JPH10151321A - Method for thermally decomposing cfc or the like and device therefor - Google Patents

Method for thermally decomposing cfc or the like and device therefor

Info

Publication number
JPH10151321A
JPH10151321A JP8329109A JP32910996A JPH10151321A JP H10151321 A JPH10151321 A JP H10151321A JP 8329109 A JP8329109 A JP 8329109A JP 32910996 A JP32910996 A JP 32910996A JP H10151321 A JPH10151321 A JP H10151321A
Authority
JP
Japan
Prior art keywords
decomposition
chamber
cfc
compression
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8329109A
Other languages
Japanese (ja)
Inventor
Masuo Torinami
益男 鳥波
Masanori Goto
正徳 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8329109A priority Critical patent/JPH10151321A/en
Publication of JPH10151321A publication Critical patent/JPH10151321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely decomposed a CFC or the like even in the case of keeping a high temp. only for a short time by using a compression section of a displacement type compressor as a decomposition section, feeding the CFC or the like and an auxiliary material in the decomposition section and adiabatically compressing the CFC or the like to increase the temp. once to the decomposition temp. to cause the exothermic reaction of the CFC by the adiabatic compression. SOLUTION: In the operation of a decomposing device 10, an air stop valve 32a is opened at first, warming-up and oiling are started by driving a driving means 17 and after that, the air stop valve 32a is closed, the recovered CFC and the auxiliary material are fed to the compression section 12 with a CFC stop valve 18a and an auxiliary material stop valve 19b opened. And the CFC and the auxiliary material are mixed with each other in the ascending process of a piston 11b and simultaneously the temp. is increased by the adiabatic compression. As a result, the decomposition reaction of the CFC and the synthetic reaction with the auxiliary material are performed. When the piston 11b shifts to the descending process, the gas in the compression section 12 is adiabatically expanded to decrease the temp. to the normal temp. and discharged to an exhaust passage 13. The decomposition gas in the waste gas is neutralized the contact with a neutralizing material at the time of passing through a neutralizing case 13a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は冷媒たるフロン、消火
材たるハロン、あるいは化学兵器の一種であるイペリッ
トガスなど塩化物を含む有害物質(以下、単にフロンな
どという)を熱分解するための装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for thermally decomposing harmful substances containing chlorides (hereinafter referred to simply as chlorofluorocarbon) such as chlorofluorocarbon refrigerant, halon fire extinguishing material, or iperito gas which is a kind of chemical weapon. It is about.

【0002】[0002]

【従来の技術】フロンなどは直接間接に人体へ害を及ぼ
すので使用後に回収されたフロン(以下回収フロンとい
う)は廃棄に先立って分解する必要がある。ところがフ
ロンなどは化学的に安定で分解が難しいので、高温に加
熱して分解させる熱分解法が提案されている。熱分解法
はフロンなどを800℃以上に加熱して分解させ、その
ガス(以下、分解ガスという)の一部を補助材と反応さ
せて可逆反応しないようにするものである。具体的には
廃棄物焼却炉を用いる焼却炉法、あるいはガスバーナを
使用する液中燃焼法などがあり、実験段階では、セメン
ト焼成用のキルンを転用するキルン法、プラズマや火薬
などの高熱、高エネルギーによって分解する法などが試
されている。
2. Description of the Related Art Freon and the like directly and indirectly harm the human body, so that Freon recovered after use (hereinafter referred to as "recovered Freon") must be decomposed prior to disposal. However, since fluorocarbons and the like are chemically stable and difficult to decompose, a thermal decomposition method of decomposing by heating to a high temperature has been proposed. In the thermal decomposition method, chlorofluorocarbon or the like is heated to 800 ° C. or higher to decompose it, and a part of the gas (hereinafter referred to as a “decomposed gas”) reacts with an auxiliary material to prevent reversible reaction. Specifically, there are the incinerator method using a waste incinerator and the submerged combustion method using a gas burner.At the experimental stage, the kiln method in which a kiln for sintering cement is diverted, and high heat and high temperatures such as plasma and explosives are used. Methods such as decomposition by energy have been tried.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
装置は外形が大型で可搬性に乏しく、且つ、高価であっ
て実用性に乏しい。装置が大型化した原因は、 1.フロンなどを分解温度まで昇温させるための燃料を
必要とし、多量の燃焼ガスを発生し分解室や冷却室、あ
るいはダクト類が大型となった。 2.フロンなどが燃焼ガスから熱を得て分解反応を生じ
るまでに熱交換の時間を要した。 などであり、その結果、以下の不具合も生じた。 1.装置の運転開始から分解作用の開始まで、あるいは
分解作用の停止から装置の停止までの準備期間や冷却期
間に長時間を要し稼働時間効率が低かった。 2.塩化水素を主成分とする分解ガスが大量の燃焼ガス
中に希釈されてしまい回収しにくかった。 3.分解ガスや燃焼ガスが冷却するのに長時間を要する
ため、その過程で発生するダイオキシンの量が増した。
However, the conventional apparatus has a large external shape, is poor in portability, and is expensive and poor in practical use. The causes of the increase in the size of the device are as follows. Fuel for raising the temperature of CFCs to the decomposition temperature was required, and a large amount of combustion gas was generated, and the decomposition chamber, cooling chamber, or ducts became large. 2. It took a long time for heat exchange for flon and the like to obtain heat from the combustion gas and cause a decomposition reaction. As a result, the following problems have occurred. 1. The preparation time and cooling period from the start of the operation of the apparatus to the start of the decomposition operation or from the stop of the decomposition operation to the stop of the apparatus required a long time, and the operation time efficiency was low. 2. Decomposition gas containing hydrogen chloride as a main component was diluted in a large amount of combustion gas and was difficult to recover. 3. Since it takes a long time for the decomposition gas and the combustion gas to cool, the amount of dioxin generated in the process has increased.

【0004】[0004]

【課題を解決するための手段】上記した課題は方法とし
て、 1.容積形コンプレッサの圧縮室を分解室とし、その分
解室にフロンなどと補助材とを送入し、フロンなどを分
解室の内部で断熱圧縮して分解温度まで一旦昇温させる
こと。 2.前記分解室を少なくとも直列に接続された前段の分
解室と後段の分解室との前後2段に構成し、前段の分解
室で分解温度まで昇温されたフロンなどを後段の分解室
において再び分解温度まで昇温させること。 3.前段の分解室の動作容積を後段の分解室の動作容積
より大きく設定したこと。 4.前段の分解室を複数個で構成し、少なくとも前段の
分解室の数を後段の分解室の数より多く設定したこと。 を特徴とし、装置としては、 1.前段に配された内燃機関の燃焼室と、後段に配され
た容積形コンプレッサの圧縮室によって構成される分解
室とを直列に接続し、フロンなどを燃料と共に内燃機関
の吸気通路へ送入し、内燃機関の排気通路から排気と共
に排出されるフロンなどの分解ガスを分解室内で再びフ
ロンなどの分解温度まで断熱圧縮すること。 2.ピストンとシリンダとを有する複数の圧縮室を形成
したシリンダブロックを設け、その一部の圧縮室を内燃
機関の燃焼室とし、残りの圧縮室をフロンなどの分解室
とすること。 などによって課題を解消する。
Means for Solving the Problems The above-mentioned problem is solved as a method. The compression chamber of a positive displacement compressor is used as a decomposition chamber, and chlorofluorocarbon and other auxiliary materials are fed into the decomposition chamber, and the fluorocarbon and other materials are adiabatically compressed inside the decomposition chamber to raise the temperature to the decomposition temperature once. 2. The decomposition chamber is constituted at least in two stages before and after a first decomposition chamber and a second decomposition chamber connected in series, and CFCs and the like heated to the decomposition temperature in the first decomposition chamber are decomposed again in the second decomposition chamber. Raise temperature to temperature. 3. The working volume of the former decomposition chamber is set to be larger than the working volume of the latter decomposition chamber. 4. The first-stage decomposition chamber is composed of a plurality, and at least the number of the first-stage decomposition chambers is set to be larger than the number of the second-stage decomposition chambers. It is characterized by the following. The combustion chamber of the internal combustion engine arranged in the front stage and the decomposition chamber constituted by the compression chamber of the positive displacement compressor arranged in the rear stage are connected in series, and Freon etc. are fed into the intake passage of the internal combustion engine together with fuel. Adiabatic compression of decomposed gas such as chlorofluorocarbon discharged together with exhaust gas from the exhaust passage of the internal combustion engine to the decomposition temperature of chlorofluorocarbon and the like again in the decomposition chamber. 2. A cylinder block having a plurality of compression chambers each having a piston and a cylinder is provided, a part of which is a combustion chamber of an internal combustion engine, and the remaining compression chambers are decomposition chambers such as Freon. The problem is solved by such means.

【0005】[0005]

【作用】[Action]

請求項1の作用・・・フロンなどは圧縮室からなる分解
室へ送入され、その圧縮行程で800℃を越える高温に
断熱圧縮され熱分解し、補助材と反応して塩化水素、フ
ッ化水素などの分解ガスに変化する。膨張行程では断熱
膨張して急速に常温以下の温度に冷却され外部へ排出さ
れる。前記分解は圧縮行程におけるフロンなどの自らの
発熱により行われるので燃焼ガスのような他の媒体によ
って加熱される場合のように伝熱の時間を要せず短時間
で分解反応、および補助材との反応が終了して可逆反応
しない分解ガスになる。なお、補助材として水が使用で
きるのは、この発明のように高圧下における反応にのみ
有効である。なお、補助材としてプロパン、ブタンなど
のLPGを用いるとき、圧縮室内が1400℃を越える
と熱分解して一部はメタンになり、メタン自体が補助材
として作用する。 請求項2の作用・・・フロンなどは多段に設けられた圧
縮室(分解室)を通過する都度、分解温度以上に昇温し
反応時間が累積される。 請求項3、4の作用・・・フロンなどは前段に設けられ
た圧縮室によって、加熱された後に排出される。後段の
圧縮室へは一層増量されたガスが送入されるから後段の
圧縮室における断熱圧縮でフロンなどは一層の高熱に昇
温する。 請求項5の作用・・・フロンなどは内燃機関の燃焼室で
燃焼ガスにより、一層高温に加熱されて短時間で分解し
て分解ガスとなる。また、前段の容積形コンプレッサを
内燃機関だから、その軸出力によって後段の容積形コン
プレッサが駆動され得る。 請求項6の作用・・・動力を発生する燃焼室と専ら消費
する圧縮室とが一体化され、熱分解装置の可搬性が増
す。
Action of claim 1: Fluorocarbons and the like are fed into a decomposition chamber composed of a compression chamber, and are adiabatically compressed to a high temperature exceeding 800 ° C. in the compression process, thermally decomposed, react with auxiliary materials, and react with hydrogen chloride and fluoride. Changes to decomposition gas such as hydrogen. In the expansion process, the gas is adiabatically expanded, rapidly cooled to a temperature lower than room temperature, and discharged to the outside. Since the decomposition is performed by its own heat generation such as chlorofluorocarbon in the compression process, the decomposition reaction is performed in a short time without requiring heat transfer time as in the case of being heated by another medium such as combustion gas, and the auxiliary material is used. Is completed, and a decomposed gas that does not react reversibly is obtained. The use of water as an auxiliary material is effective only for the reaction under high pressure as in the present invention. When LPG such as propane or butane is used as an auxiliary material, if the temperature in the compression chamber exceeds 1400 ° C., it is thermally decomposed and partly becomes methane, and methane itself acts as an auxiliary material. Operation of claim 2... Each time the chlorofluorocarbon and the like pass through the compression chambers (decomposition chambers) provided in multiple stages, the temperature rises to the decomposition temperature or higher and the reaction time is accumulated. Actions of the third and fourth aspects: Freon and the like are discharged after being heated by the compression chamber provided in the preceding stage. Since a further increased amount of gas is fed into the subsequent compression chamber, the adiabatic compression in the latter compression chamber raises the temperature of Freon and the like to higher heat. Action of claim 5: CFCs are heated to a higher temperature by the combustion gas in the combustion chamber of the internal combustion engine and decomposed in a short time to become a decomposition gas. In addition, since the former positive displacement compressor is an internal combustion engine, the latter positive displacement compressor can be driven by its shaft output. Operation of claim 6: The combustion chamber that generates power and the compression chamber that exclusively consumes power are integrated, and the portability of the pyrolysis apparatus is increased.

【0006】[0006]

【実施例】以下、本願発明を図示の実施例によって説明
する。図1はフロンなどの熱分解装置10を示す第1実
施例である。分解装置10は容積形コンプレッサ11を
要部として有する。容積形コンプレッサ11は流量形コ
ンプレッサ(図示してない)と分類されるもので、圧縮
室12を備えることを特徴としている。本実施例におい
て容積形コンプレッサ11はシリンダブロック11aと
ピストン11bとを有する往復動形であり、一層具体的
には市販の乗用車用1300cc4行程ジーゼルエンジ
ンの本体がそのまゝ転用され、3個の圧縮室12が並設
された態様をなしている。なお、ベースがジーゼルエン
ジンであることは必須ではなく、圧縮比は多少低いもの
ゝガソリンエンジンでも転用可能である。転用される部
分はエンジンのシリンダヘッドを含むシリンダブロック
11aであり、吸気管と排気管は除外される。そして、
転用後にはフロンなどの熱分解装置に固有の吸気通路3
2や排気通路13、あるいは接続管14が付加される。
15は前記ピストン11bを駆動するための駆動軸であ
り、ベースとなったエンジンのクランク軸がそのまゝ転
用されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a first embodiment showing a pyrolysis apparatus 10 such as a chlorofluorocarbon. The decomposition device 10 has a positive displacement compressor 11 as a main part. The positive displacement compressor 11 is classified as a flow type compressor (not shown), and is characterized by having a compression chamber 12. In this embodiment, the positive displacement compressor 11 is a reciprocating type having a cylinder block 11a and a piston 11b. More specifically, the main body of a commercially available 1300 cc four-stroke diesel engine for passenger cars is used as it is, and three compressors are used. The chambers 12 are arranged side by side. Note that it is not essential that the base be a diesel engine, and that the compression ratio is somewhat low. The part to be diverted is the cylinder block 11a including the cylinder head of the engine, and the intake pipe and the exhaust pipe are excluded. And
After diversion, the intake passage 3 unique to pyrolysis equipment such as chlorofluorocarbon
2, an exhaust passage 13 or a connection pipe 14 is added.
Reference numeral 15 denotes a drive shaft for driving the piston 11b, and the crankshaft of the base engine is used as it is.

【0007】駆動軸15の端部にはプーリが設けられ、
駆動軸15は歯付きの伝動ベルト16を介して電動機、
内燃機関などの駆動手段17によって駆動され1000
rpmで回転する。駆動手段17はこの図では3.3K
wの交流電動機である。吸気通路32はトーナメント形
の分岐管で構成され、その開放端は大気に連通され常閉
形の蝶形弁からなる空気開閉弁32aによって閉じられ
ている。前記分岐管の集合部には蒸発器(図示してな
い)を介して使用済みの回収フロンを収容したボンベ1
8に通じる回収フロン通路18aと、LPGあるは水な
どの分解補助材の容器19に通じる補助材通路19aと
が接続されている。18b、19bはそれぞれ前記回収
フロン通路18aと補助材通路19aとに設けられたフ
ロン開閉弁および補助材開閉弁である。補助材は熱分解
されたフロンなどが冷却の過程で再合成されるのを防止
するべく用いられるもので、一般にはメタンその他のメ
タン系の炭化水素、あるいは水が使用される。補助材た
る炭化水素や水の作用は次の化学式から理解される。 CF2 Cl2 + CH4 +2O2 →2HCl+2HF+
2CO2 CF2 Cl2 + 2H2 O →2HCl+2HF+
CO2 なお、上式から明らかなように、補助材として作用する
のはメタン(CH4 )であるが、ブタン、プロパンなど
のメタン系炭化水素もフロンなどを分解する際の熱で分
解しメタンを発生するので補助材として加える際はメタ
ンに限る必要はなく市販のプロパンやブタンで十分であ
る。前記排気通路13はトーナメント形の集合管で構成
され、その集合部に中和ケース13aが介装され、後端
は大気に開放され、あるいは、必要に応じて、その後段
にバッグフィルタなどの濾過装置(図示してない)が付
加される。中和ケース13aは中空材通路13bを通じ
て中和材容器13cに接続され、苛性ソーダや消石灰な
どの中和材が注入される。13dは中和材開閉弁であ
る。
A pulley is provided at the end of the drive shaft 15,
The drive shaft 15 is driven by an electric motor via a toothed transmission belt 16,
1000 driven by driving means 17 such as an internal combustion engine.
Rotate at rpm. The driving means 17 is 3.3K in this figure.
w AC motor. The intake passage 32 is formed of a tournament-type branch pipe, and the open end thereof is communicated with the atmosphere and closed by an air opening / closing valve 32a composed of a normally-closed butterfly valve. A cylinder 1 containing a used collected Freon via an evaporator (not shown) is provided at the junction of the branch pipe.
The recovery flon passage 18a communicating with the auxiliary material passage 8 is connected to an auxiliary material passage 19a communicating with a container 19 for a decomposition aid such as LPG or water. Reference numerals 18b and 19b denote a CFC open / close valve and an auxiliary material open / close valve provided in the recovery Freon passage 18a and the auxiliary material passage 19a, respectively. The auxiliary material is used to prevent thermally decomposed chlorofluorocarbons from being recombined during the cooling process. Generally, methane or other methane-based hydrocarbons or water is used. The function of the auxiliary hydrocarbons and water is understood from the following chemical formula. CF 2 Cl 2 + CH 4 + 2O 2 → 2HCl + 2HF +
2CO 2 CF 2 Cl 2 + 2H 2 O → 2HCl + 2HF +
CO 2 As is clear from the above equation, but to act as an auxiliary material is methane (CH 4), butane, methane decomposes by heat at the time of decomposing the methane series hydrocarbons chlorofluorocarbon such as propane When adding as an auxiliary material, it is not necessary to limit to methane, and commercially available propane or butane is sufficient. The exhaust passage 13 is formed of a tournament-type collecting pipe, and a neutralizing case 13a is interposed in the collecting section, and the rear end is opened to the atmosphere. Apparatus (not shown) is added. The neutralizing case 13a is connected to the neutralizing material container 13c through the hollow material passage 13b, and a neutralizing material such as caustic soda or slaked lime is injected. 13d is a neutralizing material on-off valve.

【0008】次に上記第1実施例の作動を説明する。ま
ず、空気開閉弁32aを開き負荷の軽い状態で駆動手段
17たる電動機を始動させ、暖機と給油とを行う。数分
の暖機運転を終えたところで空気開閉弁32aを閉じフ
ロン開閉弁18bと補助材開閉弁19bとを開くと回収
フロンと補助材とが並設された3個の圧縮室12に送入
される。ピストン11bの上昇行程では圧縮室12に送
入されたフロンなどが激しい乱流を起こし補助材と均質
に混合し、同時に圧縮比18〜20程度に断熱圧縮され
て800℃を越える高温まで瞬時に昇温する。この昇温
はピストンやシリンダ孔の壁面に極めて近い放熱し易い
部分を除いて圧縮室12内に同時に発生するため、回収
フロンの分解反応と補助材による合成反応は瞬時に行わ
れ終了する。ピストン11bが下降行程に転じると圧縮
室12内のガスは断熱膨張して急速に常温近傍まで低下
し、排気通路13内へ放出される。排気中の分解ガスは
中和ケース13aの内部を通過する際、中和ケース13
a内へ供給された消石灰、あるいは苛性ソーダ15%水
溶液などの中和材と接触して中和され、図示してない公
知のフィルタによって除去される。かくて、送入された
フロンなどは少なくとも0.025秒の間は800℃以
上の温度に保たれ、その間に回収フロンの分解反応が終
了する。
Next, the operation of the first embodiment will be described. First, the air opening / closing valve 32a is opened to start the electric motor serving as the driving means 17 with a light load, thereby performing warm-up and refueling. When the warm-up operation for several minutes is completed, the air on-off valve 32a is closed and the Freon on-off valve 18b and the auxiliary material on-off valve 19b are opened, and the collected Freon and auxiliary material are sent to the three compression chambers 12 arranged side by side. Is done. In the upward stroke of the piston 11b, the chlorofluorocarbon and the like fed into the compression chamber 12 cause a violent turbulent flow to be homogeneously mixed with the auxiliary material, and are simultaneously adiabatically compressed to a compression ratio of about 18 to 20 and instantaneously up to a high temperature exceeding 800 ° C. Raise the temperature. Since this temperature rise is simultaneously generated in the compression chamber 12 except for a portion that is very close to the wall surface of the piston or the cylinder hole and easily radiates heat, the decomposition reaction of the recovered CFC and the synthesis reaction by the auxiliary material are instantaneously performed and completed. When the piston 11b starts to move downward, the gas in the compression chamber 12 adiabatically expands, rapidly drops to near normal temperature, and is discharged into the exhaust passage 13. When the decomposition gas in the exhaust gas passes through the inside of the neutralization case 13a,
A is neutralized by contact with slaked lime or a neutralizing material such as a 15% aqueous solution of caustic soda, and is removed by a known filter (not shown). Thus, the sent Freon is kept at a temperature of 800 ° C. or more for at least 0.025 seconds, during which the decomposition reaction of the collected Freon is completed.

【0009】図2は熱分解装置10の第2実施例を示
す。こゝで、容積形コンプレッサ11の主体は前例と同
じシリンダブロック11aを用いているが、配管の構成
を変更し3個の圧縮室12のうち、2個を並列接続して
前段Fとし、残る1個を後段Rとした2段構成に編成し
てある。前段Fをなす2個の容積形コンプレッサ11の
吸気通路12の集合部には前記したと同様に回収フロン
を収容したボンベ18その他が接続してある。また、そ
れら前段Fの排気は集合され、接続管14を介して後段
Rをなす残る1個の吸気通路12bに接続され、後段R
に連なる排気通路21も前記したと同様に中和ケース1
3aに接続されている。この実施例によれば熱分解装置
10は、第1実施例と同様にして前段Fの圧縮室12へ
フロンなどが送入され、フロンなどはその圧縮行程で自
ら発熱して熱分解し、接続管14内へ排出される。排出
管14では2個の圧縮室12、12から排出された分解
ガスが集合され加圧されて後段Rをなす1個の圧縮室1
2へと導かれる。送入されたガスは再び断熱圧縮されて
高熱となり、反応時間が累積されるから、未分解成分が
あれば分解が一層進行する。なお、このように後段Rへ
送入するガスを加圧する手段は、個々の圧縮室12の圧
縮比を低く設定することができる。そして、前段Fの圧
縮室12の容積を後段Rのそれより大きくすることによ
っても代えることができる。
FIG. 2 shows a second embodiment of the thermal decomposition apparatus 10. Here, the main body of the positive displacement compressor 11 uses the same cylinder block 11a as in the previous example, but the configuration of the piping is changed, and two of the three compression chambers 12 are connected in parallel to form a front stage F, and the remaining stages remain. It is knitted in a two-stage configuration in which one is a rear stage R. In the same manner as described above, a cylinder 18 and the like accommodating the collected Freon are connected to the gathering portion of the intake passages 12 of the two positive displacement compressors 11 forming the front stage F. Further, the exhaust gas of the former stage F is collected and connected to the remaining one intake passage 12b forming the latter stage R via the connection pipe 14, so that the latter stage R
The exhaust passage 21 connected to the neutralizing case 1
3a. According to this embodiment, as in the first embodiment, in the pyrolysis apparatus 10, chlorofluorocarbon and the like are fed into the compression chamber 12 in the former stage F, and the chlorofluorocarbon and the like generate heat by themselves in the compression stroke to thermally decompose and connect. It is discharged into the pipe 14. In the discharge pipe 14, the decomposition gases discharged from the two compression chambers 12, 12 are collected and pressurized to form one compression chamber 1 forming the subsequent stage R.
It is led to 2. The fed gas is again adiabatically compressed and becomes high heat, and the reaction time is accumulated. Therefore, if undecomposed components are present, the decomposition proceeds further. Incidentally, the means for pressurizing the gas to be sent to the subsequent stage R can set the compression ratio of each compression chamber 12 low. And it can also be changed by making the volume of the compression chamber 12 of the front stage F larger than that of the rear stage R.

【0010】図3、図4は熱分解装置10の第3実施例
を示す。第3実施例は前段Fと後段Rとを別体に形成し
た例である。こゝで、容積形コンプレッサ11は前段F
と後段Rとが各1台の4気筒排気量2000ccの行程
容積を持ち、ガソリン又はLPGで運転されるエンジン
によって構成される。前段Fと後段Rとは歯付きの伝動
ベルト13を介し、図6で示すように、概ね270゜の
位相差を以て同期して駆動される。図6中、表の上下に
は燃焼室12aと圧縮室12におけるピストン11bの
位置が示してある。前段Fの吸気通路22にはエンジン
に付属した気化器、燃料噴射装置などの既設の燃料系2
3が備えられ、更に、前記した回収フロンや補助材の通
路24が設けられている。22aはエンジン出力調節用
の既設の絞り弁である。前段Fの4個の圧縮室12に連
なる4個の排気路eは4本の接続管14、14によって
の後段Rの吸気路iに連結されている。なお、第1、第
2実施例と同一の符号を付した部分は同一の機能を有す
るので、前出の説明によって代える。
FIGS. 3 and 4 show a third embodiment of the thermal decomposition apparatus 10. FIG. The third embodiment is an example in which the former stage F and the latter stage R are formed separately. Here, the positive displacement compressor 11 is
The rear stage R has a stroke capacity of 2000cc each of four cylinders and is constituted by an engine driven by gasoline or LPG. As shown in FIG. 6, the front stage F and the rear stage R are driven synchronously with a phase difference of about 270 ° via a toothed transmission belt 13. In FIG. 6, the positions of the piston 11b in the combustion chamber 12a and the compression chamber 12 are shown above and below the table. An existing fuel system 2 such as a carburetor and a fuel injection device attached to the engine
3 is provided, and a passage 24 for the collected Freon and auxiliary material is provided. Reference numeral 22a denotes an existing throttle valve for adjusting the engine output. The four exhaust passages e connected to the four compression chambers 12 in the front stage F are connected to the intake passage i in the rear stage R by four connection pipes 14, 14. Note that portions denoted by the same reference numerals as those in the first and second embodiments have the same functions, and will be replaced by the above description.

【0011】前段Fをなすエンジンが始動すると約10
00rpmで運転される。フロンなどを送入される前段
Fのコンプレッサでは圧縮行程の後期と燃焼行程におい
て断熱圧縮と燃料の燃焼による発熱により、0.03〜
0.04秒の比較的長い時間に亘って圧縮室12(燃焼
室12a)内が800℃以上の高温に保持される。エン
ジンが点火栓(図示してない)によって点火され膨張行
程に入ると、その終期に燃焼ガスと分解ガスとが混合し
て排気路eから排出され、それらは接続管14を通し
て、吸入行程にある後段コンプレッサRの圧縮室12へ
導かれる。なお、市販のエンジンの吸気弁INと排気弁
EXの開閉時期は高出力の発生を目的に設定されてお
り、排気弁EXが比較的早く開くので、断熱圧縮による
発熱を目的とする場合、排気弁EXの開閉時期を実験的
に修正するのが好ましい。後段コンプレッサRに送入さ
れた燃焼ガスと分解ガスとは圧縮行程で断熱圧縮され再
び800℃を越える高温に昇温する。
When the engine forming the front stage F is started, about 10
Operated at 00 rpm. In the compressor of the front stage F in which Freon and the like are fed, in the latter stage of the compression stroke and the combustion stroke, 0.03 to 0.03
The inside of the compression chamber 12 (combustion chamber 12a) is maintained at a high temperature of 800 ° C. or more for a relatively long time of 0.04 seconds. When the engine is ignited by a spark plug (not shown) and enters an expansion stroke, combustion gas and decomposition gas mix at the end thereof and are discharged from the exhaust passage e, and they are in a suction stroke through the connection pipe 14. It is guided to the compression chamber 12 of the latter compressor R. The opening and closing timings of the intake valve IN and the exhaust valve EX of a commercially available engine are set for the purpose of generating a high output, and the exhaust valve EX opens relatively quickly. It is preferable to experimentally correct the opening / closing timing of the valve EX. The combustion gas and the decomposed gas sent to the latter compressor R are adiabatically compressed in the compression stroke, and the temperature rises again to a high temperature exceeding 800 ° C.

【0012】図5は熱分解装置10の第4実施例を示
す。第4実施例は3気筒エンジンのうちの2気筒を前段
Fの燃焼室12aとして用い、残りの1気筒を後段Rの
断熱圧縮形の圧縮室12として使用する例である。な
お、前段Fに接続される吸気通路22は図3で示す第3
実施例と略等しく、前段Fの排気路が接続管14によっ
て後段Rに接続される点、および後段Rに接続される排
気通路13の構成は図2で示す第2実施例と略等しいの
で、それらの説明は前出による。よって、フロンなどの
分解過程は図3の場合と略同じであるが、図3のように
複数のシリンダブロック11aを使用せず、一基のエン
ジンの中に組み付けることができる点でコンパクトに構
成できる点と、コストの高いピストンクランク機構とし
てエンジンを利用するので廉価に製造される。
FIG. 5 shows a fourth embodiment of the thermal decomposition apparatus 10. The fourth embodiment is an example in which two cylinders of a three-cylinder engine are used as a front-stage F combustion chamber 12a and the remaining one cylinder is used as a rear-stage R adiabatic compression type compression chamber 12. The intake passage 22 connected to the front stage F is the third intake passage shown in FIG.
The point that the exhaust path of the former stage F is connected to the latter stage R by the connecting pipe 14 and the configuration of the exhaust passage 13 that is connected to the latter stage R are substantially the same as those of the second embodiment shown in FIG. Their explanation is as described above. Therefore, the process of disassembling CFCs and the like is substantially the same as that of FIG. 3, but is compact in that it can be assembled into one engine without using a plurality of cylinder blocks 11a as shown in FIG. It can be manufactured at low cost because it uses the engine as a piston crank mechanism, which is expensive and can be used at high cost.

【0013】[0013]

【発明の効果】請求項1によれば、熱分解装置10へ送
入されたフロンなどは圧縮室12で断熱圧縮され自ら熱
を発して分解する。よって、 1.フロンなどは断熱圧縮により自ら発熱するので、燃
焼ガスから熱を受ける場合のように熱交換の時間を要せ
ず、高温に保たれる時間が短くとも確実な分解が得られ
る。 2.短時間で分解反応が終了するので熱源として多量の
燃料を要せず、経済的である。 3.排出されるガス量が少ないため、 a.装置が小さく、製造が容易で可搬性がすぐれてい
る。 b.ガス量が少ないため分解ガス中から塩酸やフッ酸の
排除が容易である。 4.フロンなどの分解作業は容積形コンプレッサの運転
と略同時に開始されるから、分解作業の開始時期と終了
時期における準備期間が短時間で済み、稼働時間効率が
優れている。 5.分解ガスは膨張行程における断熱膨張によって急速
に冷却されるから、分解ガス中の塩酸が冷却過程で有害
な物質を生じさせることがない。 請求項2、3、4によれば、フロンなどは前段Fと後段
Rとによって2段に分けて分解せられるため、分解時間
が累積され長時間となる。よって、 1.既存のエンジンを転用することによって、多量の分
解能力を持つ熱分解装置を小型に形成することができ
る。 2.また、前段Fの圧縮室の容量が後段Rのそれより大
きいから、後段Rの圧縮室へはガスが予圧されて送入さ
れ、反応温度に保持される時間を長引かせることができ
る。 請求項5によれば、 1.装置に内燃機関を利用することにより構造が複雑な
ビストンクランク機構を廉価に入手できる。 2.前段Fから排出される分解ガスは燃焼ガスに希釈さ
れて増量し、後段Rの圧縮室に送入されるガスが予圧さ
れて、一層高い分解効率が得られる。 3.前段Fをなすエンジンの出力で後段Rの圧縮室(コ
ンプレッサ)を駆動でき電動機などの外部動力を要しな
いので構造が小型化すると共に、可搬性が増す。 4.前段の排気温が高い場合、後段Rでの機械損失によ
って排出ガス温度を低くすることもできる。 請求項6によれば、多気筒エンジンの一部の気筒を動力
用として用い、残部を分解室としたから、複雑な機構の
ピストンクランク機構を専用に製作することなく熱分解
装置が得られる。などの効果がある。
According to the first aspect, chlorofluorocarbon and the like fed into the thermal decomposition apparatus 10 are adiabatically compressed in the compression chamber 12 and generate heat themselves to be decomposed. Therefore, 1. CFCs and the like generate heat by adiabatic compression, so that heat exchange time is not required as in the case of receiving heat from combustion gas, and reliable decomposition can be obtained even when the temperature is kept high for a short time. 2. Since the decomposition reaction is completed in a short time, a large amount of fuel is not required as a heat source, which is economical. 3. Due to the small amount of gas emitted, a. The equipment is small, easy to manufacture and excellent in portability. b. Since the gas amount is small, it is easy to remove hydrochloric acid and hydrofluoric acid from the decomposition gas. 4. Since the disassembly operation of the chlorofluorocarbon and the like is started almost simultaneously with the operation of the positive displacement compressor, the preparation period at the start and end times of the disassembly operation is short, and the operation time efficiency is excellent. 5. Since the cracked gas is rapidly cooled by the adiabatic expansion in the expansion process, the hydrochloric acid in the cracked gas does not generate harmful substances in the cooling process. According to the second, third, and fourth aspects, CFCs and the like are decomposed into two stages by the front stage F and the rear stage R, so that the decomposition time is accumulated and becomes long. Therefore, 1. By diverting an existing engine, a pyrolysis apparatus having a large amount of decomposition capacity can be formed in a small size. 2. Further, since the capacity of the compression chamber of the former stage F is larger than that of the latter stage R, the gas is pre-pressurized and sent to the compression chamber of the latter stage R, and the time for maintaining the reaction temperature can be prolonged. According to claim 5, 1. By using an internal combustion engine for the device, a biston crank mechanism having a complicated structure can be obtained at low cost. 2. The decomposition gas discharged from the front stage F is diluted with the combustion gas to increase the amount thereof, and the gas sent to the compression chamber of the rear stage R is pre-pressed, so that higher decomposition efficiency can be obtained. 3. Since the output of the engine forming the front stage F can drive the compression chamber (compressor) of the rear stage R and does not require external power such as an electric motor, the structure is reduced in size and the portability is increased. 4. When the exhaust gas temperature in the first stage is high, the exhaust gas temperature can be lowered by mechanical loss in the second stage R. According to the sixth aspect, since a part of the cylinders of the multi-cylinder engine is used for power and the remaining part is used as a disassembly chamber, a pyrolysis apparatus can be obtained without specially manufacturing a complicated piston crank mechanism. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱分解装置のシステムを示す第1実施例の平面
図である。
FIG. 1 is a plan view of a first embodiment showing a system of a thermal decomposition apparatus.

【図2】熱分解装置の第2実施例を示す図1相当の平面
図である。
FIG. 2 is a plan view corresponding to FIG. 1 showing a second embodiment of the thermal decomposition apparatus.

【図3】熱分解装置の第3実施例を示す図1相当の平面
図である。
FIG. 3 is a plan view corresponding to FIG. 1 showing a third embodiment of the thermal decomposition apparatus.

【図4】熱分解装置の第4実施例を示す図1相当の平面
図である。
FIG. 4 is a plan view corresponding to FIG. 1 showing a fourth embodiment of the thermal decomposition apparatus.

【図5】その側面図である。FIG. 5 is a side view thereof.

【図6】作動タイミングを示す作動時期図である。FIG. 6 is an operation timing chart showing operation timing.

【符号の説明】[Explanation of symbols]

10・・・・熱分解装置 11・・・・容積形
コンプレッサ 11a・・・シリンダブロック 11b・・・ピスト
ン 12・・・・圧縮室 12a・・・燃焼室 13・・・・排気通路 13a・・・中和ケ
ース 13b・・・中空材通路 13c・・・中和材
容器 13d・・・中和材開閉弁 14・・・・接続管 15・・・・駆動軸 16・・・・伝動ベ
ルト 17・・・・駆動手段(電動機、内燃機関) 18・・
・・ボンベ 18a・・・回収フロン通路 18b・・・フロン
開閉弁 19・・・・分解補助材の容器 19a・・・補助材
通路 19b・・・補助材開閉弁 22、32・・・吸
気通路 22a・・・出力調節用の絞り弁 23・・・・燃料系 24・・・・回収フロンや補助材の通路 32a・・
・空気開閉弁 F・・・・前段(の容積形コンプレッサ) R・・・・後段(の容積形コンプレッサ) e・・・・排気路 i・・・吸気路
10 ··· pyrolysis device 11 ··· positive displacement compressor 11a ··· cylinder block 11b ··· piston 12 ··· compression chamber 12a ··· combustion chamber 13 ··· exhaust passage 13a ··· · Neutralizing case 13b · · · Hollow material passage 13c · · · Neutralizing material container 13d · · · Neutralizing material on / off valve 14 ··· Connection pipe 15 ··· Drive shaft 16 ··· Transmission belt 17 .... Drive means (electric motors, internal combustion engines) 18
· · · Cylinder 18a · · · collection Freon passage 18b · · · Freon on-off valve 19 · · · container for auxiliary decomposition material 19a · · · auxiliary material passage 19b · · · auxiliary material on-off valve 22, 32 · · · intake passage 22a: throttle valve for output adjustment 23: fuel system 24: passage for recovered Freon and auxiliary materials 32a:
・ Air opening / closing valve F ・ ・ ・ ・ ・ ・ Front stage (Positive displacement compressor) R ・ ・ ・ ・ Rear stage (Positive displacement compressor) e ・ ・ ・ Exhaust path i ・ ・ ・ Intake path

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】容積形コンプレッサの圧縮室を分解室と
し、その分解室にフロンなどと補助材とを送入し、フロ
ンなどを分解室の内部で断熱圧縮して分解温度まで一旦
昇温させることを特徴とするフロンなどの熱分解方法。
A compression chamber of a positive displacement compressor is used as a decomposition chamber, and chlorofluorocarbon and other auxiliary materials are fed into the decomposition chamber, and the fluorocarbon and the like are adiabatically compressed inside the decomposition chamber to temporarily raise the temperature to the decomposition temperature. A method for thermally decomposing CFCs or the like.
【請求項2】請求項2において、前記分解室を少なくと
も直列に接続された前段の分解室と後段の分解室との前
後2段に構成し、前段の分解室で分解温度まで昇温され
たフロンなどを後段の分解室において再び分解温度まで
昇温させることを特徴とするフロンなどの熱分解方法。
2. The decomposition chamber according to claim 2, wherein the decomposition chamber is formed at least in two stages before and after a first decomposition chamber and a second decomposition chamber connected in series, and the temperature is raised to the decomposition temperature in the first decomposition chamber. A method for thermally decomposing chlorofluorocarbons and the like, wherein chlorofluorocarbons and the like are heated again to a decomposition temperature in a decomposition chamber in a subsequent stage.
【請求項3】請求項2において、前段の分解室の動作容
積を後段の分解室の動作容積より大きく設定してなるフ
ロンなどの熱分解方法。
3. A method for thermally decomposing fluorocarbon or the like according to claim 2, wherein the operating volume of the former decomposition chamber is set larger than the operating volume of the latter decomposition chamber.
【請求項4】請求項2において、前段の分解室を複数個
で構成し、少なくとも前段の分解室の数を後段の分解室
の数より多く設定してなるフロンなどの熱分解方法。
4. A method for pyrolyzing CFCs or the like according to claim 2, wherein the former decomposition chamber is constituted by a plurality of decomposition chambers, and at least the number of the former decomposition chambers is set to be larger than the number of the latter decomposition chambers.
【請求項5】前段に配された内燃機関の燃焼室と、後段
に配された容積形コンプレッサの圧縮室によって構成さ
れる分解室とを直列に接続し、フロンなどを燃料と共に
内燃機関の吸気通路へ送入し、内燃機関の排気通路から
排気と共に排出されるフロンなどの分解ガスを分解室内
で再びフロンなどの分解温度まで断熱圧縮するフロンな
どの熱分解装置。
5. A combustion chamber of an internal combustion engine disposed at a front stage and a decomposition chamber constituted by a compression chamber of a positive displacement compressor disposed at a rear stage are connected in series, and Freon and the like are taken in together with fuel as intake air of the internal combustion engine. A pyrolysis device such as chlorofluorocarbon which is introduced into the passage and adiabatically compresses decomposition gas such as chlorofluorocarbon discharged together with the exhaust gas from the exhaust passage of the internal combustion engine to the decomposition temperature of fluorocarbon again in the decomposition chamber.
【請求項6】ピストンとシリンダとを有する複数の圧縮
室を形成したシリンダブロックを設け、その一部の圧縮
室を内燃機関の燃焼室とし、残りの圧縮室をフロンなど
の分解室としたフロンなどの熱分解装置。
6. A CFC having a cylinder block in which a plurality of compression chambers each having a piston and a cylinder are formed, a part of which is a combustion chamber of an internal combustion engine, and the remaining compression chamber is a decomposition chamber such as CFC. Such as pyrolysis equipment.
JP8329109A 1996-11-25 1996-11-25 Method for thermally decomposing cfc or the like and device therefor Pending JPH10151321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8329109A JPH10151321A (en) 1996-11-25 1996-11-25 Method for thermally decomposing cfc or the like and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8329109A JPH10151321A (en) 1996-11-25 1996-11-25 Method for thermally decomposing cfc or the like and device therefor

Publications (1)

Publication Number Publication Date
JPH10151321A true JPH10151321A (en) 1998-06-09

Family

ID=18217718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8329109A Pending JPH10151321A (en) 1996-11-25 1996-11-25 Method for thermally decomposing cfc or the like and device therefor

Country Status (1)

Country Link
JP (1) JPH10151321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829488A (en) * 2010-06-11 2010-09-15 天津市环境保护科学研究院 Bio-safety disposal method for dispelling dichlorodifluoromethane by induction heating and pyrolysis induction heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829488A (en) * 2010-06-11 2010-09-15 天津市环境保护科学研究院 Bio-safety disposal method for dispelling dichlorodifluoromethane by induction heating and pyrolysis induction heating furnace

Similar Documents

Publication Publication Date Title
EP0666962B1 (en) Vapor-air steam engine
US4004554A (en) Fuel converting method and apparatus
EA200101136A1 (en) THERMODYNAMIC DEVICE
US883240A (en) Internal-combustion engine.
US4020798A (en) Internal combustion engine fueled by NaK
CN111894782A (en) Engine and method for quick starting in plateau and low-temperature environment
JP2010285977A (en) Built-in compressor type six-stroke engine exclusive for hydrogen
US6314925B1 (en) Two-stroke internal combustion engine with recuperator in cylinder head
JPH10151321A (en) Method for thermally decomposing cfc or the like and device therefor
KR20080007029A (en) An implosion engine using brown-gas and a method for driving the same
RU2214525C2 (en) Method of operation of power plant with piston internal combustion engine (versions) and power plant for implementing the method
JPH04209933A (en) Piston type engine
JPH0486329A (en) Monoatomic gas internal combustion engine
US3677026A (en) Internal combustion heat engine and process
JP4736857B2 (en) Thermal energy recovery device
JP2005536582A5 (en)
RU2104400C1 (en) Combination internal combustion engine with regenerator
JP2002155810A (en) Internal combustion engine
RU2234615C2 (en) Method of operation of piston heat engine
JP2006348872A (en) Stirling engine operating method and stirling engine
SU1023121A1 (en) Method of operation of four-cycle internal combustion engine
RU179513U1 (en) STEAM GAS GENERATOR
RU2052178C1 (en) Refrigerator
RU2178091C2 (en) Method of operation of power plant and versions of proposed method
US3319417A (en) Internal combustion engine type motor power generating apparatus