜2で用いたのと同じ電池廃材100kgにフラ
ックス(CaCl2)20kgを加えて溶融炉に装入し、窒素ガ
ス雰囲気中で1400〜1600℃に加熱して溶融した後に該熔
体中に空気を吹き込み(導入空気の酸素量:4.091Nm3、
廃材中の鉄分に対して0.8倍当量)、スラグを生成させ
た。このスラグおよび熔体の成分を表1に示した。空気
吹込み後、生石灰5.8kg(熔体中の鉄に対し1.2当量)を
添加し、実施例1〜2と同様にして熔体中に塩素ガスを
吹き込んだ(導入塩素ガス量:2.295Nm3、熔体中の鉄分に
対して1.2倍当量)。冷却後、スラグ13.7kgとメタル
36.5kgを回収した。揮発減量は1.5kgであった。回
収したスラグとメタルの成分(量比)は表1のとおりであ
り、ニッケルの回収率は97.1%、コバルトの回収率
は88.5%と高く、しかも回収メタルの鉄残量は0.1
%未満と少なく、99%以上の鉄が除去された。本実施
例に示されるように、酸素ないし空気の吹き込みによる
第1段処理と、これに引続く酸素源存在下の塩素ガス導
入の第2段処理とを行うことにより電池廃材に含まれる
鉄分をほぼ完全に除去することができる。 Example 3 20 kg of flux (CaCl 2 ) was added to 100 kg of the same battery waste material as used in Examples 1 and 2, and the mixture was charged into a melting furnace and heated to 1400 to 1600 ° C. in a nitrogen gas atmosphere. After melting, air is blown into the melt (oxygen amount of introduced air: 4.091 Nm 3 ,
0.8 times equivalent of iron in waste material) to produce slag. The components of the slag and the melt are shown in Table 1. After blowing air, 5.8 kg of quicklime (1.2 equivalents to iron in the melt) was added, and chlorine gas was blown into the melt in the same manner as in Examples 1 and 2 (introduced chlorine gas amount: 2.295 Nm). 3 , 1.2 times equivalent to iron in the melt). After cooling, 13.7 kg of slag and 36.5 kg of metal were recovered. The loss on volatilization was 1.5 kg. The components (amount ratio) of the recovered slag and metal are as shown in Table 1. The recovery rate of nickel is as high as 97.1% and the recovery rate of cobalt is as high as 88.5%. .1
% And less than 99% of iron was removed. As shown in this embodiment, by performing the first-stage treatment by blowing oxygen or air and the subsequent second-stage treatment of introducing chlorine gas in the presence of an oxygen source, iron contained in the battery waste material is reduced. It can be almost completely removed.
【0025】実施例4 含クロム鉄基合金(Fe:96%、Cr:2.5%、C:1.0%)10
00kgに生石灰80kgを加えて溶融炉に装入し、窒素ガ
ス雰囲気中で1500〜1700℃に加熱して溶融した後に該熔
体に塩素ガスを吹き込み(導入塩素ガス量:19.386Nm3、
合金中クロム分に対して1.2倍当量)、スラグ化処理を行
った。冷却後、スラグ110kgとメタル945kgを回収
した。揮発減量は25kgであった。回収したスラグとメ
タルの成分(量比)は表1のとおりであり、鉄の回収率は
99.6%であり、回収した鉄に含まれるクロムの残量
は0.1%と格段に少なく、クロムの除去率は96%で
あった。 Example 4 Chromium-containing iron-based alloy (Fe: 96%, Cr: 2.5%, C: 1.0%) 10
After adding 80 kg of quicklime to 00 kg, the mixture was charged into a melting furnace, heated to 1500 to 1700 ° C. in a nitrogen gas atmosphere and melted, and then chlorine gas was blown into the melt (introduced chlorine gas amount: 19.386 Nm 3 ,
A slag-forming treatment was performed with 1.2 times equivalent to the chromium content in the alloy. After cooling, 110 kg of slag and 945 kg of metal were recovered. The loss on volatilization was 25 kg. The components (amount ratio) of the recovered slag and metal are as shown in Table 1. The recovery rate of iron is 99.6%, and the residual amount of chromium contained in the recovered iron is extremely low at 0.1%. And the chromium removal rate was 96%.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【発明の効果】以上のように、本発明の除去方法によれ
ば、従来の処理方法に比べて酸化反応の効率が良く、卑
金属中の陽性金属を高い除去効率でスラグ化し除去する
ことができる。また陽性金属の酸化物は副生した塩化物
と共に安定なスラグを形成するので、揮発による煙道閉
塞などの障害を引き起こす虞が無い。As described above, according to the removal method of the present invention, the efficiency of the oxidation reaction is higher than that of the conventional treatment method, and the positive metal in the base metal can be slagged and removed with high removal efficiency. . In addition, the oxide of the positive metal forms a stable slag together with the by-produced chloride, so that there is no possibility of causing an obstruction such as obstruction of the flue by volatilization.
Claims (5)
金属またはアルカリ土類金属の酸化物、炭酸塩または水
酸化物から選択される酸素源の存在下で、塩素ガスを導
入することにより該酸素源を塩素化する際に発生する酸
素によって熔体中の陽性金属を酸化し、該金属酸化物を
スラグに移行させて金属熔体から除去することを特徴と
する酸化性金属の除去方法。A chlorine gas is introduced into a base metal melt containing a positive metal in the presence of an oxygen source selected from oxides, carbonates or hydroxides of alkali metals or alkaline earth metals. A method for removing an oxidizable metal, comprising oxidizing a positive metal in a melt by oxygen generated when chlorinating an oxygen source, transferring the metal oxide to a slag, and removing the oxidized metal from the metal melt.
と共に溶融し、これに酸素含有ガスを導入して陽性金属
の酸化を進めた後に、酸素源を添加して塩素ガスを導入
する請求項1に記載の除去方法。2. The method according to claim 1, wherein a base metal containing a positive metal is melted together with the flux, an oxygen-containing gas is introduced into the base metal to promote oxidation of the positive metal, and then an oxygen source is added to introduce a chlorine gas. The removal method described.
ニッケル、コバルトあるいはこれらの合金である請求項
1または2に記載の除去方法。3. The method according to claim 1, wherein the base metal containing a positive metal is nickel, cobalt, or an alloy thereof containing iron.
−コバルト合金からなる電池廃材である請求項3に記載
の除去方法。4. The removal method according to claim 3, wherein the base metal containing a positive metal is a battery waste material composed of an iron-containing nickel-cobalt alloy.
リウム、炭酸カルシウム、炭酸ナトリウムまたは水酸化
ナトリウムから選択される1種または2種の化合物であ
る請求項1〜4のいずれかに記載の除去方法。5. The removal method according to claim 1, wherein the oxygen source is one or two compounds selected from calcium oxide, sodium oxide, calcium carbonate, sodium carbonate and sodium hydroxide. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31465296A JPH10152730A (en) | 1996-11-26 | 1996-11-26 | Method for removing positive metal in base metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31465296A JPH10152730A (en) | 1996-11-26 | 1996-11-26 | Method for removing positive metal in base metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10152730A true JPH10152730A (en) | 1998-06-09 |
Family
ID=18055915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31465296A Withdrawn JPH10152730A (en) | 1996-11-26 | 1996-11-26 | Method for removing positive metal in base metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10152730A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012102350A (en) * | 2010-11-08 | 2012-05-31 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal |
WO2013080266A1 (en) * | 2011-11-28 | 2013-06-06 | 住友金属鉱山株式会社 | Method for recovering valuable metal |
CN103459623A (en) * | 2011-04-15 | 2013-12-18 | 住友金属矿山株式会社 | Method for recovering valuable metals |
KR20180059599A (en) * | 2016-11-25 | 2018-06-05 | (주) 케이엠씨 | Recycling method of waste etching solution for collecting highly concentrated nickel |
KR20180059601A (en) * | 2016-11-25 | 2018-06-05 | (주) 케이엠씨 | Recycling method of waste etching solution for producing highly concentrated iron chloride |
-
1996
- 1996-11-26 JP JP31465296A patent/JPH10152730A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012102350A (en) * | 2010-11-08 | 2012-05-31 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal |
CN103459623A (en) * | 2011-04-15 | 2013-12-18 | 住友金属矿山株式会社 | Method for recovering valuable metals |
WO2013080266A1 (en) * | 2011-11-28 | 2013-06-06 | 住友金属鉱山株式会社 | Method for recovering valuable metal |
CN103370427A (en) * | 2011-11-28 | 2013-10-23 | 住友金属矿山株式会社 | Method for recovering valuable metal |
KR20160021914A (en) * | 2011-11-28 | 2016-02-26 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for recovering valuable metal |
EP2703504B1 (en) | 2011-11-28 | 2019-01-23 | Sumitomo Metal Mining Co., Ltd. | Method for recovering valuable metal |
US10294546B2 (en) | 2011-11-28 | 2019-05-21 | Sumitomo Metal Mining Co., Ltd. | Method for recovering valuable metal |
KR20180059599A (en) * | 2016-11-25 | 2018-06-05 | (주) 케이엠씨 | Recycling method of waste etching solution for collecting highly concentrated nickel |
KR20180059601A (en) * | 2016-11-25 | 2018-06-05 | (주) 케이엠씨 | Recycling method of waste etching solution for producing highly concentrated iron chloride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63262428A (en) | Treatment of dust | |
EP0802884A4 (en) | ||
WO1999014403A1 (en) | Process for making manganese | |
US4722774A (en) | Recovery or arsenic and antimony from spent antimony catalyst | |
US4423011A (en) | Selective recovery of base metals and precious metals from ores | |
JPH10152730A (en) | Method for removing positive metal in base metal | |
MXPA02007562A (en) | Selective metal leaching process. | |
JP6744981B2 (en) | How to concentrate and recover precious metals | |
US5364449A (en) | Process for refining crude material for copper or copper alloy | |
US20100229686A1 (en) | Process for refining lead bullion | |
US3938989A (en) | Arsenic removal from nickel matte | |
JP6195536B2 (en) | Iron removal method, iron leaching method, and gold recovery method | |
JP3513797B2 (en) | Fly ash detoxification treatment method | |
JP4406745B2 (en) | Method for processing Sn, Pb, Cu-containing material | |
JP4191696B2 (en) | Cadmium leaching method | |
JP3473025B2 (en) | Purification method of copper or copper alloy raw material | |
JP3747852B2 (en) | Method for recovering high-purity copper from treated waste | |
Friedmann et al. | Optimized, zero waste pyrometallurgical processing of polymetallic nodules from the German CCZ license area | |
JP2003293049A (en) | Method for recovering silver from slag containing silver and lead | |
JP4274067B2 (en) | Method for removing impurity metal from copper alloy and slag fuming method using the same | |
Kato et al. | Recovery of valuable elements from spent printed circuit boards by chlorination | |
CA1055710A (en) | Nickel matte refining by oxidation | |
JP2021143414A (en) | Method for leaching sparingly soluble platinum group element | |
JPH08199255A (en) | Method for classifying and removing antimony and lead from lead bullon | |
KR100208063B1 (en) | Recovering method of copper inmolten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |