JPH10152306A - Formation of superoxide anion radical and apparatus therefor - Google Patents

Formation of superoxide anion radical and apparatus therefor

Info

Publication number
JPH10152306A
JPH10152306A JP30647096A JP30647096A JPH10152306A JP H10152306 A JPH10152306 A JP H10152306A JP 30647096 A JP30647096 A JP 30647096A JP 30647096 A JP30647096 A JP 30647096A JP H10152306 A JPH10152306 A JP H10152306A
Authority
JP
Japan
Prior art keywords
anion radical
pulse signal
superoxide anion
negative pulse
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30647096A
Other languages
Japanese (ja)
Other versions
JP3815830B2 (en
Inventor
Yoshihiro Ito
義博 伊藤
Takashi Maoka
孝至 眞岡
Yoko Kashiwabara
洋子 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP30647096A priority Critical patent/JP3815830B2/en
Publication of JPH10152306A publication Critical patent/JPH10152306A/en
Application granted granted Critical
Publication of JP3815830B2 publication Critical patent/JP3815830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To artificially enable electrochemical formation of a superoxide anion radical as a kind of active oxygen in excellent reproducibility, by immersing a discharge tube in which a mixed gas is sealed in water and inducing glow discharge. SOLUTION: A discharge tube in which a mixed gas is sealed is immersed in water, a high-voltage negative pulse signal is impressed to electrodes in the discharge tube to induce a glow discharge. A superoxide anion radical is more effectively formed by making the ratio of nitrogen and argon of the mixed 8:2 and adjusting the pressure of the discharge tube to 4.2mmHg, the peak value of the high-voltage negative pulse signal to 15KV and the frequency to 100Hz. This apparatus for producing a superoxide anion radical has a high- voltage generating circuit 20 for forming a high-voltage negative pulse signal, and a discharge electrode 12 for impressing the high-voltage negative pulse signal and is equipped with a discharge tube 10 having a glow discharge part 13 immersed in water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性酸素の一種で
あるス−パ−オキシドアニオンラジカル(superoxide an
ion radical)を電気化学的に生成するための方法及び装
置に関する。
TECHNICAL FIELD The present invention relates to a superoxide anion radical which is a kind of active oxygen.
The present invention relates to a method and an apparatus for electrochemically producing ion radicals.

【0002】[0002]

【従来の技術】活性酸素としてヒドロキシルラジカル、
過酸化水素、一重項酸素及びス−パ−オキシドアニオン
ラジカルの4種が知られており、適量に体内で産生され
た活性酸素は、自己防衛上身体にとって必要かつ有益な
ものであるが、過剰に産生されると多くの障害を身体に
もたらし、様々な疾病を引き起こす。活性酸素の中で
も、酸素に1個の電子が入ったス−パ−オキシドアニオ
ンラジカルは、下記化1のような化学式で表示される。
2. Description of the Related Art Hydroxyl radical as active oxygen,
Four types of hydrogen peroxide, singlet oxygen, and superoxide anion radical are known, and active oxygen produced in the body in appropriate amounts is necessary and beneficial to the body for self-defense, When it is produced, it causes many disorders to the body and causes various diseases. Among active oxygens, a superoxide anion radical in which one electron is contained in oxygen is represented by the following chemical formula.

【0003】[0003]

【化1】 かかるス−パ−オキシドアニオンラジカルは、活性酸素
の中でも特に細胞の活性に直接的な影響を及ぼす重要な
ものであり、ス−パ−オキシドアニオンラジカルの生成
とあいまって、ス−パ−オキシドアニオンラジカルを消
去する物質の研究も精力的に行なわれている。実験的に
ス−パ−オキシドアニオンラジカルを発生させる系とし
て、従来キサンチン酸化酵素などの酵素系が広く用いら
れている。又、活性酸素を生成する方法として、水に放
射線を照射する方法が知られている。
Embedded image Such a superoxide anion radical is an important one which has a direct effect on the activity of a cell, particularly among active oxygens, and in combination with the formation of the superoxide anion radical, Research on substances that scavenge radicals is also being vigorously conducted. As a system for experimentally generating a superoxide anion radical, an enzyme system such as xanthine oxidase has been widely used. As a method for generating active oxygen, a method of irradiating water with radiation is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、キサンチン酸
化酵素などの酵素系を用いてス−パ−オキシドアニオン
ラジカルを生成する方法では、ス−パ−オキシドアニオ
ンラジカルそのもを消去したのか、又は酵素系によるス
−パ−オキシドアニオンラジカルの発生を阻害したのか
を区別することができなかった。つまり、ス−パ−オキ
シドアニオンラジカルが発生したのか否かが不明であ
り、生成方法として極めて不十分なものであった。この
酵素系によるス−パ−オキシドアニオンラジカル生成方
法は、酵素反応のために再現性にも問題があり、常に安
定した状態で得られるとは限られなかった。又、水に放
射線を照射する方法では、危険な放射線そのものの取扱
いにも問題があり、生成された活性酸素を種別毎に取り
出すことができなかった。つまり、水に放射線を照射す
る方法では種々の活性酸素が同時に生成されてしまい、
ス−パ−オキシドアニオンラジカルだけを選択的に生成
することができない欠点がある。
However, in the method for producing a superoxide anion radical using an enzyme system such as xanthine oxidase, the superoxide anion radical itself is eliminated or the enzyme is used. It was not possible to distinguish whether the system inhibited the generation of superoxide anion radicals. In other words, it is not known whether or not a superoxide anion radical has been generated, and the production method was extremely insufficient. This method of producing a superoxide anion radical using an enzyme system has a problem in reproducibility due to the enzymatic reaction, and it cannot always be obtained in a stable state. Further, in the method of irradiating water with radiation, there is a problem in handling dangerous radiation itself, and the generated active oxygen cannot be taken out for each type. In other words, in the method of irradiating water, various active oxygens are generated at the same time,
There is a disadvantage that only the superoxide anion radical cannot be selectively produced.

【0005】ス−パ−オキシドアニオンラジカルが人の
健康に重大な影響、作用を及ぼすことは周知の事実であ
り、その研究や医薬の開発のためにもス−パ−オキシド
アニオンラジカルだけを人工的に、しかも再現性をもっ
て恒常的に生成することが強く望まれているのである。
It is well known that the superoxide anion radical has a significant effect on human health, and it is known that the superoxide anion radical alone is used for research and drug development. Therefore, it is strongly desired that the compound be produced constantly and reproducibly.

【0006】本発明は上述のような事情よりなされたも
のであり、本発明の目的は、活性酸素の中でも特に重要
な意義を有するス−パ−オキシドアニオンラジカルを人
工的にしかも再現性をもって、電気化学的に生成するた
めの方法及び装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to produce a superoxide anion radical having a particularly important significance among active oxygens artificially and reproducibly. It is to provide a method and an apparatus for electrochemical generation.

【0007】[0007]

【課題を解決するための手段】本発明はス−パ−オキシ
ドアニオンラジカルの生成方法に関し、本発明の上記目
的は、混合気体を封入された放電管を水に浸漬し、前記
放電管内の電極に高電圧負パルス信号を印加してグロ−
放電を誘起させることによって達成される。前記混合気
体を窒素とアルゴンの8:2の混合比とし、前記放電管
の圧力を4.2mmHgとすることによって、更には前
記高電圧負パルス信号の波高値を15KV、周波数を1
00Hzとすることによって、より効果的に達成され
る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a superoxide anion radical, and an object of the present invention is to immerse a discharge tube filled with a mixed gas in water and to form an electrode in the discharge tube. Apply a high-voltage negative pulse signal to
It is achieved by inducing a discharge. By setting the mixture gas to a mixture ratio of nitrogen and argon of 8: 2 and the pressure of the discharge tube to 4.2 mmHg, the peak value of the high-voltage negative pulse signal is further reduced to 15 KV and the frequency is set to 1
By setting the frequency to 00 Hz, it can be more effectively achieved.

【0008】又、本発明はス−パ−オキシドアニオンラ
ジカルの生成装置に関し、本発明の上記目的は、高電圧
負パルス信号を生成する高電圧生成手段と、前記高電圧
負パルス信号を印加される電極を有し、グロ−放電部を
水に浸漬された放電管とを具備することによって達成さ
れる。前記高電圧負パルス信号の波高値、周波数及びデ
ユ−テイ比が可変であり、前記高電圧負パルス信号の波
高値を15KVに、周波数を100Hzに設定すること
によって、より効果的に達成される。
Further, the present invention relates to a device for generating a superoxide anion radical, and the object of the present invention is to provide a high voltage generating means for generating a high voltage negative pulse signal, and a high voltage generating means for applying the high voltage negative pulse signal. And a discharge tube having a glow discharge portion immersed in water. The peak value, frequency, and duty ratio of the high-voltage negative pulse signal are variable, and can be more effectively achieved by setting the peak value of the high-voltage negative pulse signal to 15 KV and the frequency to 100 Hz. .

【0009】[0009]

【発明の実施の形態】図1は本発明の原理を示してお
り、水槽1内には水(例えば蒸留水)2が満たされてお
り、水2内に放電管10が浸漬されている。放電管10
内には、窒素とアルゴン(8:2)の混合気体が圧力
4.2mmHgで封入されており、接地電極11及び放
電電極12を有すると共に、放電部13を有している。
接地電極11は白金線で接地され、放電電極12には高
電圧生成回路20から波高値(ピ−ク値)15KV、周
波数100Hzの高電圧負パルス信号NS(パルス幅τ
1)が印加されるようになっている。尚、放電管として
は、(1) 減圧された空気又はガスを封入したガラス管の
一端に電極を被せたもの、(2) 減圧された空気又はガス
を封入したガラス管内に電極を封入したもの(図1に示
すもの)、(3) 減圧された空気又はガスを封入したガラ
ス管の内壁に金属蒸着電極を形成したもの、(4)金属
板、金属箔又は金属網にガラス又は樹脂等の絶縁物をコ
−テイングしたものを利用できる。
FIG. 1 shows the principle of the present invention. A water tank 1 is filled with water (for example, distilled water) 2, and a discharge tube 10 is immersed in the water 2. Discharge tube 10
Inside, a mixed gas of nitrogen and argon (8: 2) is sealed at a pressure of 4.2 mmHg, and has a ground electrode 11 and a discharge electrode 12 and a discharge part 13.
The ground electrode 11 is grounded with a platinum wire, and the discharge electrode 12 is supplied from a high voltage generating circuit 20 with a high voltage negative pulse signal NS (pulse width τ) having a peak value (peak value) of 15 KV and a frequency of 100 Hz.
1) is applied. The discharge tube is (1) a glass tube filled with decompressed air or gas covered with an electrode, and (2) a discharge tube filled with electrodes in a glass tube filled with decompressed air or gas. (Shown in FIG. 1), (3) a glass tube in which depressurized air or gas is sealed, and a metal deposition electrode formed on the inner wall of the glass tube, (4) a glass plate, a metal foil or a metal net made of glass or resin. What coated the insulator can be used.

【0010】このような構成で、放電管10の放電電極
12に、高電圧生成回路20から波高値15KV、周波
数100Hzの高電圧負パルス信号NSを印加すると、
放電部13にグロ−放電が誘起される。負電圧によるグ
ロ−放電が誘起されると、水2に対して負の電荷e-
よる電荷付加効果が生じ、ス−パ−オキシドアニオンラ
ジカルが発生する。
In such a configuration, when a high voltage negative pulse signal NS having a peak value of 15 KV and a frequency of 100 Hz is applied from the high voltage generation circuit 20 to the discharge electrode 12 of the discharge tube 10,
A glow discharge is induced in the discharge unit 13. When a glow discharge is induced by a negative voltage, a charge addition effect is generated by a negative charge e − on water 2, and a superoxide anion radical is generated.

【0011】ここで、実験結果を説明する。上述のよう
なグロ−放電を4mlの蒸留水に対して行ない、放電後
5分の時間間隔で蒸留水200μlを試料として取り出
し、直ちに100μM MCLA(2-methyl-p-methoxy
-3,7-dihydroimidazo [1,2-a] pyradin-3-one )を20
0μl加え、MCLAの化学発光検出器で発光量を検出
した。MCLAは、水溶液中でス−パ−オキシドアニオ
ンラジカルとだけ特異的に反応して発光し、他の物質と
は殆ど反応しないことが知られている(例えば中野稔、
吉川敏一編「活性酵素と発光」の第87−93頁、木村
博一「化学発光によるSOD活性の測定法」 1990
年 日本医学館発行)。上記各試料に対してMCLAの
化学発光検出器で発光量を検出した結果、図2に示すよ
うに放電時間にほぼ比例してMCLAの化学発光量が増
加した。このことは、グロ−放電の誘起によりス−パ−
オキシドアニオンラジカルが発生したことを証明してい
る。MCLAは、ス−パ−オキシドアニオンラジカルと
しか反応して発光しないからである。
Here, experimental results will be described. The above glow discharge was performed on 4 ml of distilled water, and 200 μl of distilled water was taken out as a sample at intervals of 5 minutes after the discharge, and immediately 100 μM MCLA (2-methyl-p-methoxy) was taken out.
-3,7-dihydroimidazo [1,2-a] pyradin-3-one)
0 μl was added, and the amount of luminescence was detected with a MCLA chemiluminescence detector. It is known that MCLA specifically reacts with a superoxide anion radical in an aqueous solution to emit light, and hardly reacts with other substances (for example, Minoru Nakano,
Hirokazu Kimura, "Method for Measuring SOD Activity by Chemiluminescence," 1990, edited by Shunichi Yoshikawa, "Activated Enzymes and Luminescence", 1990.
Published by The Japan Medical Museum). As a result of detecting the amount of light emitted from each of the samples by the MCLA chemiluminescence detector, as shown in FIG. 2, the amount of MCLA chemiluminescence increased almost in proportion to the discharge time. This is because of the induction of glow discharge,
This proves that an oxide anion radical has been generated. This is because MCLA reacts only with the superoxide anion radical and emits light.

【0012】さらに、図2に示すMCLAの化学発光量
の変化が、ス−パ−オキシドアニオンラジカルに基づく
ものであることを確認するため、過剰な活性酸素を除去
する物質として知られる坑酸化剤のス−パ−オキシドデ
スムタ−ゼ(superoxide dismutase: SOD)を加え、
発光が抑制ないしは制限されることを確かめた。図3の
グラフはその結果を示している。即ち、試験区#1は放
電30分後の蒸留水を、試験区#2は放電30分後の
0.1ng/mlのSOD水溶液を、試験区#3は放電
30分後の10ng/mlのSOD水溶液を、試験区#
4は放電30分後の1μg/mlSOD水溶液をそれぞ
れ示しており、試験区#5は放電前の蒸留水を示してい
る。試験区#1は4mlの蒸留水に上述の方法で30分間
放電し、試験区#2−#4はそれぞれ0.1ng/ml
SOD水溶液、10ng/mlSOD水溶液、1μg/
mlSOD水溶液に上述の方法で30分間放電し、その
後各試験区の水溶液を200μlとり、直ちに100m
M MCLAを加え、MCLAの化学発光検出器で発光
量を検出したものである。その結果、化学発光量はSO
Dにより試験区#2−#4のように抑制されることが明
らかとなり、グロ−放電によるMCLAの化学発光はス
−パ−オキシドアニオンラジカルによることが明白とな
った。
Further, in order to confirm that the change in the amount of chemiluminescence of MCLA shown in FIG. 2 is based on a superoxide anion radical, an antioxidant known as a substance for removing excess active oxygen was used. Of superoxide dismutase (SOD)
It was confirmed that light emission was suppressed or restricted. The graph of FIG. 3 shows the result. Test zone # 1 was distilled water 30 minutes after discharge, test zone # 2 was a 0.1 ng / ml SOD aqueous solution 30 minutes after discharge, and test zone # 3 was 10 ng / ml 30 minutes after discharge. Test solution #
Reference numeral 4 denotes a 1 μg / ml SOD aqueous solution 30 minutes after discharge, and test section # 5 denotes distilled water before discharge. Test plot # 1 was discharged into 4 ml of distilled water for 30 minutes as described above, and test plots # 2- # 4 were each 0.1 ng / ml.
SOD aqueous solution, 10 ng / ml SOD aqueous solution, 1 μg /
The solution was discharged for 30 minutes to the aqueous solution of SOD for 30 minutes by the above-mentioned method.
M MCLA was added, and the amount of luminescence was detected by a MCLA chemiluminescence detector. As a result, the amount of chemiluminescence is SO
D revealed that it was suppressed as in test plots # 2- # 4, indicating that the chemiluminescence of MCLA by glow discharge was due to the superoxide anion radical.

【0013】図4は高電圧生成回路20の具体的構成例
を示しており、DC電圧(例えば+12V)が充電回路
21、電圧検出回路22及びトリガパルス生成回路23
に印加され、充電回路21は印加電圧に基づいて昇圧
し、設定電圧(例えば+100V)まで主キャパシタC
1を充電する。補助キャパシタC2が、主キャパシタC
1と並列にスイッチ24を介して接続されており、スイ
ッチ24をオン/オフすることによって充電若しくは放
電の時定数を変えるようになっている。電圧検出回路2
2は常時主キャパシタC1の充電電圧を検出しており、
主キャパシタC1の充電電圧が設定電圧となった時に充
電回路21の動作を停止すると共に、トリガパルス生成
回路23からサイリスタ25に対してトリガパルスTG
を入力する。サイリスタ25はトリガパルスTGが入力
されると導通し、主キャパシタC1の充電電圧が高速に
放電され、昇圧トランス26の1次コイルにも電流が流
れ、電磁誘導によって2次コイルにも電流が流れる。主
キャパシタC1の充電電圧が放電されると上記充電動作
が開始され、このような充電及び放電を繰り返すことに
よって、昇圧トランス26の1次コイルにはパルス信号
が印加され、2次コイルからも昇圧されたパルス信号が
出力される。
FIG. 4 shows a specific example of the configuration of the high-voltage generation circuit 20, in which a DC voltage (for example, +12 V) is applied to a charging circuit 21, a voltage detection circuit 22, and a trigger pulse generation circuit 23.
, And the charging circuit 21 boosts the voltage based on the applied voltage, and increases the main capacitor C to a set voltage (for example, +100 V).
Charge 1. The auxiliary capacitor C2 is connected to the main capacitor C
1 is connected in parallel with a switch 24 via a switch 24, and the time constant of charging or discharging is changed by turning on / off the switch 24. Voltage detection circuit 2
2 always detects the charging voltage of the main capacitor C1,
When the charging voltage of the main capacitor C1 reaches the set voltage, the operation of the charging circuit 21 is stopped, and the trigger pulse TG is sent from the trigger pulse generation circuit 23 to the thyristor 25.
Enter The thyristor 25 conducts when the trigger pulse TG is input, the charging voltage of the main capacitor C1 is discharged at a high speed, a current also flows through the primary coil of the step-up transformer 26, and a current also flows through the secondary coil by electromagnetic induction. . When the charging voltage of the main capacitor C1 is discharged, the charging operation is started. By repeating such charging and discharging, a pulse signal is applied to the primary coil of the step-up transformer 26, and the voltage is also boosted from the secondary coil. The output pulse signal is output.

【0014】昇圧トランス26の巻き数比は1:150
となっていると共に、巻線極性が反転されているため、
1次コイル側で+100Vの電圧パルスは、2次コイル
側では−15KVの電圧パルスとして出力される。パル
ス出力はダイオ−ドD1を介して、高電圧負パルス信号
NSとして放電管10に印加されると共に、ブリ−ダ抵
抗Rにも加えられる。主キャパシタC1の放電電流は昇
圧トランス26のインダクタンスによる逆起電力によ
り、主キャパシタC1の電圧が0になった後も減衰しな
がら続くが、遂にはサイリスタ25固有の保持電流を下
回り、これがOFF状態へ遷移して停止する。この際
に、昇圧トランス26の2次側には、1次側電流停止に
伴う正のキックバック電圧が現れるが、これはダイオ−
ドD1により阻止され、放電管10に伝わることはな
い。又、図示のように、フライホイ−ルダイオ−ドD2
を接続することによっても、キックバック電圧を速やか
に制御することができる。
The turn ratio of the step-up transformer 26 is 1: 150.
And the winding polarity is reversed,
The voltage pulse of +100 V on the primary coil side is output as a voltage pulse of -15 KV on the secondary coil side. The pulse output is applied to the discharge tube 10 as a high voltage negative pulse signal NS via a diode D1, and is also applied to a bleeder resistor R. The discharge current of the main capacitor C1 continues to attenuate even after the voltage of the main capacitor C1 becomes zero due to the back electromotive force due to the inductance of the step-up transformer 26, but finally falls below the holding current specific to the thyristor 25, which is turned off. Transition to and stop. At this time, on the secondary side of the step-up transformer 26, a positive kickback voltage appears due to the stop of the primary side current.
And is not transmitted to the discharge tube 10. Also, as shown in the figure, a flywheel diode D2
Can also quickly control the kickback voltage.

【0015】このような高電圧生成回路20において、
高電圧負パルス信号NSの波高値−Aoは、昇圧トラン
ス26の巻き数比が一定の場合、主キャパシタC1の充
電飽和電圧によって変化する。従って、電圧検出回路2
2の設定電圧を可変とすることで、高電圧負パルス信号
NSの波高値−Aoを容易に変えることができる。又、
出力される高電圧負パルス信号NSのパルス幅τ1は、
主として主キャパシタC1の容量と昇圧トランス26の
インダクタンスとで決まるので、例えばスイッチ24を
オンして補助キャパシタC2を並列に接続することで変
えることができる。更に、高電圧負パルス信号NSの繰
り返し周期(周波数)τ1+τ2は、トリガパルス生成
回路23からのトリガパルスTGのパルス調整により変
えることができる。
In such a high voltage generation circuit 20,
The peak value -Ao of the high-voltage negative pulse signal NS changes depending on the charging saturation voltage of the main capacitor C1 when the turn ratio of the step-up transformer 26 is constant. Therefore, the voltage detection circuit 2
By making the set voltage of 2 variable, the peak value -Ao of the high-voltage negative pulse signal NS can be easily changed. or,
The pulse width τ1 of the output high voltage negative pulse signal NS is
Since it is mainly determined by the capacitance of the main capacitor C1 and the inductance of the step-up transformer 26, it can be changed by, for example, turning on the switch 24 and connecting the auxiliary capacitor C2 in parallel. Further, the repetition period (frequency) τ1 + τ2 of the high-voltage negative pulse signal NS can be changed by adjusting the trigger pulse TG from the trigger pulse generation circuit 23.

【0016】[0016]

【発明の効果】以上述べたように、本発明によれば電気
化学的に簡便にス−パ−オキシドアニオンラジカルを生
成することができ、活性酸素の中のス−パ−オキシドア
ニオンラジカルに関する化学、生化学、医科学的な研究
に極めて大きな寄与となる。又、ス−パ−オキシドアニ
オンラジカルの生成装置としても比較的容易かつ安価に
製作できるので、活性酸素の研究機器として有用なもの
である。
As described above, according to the present invention, a superoxide anion radical can be easily produced electrochemically, and a chemical reaction relating to a superoxide anion radical in active oxygen can be achieved. It will make a great contribution to biochemical and medical research. Further, since it can be manufactured relatively easily and inexpensively as a device for generating a superoxide anion radical, it is useful as a research instrument for active oxygen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するための構成図である。FIG. 1 is a configuration diagram for explaining the principle of the present invention.

【図2】グロ−放電によるMCLAの化学発光を示す図
である。
FIG. 2 is a diagram showing chemiluminescence of MCLA by glow discharge.

【図3】ス−パ−オキシドアニオンラジカルの生成とS
ODによる消去の実験例を示す図である。
FIG. 3 Generation of superoxide anion radical and S
It is a figure showing an example of an experiment of erasure by OD.

【図4】高電圧生成回路の具体的な構成例を示す回路結
線図である。
FIG. 4 is a circuit connection diagram showing a specific configuration example of a high voltage generation circuit.

【符号の説明】[Explanation of symbols]

1 水槽 2 水 10 放電管 11 接地電極 12 放電電極 13 放電部 20 高電圧生成回路 DESCRIPTION OF SYMBOLS 1 Water tank 2 Water 10 Discharge tube 11 Ground electrode 12 Discharge electrode 13 Discharge part 20 High voltage generation circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】混合気体を封入された放電管を水に浸漬
し、前記放電管内の電極に高電圧負パルス信号を印加し
てグロ−放電を誘起させることによってス−パ−オキシ
ドアニオンラジカルを発生させることを特徴とするス−
パ−オキシドアニオンラジカルの生成方法。
A superoxide anion radical is generated by immersing a discharge tube filled with a mixed gas in water and applying a high-voltage negative pulse signal to electrodes in the discharge tube to induce a glow discharge. Smoothness characterized by generating
Method for producing peroxide anion radical.
【請求項2】前記混合気体が窒素とアルゴンの8:2の
混合比であり、前記放電管の圧力が4.2mmHgとな
っている請求項1に記載のス−パ−オキシドアニオンラ
ジカルの生成方法。
2. The superoxide anion radical generation according to claim 1, wherein the mixed gas has a mixture ratio of nitrogen and argon of 8: 2, and the pressure of the discharge tube is 4.2 mmHg. Method.
【請求項3】前記高電圧負パルス信号の波高値が15K
Vで、周波数が100Hzである請求項2に記載のス−
パ−オキシドアニオンラジカルの生成方法。
3. The high voltage negative pulse signal has a peak value of 15K.
3. The switch according to claim 2, wherein the frequency is 100 Hz.
Method for producing peroxide anion radical.
【請求項4】高電圧負パルス信号を生成する高電圧生成
手段と、前記高電圧負パルス信号を印加される電極を有
し、グロ−放電部を水に浸漬された放電管とを具備して
成ることを特徴とするス−パ−オキシドアニオンラジカ
ルの生成装置。
4. A high-voltage generating means for generating a high-voltage negative pulse signal, and a discharge tube having electrodes to which the high-voltage negative pulse signal is applied and having a glow discharge unit immersed in water. An apparatus for producing a superoxide anion radical, comprising:
【請求項5】前記高電圧負パルス信号の波高値、周波数
及びデユ−テイ比が可変であり、前記高電圧負パルス信
号の波高値が15KVに、周波数が100Hzに設定さ
れている請求項4に記載のス−パ−オキシドアニオンラ
ジカルの生成装置。
5. The peak value, frequency and duty ratio of the high voltage negative pulse signal are variable, and the peak value of the high voltage negative pulse signal is set to 15 KV and the frequency is set to 100 Hz. 3. The apparatus for producing a superoxide anion radical according to claim 1.
JP30647096A 1996-11-18 1996-11-18 Method and apparatus for generating superoxide anion radical Expired - Fee Related JP3815830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30647096A JP3815830B2 (en) 1996-11-18 1996-11-18 Method and apparatus for generating superoxide anion radical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30647096A JP3815830B2 (en) 1996-11-18 1996-11-18 Method and apparatus for generating superoxide anion radical

Publications (2)

Publication Number Publication Date
JPH10152306A true JPH10152306A (en) 1998-06-09
JP3815830B2 JP3815830B2 (en) 2006-08-30

Family

ID=17957409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30647096A Expired - Fee Related JP3815830B2 (en) 1996-11-18 1996-11-18 Method and apparatus for generating superoxide anion radical

Country Status (1)

Country Link
JP (1) JP3815830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059045A3 (en) * 2001-01-25 2003-03-27 Water Works Global Inc Device for water activation in an electric non-self-maintained glow discharge
WO2002059046A3 (en) * 2001-01-25 2003-04-10 Water Works Global Inc Method of activation of chemically pure and potable water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059045A3 (en) * 2001-01-25 2003-03-27 Water Works Global Inc Device for water activation in an electric non-self-maintained glow discharge
WO2002059046A3 (en) * 2001-01-25 2003-04-10 Water Works Global Inc Method of activation of chemically pure and potable water

Also Published As

Publication number Publication date
JP3815830B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
Silva et al. Neutron emission from a fast plasma focus of 400 joules
KR940013298A (en) High impedance plasma ion implantation method and apparatus
ATE362773T1 (en) TREATMENT OF BIOLOGICAL MATERIALS CONTAINING LIVING CELLS WITH A PLASMA GENERATED BY A GAS DISCHARGE
AU2933189A (en) Procedure and apparatus for the coating of materials by means of a pulsating plasma beam
WO2010036636A2 (en) Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Gupta et al. The potential of pulsed underwater streamer discharges as a disinfection technique
JPH10152306A (en) Formation of superoxide anion radical and apparatus therefor
KR840000851A (en) Driving method of gas discharge light emitting device
HUP0100351A2 (en) Gas discharge lamp with controllable length of illumination, method of discharge lenght control and aparatus for indicating breaking deceleration
JPH1160208A (en) Deodorizing sterilizer
RU98633U1 (en) PULSE X-RAY GENERATOR
KR100191905B1 (en) Method and apparatus to reduce skin tissue by using high-voltage pulses
SU1705916A1 (en) Method of initiation of spark discharge in mass-spectrometric spark ion source and mass-spectrometric spark source of ions
SU331744A1 (en)
RU2130898C1 (en) Water cleaning method
RU1818297C (en) Method of ozone producing
RU2111284C1 (en) Method of cleaning surface of object (versions)
RU95110091A (en) method and device for controlling chemical-thermal treatment of steels and alloys under glow discharge
SU1249631A1 (en) Fuse x-ray controlled tube
SU884091A1 (en) Pulsed generator of erosion plasma
SU1698911A1 (en) Method of control over gaseous-discharge indicator d c panel
Busco et al. Fluorescein-agarose gel as a tissue model to visualize and measure local CAP-induced acidification
RU1824624C (en) Method of producing electrographic image of objects of planar shape with relief or structural inhomogeneities
JP2004535584A (en) Method for cleavage of caged compound
JP2760743B2 (en) Skin tissue reduction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100616

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110616

LAPS Cancellation because of no payment of annual fees