JPH10151118A - Electronic blood pressure gauge - Google Patents

Electronic blood pressure gauge

Info

Publication number
JPH10151118A
JPH10151118A JP8311554A JP31155496A JPH10151118A JP H10151118 A JPH10151118 A JP H10151118A JP 8311554 A JP8311554 A JP 8311554A JP 31155496 A JP31155496 A JP 31155496A JP H10151118 A JPH10151118 A JP H10151118A
Authority
JP
Japan
Prior art keywords
blood pressure
input
reference blood
waveform
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8311554A
Other languages
Japanese (ja)
Inventor
Osamu Shirasaki
修 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP8311554A priority Critical patent/JPH10151118A/en
Publication of JPH10151118A publication Critical patent/JPH10151118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce infrlence of an error in reference blood pressure more than when single reference blood pressure is used, and measure blood pressure with higher accuracy by calculating and storing new reference blood pressure by using separately inputted plural reference blood pressures. SOLUTION: An electronic blood pressure gauge 10 has a pulse wave detecting part 1 and an electrocardiogram detecting part 3, and these detecting signals are inputted to a CPU 6 through amplifiers 2 and 4 and an A/D converter 5, and a found result is displayed on a display part 7. A communication part 8 is provided to perform transmission and reception between it and an external blood pressure measuring means 20 to measure blood pressure on the basis of a separate blood pressure measuring method. Input of reference blood pressure is demanded from the CPU 6, and the reference blood pressure detected by the blood pressure detecting means 20 on the basis of its indication, is read in the CPU 6 as calibrating blood pressure. Input of this reference blood pressure is performed three times, and reference blood pressures equivalent to three times are additively averaged, and it is stored. Parameter values are also additively averaged, and afterwards, only a characteristic quantity of an electrocardiogram-pulse wave signal is measured, and a blood pressure value is calculated from the reference blood pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、他の血圧測定装置
を用いる較正が必要な電子血圧計に関し、特にその較正
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic sphygmomanometer requiring calibration using another blood pressure measuring device, and more particularly to an improvement in the calibration.

【0002】[0002]

【従来の技術】血圧の絶対値を直接測定するのではな
く、血圧変動のみを計測する原理・方式の電子血圧計が
ある。例えば、脈波が動脈中を進行する速度(脈波伝播
速度)や心拍数、脈波波形の特徴量などを捉えてパラメ
ータ化し、その変化量を血圧の変化量に換算して表示す
る血圧計がある。この種の方式は、原理的に1拍の心電
や脈波信号によって血圧を算出できるため、連続的な血
圧測定を無侵襲で行ったり、非常に短時間で測定したり
する血圧計を実現できる特長がある。
2. Description of the Related Art There is an electronic sphygmomanometer based on the principle and method of measuring only a change in blood pressure instead of directly measuring an absolute value of blood pressure. For example, a sphygmomanometer that captures the speed at which a pulse wave travels in an artery (pulse wave propagation speed), heart rate, characteristic amounts of a pulse wave waveform, and converts them into parameters, converts the change into a change in blood pressure, and displays the change. There is. In principle, this type of system can calculate the blood pressure from one pulse of electrocardiogram or pulse wave signal, thus realizing a sphygmomanometer that performs continuous blood pressure measurement non-invasively or measures in a very short time. There are features that can be done.

【0003】反面、これらのパラメータには個人差が存
在するなどの理由から、パラメータ自身が血圧値と緊密
な関係を持つことが少ないため、この種の血圧計では、
パラメータと血圧のそれぞれ変動値同士の関係を利用
し、相対的な血圧、つまり血圧変動値しか算出できな
い。これを概念的に図式化すると、図5に示すようにな
る。図5で、グラフの原点は基準点であり、横軸の血圧
変動値も縦軸のパラメータ変動値も、その基準点からの
相対値で表される。即ち、或る点を基準とし、その基準
値からの増減(相対変化)が血圧の相対変化と相関す
る。
[0003] On the other hand, since these parameters rarely have a close relationship with the blood pressure value because there are individual differences in these parameters, this type of sphygmomanometer uses:
The relative blood pressure, that is, only the blood pressure fluctuation value can be calculated using the relationship between the fluctuation values of the parameter and the blood pressure. This is conceptually illustrated as shown in FIG. In FIG. 5, the origin of the graph is a reference point, and both the blood pressure fluctuation value on the horizontal axis and the parameter fluctuation value on the vertical axis are represented by relative values from the reference point. That is, with a certain point as a reference, an increase or decrease (relative change) from the reference value correlates with a relative change in blood pressure.

【0004】従って、最初に他の血圧測定手段で得た血
圧絶対値(基準血圧)を何らかの方法(手動入力や通信
手段)で本血圧計に入力・記憶しておく必要がある(以
下、これを単に較正と呼ぶ)。そして、その較正以降に
行われた測定の際には、血圧変動量と基準血圧値を加算
することによって絶対値を間接的に求めるようにしてい
る。これをまとめると、次のようになる。 1)特徴量を検出し、その基準値との差を特徴量変化量
として算出する。 2)予め記憶しているパラメータ変化量と血圧変化量と
の関係から、血圧変化量を算出する。 3)較正時に記憶した基準血圧値と前項(2)で得た血
圧変化量とを加算し、血圧の絶対値を得る。
Therefore, it is necessary to input and store the absolute value of blood pressure (reference blood pressure) obtained by other blood pressure measuring means in the blood pressure monitor by any method (manual input or communication means) Is simply called calibration). Then, in the measurement performed after the calibration, the absolute value is indirectly obtained by adding the blood pressure fluctuation amount and the reference blood pressure value. This can be summarized as follows. 1) A feature amount is detected, and a difference from the reference value is calculated as a feature amount change amount. 2) The blood pressure change amount is calculated from the relationship between the parameter change amount and the blood pressure change amount stored in advance. 3) The reference blood pressure value stored at the time of calibration is added to the blood pressure change amount obtained in (2) to obtain an absolute value of blood pressure.

【0005】[0005]

【発明が解決しようとする課題】ところで、この種の血
圧計の誤差要因として考えられるものに、次の3点があ
る。 パラメータ変化量と血圧変化量との関係(分布の傾
斜)に個人差などがあり、完全に1対1で対応しないこ
とによる誤差。 パラメータ上の計測・算出誤差。 較正用血圧計の誤差。
The following three points can be considered as error factors of this type of blood pressure monitor. There is an individual difference in the relationship between the parameter change amount and the blood pressure change amount (inclination of distribution), and an error caused by not completely one-to-one correspondence. Measurement and calculation errors on parameters. Calibration sphygmomanometer error.

【0006】このうち、誤差については、パラメータ
の種類を増やして、複数の関係式を統合した算出式を用
いたり、血圧を変動させて較正を行うことにより、血圧
とパラメータの変動の関係の傾斜を直接求めるなどの方
法が考案されている。誤差については、複数拍の波形
についてパラメータを求め、その平均値を求めたりする
ことで、計測の精度を改善することで対応できる。
[0006] Among these errors, the slope of the relationship between the blood pressure and the parameter variation is increased by increasing the types of parameters and using a calculation formula integrating a plurality of relational expressions, or by performing calibration by varying the blood pressure. A method has been devised, such as directly requesting. The error can be dealt with by improving the measurement accuracy by obtaining the parameters for the waveforms of a plurality of beats and obtaining the average value.

【0007】しかし、誤差については、較正用血圧計
の特有の問題であるため、これまで解決されるに至って
いなかった。この較正用血圧計は、一般に市販されてい
るカフ式などの血圧計が想定されるが、その誤差範囲は
条件により、最大±20mmHgに及ぶこともある。
又、使用者の不慣れなどで体動が起こったりすれば、そ
の誤差はより大きなものとなる可能性がある。
However, since the error is a problem specific to the calibration sphygmomanometer, it has not been solved so far. This calibration sphygmomanometer is generally assumed to be a commercially available cuff type sphygmomanometer, but its error range may be up to ± 20 mmHg depending on conditions.
Also, if body movement occurs due to inexperience of the user or the like, the error may be larger.

【0008】この場合、この種の血圧計には誤差を含ん
だ基準血圧値が入力されるため、その後に行われる測定
時には、毎回必ずその誤差がそのまま測定結果に現れる
ことになる。なぜなら、この種の血圧計は、毎回得る血
圧変動値に基準血圧値を加えることによって測定値を算
出するからである。従って、本発明は、そのような問題
点に着目してなされたもので、基準血圧値の誤差を無く
し、精度の高い測定値が得られる電子血圧計を提供する
ことを目的とする。
In this case, since a reference blood pressure value including an error is input to this type of sphygmomanometer, the error always appears as it is in the measurement result every time subsequent measurement is performed. This is because this type of sphygmomanometer calculates a measurement value by adding a reference blood pressure value to a blood pressure fluctuation value obtained each time. Accordingly, the present invention has been made in view of such a problem, and an object of the present invention is to provide an electronic sphygmomanometer that eliminates an error in a reference blood pressure value and obtains a highly accurate measurement value.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1の電子血圧計は、心拍に同期して
得られる血管からの脈動成分を検出する脈波検出手段
と、前記脈波の一部又は複数の部分について波形特徴量
を数値化する波形特徴量算出手段と、前記脈波検出手段
で得られた波形特徴量の絶対値を基準特徴量として記憶
する基準特徴量記憶手段と、前記波形特徴量算出手段か
ら得られた波形特徴量と前記基準特徴量との減算によっ
て波形特徴量の変化を算出する波形特徴変化量算出手段
と、前記波形特徴変化量と血圧の変化とを関連づけるこ
とによって血圧変動を算定する血圧変動算出手段と、上
記以外の血圧測定方式に基づいて血圧測定を行う血圧測
定手段により得た血圧値を基準血圧として入力及び記憶
する基準血圧入力・記憶手段とを備え、使用初期或いは
使用途上における測定において前記基準特徴量を得ると
共に、この基準特徴量に前記基準血圧入力・記憶手段に
よって得た基準血圧を対応させ、それ以降に行われる測
定では、前記波形特徴変化量算出手段から得られる波形
特徴変化量のみを検出し、前記血圧変動算出手段にその
波形特徴変化量を入力することによって血圧変動を算出
し、この血圧変動に前記基準血圧入力・記憶手段に記憶
されている基準血圧を加算することによって血圧値を算
出するようにした電子血圧計において、前記基準血圧入
力・記憶手段が、複数の基準血圧値を順次入力でき、入
力された複数の基準血圧を用いて算出した新たな基準血
圧を記憶することを特徴とする。
In order to achieve the above object, an electronic sphygmomanometer according to claim 1 of the present invention comprises: a pulse wave detecting means for detecting a pulsating component from a blood vessel obtained in synchronization with a heartbeat; A waveform feature value calculating means for quantifying a waveform feature value for a part or a plurality of parts of the pulse wave, and a reference feature value for storing an absolute value of the waveform feature value obtained by the pulse wave detecting means as a reference feature value A storage unit, a waveform feature change amount calculating unit that calculates a change in the waveform feature amount by subtracting the waveform feature amount obtained from the waveform feature amount calculation unit and the reference feature amount, and a waveform feature change amount and a blood pressure. A blood pressure change calculating means for calculating a blood pressure change by associating the change with a change; and a blood pressure value obtained by the blood pressure measuring means for performing blood pressure measurement based on a blood pressure measuring method other than the above, as a standard blood pressure input and storage. Storage means for obtaining the reference characteristic amount in the measurement at the beginning of use or during use, associating the reference characteristic amount with the reference blood pressure obtained by the reference blood pressure input / storage means, and performing the measurement performed thereafter. Detecting only the waveform characteristic change amount obtained from the waveform characteristic change amount calculation means, and calculating the blood pressure fluctuation by inputting the waveform characteristic change amount to the blood pressure fluctuation calculation means; In an electronic sphygmomanometer in which a blood pressure value is calculated by adding a reference blood pressure stored in a storage means, the reference blood pressure input / storage means can sequentially input a plurality of reference blood pressure values, and A new reference blood pressure calculated using a plurality of reference blood pressures is stored.

【0010】この血圧計では、別途入力された複数の基
準血圧を用いて新たな基準血圧を算出・記憶するので、
1つの基準血圧を用いる場合に比べて、基準血圧の誤差
の影響が少なくなり、より精度の高い血圧測定を行うこ
とができる。又、請求項4の電子血圧計は、心拍に同期
して得られる血管からの脈動成分を検出する脈波検出手
段と、前記脈波の一部又は複数の部分について波形特徴
量を数値化する波形特徴量算出手段と、前記脈波検出手
段で得られた波形特徴量の絶対値を基準特徴量として記
憶する基準特徴量記憶手段と、前記波形特徴量算出手段
から得られた波形特徴量と前記基準特徴量との減算によ
って波形特徴量の変化を算出する波形特徴変化量算出手
段と、前記波形特徴変化量と血圧の変化とを関連づける
ことによって血圧変動を算定する血圧変動算出手段と、
上記以外の血圧測定方式に基づいて血圧測定を行う血圧
測定手段により得た血圧値を基準血圧として入力及び記
憶する基準血圧入力・記憶手段とを備え、使用初期或い
は使用途上における測定において前記基準特徴量を得る
と共に、この基準特徴量に前記基準血圧入力・記憶手段
によって得た基準血圧を対応させ、それ以降に行われる
測定では、前記波形特徴変化量算出手段から得られる波
形特徴変化量のみを検出し、前記血圧変動算出手段にそ
の波形特徴変化量を入力することによって血圧変動を算
出し、この血圧変動に前記基準血圧入力・記憶手段に記
憶されている基準血圧を加算することによって血圧値を
算出するようにした電子血圧計において、前記基準測定
が少なくとも2回以上行われるように基準測定を使用者
に要求する基準測定要求手段を備え、前記基準血圧入力
・記憶手段が、基準測定要求手段の要求により入力され
た複数の基準血圧を用いて算出した新たな基準血圧を記
憶することを特徴とする。
In this sphygmomanometer, a new reference blood pressure is calculated and stored using a plurality of separately input reference blood pressures.
As compared with the case where one reference blood pressure is used, the influence of the error of the reference blood pressure is reduced, and more accurate blood pressure measurement can be performed. The electronic sphygmomanometer according to claim 4 is a pulse wave detecting means for detecting a pulsating component from a blood vessel obtained in synchronization with a heartbeat, and digitizes a waveform feature value for a part or a plurality of parts of the pulse wave. A waveform feature value calculation unit, a reference feature value storage unit that stores an absolute value of the waveform feature value obtained by the pulse wave detection unit as a reference feature value, and a waveform feature value obtained from the waveform feature value calculation unit. A waveform feature change amount calculating unit that calculates a change in a waveform feature amount by subtracting the reference feature amount, and a blood pressure change calculating unit that calculates a blood pressure change by associating the waveform feature change amount with a change in blood pressure,
Reference blood pressure input / storage means for inputting and storing a blood pressure value obtained by a blood pressure measurement means for performing blood pressure measurement based on a blood pressure measurement method other than the above as a reference blood pressure, wherein the reference characteristic is used in measurement at the beginning of use or during use. In addition to obtaining the amount, the reference blood pressure obtained by the reference blood pressure input / storage means is made to correspond to this reference characteristic amount, and in the measurement performed thereafter, only the waveform characteristic change amount obtained from the waveform characteristic change amount calculation means is used. Detecting and calculating the blood pressure fluctuation by inputting the waveform characteristic change amount to the blood pressure fluctuation calculating means, and adding the reference blood pressure stored in the reference blood pressure input / storage means to the blood pressure fluctuation, thereby obtaining the blood pressure value. In the electronic sphygmomanometer which calculates the reference measurement, the reference measurement requesting the user to perform the reference measurement so that the reference measurement is performed at least twice or more. It includes a request unit, the reference blood pressure input and storage means, and to store the new reference blood pressure calculated using the plurality of reference blood pressure entered at the request of the reference measurement request means.

【0011】この血圧計でも、別途入力された複数の基
準血圧を用いて新たな基準血圧を算出・記憶するので、
1つの基準血圧を用いる場合に比べて、基準血圧の誤差
の影響が少なくなり、より精度の高い血圧測定を行うこ
とができる。又、複数の基準血圧は、基準測定要求手段
により使用者に要求されるので、基準測定の要否が容易
である。
In this sphygmomanometer, a new reference blood pressure is calculated and stored using a plurality of separately input reference blood pressures.
As compared with the case where one reference blood pressure is used, the influence of the error of the reference blood pressure is reduced, and more accurate blood pressure measurement can be performed. In addition, since the plurality of reference blood pressures are requested to the user by the reference measurement requesting means, it is easy to determine whether or not the reference measurement is required.

【0012】[0012]

【発明の実施の形態】以下、本発明を実施の形態に基づ
いて説明する。図1は、その一実施形態に係る電子血圧
計の機器構成を示すブロック図である。この電子血圧計
10は、脈波検出部1と、この脈波検出部1の出力を増
幅する増幅器2と、心電検出部3と、この心電検出部3
の出力を増幅する増幅器4と、A/D変換器5と、CP
U(マイクロコンピュータ)6と、表示部7と、別の血
圧測定方式に基づいて血圧測定を行う外部の血圧測定手
段(例えば電子血圧計)20との間で送受信を行うため
の通信部(通信手段)8とを備えている。別の血圧測定
手段20は、通信部8を介して電子血圧計10に接続さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a block diagram showing a device configuration of the electronic sphygmomanometer according to the embodiment. The electronic sphygmomanometer 10 includes a pulse wave detecting section 1, an amplifier 2 for amplifying an output of the pulse wave detecting section 1, an electrocardiographic detecting section 3, and an electrocardiographic detecting section 3.
, An A / D converter 5 and a CP
A communication unit (communication) for transmitting and receiving between a U (microcomputer) 6, a display unit 7, and an external blood pressure measurement unit (for example, an electronic sphygmomanometer) 20 for performing blood pressure measurement based on another blood pressure measurement method Means 8). Another blood pressure measurement means 20 is connected to the electronic sphygmomanometer 10 via the communication unit 8.

【0013】脈波検出部1では、例えば指尖部などの測
定部位において、連続的に動脈の容積変化に由来する脈
動成分(脈波)を検出する。心電検出部3では、体表の
任意の部位に電極を装着し、その電位変化を心電信号と
して検出する。脈波及び心電信号は、それぞれ増幅器
2,4を経て、A/D変換器5に入力されてデジタル信
号に変換され、CPU6に入力される。CPU6では、
後述の波形処理、血圧算出処理などが実行され、結果
(血圧値)が表示部7に表示される。
The pulse wave detector 1 continuously detects a pulsation component (pulse wave) resulting from a change in arterial volume at a measurement site such as a fingertip. The electrocardiogram detection unit 3 attaches an electrode to an arbitrary part of the body surface and detects a potential change as an electrocardiogram signal. The pulse wave and the electrocardiographic signal are input to the A / D converter 5 via the amplifiers 2 and 4, respectively, are converted into digital signals, and are input to the CPU 6. In CPU 6,
Waveform processing, blood pressure calculation processing, and the like, which will be described later, are performed, and the result (blood pressure value) is displayed on the display unit 7.

【0014】この電子血圧計10の全体動作について図
2及び図3のジェネラルフロー図を参照して説明する。
但し、血圧算出に用いるパラメータは種々考え得るが、
ここでは最も広く知られている脈波伝播速度と脈波波形
上の特徴量をいくつか用いた場合を説明する。しかし、
脈波の波形のみによる算出も可能であり、本発明は特徴
量を特に限定するものではない。
The overall operation of the electronic sphygmomanometer 10 will be described with reference to the general flow charts of FIGS.
However, various parameters used for blood pressure calculation can be considered,
Here, a case will be described in which some of the most widely known pulse wave propagation velocities and features on the pulse wave waveform are used. But,
It is also possible to calculate only the waveform of the pulse wave, and the present invention does not particularly limit the feature amount.

【0015】全体動作は、較正時動作(図2のフロー
図)と較正後動作(通常の測定動作、図3のフロー図)
に分けられるので、以下に順に説明する。 <較正時動作>図2のフロー図において、ステップ(以
下、STと略す)1〜3の処理は、脈波信号及び心電信
号がCPU6に読み込まれる毎に繰り返し実行される。
まず、ST1,2では、それぞれ脈波・心電信号が例え
ば5msecなどのサンプリング周期でA/D変換さ
れ、CPU6に読み込まれる。ST3では、一連の脈波
信号に対し、脈波を1拍毎に認識して、その起始点の時
間が記憶される(区切り点)。この認識処理の詳細につ
いては後述する。
The overall operation is an operation during calibration (flow chart in FIG. 2) and an operation after calibration (normal measurement operation, flow chart in FIG. 3).
, And will be described below in order. <Calibration Operation> In the flowchart of FIG. 2, the processing of steps (hereinafter abbreviated as ST) 1 to 3 is repeatedly executed each time the pulse wave signal and the electrocardiographic signal are read into the CPU 6.
First, in ST1 and ST2, the pulse wave / electrocardiographic signal is A / D converted at a sampling cycle of, for example, 5 msec, and read into the CPU 6. In ST3, a pulse wave is recognized for each pulse in a series of pulse wave signals, and the time of the starting point is stored (breakpoint). Details of this recognition processing will be described later.

【0016】ST4では、心電検出部3より取り込まれ
た心電波形(心電信号)のR波が検出され、その出現時
間が記憶される。R波は、1拍毎に心電信号中に現れる
ピーク様特徴点で、その検出手法は心電図の分野で多く
応用され、特に新規性のあるものではないので、ここで
は詳細な説明を省略する。ST5では、区切り処理に
て、その時点で区切り点が検出されたかどうかが判定さ
れ、検出された場合には以下のST6以降の処理に進む
が、そうでない場合にはST1〜4の処理を繰り返す。
In ST4, the R wave of the electrocardiogram waveform (electrocardiogram signal) fetched by the electrocardiogram detecting section 3 is detected, and its appearance time is stored. The R-wave is a peak-like feature point that appears in the electrocardiogram signal every beat, and its detection method is widely applied in the field of electrocardiogram, and is not particularly novel, so a detailed description is omitted here. . In ST5, it is determined whether or not a break point is detected at that time in the break processing. If detected, the process proceeds to the following ST6 and subsequent steps. If not, the processing of ST1 to ST4 is repeated. .

【0017】ST6では、区切り点が検出された拍につ
いて、脈波波形や脈波伝播速度に関するパラメータを算
出し、記憶手段に記憶する。この処理については詳細を
後述する。ST6のパラメータ記憶処理が行われると、
次にST7において、使用者に対して基準血圧入力を要
求する。この実施形態では、電子血圧計10の表示部7
での表示やブザーの音などにより基準測定を要求する旨
が報知されると共に、通信部8により外部の血圧測定手
段20に基準測定を要求する旨の指示信号が出力され
る。指示としては、血圧測定手段20の表示部での表示
やブザーによる発音などである。使用者は、その指示に
基づいて、血圧測定手段20で基準血圧となる血圧値を
測定する。血圧測定手段20で得られた基準血圧は、較
正用血圧として通信部8を介してCPU6に入力され
る。なお、通信部8を介して基準血圧を入力する代わり
に、使用者が血圧測定手段で測定した基準血圧を電子血
圧計10に手動で直接入力するようにしてもよい。この
場合も、表示部7による表示やブザーによる音などによ
って基準測定の要求を報知すればよい。
In ST6, parameters relating to the pulse wave waveform and the pulse wave propagation velocity are calculated for the beat at which the breakpoint is detected, and stored in the storage means. Details of this processing will be described later. When the parameter storage process of ST6 is performed,
Next, in ST7, the user is requested to input a reference blood pressure. In this embodiment, the display unit 7 of the electronic sphygmomanometer 10
A notification indicating that the reference measurement is required is displayed on the display or a sound of a buzzer, and an instruction signal indicating that the reference measurement is required is output from the communication unit 8 to the external blood pressure measurement unit 20. The instruction includes a display on the display unit of the blood pressure measurement unit 20, a sound by a buzzer, and the like. The user measures the blood pressure value serving as the reference blood pressure with the blood pressure measuring means 20 based on the instruction. The reference blood pressure obtained by the blood pressure measuring means 20 is input to the CPU 6 via the communication unit 8 as a calibration blood pressure. Instead of inputting the reference blood pressure via the communication unit 8, the user may manually input the reference blood pressure measured by the blood pressure measuring means directly to the electronic sphygmomanometer 10. Also in this case, the request for the reference measurement may be notified by a display on the display unit 7 or a sound from a buzzer.

【0018】基準血圧が入力されると、次のST8でそ
れが認識される。1回の基準血圧の入力が終わる毎に、
ST9において基準血圧の入力が3回行われたか否かが
判断される。基準血圧の入力が3回未満である場合に
は、前述のように使用者に次の基準測定を要求する旨の
報知を行い、それにより基準血圧が入力される。そし
て、ST1に戻り、更に次の測定を行って、それに対応
させる基準血圧の入力を行うためにST8までの処理が
繰り返される。
When the reference blood pressure is input, it is recognized in the next ST8. Each time the reference blood pressure is entered,
In ST9, it is determined whether or not the input of the reference blood pressure has been performed three times. When the reference blood pressure is input less than three times, the user is notified that the next reference measurement is required, as described above, and the reference blood pressure is input. Then, returning to ST1, the next measurement is further performed, and the processing up to ST8 is repeated to input the reference blood pressure corresponding thereto.

【0019】基準血圧入力が3回実行されると、ST9
からST10に移行する。ST10では、3回分の基準
血圧を加算平均し、その平均値を記憶手段に記憶する
(ST11)。ST10の基準血圧加算平均処理の代わ
りに、例えば3回分の基準血圧値の加算平均を求め、そ
の加算平均値をもとに算出した基準血圧値の相対的許容
範囲(例えば平均値の±10%以内)を設定し、この許
容範囲内の基準血圧値だけの加算平均を再度求めて、そ
の平均値を記憶手段に記憶してもよい。
When the reference blood pressure input is executed three times, ST9 is executed.
To ST10. In ST10, the three reference blood pressures are added and averaged, and the average value is stored in the storage means (ST11). Instead of the reference blood pressure averaging process in ST10, for example, an averaging of three reference blood pressure values is obtained, and the relative allowable range of the reference blood pressure value calculated based on the averaging value (for example, ± 10% of the average value) ), An average of only the reference blood pressure values within the allowable range may be obtained again, and the average value may be stored in the storage means.

【0020】次に、ST12において、パラメータ値に
ついても加算平均を行い、その結果である平均化パラメ
ータを記憶する(ST13)。最後に、一連の較正動作
が終了したことを表示部7によって表示し(ST1
4)、全ての動作を完了する。 <較正後動作>較正後動作(通常の測定動作)時は、心
電・脈波信号の特徴量のみを計測し、較正時に得た基準
血圧及び基準特徴量をもとに血圧値の算出を行う。
Next, in ST12, addition averaging is performed on the parameter values, and the resulting averaged parameter is stored (ST13). Finally, the display unit 7 displays that a series of calibration operations has been completed (ST1).
4) Complete all operations. <Operation after calibration> In the operation after calibration (normal measurement operation), only the feature of the electrocardiogram / pulse wave signal is measured, and the blood pressure value is calculated based on the reference blood pressure and the reference feature obtained at the time of calibration. Do.

【0021】図3のフロー図において、信号検出及び認
識に関するST21〜ST25に至る処理内容は、上記
図2のフロー図のST1〜ST5の処理と同様であるの
で、説明は省略する。ST26では、区切り点が検出さ
れた拍について、脈波波形や脈波伝播速度に関するパラ
メータを算出し、較正時に記憶した基準特徴量との差と
してパラメータ差分値を求める(ST27)。ここで、
使用するパラメータは1つとは限らないので、各パラメ
ータ差分値をS1 ,S2 ,…,Sn (nは個数)とす
る。ST28では、各パラメータに乗じる係数(パラメ
ータ係数)をK1 ,K2 ,…,k n とすると、次の所定
式、 BP=K1 ・P1 +K2 ・P2 +・・・+Kn ・Pn
BPs によって血圧値を算出する。ここで、BPs は基準血圧
値である。最後に、ST29で、血圧算出結果(血圧
値)を表示し、全ての処理を完了する。
In the flow chart of FIG.
The processing contents from ST21 to ST25 relating to knowledge are described above.
The processing is the same as the processing of ST1 to ST5 in the flowchart of FIG.
The description is omitted. In ST26, a breakpoint is detected.
Parameters related to pulse waveform and pulse wave velocity
Calculate the meter and calculate the difference from the reference feature value stored during calibration.
To obtain a parameter difference value (ST27). here,
Since not only one parameter is used,
Data difference value to S1, STwo, ..., Sn(N is the number)
You. In ST28, a coefficient by which each parameter is multiplied (parameter
Data coefficient) to K1, KTwo, ..., k nThen, the next predetermined
Equation, BP = K1・ P1+ KTwo・ PTwo+ ... + Kn・ Pn+
BPs To calculate the blood pressure value. Where BPsIs the reference blood pressure
Value. Finally, in ST29, the blood pressure calculation result (blood pressure
Value) is displayed, and all processing is completed.

【0022】図2及び図3のフロー図におけるST5と
ST25の区切り処理について説明する。脈波区切り処
理は種々考えられるが、最も一般的手法としては、図4
に示すように、脈波信号(一連の脈波データ)を比較的
高周波数成分だけ通過させるハイパスフィルタ(例え
ば、遮断周波数1Hz)に通過させ、その出力波形の基
線との交点を各拍の起始点、つまり区切り点とすること
により実現し得る。
The separation process between ST5 and ST25 in the flowcharts of FIGS. 2 and 3 will be described. Although various types of pulse wave separation processing can be considered, the most common method is shown in FIG.
As shown in (1), a pulse wave signal (a series of pulse wave data) is passed through a high-pass filter (for example, a cutoff frequency of 1 Hz) that allows only a relatively high frequency component to pass therethrough, and the intersection of the output waveform with the baseline is set to the start of each beat. This can be realized by setting the start point, that is, the break point.

【0023】図3のフロー図におけるST26の波形パ
ラメータ算出処理について説明する。血圧変動と関連を
持つ波形特徴量は種々考え得るが、ここでは2種のパラ
メータを代表例とし、その算出過程を説明する。まず、
最も広く使用されるパラメータである脈波伝播速度(P
WV)について説明する。PWVは前述のR波出現時間
と末梢部(例えば指尖部)での脈波出現時間との時間差
から求められる。R波は心臓が血液の拍出を開始すると
きに見られるもので、その出現時間は概ね脈波が心臓近
辺で出現する時間とすることができ、これと指などの末
梢部での脈波検出時間との差、即ち心電信号のR波検出
時から末梢部における脈波の区切り点検出までの時間差
を算出すれば、脈波が心臓から末梢部まで伝播するのに
要した時間が算出し得る。個人内で心臓と特定末梢部の
距離は一定とし得るから、脈波伝播時間の逆数は、脈波
伝播速度に比例する量になる。
A description will be given of the waveform parameter calculation process in ST26 in the flowchart of FIG. Although various waveform features related to the blood pressure fluctuation can be considered, here, the calculation process will be described using two types of parameters as representative examples. First,
The most widely used parameter, pulse wave velocity (P
WV) will be described. The PWV is obtained from the time difference between the R wave appearance time and the pulse wave appearance time at the peripheral part (for example, the fingertip). The R wave is seen when the heart starts pumping blood, and its appearance time can be approximately the time when the pulse wave appears near the heart, and this and the pulse wave in the peripheral part such as a finger. By calculating the difference from the detection time, that is, the time difference from the detection of the R wave of the electrocardiogram signal to the detection of the breakpoint of the pulse wave in the peripheral part, the time required for the pulse wave to propagate from the heart to the peripheral part is calculated. I can do it. Since the distance between the heart and a specific peripheral portion can be constant in an individual, the reciprocal of the pulse wave propagation time is an amount proportional to the pulse wave propagation velocity.

【0024】PWV以外のパラメータとしては、次のよ
うな脈波波形上の特徴量が心血管系の変化を表すとさ
れ、血圧変動時にそれを反映して変化すると考えられて
いる。 (1)心拍数:R波又は脈波起始点の時間間隔の逆数と
して算出し得る。 (2)立ち上がり時間:各拍の脈波起始点とピーク点と
の時間差。 (3)上昇・下降傾斜比:起始点からピーク点の間での
信号の上昇速度の最大値と、ピーク点から次の拍の起始
点までの間での信号の下降速度の最小値との比。
As parameters other than the PWV, the following features on the pulse waveform are considered to indicate changes in the cardiovascular system, and are considered to change when blood pressure changes. (1) Heart rate: can be calculated as the reciprocal of the time interval between the start point of the R wave or the pulse wave. (2) Rise time: the time difference between the pulse wave starting point and the peak point of each pulse. (3) Rise / fall slope ratio: The maximum value of the rising speed of the signal between the starting point and the peak point and the minimum value of the falling speed of the signal between the peak point and the starting point of the next beat. ratio.

【0025】なお、この実施形態では、個人用の血圧計
としているが、複数の被測定者がいる場合には、個人I
D番号と共に基準血圧値を記憶しておき、測定時に個人
ID番号を使って基準血圧値を読み出すようにすればよ
い。又、血圧算出に使用するパラメータ係数は、血圧変
動要因(運動時や寒冷時など)に対応して最適に補正し
てもよい。補正したパラメータ係数は、コンピュータプ
ログラムと共に前記CPU6内に内蔵された記憶手段
(ROM)に各要因毎に記憶しておき、血圧変動要因に
応じて選別すればよい。
In this embodiment, the personal sphygmomanometer is used. However, when there are a plurality of subjects, the individual I
The reference blood pressure value may be stored together with the D number, and the reference blood pressure value may be read using the personal ID number at the time of measurement. In addition, the parameter coefficient used for calculating the blood pressure may be optimally corrected according to the blood pressure fluctuation factor (during exercise, during cold weather, etc.). The corrected parameter coefficients may be stored for each factor in a storage means (ROM) incorporated in the CPU 6 together with the computer program, and may be selected according to the blood pressure variation factor.

【0026】[0026]

【発明の効果】以上説明したように、請求項1(及び請
求項2,3)の電子血圧計によれば、別途入力された複
数の基準血圧を用いて新たな基準血圧を算出・記憶する
ので、1つの基準血圧を用いる場合に比べて、基準血圧
の誤差の影響が少なくなり、より精度の高い血圧測定を
行うことができる。
As described above, according to the electronic sphygmomanometer of claim 1 (and claims 2 and 3), a new reference blood pressure is calculated and stored using a plurality of separately input reference blood pressures. Therefore, as compared with the case where one reference blood pressure is used, the influence of the error of the reference blood pressure is reduced, and more accurate blood pressure measurement can be performed.

【0027】請求項4(及び請求項5,6,7)の電子
血圧計によれば、別途入力された複数の基準血圧を用い
て新たな基準血圧を算出・記憶するので、1つの基準血
圧を用いる場合に比べて、基準血圧の誤差の影響が少な
くなり、より精度の高い血圧測定を行うことができる。
又、複数の基準血圧は、基準測定要求手段により使用者
に要求されるので、基準測定の要否が容易である。
According to the electronic sphygmomanometer of claim 4 (and claims 5, 6, and 7), a new reference blood pressure is calculated and stored using a plurality of separately input reference blood pressures. The effect of the error of the reference blood pressure is reduced as compared with the case of using, and more accurate blood pressure measurement can be performed.
In addition, since the plurality of reference blood pressures are requested to the user by the reference measurement requesting means, it is easy to determine whether or not the reference measurement is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態に係る電子血圧計の構成を示すブロ
ック図である。
FIG. 1 is a block diagram illustrating a configuration of an electronic sphygmomanometer according to one embodiment.

【図2】同実施形態の電子血圧計の全体動作における較
正時動作を説明するフロー図である。
FIG. 2 is a flowchart illustrating an operation during calibration in the overall operation of the electronic sphygmomanometer according to the embodiment.

【図3】同実施形態の電子血圧計の全体動作における較
正後動作を説明するフロー図である。
FIG. 3 is a flowchart illustrating a post-calibration operation in the overall operation of the electronic sphygmomanometer of the embodiment.

【図4】同実施形態の電子血圧計の全体動作における脈
波の区切りを説明する波形図である。
FIG. 4 is a waveform chart for explaining pulse wave division in the overall operation of the electronic sphygmomanometer of the embodiment.

【図5】血圧変動とパラメータ変動との相関関係を示す
グラフである。
FIG. 5 is a graph showing a correlation between a blood pressure change and a parameter change.

【符号の説明】[Explanation of symbols]

1 脈波検出部 2,4 増幅器 3 心電検出部 5 A/D変換器 6 CPU 7 表示部 8 通信部(通信手段) 10 電子血圧計 20 血圧測定手段 DESCRIPTION OF SYMBOLS 1 Pulse-wave detection part 2, 4 Amplifier 3 Electrocardiogram detection part 5 A / D converter 6 CPU 7 Display part 8 Communication part (communication means) 10 Electronic sphygmomanometer 20 Blood pressure measurement means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】心拍に同期して得られる血管からの脈動成
分を検出する脈波検出手段と、前記脈波の一部又は複数
の部分について波形特徴量を数値化する波形特徴量算出
手段と、前記脈波検出手段で得られた波形特徴量の絶対
値を基準特徴量として記憶する基準特徴量記憶手段と、
前記波形特徴量算出手段から得られた波形特徴量と前記
基準特徴量との減算によって波形特徴量の変化を算出す
る波形特徴変化量算出手段と、前記波形特徴変化量と血
圧の変化とを関連づけることによって血圧変動を算定す
る血圧変動算出手段と、上記以外の血圧測定方式に基づ
いて血圧測定を行う血圧測定手段により得た血圧値を基
準血圧として入力及び記憶する基準血圧入力・記憶手段
とを備え、 使用初期或いは使用途上における測定において前記基準
特徴量を得ると共に、この基準特徴量に前記基準血圧入
力・記憶手段によって得た基準血圧を対応させ、それ以
降に行われる測定では、前記波形特徴変化量算出手段か
ら得られる波形特徴変化量のみを検出し、前記血圧変動
算出手段にその波形特徴変化量を入力することによって
血圧変動を算出し、この血圧変動に前記基準血圧入力・
記憶手段に記憶されている基準血圧を加算することによ
って血圧値を算出するようにした電子血圧計において、 前記基準血圧入力・記憶手段は、複数の基準血圧値を順
次入力でき、入力された複数の基準血圧を用いて算出し
た新たな基準血圧を記憶することを特徴とする電子血圧
計。
1. A pulse wave detecting means for detecting a pulsating component from a blood vessel obtained in synchronization with a heartbeat, and a waveform characteristic amount calculating means for quantifying a waveform characteristic amount for a part or a plurality of parts of the pulse wave. Reference feature value storage means for storing the absolute value of the waveform feature value obtained by the pulse wave detection means as a reference feature value;
A waveform feature change amount calculating unit that calculates a change in a waveform feature amount by subtracting the waveform feature amount obtained from the waveform feature amount calculating unit and the reference feature amount, and associates the waveform feature change amount with a change in blood pressure. Blood pressure fluctuation calculating means for calculating the blood pressure fluctuation, and a reference blood pressure input / storage means for inputting and storing a blood pressure value obtained by the blood pressure measuring means for performing blood pressure measurement based on a blood pressure measurement method other than the above as a reference blood pressure. In the measurement at the beginning of use or during use, the reference characteristic amount is obtained, and the reference characteristic amount is associated with the reference blood pressure obtained by the reference blood pressure input / storage means. By detecting only the waveform characteristic change amount obtained from the change amount calculation means and inputting the waveform characteristic change amount to the blood pressure fluctuation calculation means, the blood pressure change is calculated. The reference blood pressure input /
An electronic sphygmomanometer in which a blood pressure value is calculated by adding a reference blood pressure stored in a storage means, wherein the reference blood pressure input / storage means can sequentially input a plurality of reference blood pressure values. An electronic sphygmomanometer characterized by storing a new reference blood pressure calculated using the reference blood pressure.
【請求項2】前記基準血圧入力・記憶手段は、入力され
た複数の基準血圧値の加算平均を用いて新たな基準血圧
を算出することを特徴とする請求項1記載の電子血圧
計。
2. The electronic sphygmomanometer according to claim 1, wherein the reference blood pressure input / storage means calculates a new reference blood pressure using an average of a plurality of input reference blood pressure values.
【請求項3】前記基準血圧入力・記憶手段は、入力され
た複数の基準血圧値の平均値を求め、その平均値をもと
に算出した基準血圧入力値の許容範囲を設定し、この許
容範囲内の基準血圧入力値を用いて加算平均を行うこと
を特徴とする請求項2記載の電子血圧計。
3. The reference blood pressure input / storage means calculates an average value of a plurality of input reference blood pressure values, sets an allowable range of the reference blood pressure input value calculated based on the average value, and sets the allowable range. 3. The electronic sphygmomanometer according to claim 2, wherein the averaging is performed using the reference blood pressure input value within the range.
【請求項4】心拍に同期して得られる血管からの脈動成
分を検出する脈波検出手段と、前記脈波の一部又は複数
の部分について波形特徴量を数値化する波形特徴量算出
手段と、前記脈波検出手段で得られた波形特徴量の絶対
値を基準特徴量として記憶する基準特徴量記憶手段と、
前記波形特徴量算出手段から得られた波形特徴量と前記
基準特徴量との減算によって波形特徴量の変化を算出す
る波形特徴変化量算出手段と、前記波形特徴変化量と血
圧の変化とを関連づけることによって血圧変動を算定す
る血圧変動算出手段と、上記以外の血圧測定方式に基づ
いて血圧測定を行う血圧測定手段により得た血圧値を基
準血圧として入力及び記憶する基準血圧入力・記憶手段
とを備え、 使用初期或いは使用途上における測定において前記基準
特徴量を得ると共に、この基準特徴量に前記基準血圧入
力・記憶手段によって得た基準血圧を対応させ、それ以
降に行われる測定では、前記波形特徴変化量算出手段か
ら得られる波形特徴変化量のみを検出し、前記血圧変動
算出手段にその波形特徴変化量を入力することによって
血圧変動を算出し、この血圧変動に前記基準血圧入力・
記憶手段に記憶されている基準血圧を加算することによ
って血圧値を算出するようにした電子血圧計において、 前記基準測定が少なくとも2回以上行われるように基準
測定を使用者に要求する基準測定要求手段を備え、前記
基準血圧入力・記憶手段は、基準測定要求手段の要求に
より入力された複数の基準血圧を用いて算出した新たな
基準血圧を記憶することを特徴とする電子血圧計。
4. A pulse wave detecting means for detecting a pulsating component from a blood vessel obtained in synchronization with a heartbeat, and a waveform characteristic amount calculating means for quantifying a waveform characteristic amount for a part or a plurality of parts of the pulse wave. Reference feature value storage means for storing the absolute value of the waveform feature value obtained by the pulse wave detection means as a reference feature value;
A waveform feature change amount calculating unit that calculates a change in a waveform feature amount by subtracting the waveform feature amount obtained from the waveform feature amount calculating unit and the reference feature amount, and associates the waveform feature change amount with a change in blood pressure. Blood pressure fluctuation calculating means for calculating the blood pressure fluctuation, and a reference blood pressure input / storage means for inputting and storing a blood pressure value obtained by the blood pressure measuring means for performing blood pressure measurement based on a blood pressure measurement method other than the above as a reference blood pressure. In the measurement at the beginning of use or during use, the reference characteristic amount is obtained, and the reference characteristic amount is associated with the reference blood pressure obtained by the reference blood pressure input / storage means. By detecting only the waveform characteristic change amount obtained from the change amount calculation means and inputting the waveform characteristic change amount to the blood pressure fluctuation calculation means, the blood pressure change is calculated. The reference blood pressure input /
An electronic sphygmomanometer that calculates a blood pressure value by adding a reference blood pressure stored in a storage unit, wherein a reference measurement request for requesting a user to perform the reference measurement so that the reference measurement is performed at least twice or more. An electronic sphygmomanometer, comprising: means, wherein the reference blood pressure input / storage means stores a new reference blood pressure calculated using a plurality of reference blood pressures input in response to a request from the reference measurement requesting means.
【請求項5】前記血圧測定手段との間で送受信を行うた
めの通信手段を備え、前記基準測定要求手段は、使用者
に基準測定を要求すると共に、通信手段によって血圧測
定手段に基準測定を要求する旨の指示信号を出力するこ
とを特徴とする請求項4記載の電子血圧計。
5. A communication system for transmitting and receiving data to and from the blood pressure measurement means, wherein the reference measurement request means requests a user to perform reference measurement, and the communication means transmits the reference measurement to the blood pressure measurement means. The electronic sphygmomanometer according to claim 4, wherein an instruction signal for requesting is output.
【請求項6】前記基準血圧入力・記憶手段は、入力され
た複数の基準血圧及びそれに対応づけられた波形特徴量
に対し、それぞれ加算平均を求めて代表基準血圧及び代
表波形特徴量として記憶することを特徴とする請求項4
記載の電子血圧計。
6. The reference blood pressure input / storage means obtains an average of a plurality of input reference blood pressures and waveform feature amounts associated therewith, and stores them as a representative reference blood pressure and a representative waveform feature amount. 5. The method according to claim 4, wherein
Electronic blood pressure monitor as described.
【請求項7】前記基準血圧入力・記憶手段は、入力され
た複数の基準血圧及びそれに対応づけられた波形特徴量
のそれぞれの平均値を求め、この平均値をもとに算出し
た基準血圧及び波形特徴量の許容範囲をそれぞれ設定
し、この許容範囲内の基準血圧及び波形特徴量を用いて
加算平均を行うことを特徴とする請求項6記載の電子血
圧計。
7. The reference blood pressure input / storage means obtains an average value of each of a plurality of input reference blood pressures and waveform feature amounts associated therewith, and calculates a reference blood pressure and a calculated reference blood pressure based on the average values. 7. The electronic sphygmomanometer according to claim 6, wherein an allowable range of the waveform feature amount is set, and the averaging is performed using the reference blood pressure and the waveform feature amount within the allowable range.
JP8311554A 1996-11-22 1996-11-22 Electronic blood pressure gauge Pending JPH10151118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8311554A JPH10151118A (en) 1996-11-22 1996-11-22 Electronic blood pressure gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8311554A JPH10151118A (en) 1996-11-22 1996-11-22 Electronic blood pressure gauge

Publications (1)

Publication Number Publication Date
JPH10151118A true JPH10151118A (en) 1998-06-09

Family

ID=18018639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8311554A Pending JPH10151118A (en) 1996-11-22 1996-11-22 Electronic blood pressure gauge

Country Status (1)

Country Link
JP (1) JPH10151118A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054575A1 (en) 2000-01-26 2001-08-02 Vsm Medtech Ltd. Continuous blood pressure monitoring method and apparatus
US6893401B2 (en) 2001-07-27 2005-05-17 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US9301700B2 (en) 2012-09-27 2016-04-05 Welch Allyn, Inc. Configurable vital signs system
CN109872820A (en) * 2019-03-29 2019-06-11 广州视源电子科技股份有限公司 A kind of no cuff blood pressure measuring method, device, equipment and storage medium
CN113057610A (en) * 2021-02-07 2021-07-02 来邦养老科技有限公司 Dynamic blood pressure measurement calibration method and device of wearable equipment and storage medium
US11071467B2 (en) 2013-08-08 2021-07-27 Welch Allyn, Inc. Hybrid patient monitoring system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054575A1 (en) 2000-01-26 2001-08-02 Vsm Medtech Ltd. Continuous blood pressure monitoring method and apparatus
US6599251B2 (en) 2000-01-26 2003-07-29 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US6893401B2 (en) 2001-07-27 2005-05-17 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US9301700B2 (en) 2012-09-27 2016-04-05 Welch Allyn, Inc. Configurable vital signs system
US11071467B2 (en) 2013-08-08 2021-07-27 Welch Allyn, Inc. Hybrid patient monitoring system
CN109872820A (en) * 2019-03-29 2019-06-11 广州视源电子科技股份有限公司 A kind of no cuff blood pressure measuring method, device, equipment and storage medium
CN109872820B (en) * 2019-03-29 2023-12-08 广州视源电子科技股份有限公司 Method, device, equipment and storage medium for measuring blood pressure without cuff
CN113057610A (en) * 2021-02-07 2021-07-02 来邦养老科技有限公司 Dynamic blood pressure measurement calibration method and device of wearable equipment and storage medium
CN113057610B (en) * 2021-02-07 2024-02-09 来邦科技股份公司 Dynamic blood pressure measurement calibration method, device and storage medium of wearable equipment

Similar Documents

Publication Publication Date Title
US5241966A (en) Method and apparatus for measuring cardiac output
US6652466B2 (en) Blood flow volume measurement method and vital sign monitoring apparatus
WO2020007041A1 (en) Blood pressure measurement apparatus and method, electronic device, and computer readable storage medium
JP3318727B2 (en) Pulse wave transit time sphygmomanometer
US7137955B2 (en) Methods and systems for distal recording of phonocardiographic signals
US6083171A (en) Blood pressure monitoring apparatus
US10349838B2 (en) Methods and apparatus for determining arterial pulse wave velocity
JP5410210B2 (en) Artifact removal method, blood volume measuring device and artifact removal program in respiratory stroke fluctuation analysis device for stroke volume
US20050124903A1 (en) Pressure-based system and method for determining cardiac stroke volume
AU2005211992A1 (en) Apparatus and method for measuring hemodynamic parameters
WO2003082100A1 (en) Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer
JP2001504362A (en) Non-destructive blood pressure measurement device without pressurized zone
CN103784132A (en) Blood volume measurement method and blood volume measurement apparatus
EP3545832B1 (en) Correction method for pulse wave propagation time related to diastolic blood pressure and systolic blood pressure
GB2092309A (en) Blood Pressure Measurement
WO2006024871A1 (en) Methods and apparatus for the measurement of blood pressure
JP2015107310A (en) Blood pressure measurement apparatus and blood pressure measurement method
WO1992006633A1 (en) Method and apparatus for measuring cardiac output
EP2844133B1 (en) System, method and computer program for using a pulse oximetry signal to monitor blood pressure
ZA200106578B (en) Method and device for continuous analysis of cardiovascular activity of a subject.
JPH10151118A (en) Electronic blood pressure gauge
JPH09220207A (en) Blood pressure calculation device
JP3023505B2 (en) Blood pressure monitoring device
JPH10137202A (en) Blood pressure calculation device
JPS63255036A (en) Apparatus for measuring blood pressure at contraction stage