JPH10152329A - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JPH10152329A
JPH10152329A JP30453896A JP30453896A JPH10152329A JP H10152329 A JPH10152329 A JP H10152329A JP 30453896 A JP30453896 A JP 30453896A JP 30453896 A JP30453896 A JP 30453896A JP H10152329 A JPH10152329 A JP H10152329A
Authority
JP
Japan
Prior art keywords
glass
furnace
platinum
outflow pipe
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30453896A
Other languages
Japanese (ja)
Inventor
Isamu Shigyo
勇 執行
Masayuki Tomita
昌之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30453896A priority Critical patent/JPH10152329A/en
Publication of JPH10152329A publication Critical patent/JPH10152329A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure capable of eliminating a thermal fluctuation of a discharge pipe due to heat and stably fixing the discharge pipe inside a glass melting furnace or at a nozzle port, with the glass melting furnace having the inner wall of the furnace body and the discharge pipe, directly contacting with the molten glass, made of platinum or platinum alloy, in order to suppress a reaction of molten glass with a material constituting the inner wall of the glass melting furnace. SOLUTION: This glass melting furnace comprises an inner wall and a discharge pipe 2, i.e., directly contacting parts with molten glass, made of platinum or platinum alloy in order to suppress a reaction of the glass with a material constituting the furnace, and is so constituted as to absorb a thermal fluctuation (expansion or contraction) of the discharge pipe 2 due to heat by the aid of the deformation of the inner wall of the furnace consisting of platinum or platinum alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子などのガ
ラス製品の製造工程において、ガラス溶融槽でガラスを
溶解し、更に、流出パイプを介して、溶解されたガラス
を炉外に流出させるようにしたガラス溶融炉において、
そのガラス溶融槽の内壁および流出パイプを白金または
白金合金より構成しているガラス溶融炉の構造に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a process for manufacturing glass products such as optical elements, in which glass is melted in a glass melting tank, and the melted glass is caused to flow out of a furnace through an outflow pipe. Glass melting furnace,
The present invention relates to a structure of a glass melting furnace in which an inner wall and an outflow pipe of the glass melting tank are made of platinum or a platinum alloy.

【0002】[0002]

【従来の技術】従来から、光学ガラスの溶融炉は、ガラ
スを溶解・清澄する炉の本体部分であるガラス溶融槽や
ガラスを流出させる流出部分である流出パイプに、溶融
ガラスとの反応が少ない耐火煉瓦や、あるいは、必要に
応じて、その内壁に白金材料が用いられており、更に、
その炉の本体部分の外周部分に、加熱用のヒータが設置
してあり、ガラス溶融に必要な温度が得られるようにな
っており、また、同様に、流出部分にもヒータが設置し
てあり、あるいは、流出部を構成する白金部材に、直接
通電加熱をすることで、ガラスの流出に必要な温度が得
られるような構成になっている。
2. Description of the Related Art Conventionally, in an optical glass melting furnace, there is little reaction with molten glass in a glass melting tank which is a main body part of a furnace for melting and refining glass and an outflow pipe which is an outflow part for discharging glass. Platinum material is used for the refractory brick or, if necessary, its inner wall,
A heater for heating is installed on the outer peripheral portion of the main body portion of the furnace, so that a temperature necessary for melting the glass can be obtained. Similarly, a heater is installed on the outflow portion. Alternatively, the temperature required for the outflow of the glass can be obtained by directly energizing and heating the platinum member constituting the outflow portion.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
ようなガラス溶融炉では、炉本体も流出部分も、特に熱
膨張に対する対策が施されておらず、炉全体を、単に耐
火物で覆い、架台に固定していたので、下記のような問
題があった。
However, in the conventional glass melting furnace, neither the furnace main body nor the outflow portion is particularly provided with a measure against thermal expansion, and the entire furnace is simply covered with a refractory, and a gantry is provided. , There were the following problems.

【0004】・ガラス溶融炉の炉本体および流出パイプ
の熱膨張のために、流出パイプの流出先端であるノズル
口が初期の取付位置からずれてしまい、ノズル口と、流
出ガラスを受けて、更に成形をつかさどる受け型との、
水平方向におけるセンターの位置ズレが発生し、受け型
の所望部に、流出ガラス塊を正確に供給できない。この
ため、成形後の完成品に成形型からのはみ出しや、偏肉
が発生するなどして、品質の劣化および歩留まりの低下
をもたらす。
[0004] Due to the thermal expansion of the furnace body and the outflow pipe of the glass melting furnace, the nozzle port, which is the outflow tip of the outflow pipe, is displaced from the initial mounting position. With the receiving mold that controls the molding,
The position of the center in the horizontal direction is displaced, and the outflow glass block cannot be accurately supplied to a desired portion of the receiving mold. For this reason, the finished product after molding may protrude from the mold or cause uneven thickness, resulting in deterioration of quality and decrease in yield.

【0005】・ガラス溶融炉の炉本体および流出パイプ
の熱膨張で、特に後者の熱膨張で、流出パイプの流出先
端のノズル口と、流出ガラスを受ける受け型との間の、
ガラスの垂直落下方向の距離が変化するために、流出ガ
ラスの流出量が変動する。このために、成形品の重量に
変化が生じ、上記と同様に品質の劣化および歩留まりの
低下をもたらす。
The thermal expansion of the furnace body and the outflow pipe of the glass melting furnace, in particular the latter thermal expansion, between the nozzle opening at the outflow tip of the outflow pipe and the receiving mold receiving the outflow glass;
Since the distance of the glass in the vertical drop direction changes, the outflow amount of the outflow glass fluctuates. For this reason, the weight of the molded product changes, which leads to the deterioration of the quality and the reduction of the yield as described above.

【0006】・ガラス溶融炉の稼働の立ち上げ時や、溶
融・流出条件の変更による炉の温度変更時における、炉
本体ならびに流出パイプの温度変化に伴う、熱膨張・収
縮による変形が安定するまでの待ち時間が必要で、この
ような、無効時間の発生による、量産性の低下がある。
[0006] When the operation of the glass melting furnace is started, or when the temperature of the furnace is changed by changing the melting / outflow conditions, until the deformation due to thermal expansion / contraction caused by the temperature change of the furnace body and the outflow pipe becomes stable. Waiting time is required, and there is a drop in mass productivity due to the occurrence of such invalid time.

【0007】・ガラス溶融炉の稼働中に、炉本体、流出
パイプの、繰り返される熱膨張変形による、予測不能な
永久変形が発生する場合がある。 ・ガラス流出槽に通じる流出パイプの流出先端(ノズル
口)の部分において、流出パイプおよびノズル口近傍
に、これらを直接通電により加熱するためにとりつけら
れている電極端子とこれらに通電・保持するための固定
支持部との間で、繰り返される熱膨張変形に伴って、流
出パイプおよびノズル口の変形により、流出ガラスの状
態が変化し、しいては、成形品の歩留まりの低下をもた
らすことになる。
During operation of the glass melting furnace, unpredictable permanent deformation may occur due to repeated thermal expansion deformation of the furnace body and the outflow pipe. At the outflow tip (nozzle port) of the outflow pipe leading to the glass outflow tank, in the vicinity of the outflow pipe and the nozzle port, electrode terminals attached to heat them by direct energization, and to energize and hold them The state of the outflow glass changes due to the deformation of the outflow pipe and the nozzle port with repeated thermal expansion deformation between the fixed support portion and the fixed support portion, and as a result, the yield of molded products is reduced. .

【0008】本発明は、上記事情に基づいてなされたも
ので、その目的は、ガラスを炉本体で溶融し、更に、溶
融されたガラスを炉外に流出させる流出パイプを装備し
ており、また、溶融ガラスと炉内壁を構成する炉材との
反応を抑制するために、溶融ガラスとの接触部分である
炉本体の内壁や、流出パイプが、白金や白金合金で作ら
れているガラス溶融炉において、熱による前記流出パイ
プ、特にノズル口の熱変動をなくし、ガラスが流出する
ノズル口を安定して、固定させる構造を提供することに
ある。
The present invention has been made based on the above circumstances, and has as its object to provide an outflow pipe for melting glass in a furnace main body and for discharging the melted glass out of the furnace. In order to suppress the reaction between the molten glass and the furnace material constituting the furnace inner wall, the glass melting furnace in which the inner wall of the furnace body, which is the contact portion with the molten glass, and the outflow pipe are made of platinum or a platinum alloy The object of the present invention is to provide a structure in which heat fluctuation of the outflow pipe, particularly the nozzle port due to heat is eliminated, and the nozzle port from which the glass flows out is stably fixed.

【0009】特に、この実施の形態では、本発明の構成
は、上記の熱による膨張・収縮の変動を、専ら、炉本体
の一部を成すところの、流出パイプの取り付け部近傍の
炉底部や炉の側壁部に集中させて、吸収させることで、
ガラス溶融炉の流出パイプおよび、特にノズル口を安定
して保持することができる。
In particular, in this embodiment, the structure of the present invention is designed to prevent the above-mentioned fluctuations in expansion and contraction due to heat from being caused only by the furnace bottom and the vicinity of the outlet pipe mounting part, which forms a part of the furnace body. By focusing on the side wall of the furnace and absorbing it,
The outflow pipe of the glass melting furnace and especially the nozzle port can be stably held.

【0010】なお、本発明の他の目的は、更に、流出パ
イプの先端部分のノズル口を熱による位置移動の影響を
受け難い支持部材に強固に固定することで、流出時の流
出パイプの先端とガラス受け型との位置関係を、より安
定させる構造を提供するにある。
It is another object of the present invention to further securely fix the nozzle port at the tip of the outflow pipe to a support member which is hardly affected by positional movement due to heat, so that the tip of the outflow pipe at the time of outflow can be obtained. Another object of the present invention is to provide a structure for further stabilizing the positional relationship between the glass and the glass receiving mold.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、ガラス溶融槽内でガラスを溶融し、そ
の溶融ガラスを、ガラス流出パイプを介して、炉外に流
出させ、ガラスと炉を構成する炉材との反応を抑制する
ために、溶融ガラスと直接接触する部分である炉の内壁
や流出パイプを、白金もしくは白金合金で構成している
ガラス溶融炉において、熱による流出パイプの熱変動
(膨張・収縮)を、前記白金もしくは白金合金で構成さ
れた炉の内壁部分で吸収するように、炉の内壁の変形に
より吸収させることを特徴とする。
In order to achieve the above object, according to the present invention, glass is melted in a glass melting tank, and the molten glass is caused to flow out of the furnace through a glass outflow pipe. In order to suppress the reaction between the furnace and the furnace materials that make up the furnace, the inner wall and outflow pipe of the furnace, which are in direct contact with the molten glass, flow out in a glass melting furnace made of platinum or a platinum alloy. The method is characterized in that heat fluctuations (expansion / shrinkage) of the pipe are absorbed by deformation of the inner wall of the furnace so as to be absorbed by the inner wall portion of the furnace made of platinum or a platinum alloy.

【0012】この場合、ガラス溶融炉を構成する、前記
流出パイプを取り付けている、炉の底部やその近傍の炉
の側壁を構成する白金もしくは白金合金よりなる内張り
の肉厚を、流出パイプの肉厚よりも薄く作り、実質的
に、流出パイプの変形に対する強度が、千キロの底部や
側壁の内張りの強度よりも強くなるようにし、さらに、
その強度的に弱い内張りの部分の固定をしないことで、
炉体および流出パイプの熱による膨張・収縮による寸法
変動を、その部分に集中させることができるように構成
するのがよい。また、流出パイプ、特にノズル口の熱に
より位置変動を抑えるためには、流出パイプやノズル口
を通電加熱するための電極端子を、炉体を構成する他の
内壁部材と分離した状態で、炉外周やガラス受け型など
の成形関連装置を支持する、炉の内部や、流出パイプな
どの温度の影響を受け難く、位置的に安定した支持部材
に、強固に固定するのが、より効果的である。
In this case, the thickness of the lining made of platinum or a platinum alloy constituting the bottom of the furnace or the side wall of the furnace in the vicinity of the bottom of the furnace, which constitutes the glass melting furnace, and the thickness of the outflow pipe, Made thinner than the thickness, so that the strength of the outflow pipe against deformation is substantially greater than the strength of the bottom of the 1000 km and the lining of the side walls,
By not fixing the part of the lining that is weak in strength,
It is preferable that the dimensional change due to the expansion and contraction of the furnace body and the outflow pipe due to heat can be concentrated on that portion. In addition, in order to suppress the position fluctuation due to the heat of the outflow pipe, particularly the nozzle port, the electrode terminal for conducting and heating the outflow pipe and the nozzle port is separated from the other inner wall members constituting the furnace body by the furnace. It is more effective to firmly fix to a positionally stable support member that is hardly affected by the temperature of the inside of the furnace, the outflow pipe, etc., which supports the molding related equipment such as the outer periphery and the glass receiving mold, etc. is there.

【0013】従って、炉本体及び流出パイプの白金ある
いは白金合金で作られた部分の熱膨張・収縮による寸法
変化を、所要の部分に集中させることができ、これによ
って、流出ノズル口の位置を一定に保持し、炉側の温度
変化に影響されず、成形型に対する溶融ガラスの供給位
置を正確に確保することができる。
Therefore, the dimensional change due to the thermal expansion and contraction of the portion of the furnace body and the outflow pipe made of platinum or a platinum alloy can be concentrated on a required portion, whereby the position of the outflow nozzle port can be kept constant. , And the supply position of the molten glass to the forming die can be accurately secured without being affected by the temperature change on the furnace side.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)本発明の第1の実施の形態例を、図1
を用いて具体的に説明する。ここで、符号1aは、ガラ
スの原材料を溶解するガラス溶融・清澄槽4の内壁を構
成する白金の内張り部材を、1cは、同様に、溶融ガラ
スの均質化を行うガラス攪拌・流出槽5の内壁を構成す
る白金の内張り部材、1bは、ガラス溶融・清澄槽4と
ガラス攪拌・流出槽5を連通し、同時に、溶融ガラス中
の微細な気泡を清澄する清澄槽をも兼ねた連通管6の白
金の内張り部材を示す。
(Embodiment 1) A first embodiment of the present invention is shown in FIG.
This will be specifically described with reference to FIG. Here, reference numeral 1a denotes a platinum lining member constituting an inner wall of the glass melting / refining tank 4 for melting raw materials of glass, and 1c denotes a glass stirring / outflow tank 5 for homogenizing molten glass. A platinum lining member 1b constituting the inner wall communicates with the glass melting / refining tank 4 and the glass stirring / outflow tank 5, and at the same time, a communication pipe 6 which also serves as a fining tank for fining fine bubbles in the molten glass. 1 shows a platinum lining member.

【0015】更に、符号1dは、特にガラス攪拌・流出
槽5の底部に張られた白金の内張り部材を、また、符号
2は白金で作られた流出パイプを示し、その一部である
先端ノズル口を、符号2aで示す。なお、これら内張り
部材は、全体として、あるいは、部分的に、白金合金で
作られてもよい。
Further, reference numeral 1d designates a platinum lining member particularly stretched at the bottom of the glass stirring / outflow tank 5, and reference numeral 2 designates an outflow pipe made of platinum, and a tip nozzle which is a part thereof. The mouth is indicated by reference numeral 2a. In addition, these lining members may be made entirely or partially of a platinum alloy.

【0016】なお、符号11は、ガラス攪拌・流出槽5
の内部に挿入・配置された、溶融ガラスの攪拌を司る攪
拌翼を、12は溶融ガラスを、12aはノズル口2aよ
り流出する流出ガラスを、更に、13は流出ガラス12
aを受ける受け型を示す。また、流出パイプ2、ガラス
溶融・清澄槽4、ガラス攪拌・流出槽5、連通管6の周
囲には、加熱部材(図示せず)が配置してあり、それぞ
れの部所を、所要の温度に加熱できるようになってい
る。
Reference numeral 11 denotes a glass stirring / outflow tank 5
, A stirring blade for controlling the stirring of the molten glass, 12 is a molten glass, 12a is an outflow glass flowing out from the nozzle port 2a, and 13 is an outflow glass 12
Indicates a receiving mold for receiving a. Heating members (not shown) are arranged around the outflow pipe 2, the glass melting / refining tank 4, the glass stirring / outflow tank 5, and the communication pipe 6, and each part is heated to a required temperature. Can be heated.

【0017】しかして、このような構成のガラス溶融炉
を稼動した場合の熱膨張による変形の状態を、図2に示
す。ここでは、ガラスの溶融のための加熱時に、ガラス
攪拌・流出槽5の底部の内張り部材1dの箇所が集中し
て大きく変形する。即ち、内張り部材1a〜1dと、流
出パイプ2とは、一体ものとして作られており、溶融ガ
ラスが漏れ出ないようになっていて、図1に示す内張り
部材1dの部分は、他の部分に比較して、その肉厚が薄
く作られている。更に、内張り部材の内、図1に示すよ
うに、内張り部材1dは、内張り部材全体を支えるため
に装備した炉体外側の耐火物製補強部材3に対して、空
隙20aを持って、取り付けられている。また、流出パ
イプ2は、同様に、ノズル口2aの近傍を除いて、耐火
物製補強部材3に対して、空隙20bを持って、取り付
けられている。
FIG. 2 shows a state of deformation due to thermal expansion when the glass melting furnace having such a configuration is operated. Here, at the time of heating for melting the glass, the location of the lining member 1d at the bottom of the glass stirring / outflow tank 5 is concentrated and greatly deformed. That is, the lining members 1a to 1d and the outflow pipe 2 are integrally formed so that molten glass does not leak out, and the lining member 1d shown in FIG. In comparison, its thickness is made thin. Further, among the lining members, as shown in FIG. 1, the lining member 1d is attached with a gap 20a to a refractory reinforcing member 3 provided outside the furnace body for supporting the entire lining member. ing. Similarly, the outflow pipe 2 is attached to the refractory reinforcing member 3 with a gap 20b except for the vicinity of the nozzle port 2a.

【0018】従って、内張り部材1cおよび流出パイプ
2、特に、後者が、温度変化により膨張・収縮を起こし
た際に、内張り部材1dの部分の変形で、ノズル口2a
の位置が変動(上下、左右への位置移動)しないように
応力吸収がなされる。次に、このガラス溶融炉を用い
て、光学ガラス素子の製造を、より具体的に説明する。
図1において、ガラス溶融・清澄槽4、ガラス攪拌・流
出槽5および流出パイプ2を、それぞれ、1,300
℃、1,100℃、1,200℃の温度に加熱し、ガラ
ス材料をガラス溶融・清澄槽4に供給し、溶融した状態
で、順次、連結管6を介して、ガラス攪拌・流出槽5へ
と供給し、一方、ガラス攪拌・流出槽5では、ガラス溶
融の開始と同時に、攪拌翼11を、図1の矢印で示すよ
うに回転させて、溶融ガラスの攪拌を行う。これによっ
て、泡切れの良い、均質な溶融ガラスをノズル口2aか
ら流出させることになる。
Therefore, when the lining member 1c and the outflow pipe 2, especially the latter, expands and contracts due to a temperature change, a deformation of the lining member 1d causes the nozzle opening 2a.
Is absorbed so as not to change the position (up and down, left and right position). Next, the production of an optical glass element using this glass melting furnace will be described more specifically.
In FIG. 1, a glass melting / refining tank 4, a glass stirring / outflow tank 5, and an outflow pipe 2 are each connected to 1,300
C., 1,100.degree. C., and 1,200.degree. C., and the glass material is supplied to the glass melting / refining tank 4, and in a molten state, the glass stirring / outflow tank 5 is sequentially passed through the connecting pipe 6. On the other hand, in the glass stirring / outflow tank 5, the molten glass is stirred by rotating the stirring blade 11 as indicated by the arrow in FIG. 1 simultaneously with the start of the glass melting. As a result, a homogeneous molten glass with good bubble elimination is discharged from the nozzle port 2a.

【0019】その流出ガラス12aは、受け型13で受
けられ、所定の時間毎に、切断刃(図示せず)をによっ
て、切断され、予定重量のガラス塊となる。その後、こ
のガラス塊は、受け型13に載せられた状態で、プレス
成形装置の上型(図示せず)の下に持ち込まれ、受け型
13が下型として働いて、加圧成形され、所望の形状の
光学ガラス素子となる。
The outflow glass 12a is received by the receiving die 13, and is cut at predetermined intervals by a cutting blade (not shown) to form a glass block having a predetermined weight. Thereafter, the glass lump is carried under the upper die (not shown) of the press forming apparatus while being placed on the receiving die 13, and the receiving die 13 works as a lower die to be pressed and formed. An optical glass element having the shape of

【0020】このガラス溶融炉の昇温の際に、流出パイ
プ2が、2mm程度、上下方向に膨張する。従来の溶融
炉の構造ならば、ノズル口2aの位置が、昇温の都度、
変動し、水平方向はもとより、垂直方向、即ち、図1に
示す距離Lが不安定となり、成形されたガラス素子に位
置ずれや重量の過大・過少に起因するはみ出しや肉厚不
良などの欠陥が多々発生し、形状や重量に再現性が得ら
れず、良質のガラス素子が得られなかったが、本発明に
係わるガラス溶融炉では、図1に示すように、再三の加
熱を行っても、熱的変形が内張り部材1dの部位に集中
し、図2の符号1d′に示すような熱的変形を起こし、
これによって、ノズル口2aの位置が常に安定してお
り、形状・重量とも、非常に安定した光学ガラス素子を
得ることができた。
When the temperature of the glass melting furnace is raised, the outflow pipe 2 expands vertically by about 2 mm. In the case of the structure of the conventional melting furnace, the position of the nozzle port 2a is changed every time the temperature rises.
The distance L shown in FIG. 1 becomes unstable, as well as the horizontal direction, that is, the distance L shown in FIG. 1 becomes unstable, and defects such as protrusion or wall thickness failure due to misalignment or excessive or insufficient weight of the molded glass element are caused. Many occurrences, reproducibility was not obtained in shape and weight, and good quality glass elements could not be obtained, but in the glass melting furnace according to the present invention, as shown in FIG. Thermal deformation concentrates on the portion of the lining member 1d, and causes thermal deformation as shown by reference numeral 1d 'in FIG.
As a result, the position of the nozzle port 2a was always stable, and an optical glass element having a very stable shape and weight could be obtained.

【0021】(実施の形態2)本発明の第2の実施の形
態を、図3および図4を用いて、具体的に説明する。図
3において、符号101aは、ガラスの原材料を溶解・
清澄・攪拌するガラス溶融槽104の上部を構成する白
金の内張り部材を、また、符号101bは、ガラス溶融
槽104の底部を構成する白金の内張り部材を示してお
り、符号101cは、内張り部材101a、101bを
接続する箇所でのガラス溶融槽104の部分を構成する
白金の内張り部材を示す。
(Embodiment 2) A second embodiment of the present invention will be specifically described with reference to FIGS. In FIG. 3, reference numeral 101a denotes a material for melting glass raw materials.
Reference numeral 101b denotes a platinum lining member forming the upper portion of the glass melting tank 104 for refining and stirring, reference numeral 101b denotes a platinum lining member forming the bottom portion of the glass melting tank 104, and reference numeral 101c denotes a lining member 101a. , 101b shows a platinum lining member constituting a portion of the glass melting tank 104 at a point where the glass melting tank 104 is connected.

【0022】なお、符号102は、ガラス溶融槽104
の下部に取り付けられた白金の流出パイプであり、その
先端のノズル口102aは、例えば、白金合金で作られ
ている。流出パイプ102には、直接通電加熱用の電極
端子102b、102cが取り付けられており、電極端
子102bはノズル口102aを、電極端子102cは
流出パイプ102全体の加熱を行うために、それぞれ、
電源115aおよび電源115bに接続されている。更
に、電源115a、115bは、温度制御器(図示せ
ず)により制御され、この温度制御器により、流出パイ
プ102、ノズル口102aの各温度が、任意に設定・
制御される。また、前述の実施の形態1と同様に、ガラ
ス溶融槽104の周りには、ヒータ(図示せず)が配置
されており、所要の温度が得られるようになっている。
Reference numeral 102 denotes a glass melting tank 104.
Is a platinum outflow pipe attached to the lower part of the nozzle. The nozzle port 102a at the tip of the pipe is made of, for example, a platinum alloy. Electrode terminals 102b and 102c for direct current heating are attached to the outflow pipe 102. The electrode terminal 102b heats the nozzle port 102a, and the electrode terminal 102c heats the entire outflow pipe 102.
It is connected to power supply 115a and power supply 115b. Further, the power supplies 115a and 115b are controlled by a temperature controller (not shown), and the temperatures of the outlet pipe 102 and the nozzle port 102a are arbitrarily set and controlled by the temperature controller.
Controlled. As in the first embodiment, a heater (not shown) is arranged around the glass melting tank 104 so that a required temperature can be obtained.

【0023】なお、符号112は溶融ガラスを、符号1
12aは、ノズル口102aより流出する流出ガラスを
示す。更に、符号103は耐火物で作られた鞘坩堝であ
り、固定架台(図示せず)に取り付けられていて、内張
り部材101a、101bを外側から支えており、更
に、内張り部材101cとの間には、空隙120が設け
られていて、内張り部材101cの部分が熱応力による
変形が発生した際に、競り合わないようになっている。
Reference numeral 112 denotes molten glass, and reference numeral 1 denotes
Reference numeral 12a denotes outflow glass flowing out from the nozzle port 102a. Further, reference numeral 103 denotes a sheath crucible made of a refractory, which is attached to a fixed base (not shown), supports the lining members 101a and 101b from the outside, and further has a space between the lining member 101c and the lining member 101c. Is provided with a void 120 so that when the portion of the lining member 101c is deformed by thermal stress, it does not compete with each other.

【0024】また、炉の底部102bは、電源115a
に接続されているリード線121との電気的接続の際
に、流出パイプ102やガラス溶融槽104の熱による
変動の影響を受けないように、前記固定架台に強固に固
定されている。このような構成における炉の稼動で、図
4に示すように、内張り部材101cが変形する。これ
は、実施の形態1と同様であり、ガラス溶融槽104の
中にガラスの原材料を投入し、ガラス溶融槽104の温
度を、最初に1,300℃とし、溶融ガラス112を得
る。その後、ガラス溶融槽104を、1,100℃に降
温し、溶融ガラス112の清澄を行い、例えば、攪拌装
置(図示せず)により、攪拌を行い、泡切れの良い均質
な溶融ガラスを得るのである。
The bottom 102b of the furnace is connected to a power supply 115a.
Is fixed firmly to the fixed base so as not to be affected by the fluctuation of the outflow pipe 102 and the glass melting tank 104 due to the heat when the lead wire 121 is connected to the lead wire 121. By operating the furnace having such a configuration, the lining member 101c is deformed as shown in FIG. This is the same as in the first embodiment. A glass raw material is put into the glass melting tank 104, the temperature of the glass melting tank 104 is first set to 1,300 ° C., and a molten glass 112 is obtained. After that, the temperature of the glass melting tank 104 is lowered to 1,100 ° C., and the molten glass 112 is clarified. For example, the molten glass 112 is stirred by a stirrer (not shown) to obtain a homogeneous molten glass with good bubble elimination. is there.

【0025】次に、流出パイプ102と102aを、そ
れぞれ、1,000℃、1,200℃とし、溶融ガラス
を流出させて、先の実施の形態1と同様にして、光学ガ
ラス素子を製造した成果を説明する。ここでは、ガラス
溶融炉での坩堝の加熱を再三実施したが、坩堝の変形
は、図4に示すように、加熱時の内張り部材101cの
変形のみに留まり、他の部所の変形は、観察されない。
即ち、坩堝の形状維持およびノズル口102aの位置と
ノズル形状の保持について、本発明の構造は、非常に効
果的であることが判明した。
Next, the outflow pipes 102 and 102a were set at 1,000.degree. C. and 1,200.degree. C., respectively, and the molten glass was allowed to flow out, thereby producing an optical glass element in the same manner as in the first embodiment. Explain the results. Here, the heating of the crucible in the glass melting furnace was repeatedly performed, but the deformation of the crucible was limited to the deformation of the lining member 101c at the time of heating as shown in FIG. Not done.
That is, the structure of the present invention was found to be very effective in maintaining the shape of the crucible and maintaining the position of the nozzle port 102a and the nozzle shape.

【0026】[0026]

【発明の効果】本発明は、以上説明したように、ガラス
溶融槽内でガラスを溶融し、その溶融ガラスを、ガラス
流出パイプを介して、炉外に流出させるガラス溶融炉に
おいて、ガラスと炉を構成する炉材との反応を抑制する
ために、溶融ガラスと直接接触する部分である炉の内壁
や流出パイプを、白金もしくは白金合金で構成すると共
に、熱による流出パイプの熱変動(膨張・収縮)を、前
記白金もしくは白金合金で構成された炉の内壁部分で吸
収するように、炉の内壁部分を熱変形可能に構成したの
で、炉本体および流出パイプの加熱冷却の際の、流出パ
イプ先端のノズル口の位置ズレおよびノズル形状の変形
を、確実に防止することが可能となり、また、ノズル口
の位置ズレに起因する問題が解消し、安定した、高効率
な光学素子の製造が実現可能となった。
As described above, the present invention relates to a glass melting furnace for melting glass in a glass melting tank and flowing the molten glass out of the furnace through a glass outflow pipe. In order to suppress the reaction with the furnace material that constitutes the furnace, the inner wall of the furnace and the outflow pipe that are in direct contact with the molten glass are made of platinum or a platinum alloy, and the heat fluctuation (expansion / (Shrinkage) is absorbed by the inner wall portion of the furnace made of platinum or a platinum alloy, so that the inner wall portion of the furnace can be thermally deformed. Displacement of the nozzle opening at the tip and deformation of the nozzle shape can be reliably prevented, and problems caused by misalignment of the nozzle opening are eliminated, thereby producing a stable and highly efficient optical element. It became feasible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る炉の構成を説
明する図である。
FIG. 1 is a diagram illustrating a configuration of a furnace according to a first embodiment of the present invention.

【図2】同じく、炉の加熱時の変形状態を示す図であ
る。
FIG. 2 is a view showing a deformed state of the furnace during heating.

【図3】本発明の第2の実施の形態に係る炉の構成を説
明する図である。
FIG. 3 is a diagram illustrating a configuration of a furnace according to a second embodiment of the present invention.

【図4】同じく、炉の変形状態を示す図である。FIG. 4 is a view showing a deformed state of the furnace.

【符号の説明】[Explanation of symbols]

1a、1b、1c、1d 炉の白金内張り部材 2 流出パイプ 2a ノズル口 3 補強部材 4 ガラス溶融・清澄槽 5 ガラス攪拌・流出槽 13 受け型 101a、101b、101c 白金内張り部材 102 流出パイプ 102a ノズル口 102b、102c 直接通電用電極 103 鞘坩堝 104 ガラス溶融槽 1a, 1b, 1c, 1d Furnace lining member 2 Furnace 2 Outflow pipe 2a Nozzle port 3 Reinforcing member 4 Glass melting / refining tank 5 Glass stirring / outflow tank 13 Receiving mold 101a, 101b, 101c Platinum lining member 102 Outflow pipe 102a Nozzle port 102b, 102c Electrode for direct current supply 103 Sheath crucible 104 Glass melting tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス溶融槽内でガラスを溶融し、その
溶融ガラスを、ガラス流出パイプを介して、炉外に流出
させ、ガラスと炉を構成する炉材との反応を抑制するた
めに、溶融ガラスと直接接触する部分である炉の内壁や
流出パイプを、白金もしくは白金合金で構成しているガ
ラス溶融炉において、熱による流出パイプの熱変動(膨
張・収縮)を、前記白金もしくは白金合金で構成された
炉の内壁部分で吸収するように、炉の内壁の変形により
吸収させることを特徴とするガラス溶融炉。
1. A method for melting glass in a glass melting tank, flowing the molten glass out of the furnace through a glass outflow pipe, and suppressing a reaction between the glass and a furnace material constituting the furnace. In a glass melting furnace in which the inner wall and outflow pipe of the furnace, which are in direct contact with the molten glass, are made of platinum or a platinum alloy, heat fluctuation (expansion / shrinkage) of the outflow pipe caused by heat is reduced by the platinum or platinum alloy. A glass melting furnace characterized in that absorption is performed by deformation of an inner wall of the furnace so as to be absorbed by an inner wall portion of the furnace constituted by:
【請求項2】 流出パイプに連なる、炉の底部、あるい
は、炉の側壁を、前記流出パイプよりも、部分的に弱く
するように、各部の強度を設定したことを特徴とする請
求項1に記載のガラス溶融炉。
2. The strength of each part is set so that the bottom of the furnace or the side wall of the furnace connected to the outflow pipe is partially weaker than the outflow pipe. The glass melting furnace as described.
【請求項3】 流出パイプを支持固定するための支持部
材として、パイプ先端に取り付けた直接通電加熱用の電
極のリード板を用いる構造であることを特徴とする請求
項1に記載のガラス溶融炉。
3. The glass melting furnace according to claim 1, wherein the supporting member for supporting and fixing the outflow pipe uses a lead plate of an electrode for direct current heating attached to a tip of the pipe. .
JP30453896A 1996-11-15 1996-11-15 Glass melting furnace Pending JPH10152329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30453896A JPH10152329A (en) 1996-11-15 1996-11-15 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30453896A JPH10152329A (en) 1996-11-15 1996-11-15 Glass melting furnace

Publications (1)

Publication Number Publication Date
JPH10152329A true JPH10152329A (en) 1998-06-09

Family

ID=17934214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30453896A Pending JPH10152329A (en) 1996-11-15 1996-11-15 Glass melting furnace

Country Status (1)

Country Link
JP (1) JPH10152329A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856797A1 (en) * 1998-04-27 1999-10-28 Nh Technoglass Co Lining material for glass melting furnaces and ancillary equipment used especially to produce LCD glass plates and optical lenses or objectives
JP2006327830A (en) * 2005-04-28 2006-12-07 Asahi Glass Co Ltd Glass manufacturing apparatus, its component and method for conducting ohmic heating of the component
WO2006132044A1 (en) * 2005-06-09 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof
WO2006132043A1 (en) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof, and method for conduction-heating such component
JP2009298671A (en) * 2008-06-17 2009-12-24 Avanstrate Inc Glass conduit
CN102730936A (en) * 2012-06-30 2012-10-17 珠海彩珠实业有限公司 Tank furnace for melting glass

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856797B4 (en) * 1998-04-27 2005-05-25 Nh Technoglass Co., Yokohama Lining material for glass melting furnaces, glass melting furnaces and methods for producing glass products
DE19856797A1 (en) * 1998-04-27 1999-10-28 Nh Technoglass Co Lining material for glass melting furnaces and ancillary equipment used especially to produce LCD glass plates and optical lenses or objectives
JP4561468B2 (en) * 2005-04-28 2010-10-13 旭硝子株式会社 GLASS MANUFACTURING APPARATUS AND ITS COMPONENTS, METHOD FOR ELECTRIC HEATING THE COMPONENTS, AND GLASS MANUFACTURING METHOD
JP2006327830A (en) * 2005-04-28 2006-12-07 Asahi Glass Co Ltd Glass manufacturing apparatus, its component and method for conducting ohmic heating of the component
WO2006132043A1 (en) * 2005-06-06 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof, and method for conduction-heating such component
KR100889716B1 (en) 2005-06-06 2009-03-23 아사히 가라스 가부시키가이샤 Glass production device and component thereof, and method for conduction-heating such component
JP5018476B2 (en) * 2005-06-06 2012-09-05 旭硝子株式会社 GLASS MANUFACTURING APPARATUS, ITS COMPONENTS, AND METHOD FOR ELECTRIC HEATING THE COMPONENTS
US7941038B2 (en) 2005-06-06 2011-05-10 Asahi Glass Company, Limited Glass manufacturing apparatus, a structural member thereof and method for heating the structural member by conduction heating
WO2006132044A1 (en) * 2005-06-09 2006-12-14 Asahi Glass Company, Limited Glass production device and component thereof
US8019206B2 (en) 2005-06-09 2011-09-13 Asahi Glass Company, Limited Glass manufacturing apparatus and a structural member thereof
KR100914422B1 (en) 2005-06-09 2009-08-27 아사히 가라스 가부시키가이샤 Glass production device and component thereof
JP2009298671A (en) * 2008-06-17 2009-12-24 Avanstrate Inc Glass conduit
CN102730936A (en) * 2012-06-30 2012-10-17 珠海彩珠实业有限公司 Tank furnace for melting glass

Similar Documents

Publication Publication Date Title
KR101521366B1 (en) Energy-efficient high-temperature refining
JP2001080922A (en) Supply method and supply device for molten glass
RU2011102520A (en) METHOD FOR PRODUCING GLASS PRODUCTS AND DEVICE FOR ITS PRODUCTION
CN110088051B (en) Method and apparatus for controlling glass flow into a glass forming machine
JPH10152329A (en) Glass melting furnace
JP3637178B2 (en) Quartz member molding apparatus and molding method
WO2011145526A1 (en) Pressure reducing and defoaming device for molten glass, molten glass manufacturing method, and glass product manufacturing method
CN101164933A (en) Method for producing glass and device for shaping glass
JPH0619539Y2 (en) Glass melting furnace
US6802189B2 (en) Device and process for the remelting of glass
JP4455844B2 (en) Glass manufacturing apparatus, glass melting container protective member, and glass manufacturing method
JPH11130445A (en) Glass outflow method and apparatus therefor
JP3817363B2 (en) Glass raw material melt outflow equipment
JP2002274857A (en) Glass-melting apparatus
WO2023106093A1 (en) Glass transfer device, glass article manufacturing device, and glass article manufacturing method
JPH04285091A (en) Manufacturing device for oxide single crystal
JP2002128529A (en) Method of forming glass gob
JP7115156B2 (en) Glass article manufacturing method
WO2023100688A1 (en) Glass article manufacturing method
JP3673554B2 (en) Glass gob molding method and molding apparatus
JPH06329420A (en) Glass melting furnace
JPH10194751A (en) Fitting and fitting apparatus for heating electrodes of glass melting furnace
RU2097345C1 (en) Apparatus for manufacturing fibers of thermoplastic materials
JP2002121034A (en) Glass outflow device for glass melting furnace
JPH09188526A (en) Structure for supporting glass-melting oven