JPH10151452A - Sterilization method for water by photocatalyst-ultraviolet ray - Google Patents

Sterilization method for water by photocatalyst-ultraviolet ray

Info

Publication number
JPH10151452A
JPH10151452A JP32585596A JP32585596A JPH10151452A JP H10151452 A JPH10151452 A JP H10151452A JP 32585596 A JP32585596 A JP 32585596A JP 32585596 A JP32585596 A JP 32585596A JP H10151452 A JPH10151452 A JP H10151452A
Authority
JP
Japan
Prior art keywords
photocatalyst
water
ultraviolet
oxidation
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32585596A
Other languages
Japanese (ja)
Other versions
JP3474723B2 (en
Inventor
Osamu Miki
理 三木
Nobuyuki Kanemori
伸幸 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32585596A priority Critical patent/JP3474723B2/en
Publication of JPH10151452A publication Critical patent/JPH10151452A/en
Application granted granted Critical
Publication of JP3474723B2 publication Critical patent/JP3474723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To sterilize water such as clean water and sewage effectively using a photocatalyst by controlling the oxidation-reduction potential(ORP) in a treatment tank at a value corresponding to bacteria and viruses to be killed by the quantity of the added photocatalyst. SOLUTION: For example, in the sterilization treatment of colon bacilli in activated sludge treatment water of a sewage treatment plant, while a treatment tank being aerated, a photocatalyst such as titanium dioxide is added to adjust oxidation-reduction potential(ORP) at a prescribed value, and the water is irradiated with ultraviolet rays at prescribed illuminance using a low pressure lamp. Since there exists a correlation between the oxidation-reduction potential(ORP) of the water and the quantity of the added photocatalyst, by controlling the oxidation-reduction potential by the quantity the added photocatalyst, the corresponding illluminance of ultraviolet rays can be determined. The quantity of the photocatalyst to be added and the illuminance of ultraviolet rays can be determined optionally corresponding to the kinds bacteria to be killed, enabling efficient sterilization treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の殺菌および水
中汚濁物の浄化を行うための水処理の技術分野に関する
もので、特に、光触媒と紫外線照射を利用して水中の汚
濁物、菌類を酸化および/または殺菌する光触媒−紫外
線による水の殺菌方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technical field of water treatment for sterilizing water and purifying underwater contaminants, and more particularly to removing contaminants and fungi in water using a photocatalyst and ultraviolet irradiation. The present invention relates to a method of disinfecting water with a photocatalyst-ultraviolet light for oxidation and / or disinfection.

【0002】[0002]

【従来の技術】現在においては、水が種々の産業や家庭
用に幅広く利用されていて、例えば、上水道、食品工業
水、洗浄用水、プール、風呂、クーリングタワー水、魚
類飼育用水等に使用されており、それに伴って使用され
た排水の下水量も増加している。そして、これらの上下
水等の水中には、細菌、ウイルス、藻類等が存在してい
るため、これらを消毒により殺菌及び/又は酸化して無
害化することが行われてきた。
2. Description of the Related Art At present, water is widely used in various industries and households. For example, water is used for water supply, food industry water, washing water, pools, baths, cooling tower water, fish breeding water and the like. As a result, the amount of wastewater used has increased. Since water, such as water and sewage, contains bacteria, viruses, algae, and the like, these have been sterilized and / or oxidized by disinfection to render them harmless.

【0003】水の消毒は、塩素により塩素殺菌すること
が一般に行われているが、塩素消毒には塩素臭やトリハ
ロメタンなどの有機塩化物の塩素殺菌副生成物の問題、
或いは塩素殺菌した下水処理水を河川に放流すると、水
中に残留する塩素、有機塩化物等が河川に生息する魚介
類に悪影響を及ぼすという環境への影響が懸念されてき
ている。
[0003] Disinfection of water is generally performed by chlorine disinfection using chlorine. However, chlorine disinfection involves problems of chlorine odor and chlorine disinfection by-products of organic chlorides such as trihalomethane.
Alternatively, if chlorinated sewage treatment water is discharged into a river, there is a concern that the chlorine and organic chlorides remaining in the water will have an adverse effect on the fish and shellfish living in the river, thereby affecting the environment.

【0004】そこで、塩素殺菌に変わる殺菌方法とし
て、クロラミン、二酸化塩素、臭素またはオゾン等の化
学的消毒剤を使用する殺菌方法が実用化されるようにな
ってきた。
Therefore, as a disinfection method replacing chlorine disinfection, a disinfection method using a chemical disinfectant such as chloramine, chlorine dioxide, bromine or ozone has come into practical use.

【0005】一方、近年、光触媒により汚れや悪臭や殺
菌を行うことができることについての研究結果が「化学
工業」1995年12月号(p9〜13及びp50〜5
4)に報告されている。この報告文中には、代表的な光
触媒である酸化チタンに光照射すると、触媒表面に極め
て大きな酸化力を有するヒドロキシラジカル(OH・)
とスーパーオキサイドイオン(O2-)が生成し、他の方
法では分解しにくい有機塩素化合物等が酸化分解される
こと、また酵母、大腸菌、緑藻等の懸濁液に光触媒であ
る酸化チタン粉末を投入し光照射すると殺菌、殺藻でき
ることが記述されている。
[0005] On the other hand, in recent years, research results on the possibility of carrying out dirt, odor and sterilization by a photocatalyst are described in "Chemical Industry", December 1995 (pp. 9-13 and p. 50-5).
Reported in 4). In this report, when a typical photocatalyst, titanium oxide, is irradiated with light, a hydroxyl radical (OH.) Having extremely large oxidizing power is applied to the catalyst surface.
And superoxide ion (O 2− ) are generated, and oxidative decomposition of organic chlorine compounds that are difficult to decompose by other methods. Also, titanium oxide powder as a photocatalyst is added to a suspension of yeast, Escherichia coli, green algae, etc. It is described that sterilization and algicidal killing can be performed by inputting and irradiating light.

【0006】図1は光触媒による反応を模式的に示した
図である。光触媒による殺菌の原理は、図1に示すよう
に、酸化チタン(TiO2)粒子1に紫外線(hv)が
照射されると、酸化チタンの電子構造中で励起電子(e
-)とこの抜け穴である正孔(h+)が生じる。電子(e
-)は触媒表面に存在する酸素(O2)と反応し、スーパ
ーオキサイドイオン(O2-)を生成する。一方正孔(h
+)は水と反応してヒドロキシラジカル(OH・)を生
成する。ヒドロキシラジカル(OH・)は、強い酸化力
を有していて細菌2の細胞膜の酵素や補酵素を攻撃し破
壊して細菌を死滅させると考えられている。
FIG. 1 is a diagram schematically showing a reaction by a photocatalyst. The principle of the sterilization by the photocatalyst is that, as shown in FIG. 1, when the titanium oxide (TiO 2 ) particles 1 are irradiated with ultraviolet rays (hv), excited electrons (e) are generated in the electronic structure of the titanium oxide.
- ) And holes (h + ) as the through holes are generated. Electronic (e
- ) Reacts with oxygen (O 2 ) present on the catalyst surface to generate superoxide ions (O 2− ). On the other hand, holes (h
+ ) Reacts with water to generate hydroxy radicals (OH.). Hydroxyl radical (OH.) Is considered to have strong oxidizing power and attack and destroy enzymes and coenzymes in the cell membrane of bacteria 2 to kill the bacteria.

【0007】図2は光触媒である酸化チタン粉を懸濁さ
せて大腸菌を殺菌した試験結果を示す図である。純水中
に大腸菌数を105個/mlに調整した大腸菌液をビー
カに入れ、これに酸化チタン粉を懸濁させて、波長36
0nm付近の紫外線を多く含有する蛍光灯の光りを照射
すると、図2に示すように、約60分で生菌数は殆ど無
くなり、殺菌がおこなわれている。しかし、光りを照射
しないと生菌数の減少は少ないことが分かる。
FIG. 2 shows the results of a test in which Escherichia coli was sterilized by suspending titanium oxide powder as a photocatalyst. E. coli solution was adjusted number of E. coli in 10 5 cells / ml in pure water placed in a beaker, and suspended it to titanium oxide powder, wavelength 36
When a fluorescent lamp containing a large amount of ultraviolet light near 0 nm is irradiated, as shown in FIG. 2, the number of viable bacteria almost disappears in about 60 minutes, and sterilization is performed. However, it can be seen that the decrease in the number of viable bacteria is small without irradiation.

【0008】光触媒を利用して殺菌処理する場合の問題
点は、殺菌効率の低いことである。即ち、光触媒に入射
した光エネルギーは、通常数%以下しか殺菌に必要な化
学的エネルギーに変換されず、残りは熱になってしまう
のである。しかも、光触媒である酸化チタンの有効添加
量が不明であり、かつ、流動床で適用しようとすると、
微粒子の光触媒の回収や分離が非常に困難であるという
問題がある。このため、光触媒が実用化されているの
は、タイルの表面に酸化チタンの薄膜を形成して殺菌性
のあるタイルとして利用することや、中空のガラスビー
ズの上に酸化チタンの薄膜を形成して、このガラスビー
ズを水に浮かべて、海上に流出した原油を分解する等の
技術に利用することが知られているが、水の殺菌に光触
媒を利用することは、実用化が困難で未だ実施されてい
ない。
[0008] A problem in sterilizing treatment using a photocatalyst is that sterilization efficiency is low. That is, the light energy incident on the photocatalyst is usually converted to chemical energy necessary for sterilization by only a few percent or less, and the rest becomes heat. In addition, the effective amount of titanium oxide, which is a photocatalyst, is unknown, and if it is intended to be applied in a fluidized bed,
There is a problem that it is very difficult to recover and separate the photocatalyst from the fine particles. For this reason, photocatalysts have been put into practical use by forming a titanium oxide thin film on the tile surface and using it as a bactericidal tile, or by forming a titanium oxide thin film on hollow glass beads. It is known that these glass beads are used for techniques such as floating the water on water to decompose crude oil spilled to the sea.However, the use of photocatalysts for disinfection of water is difficult because of its practical application. Not implemented.

【0009】また、化学的消毒剤を使用しない水の殺菌
方法として近年実用化されるようななってきたのは、紫
外線による殺菌方法である。化学的消毒剤を使用しない
紫外線消毒の長所は装置が比較的単純であり、残留物質
が存在しないこと、また副生成物が生成しにくいことで
ある。そのため塩素消毒の様に水中に塩素の残留がない
ので処理水を直接河川に放流しても河川に生息する魚介
類に何ら影響を与えないものである。そして、紫外線殺
菌は、大腸菌、一般細菌、カビ、酵母、ウイルス等に有
効で紫外線照射量が設計値以上になっても化学的消毒剤
とは異なり過剰注入の問題も生じなく、運転管理が容易
であるという長所もある。
[0009] In recent years, a method of disinfecting water without using a chemical disinfectant, which has been put to practical use in recent years, is a disinfection method using ultraviolet rays. The advantages of UV disinfection without the use of a chemical disinfectant are the relatively simple equipment, the absence of residual substances and the difficulty of producing by-products. Therefore, since chlorine does not remain in water as in the case of chlorination, even if the treated water is directly discharged into a river, the fish and shellfish living in the river are not affected at all. UV sterilization is effective against Escherichia coli, general bacteria, mold, yeast, viruses, etc., and unlike the chemical disinfectant, even if the UV irradiation dose exceeds the design value, there is no problem of excessive injection, and operation management is easy. There is also an advantage that it is.

【0010】紫外線殺菌の原理は、紫外線が100〜3
80nm(ナノメータ)の波長を持つ光の一種であり、
この中でも253.7nmの波長が細菌、ウイルス、藻
類等のDNA(デオキシリボ核酸)に最も吸収され易
く、吸収された紫外線が生命維持と遺伝情報の伝達に必
要なDNAに障害を与え、再生を妨害し死滅させると考
えられている。
[0010] The principle of ultraviolet sterilization is that ultraviolet rays are 100 to 3
It is a kind of light having a wavelength of 80 nm (nanometer),
Among them, the wavelength of 253.7 nm is most easily absorbed by DNA (deoxyribonucleic acid) of bacteria, viruses, algae, etc., and the absorbed ultraviolet rays impair the DNA necessary for maintaining life and transmitting genetic information, thereby hindering regeneration. It is believed to kill.

【0011】しかしながら、紫外線殺菌を有効に活用す
るためには、種々の検討課題が存在している。例えば、
水中に紫外線吸収物質や汚濁物が存在すると紫外線の照
射効率が悪くなり、病原微生物等に紫外線が届かなくな
る欠点があること。
[0011] However, there are various issues to be studied in order to effectively utilize ultraviolet sterilization. For example,
When ultraviolet absorbing substances or contaminants are present in water, the irradiation efficiency of ultraviolet rays is deteriorated, and there is a drawback that ultraviolet rays cannot reach pathogenic microorganisms.

【0012】紫外線損傷を与えた病原微生物等に310
〜490nmの可視光線や近紫外光線が照射されると、
病原微生物等は光回復酵素の作用による光回復能力によ
りその損傷が回復するという欠点があること。即ち、図
3に示すように紫外線照射によって殺菌された大腸菌
は、可視光線によって光回復する。この光回復現象はよ
く知られていて、紫外線殺菌による消毒後の放流水は太
陽光にさらされると一部の菌が光回復することが考えら
れる。また、紫外線ランプを保護している石英管の汚水
接触面に形成される汚れによって紫外線照射が妨げられ
る欠点がある。即ち、汚れとしてはマグネシュウムやカ
ルシュウムが主となる無機係のものと、油を主因とする
有機系のものとがある。
It is 310 for pathogenic microorganisms etc.
When irradiated with visible light or near ultraviolet light of ~ 490 nm,
Pathogenic microorganisms have the disadvantage that the damage is recovered by the light recovery ability by the action of the light recovery enzyme. That is, as shown in FIG. 3, Escherichia coli sterilized by ultraviolet irradiation recovers light by visible light. This light recovery phenomenon is well known, and it is considered that some bacteria recover light when exposed to sunlight in the discharged water after disinfection by ultraviolet sterilization. Further, there is a drawback that ultraviolet irradiation is hindered by dirt formed on the sewage contact surface of the quartz tube protecting the ultraviolet lamp. That is, there are inorganic stains mainly composed of magnesium and calcium, and organic stains mainly composed of oil.

【0013】これらの種々の課題を解決することにより
紫外線殺菌は効果的に使用することができるようになる
ものと考えられる。
It is considered that by solving these various problems, ultraviolet sterilization can be used effectively.

【0014】[0014]

【発明が解決しようとする課題】そこで、本発明は、処
理水中に塩素やトリハロメタン等の副生成物が存在しな
い殺菌方法として、光触媒を利用して上下水等の水の殺
菌を効果的に行うことができる殺菌方法を提供すること
を課題とするものである。
Accordingly, the present invention provides a method of disinfecting water such as water and sewage using a photocatalyst as a disinfection method in which by-products such as chlorine and trihalomethane do not exist in treated water. It is an object of the present invention to provide a sterilization method capable of performing such a method.

【0015】[0015]

【課題を解決するための手段】本発明者は、光触媒を使
用して効果的に殺菌を行うためには、光触媒に光エネル
ギーとしての可視光線に代えて紫外線を照射することが
重要であり、そして、水処理槽内の酸化還元電位(OR
P)は光触媒の添加量によって変化し、酸化還元電位
(ORP)の値に応じて各種菌を殺菌するに必要な紫外
線照度(μW・S/cm2)が決定できることを見いだ
した。更に、水処理槽内の酸化還元電位(ORP)の値
を制御することにより、各種菌を殺菌するのに必要な紫
外線照射時間を短縮でき、かつ、紫外線殺菌の欠点であ
る光回復の現象を防止できることを知見して本発明の光
触媒−紫外線による水の殺菌方法を完成した。
In order to effectively sterilize using the photocatalyst, it is important that the photocatalyst be irradiated with ultraviolet rays instead of visible light as light energy. Then, the oxidation-reduction potential (OR
P) varies depending on the amount of the photocatalyst added, and it has been found that the ultraviolet irradiance (μW · S / cm 2 ) necessary for sterilizing various bacteria can be determined according to the value of the oxidation-reduction potential (ORP). Further, by controlling the value of the oxidation-reduction potential (ORP) in the water treatment tank, it is possible to shorten the ultraviolet irradiation time required for sterilizing various bacteria, and to reduce the phenomenon of light recovery, which is a disadvantage of ultraviolet sterilization. Knowing that it can be prevented, the present inventors completed the method for sterilizing water with photocatalyst-ultraviolet light of the present invention.

【0016】本発明の要旨は、以下のとおりである。The gist of the present invention is as follows.

【0017】(1)水処理槽内に光触媒粒子を存在させ
て紫外線を照射することにより、処理水中の汚濁物、菌
類等を酸化および/または殺菌する水の殺菌方法におい
て、光触媒の添加量によって処理槽内の酸化還元電位
(ORP)を殺菌対象の細菌、ウイルスに対応した値に
制御することを特徴とする光触媒−紫外線による水の殺
菌方法。
(1) In a water disinfection method for oxidizing and / or disinfecting pollutants, fungi and the like in treated water by irradiating ultraviolet rays with photocatalyst particles present in the water treatment tank, the amount of the photocatalyst depends on the amount of photocatalyst added. A method for disinfecting water with a photocatalyst-ultraviolet light, wherein an oxidation-reduction potential (ORP) in a treatment tank is controlled to a value corresponding to bacteria and viruses to be disinfected.

【0018】(2)処理槽内の酸化還元電位(ORP)
を殺菌対象の細菌の光回復現象を防止できる値に制御す
ることを特徴とする上記1に記載の光触媒−紫外線によ
る水の殺菌方法。
(2) Oxidation-reduction potential (ORP) in the processing tank
3. The method for sterilizing water with a photocatalyst-ultraviolet ray as described in 1 above, wherein the value is controlled to a value that can prevent the light recovery phenomenon of the bacteria to be sterilized.

【0019】(3)光触媒粒子が多孔質粒子であること
を特徴とする上記1又は2に記載の光触媒−紫外線によ
る水の殺菌方法。
(3) The method for sterilizing water with photocatalyst-ultraviolet light as described in (1) or (2) above, wherein the photocatalyst particles are porous particles.

【0020】(4)光触媒粒子がガラス等の基体の表面
を光触媒で被覆した粒子であることを特徴とする上記1
又は2に記載の光触媒−紫外線による水の殺菌方法。
(4) The photocatalyst particles described above, wherein the surface of a substrate such as glass is coated with a photocatalyst.
Or a method for disinfecting water with a photocatalyst-ultraviolet light according to 2.

【0021】(5)処理槽内をエアレーションすること
を特徴とする上記1ないし4のいずれかに記載の光触媒
−紫外線による水の殺菌方法。
(5) The method for sterilizing water with photocatalyst-ultraviolet light as described in any one of (1) to (4) above, wherein the inside of the treatment tank is aerated.

【0022】[0022]

【発明の実施の形態】本発明で使用する光触媒活性を有
する物質としては、酸化チタン等の半導体材料が使用で
き、酸化チタンは正方晶系に属するルチル型、アナター
ゼ型と斜方晶系のブルッカイト型の3種類の結晶型が存
在するが、その内で特にアナターゼ型チタニア(TiO
2)は光活性が高く、殺菌効果も高いので好ましいが、
他の半導体材料も使用することができる。例えば、酸化
チタンに匹敵する光活性を有する物質としては、チタン
酸ストロンチュウム(SrTiO3)やニオブ酸カリウ
ム(K4NbO17)等がある。その他、硫化カドミウム
(CdS)、タンタル酸カリウム(K TaO3)、酸化
ニオブ(Nb25)や酸化亜鉛(ZnO)等が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalytic activity used in the present invention is
Semiconductor materials such as titanium oxide
Titanium oxide is a rutile type belonging to tetragonal system, anatase
There are three types of crystals, zeite and orthorhombic brookite
Among them, in particular, anatase-type titania (TiO 2)
Two) Is preferred because of its high photoactivity and high bactericidal effect.
Other semiconductor materials can be used. For example, oxidation
As a substance having photoactivity comparable to titanium, titanium
Strontium acid (SrTiOThree) And potassium niobate
(KFourNbO17). Other cadmium sulfide
(CdS), potassium tantalate (K TaOThree), Oxidation
Niobium (NbTwoOFive) And zinc oxide (ZnO).
You.

【0023】処理水中に光触媒を添加した処理水と、光
触媒を添加しない処理水に紫外線を照射して大腸菌殺菌
効果の比較実験を行った。
Ultraviolet rays were irradiated to treated water in which a photocatalyst was added to treated water and treated water to which no photocatalyst was added, and a comparative experiment was conducted on the E. coli bactericidal effect.

【0024】処理水としては、下水処理場の活性汚泥処
理水を対象とした。処理水中には2×104個/mlの
大腸菌数が存在していたが、これに中圧紫外線ランプを
用いて紫外線の照射強度を変化させ、光触媒として二酸
化チタン0.5g/l添加の場合と無添加の場合の処理
水に紫外線照射し、大腸菌の生存残存率を測定した。な
お、紫外線照射中には、エアレーションを行い水中の活
性酸素は2mg/lであった。その結果を図4に示す。
図4に示すように、同一照射強度(mW・S/cm2
では、光触媒無添加の場合(○印)よりも光触媒を添加
した本発明に係わる光触媒−紫外線法(▲印)の方が大
幅に殺菌効果が高いことが分かる。このことは、本発明
の光触媒−紫外線法は、光触媒無添加の紫外線法に比較
して大腸菌を殺菌するに必要な紫外線照射量を30〜4
0%削減できることを意味している。
As the treated water, activated sludge treated water at a sewage treatment plant was used. Escherichia coli number of 2 × 10 4 cells / ml was present in the treated water, and the irradiation intensity of ultraviolet rays was changed using a medium-pressure ultraviolet lamp, and 0.5 g / l of titanium dioxide was added as a photocatalyst. The treated water in the case of no addition was irradiated with ultraviolet rays to measure the survival rate of Escherichia coli. During ultraviolet irradiation, aeration was performed and the amount of active oxygen in water was 2 mg / l. FIG. 4 shows the results.
As shown in FIG. 4, the same irradiation intensity (mW · S / cm 2 )
It can be seen that the germicidal effect of the photocatalyst-ultraviolet method (marked with ▲) according to the present invention, in which the photocatalyst was added, was significantly higher than the case without the photocatalyst (marked with ○). This means that the photocatalyst-ultraviolet method according to the present invention requires 30 to 4 times less ultraviolet light to sterilize Escherichia coli than the ultraviolet method without a photocatalyst.
This means that it can be reduced by 0%.

【0025】このように、大腸菌を殺菌するに必要な紫
外線照射量を減少、即ち、紫外線照射時間を短縮できる
原因について究明したところ、処理水中に光触媒を添加
したことによる酸化還元電位(ORP)の上昇に基づく
ものであって、光触媒の添加量によって処理水の酸化還
元電位(ORP)を制御すれば、各種の菌を殺菌するに
必要な紫外線照度(μW・S/cm2)が決定できるこ
とを見出した。
As described above, when the amount of ultraviolet radiation necessary for sterilizing Escherichia coli was reduced, that is, the reason for shortening the ultraviolet radiation time was investigated, the oxidation-reduction potential (ORP) caused by adding a photocatalyst to the treated water was determined. It is based on the rise, and if the oxidation-reduction potential (ORP) of the treated water is controlled by the amount of the photocatalyst added, the ultraviolet irradiance (μW · S / cm 2 ) necessary for sterilizing various bacteria can be determined. I found it.

【0026】そこで、処理槽内の酸化還元電位(OR
P)の変化を水中にアナターゼ型チタニア粒子を光触媒
粒子として添加して調査した。その結果、アナターゼ型
チタニア粒子の無添加の場合は+100mV(Ag/A
gCl)であったが、アナターゼ型チタニア粒子の添加
量に応じて酸化還元電位は上昇し、約0.5g/lの添
加で+250〜+300mVに上昇していた。
Therefore, the oxidation-reduction potential (OR
The change in P) was investigated by adding anatase-type titania particles to water as photocatalytic particles. As a result, in the case where no anatase type titania particles were added, +100 mV (Ag / A
gCl), but the oxidation-reduction potential increased in accordance with the amount of the added anatase-type titania particles, and increased to +250 to +300 mV when about 0.5 g / l was added.

【0027】このように、処理水中の酸化還元電位(O
RP)は、光触媒の添加量と相関関係があるので、光触
媒の添加量によって酸化還元電位を制御すれば、それに
応じた紫外線照度(μW・S/cm2)が決定できるこ
とが分かる。このため、本発明によれば、光触媒の添加
量および紫外線照度を殺菌すべき各種菌に応じて任意に
決定できるので、効率良く殺菌処理をすることができ
る。
As described above, the oxidation-reduction potential (O
Since (RP) is correlated with the amount of photocatalyst added, it can be seen that if the oxidation-reduction potential is controlled by the amount of photocatalyst added, the ultraviolet irradiance (μW · S / cm 2 ) can be determined accordingly. Therefore, according to the present invention, the amount of the photocatalyst to be added and the ultraviolet illuminance can be arbitrarily determined according to various bacteria to be sterilized, so that the sterilization can be performed efficiently.

【0028】また、処理水中に添加する光触媒として
は、光触媒粒子、或は、光触媒粒子を造粒して焼結した
多孔性粒子、並びに石英ガラスやガラス等の基体の表面
に光触媒を被覆した被覆粒子を使用することができる。
石英ガラスは紫外線を通過するため最も望ましい。光触
媒の被覆方法としては、CVD法等によって行うことが
できる。この多孔性粒子や被覆粒子を使用すれば、光触
媒微粒子を使用するのに比較して分離、回収作業が容易
になる利点がある。
The photocatalyst to be added to the treated water includes photocatalyst particles, porous particles obtained by granulating and sintering photocatalyst particles, and a coating in which the surface of a substrate such as quartz glass or glass is coated with the photocatalyst. Particles can be used.
Quartz glass is most desirable because it transmits ultraviolet light. The photocatalyst can be coated by a CVD method or the like. The use of the porous particles and the coated particles has an advantage that the separation and recovery operations are easier than using the photocatalyst fine particles.

【0029】本発明の光触媒−紫外線法による水の殺菌
処理中に水処理槽内をエアレーションすると、水処理槽
内の溶存酸素(DO)が増加し、かつ光触媒粒子と処理
水との接触が良好となるので、殺菌効率を一層向上させ
ることが可能となる。
When the inside of the water treatment tank is aerated during the sterilization treatment of water by the photocatalyst-ultraviolet method of the present invention, the dissolved oxygen (DO) in the water treatment tank increases, and the contact between the photocatalyst particles and the treated water is good. Therefore, it is possible to further improve the sterilization efficiency.

【0030】次いで、本発明の光触媒−紫外線法によっ
て水中の大腸菌を殺菌した場合の大腸菌の光回復の影響
についての実験を行った。
Next, an experiment was conducted on the effect of light recovery of Escherichia coli when sterilizing Escherichia coli in water by the photocatalyst-ultraviolet method of the present invention.

【0031】実験条件としては、99%の大腸菌の殺菌
処理をするために、光触媒無添加の場合には低圧ランプ
を用いて紫外線照度7.0mW・S/cm2の紫外線照
射を行い、本発明に係わる光触媒−紫外線法では、エア
レーションを行いながら酸化還元電位(ORP)が+2
50mV以上になるように光触媒を添加し、低圧ランプ
を用いて紫外線照度4.5mW・S/cm2の紫外線照
射を行った。この殺菌処理を行った処理水に可視光線を
180分照射し、その間の光回復の影響を殺菌率を調査
することにより行った。その結果を図5に示す。図5に
示すように、光触媒無添加の紫外線法(従来法)では光
回復現象が生じたが(図中の○)、光触媒を添加した本
発明の光触媒−紫外線法では光回復現象は見られなかっ
た(図中の●)。
As the experimental conditions, in order to sterilize 99% of Escherichia coli, in the case where no photocatalyst was added, a low-pressure lamp was used to irradiate an ultraviolet ray with an ultraviolet illuminance of 7.0 mW · S / cm 2. In the photocatalyst-ultraviolet method according to the above, the oxidation-reduction potential (ORP) is increased by +2 while performing aeration.
A photocatalyst was added so as to have a voltage of 50 mV or more, and ultraviolet irradiation with an ultraviolet illuminance of 4.5 mW · S / cm 2 was performed using a low-pressure lamp. The treated water subjected to the sterilization treatment was irradiated with visible light for 180 minutes, and the effect of light recovery during that time was examined by examining the sterilization rate. The result is shown in FIG. As shown in FIG. 5, a photorecovery phenomenon occurred in the ultraviolet method without the addition of a photocatalyst (conventional method) (circle in the figure), but a photorecovery phenomenon was observed in the photocatalyst-ultraviolet method of the present invention in which a photocatalyst was added. None (● in the figure).

【0032】このように、従来の紫外線法では防止する
ことが困難であった光回復現象を、本発明の光触媒−紫
外線法では効果的に防止することができ殺菌処理の効率
が著しく向上した。
As described above, the light recovery phenomenon, which was difficult to be prevented by the conventional ultraviolet method, can be effectively prevented by the photocatalyst-ultraviolet method of the present invention, and the efficiency of the sterilization treatment has been remarkably improved.

【0033】[0033]

【実施例】本発明の実施例について説明する。An embodiment of the present invention will be described.

【0034】処理水中に大腸菌、酵母及びバクテリオフ
ァ−ジをそれぞれ含む3種類の容器を準備した。殺菌処
理すべき処理水の酸化還元電位(ORP)を処理水中に
酸化チタンの光触媒粒子を添加することにより、それぞ
れORP=150〜200mV、ORP=200〜30
0mV、ORP=300〜400mVの3種類の酸化還
元電位に制御した。次いで、低圧紫外線ランプを用いて
容器中の処理水に紫外線を照射した。各種菌を殺菌(た
だし、殺菌率99%)するに必要な紫外線照度(μW・
S/cm2)を決定した。その結果は次の表1の通りで
あった。
Three types of containers each containing Escherichia coli, yeast and bacteriophage in the treated water were prepared. The oxidation-reduction potential (ORP) of the treated water to be sterilized is determined by adding titanium oxide photocatalyst particles to the treated water, whereby ORP = 150 to 200 mV and ORP = 200 to 30 respectively.
0 mV and ORP = 300 to 400 mV were controlled to three kinds of oxidation-reduction potentials. Next, the treated water in the container was irradiated with ultraviolet rays using a low-pressure ultraviolet lamp. UV illuminance (μW ·) required to sterilize various bacteria (but sterilization rate 99%)
S / cm 2 ). The results are as shown in Table 1 below.

【0035】[0035]

【表1】 表1に示すように、酸化還元電位の値に応じて各種菌を
殺菌するに必要な紫外線照度は変化し、酸化還元電位が
高くなれば紫外線照度を低くすることが可能となる。そ
して、特定の菌を殺菌するためには、酸化還元電位を特
定値に制御し、その酸化還元電位に対応する紫外線照度
を選択して紫外線照射すれば、目的とする菌の殺菌が可
能となる。このため、本発明の光触媒−紫外線法によれ
ば、各種菌を殺菌するための光触媒の添加量及び紫外線
の照射量を容易に決定することができることになる。し
かも、光触媒粒子を添加しない従来の紫外線法に比較し
て、光触媒を添加した本発明の光触媒−紫外線法は紫外
線照度を大幅に低下させることができる。
[Table 1] As shown in Table 1, the ultraviolet illuminance required for sterilizing various bacteria changes according to the value of the oxidation-reduction potential, and the higher the oxidation-reduction potential, the lower the ultraviolet illuminance. Then, in order to sterilize a specific bacterium, the oxidation-reduction potential is controlled to a specific value, and if the ultraviolet irradiance corresponding to the oxidation-reduction potential is selected and irradiated with ultraviolet light, the intended bacterium can be sterilized. . For this reason, according to the photocatalyst-ultraviolet method of the present invention, it is possible to easily determine the amount of the photocatalyst to be added for sterilizing various bacteria and the amount of the ultraviolet irradiation. In addition, the photocatalyst-ultraviolet method of the present invention to which a photocatalyst is added can significantly reduce the ultraviolet illuminance as compared with the conventional ultraviolet method without adding the photocatalyst particles.

【0036】[0036]

【発明の効果】本発明によれば、光触媒の添加量によっ
て処理水の酸化還元電位(ORP)を制御し、かつ、酸
化還元電位(ORP)の値に基づいて紫外線照度(μW
・S/cm2)を決定するものであるから、光触媒の添
加量及び紫外線照度を各種の殺菌すべき菌の種類に応じ
て適正な値に容易に決定することができ、効率的な殺菌
処理を行うことが可能となる。しかも、光触媒を使用す
るため、従来の紫外線法よりも紫外線照射量を減少させ
て殺菌することが可能となり、また、紫外線法の欠点で
あった光回復現象をも防止することができる。
According to the present invention, the oxidation-reduction potential (ORP) of treated water is controlled by the amount of photocatalyst added, and the ultraviolet illuminance (μW) is determined based on the value of the oxidation-reduction potential (ORP).
S / cm 2 ), so that the amount of the photocatalyst to be added and the UV illuminance can be easily determined to be appropriate values according to various kinds of bacteria to be sterilized, and efficient sterilization treatment Can be performed. In addition, since a photocatalyst is used, sterilization can be performed with a smaller amount of ultraviolet irradiation than in the conventional ultraviolet method, and the light recovery phenomenon, which is a disadvantage of the ultraviolet method, can be prevented.

【0037】また、光触媒単独では、殺菌効率の低さか
ら水の消毒に適用することは実用的でなかったが、本発
明によれば紫外線に耐性が強い細菌、ウイルスなどの殺
菌を行うことができるという光触媒の殺菌現象を十分に
発揮させることができ、高い殺菌効率が得られる。
Although the photocatalyst alone was not practically applicable to disinfection of water because of its low sterilization efficiency, according to the present invention, it is possible to sterilize bacteria, viruses and the like which are resistant to ultraviolet rays. Therefore, the sterilization phenomenon of the photocatalyst can be sufficiently exhibited, and high sterilization efficiency can be obtained.

【0038】なお、紫外線照射量を増やさずに、ORP
を所定の値以上に制御するためには、光触媒の添加量を
増やす他に以下の方策が考えられる。
It should be noted that, without increasing the amount of ultraviolet irradiation, the ORP
Can be controlled to a predetermined value or more, in addition to increasing the amount of the photocatalyst, the following measures can be considered.

【0039】(1)エアレーションを空気では無く、酸
素又は酸素富化空気を用いて、酸素濃度または酸素供給
量の制御により、ORPを上昇させる。
(1) ORP is increased by controlling oxygen concentration or oxygen supply amount using oxygen or oxygen-enriched air instead of air for aeration.

【0040】(2)エアレーションを空気では無く、オ
ゾン(O3)を用いて、供給量または供給濃度の制御に
より、ORPを上昇させる。
(2) ORP is increased by controlling supply amount or supply concentration using ozone (O 3 ) instead of air for aeration.

【0041】(3)過酸化水素(H22)などの化学酸
化剤の添加濃度、添加量の制御によってORPを上昇さ
せる。
(3) The ORP is increased by controlling the concentration and amount of the chemical oxidizing agent such as hydrogen peroxide (H 2 O 2 ).

【0042】いずれの方法もOH・の生成を促し、OR
Pが上昇し、殺菌効果が高まる。しかし、設備費、ラン
ニングコストが上昇する課題がある。
Both methods promote the generation of OH.
P increases and the bactericidal effect increases. However, there is a problem that equipment costs and running costs increase.

【0043】光触媒の多孔質粒子や光触媒被覆粒子の添
加量の制御によるORPの制御は、初期投入だけで解決
できるので、ランニングコストが最も安く、また処理性
能も安定しているため最も望ましい方策である。
The control of ORP by controlling the amount of photocatalyst porous particles or photocatalyst-coated particles can be solved only by initial charging, so that the running cost is the lowest and the processing performance is stable. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 光触媒による反応を模式的に示した図であ
る。
FIG. 1 is a diagram schematically showing a reaction by a photocatalyst.

【図2】 光触媒である酸化チタン粉を懸濁させて大腸
菌を殺菌した試験結果を示す図である。
FIG. 2 is a view showing test results obtained by suspending titanium oxide powder as a photocatalyst and sterilizing Escherichia coli.

【図3】 紫外線照射直後の大腸菌生存率と最大回復値
を示す図である。
FIG. 3 is a graph showing the E. coli survival rate and the maximum recovery value immediately after ultraviolet irradiation.

【図4】 光触媒を添加した場合の殺菌効果を示す図で
ある。
FIG. 4 is a view showing a sterilizing effect when a photocatalyst is added.

【図5】 本発明による光回復現象の影響を示す図であ
る。
FIG. 5 is a diagram showing the effect of the light recovery phenomenon according to the present invention.

【符号の説明】[Explanation of symbols]

1 TiO2粒子 2 細菌1 TiO 2 particles 2 bacteria

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水処理槽内に光触媒粒子を存在させて紫
外線を照射することにより、処理水中の汚濁物、菌類等
を酸化および/または殺菌する水の殺菌方法において、
光触媒の添加量によって処理槽内の酸化還元電位(OR
P)を殺菌対象の細菌、ウイルスに対応した値に制御す
ることを特徴とする光触媒−紫外線による水の殺菌方
法。
1. A method of disinfecting water for oxidizing and / or disinfecting pollutants, fungi and the like in treated water by irradiating ultraviolet rays with photocatalytic particles present in a water treatment tank,
The redox potential (OR
A method for disinfecting water by photocatalyst-ultraviolet light, wherein P) is controlled to a value corresponding to bacteria and viruses to be disinfected.
【請求項2】 処理槽内の酸化還元電位(ORP)を殺
菌対象の細菌の光回復現象を防止できる値に制御するこ
とを特徴とする請求項1に記載の光触媒−紫外線による
水の殺菌方法。
2. The method for sterilizing water with a photocatalyst and ultraviolet rays according to claim 1, wherein the oxidation-reduction potential (ORP) in the treatment tank is controlled to a value that can prevent the light recovery phenomenon of the bacteria to be sterilized. .
【請求項3】 光触媒粒子が多孔質粒子であることを特
徴とする請求項1又は2に記載の光触媒−紫外線による
水の殺菌方法。
3. The method according to claim 1, wherein the photocatalyst particles are porous particles.
【請求項4】 光触媒粒子がガラス等の基体の表面を光
触媒で被覆した粒子であることを特徴とする請求項1又
は2に記載の光触媒−紫外線による水の殺菌方法。
4. The method for sterilizing water with photocatalyst-ultraviolet light according to claim 1, wherein the photocatalyst particles are particles obtained by coating the surface of a substrate such as glass with a photocatalyst.
【請求項5】 処理槽内をエアレーションすることを特
徴とする請求項1ないし4のいずれかに記載の光触媒−
紫外線による水の殺菌方法。
5. The photocatalyst according to claim 1, wherein the inside of the processing tank is aerated.
Disinfection method of water by ultraviolet rays.
JP32585596A 1996-11-22 1996-11-22 Photocatalyst-method of sterilizing water with ultraviolet light Expired - Fee Related JP3474723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32585596A JP3474723B2 (en) 1996-11-22 1996-11-22 Photocatalyst-method of sterilizing water with ultraviolet light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32585596A JP3474723B2 (en) 1996-11-22 1996-11-22 Photocatalyst-method of sterilizing water with ultraviolet light

Publications (2)

Publication Number Publication Date
JPH10151452A true JPH10151452A (en) 1998-06-09
JP3474723B2 JP3474723B2 (en) 2003-12-08

Family

ID=18181380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32585596A Expired - Fee Related JP3474723B2 (en) 1996-11-22 1996-11-22 Photocatalyst-method of sterilizing water with ultraviolet light

Country Status (1)

Country Link
JP (1) JP3474723B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359301A (en) * 2000-02-21 2001-08-22 Nakajima Suisan Co Ltd Photocatalytic treatment of water
WO2015088043A1 (en) * 2013-12-12 2015-06-18 山田光男 Water modification unit, modification system and modification method
CN111634973A (en) * 2020-07-07 2020-09-08 广西碧福环保工程有限公司 Water power generation's nanometer electro-optic catalytic sterilizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359301A (en) * 2000-02-21 2001-08-22 Nakajima Suisan Co Ltd Photocatalytic treatment of water
WO2015088043A1 (en) * 2013-12-12 2015-06-18 山田光男 Water modification unit, modification system and modification method
JPWO2015088043A1 (en) * 2013-12-12 2017-03-16 山田 光男 Water reforming unit, reforming system and reforming method
CN111634973A (en) * 2020-07-07 2020-09-08 广西碧福环保工程有限公司 Water power generation's nanometer electro-optic catalytic sterilizer

Also Published As

Publication number Publication date
JP3474723B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
García-Espinoza et al. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review
Bekbölet et al. Inactivation of Escherichia coli by photocatalytic oxidation
Butterfield et al. Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement
Zhang et al. Inorganic materials for photocatalytic water disinfection
Lydakis-Simantiris et al. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis
Paleologou et al. Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation
Somani et al. Alternative approach to chlorination for disinfection of drinking water an overview
JP2004143519A (en) Water treatment method and water treatment device
CN108423745A (en) The method for treating water of microorganism and organic pollution in water removal is removed in a kind of sunlight and chlorine combination
Dillert et al. Photocatalytic disinfection of municipal wastewater
US5932111A (en) Photoelectrochemical reactor
Srivastava et al. Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation
US20050218084A1 (en) Enhanced photocatalytic system
Drosou et al. Peracetic acid‐enhanced photocatalytic and sonophotocatalytic inactivation of E. coli in aqueous suspensions
Kuliesiene et al. TiO2 application for the photocatalytical inactivation of S. enterica, E. coli and M. luteus bacteria mixtures
Belapurkar et al. Disinfection of drinking water using photocatalytic technique
Daneshvar et al. Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
Yin et al. Technologies for bHRPs and risk control
JP2001259620A (en) Water treating device by semiconductor photocatalyst using microwave and uv ray jointly
JP3474723B2 (en) Photocatalyst-method of sterilizing water with ultraviolet light
CN105836841A (en) Wastewater treatment equipment
JPH10151453A (en) Ultraviolet irradiation water-treatment apparatus, ultraviolet lamp, and manufacture thereof
CN212387766U (en) Water power generation's nanometer electro-optic catalytic sterilizer
KR101036834B1 (en) Electrolytic Cell for purifying water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees