JPH10149587A - Forming method of optical disk substrate - Google Patents
Forming method of optical disk substrateInfo
- Publication number
- JPH10149587A JPH10149587A JP30901396A JP30901396A JPH10149587A JP H10149587 A JPH10149587 A JP H10149587A JP 30901396 A JP30901396 A JP 30901396A JP 30901396 A JP30901396 A JP 30901396A JP H10149587 A JPH10149587 A JP H10149587A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- heat insulating
- resin
- insulating layer
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000003287 optical effect Effects 0.000 title claims description 15
- 238000000465 moulding Methods 0.000 claims description 20
- 239000000919 ceramic Substances 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 28
- 229920005989 resin Polymers 0.000 abstract description 28
- 239000011347 resin Substances 0.000 abstract description 28
- 230000002093 peripheral effect Effects 0.000 abstract description 12
- 238000001816 cooling Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 7
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 4
- 238000002474 experimental method Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/263—Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
- B29C45/2632—Stampers; Mountings thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/263—Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
- B29C45/2632—Stampers; Mountings thereof
- B29C2045/2634—Stampers; Mountings thereof mounting layers between stamper and mould or on the rear surface of the stamper
- B29C2045/2636—Stampers; Mountings thereof mounting layers between stamper and mould or on the rear surface of the stamper insulating layers
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ディスク基板の
成形方法に関する。[0001] The present invention relates to a method for forming an optical disk substrate.
【0002】[0002]
【従来の技術】光ディスク基板の射出成形に用いられる
成形金型を図1に示す。基板の成形方法は、図1に示す
ように情報ピットやレーザ案内溝の成形転写のためのニ
ッケル製のスタンパを金型キャビティ内に装着し、溶融
樹脂を基板中心に設けたゲートより充填し、冷却・固化
後離型して成形を完了する。このような光ディスク基板
の成形においては、サブミクロンオーダの情報ピットや
レーザ案内溝の精密転写が最重要課題となっている。特
に、高密度化のために基板厚みが従来の半分の0.6mmと
薄くなると、ポリカーボネート樹脂による光ディスク基
板の従来技術では、図6中のに示されるように、スタ
ンパの溝深さに対してほとんど転写しておらず、しかも
溶融樹脂は充填中に金型によって冷却される(後述の成
形条件では、約20〜30℃低下)ため、ゲートから遠ざか
るに従って転写性が低くなるという傾向を示す。2. Description of the Related Art FIG. 1 shows a molding die used for injection molding of an optical disk substrate. As shown in FIG. 1, a method for forming a substrate is to mount a nickel stamper for forming and transferring information pits and laser guide grooves in a mold cavity, and fill a molten resin through a gate provided at the center of the substrate. Molding is completed by releasing after cooling and solidification. In forming such an optical disk substrate, the most important issue is the precise transfer of information pits and laser guide grooves on the order of submicrons. In particular, when the substrate thickness is reduced to half of the conventional thickness of 0.6 mm for the purpose of higher density, the conventional technology of the optical disc substrate using the polycarbonate resin hardly increases the groove depth of the stamper as shown in FIG. Since the resin has not been transferred and the molten resin is cooled by the mold during filling (under the molding conditions described below, the temperature decreases by about 20 to 30 ° C.), the transferability tends to decrease as the distance from the gate increases.
【0003】転写性を向上させるための技術としては、
(1)溶融樹脂を高速充填する、(2)金型温度を高く
して成形する、ことなどがある。上記した従来技術
(1)の高速充填成形方法では、図6に示されるよう
に転写性はある程度改善されるものの完全な成形転写を
得ることはできない。しかも、ゲートから遠ざかるに従
って転写性が低下するという問題も解決されない。成形
機の出力向上によって、図6に示した例よりも高速充填
は可能であるが、バリ等の発生などのために高速化には
多くの技術開発が必要である。[0003] Techniques for improving transferability include:
(1) High-speed filling of molten resin, (2) Molding at a high mold temperature, and the like. In the high-speed filling molding method of the above-mentioned prior art (1), as shown in FIG. 6, although transferability is improved to some extent, complete molding transfer cannot be obtained. In addition, the problem that the transferability decreases as the distance from the gate decreases is not solved. By increasing the output of the molding machine, higher-speed filling than in the example shown in FIG. 6 is possible, but a lot of technical development is required to increase the speed due to generation of burrs and the like.
【0004】従来技術の(2)においても、離型時の成
形品変形の制約から金型温度をせいぜい成形樹脂の熱変
形温度近くまで(熱変形温度以下:ポリカーボネート樹
脂の熱変形温度は126℃)しか上げられないため、上記
と同様に転写性は図6に示すように満足できるもので
なく、しかも従来技術(1)と同様にゲートから遠ざか
るに従って転写性が低下するという問題は残されたまま
である。In the prior art (2), the mold temperature is at most close to the thermal deformation temperature of the molding resin (less than the thermal deformation temperature: the thermal deformation temperature of the polycarbonate resin is 126.degree. 6), the transferability is not satisfactory as shown in FIG. 6 as described above, and the problem that the transferability decreases with distance from the gate remains as in the prior art (1). Up to.
【0005】この転写性の低下を防止する方法として、
特開平1ー278322号公報にあるように、ゲートから遠い部
分の金型温度(キャビティ温度)を高くして成形する方
法が提案されている。しかし、この方法では基板を離型
して取り出す時も金型温度が高い(転写性向上のために
熱変形温度以上に設定してある)ので基板の変形を生
じ、光ディスク基板としてのチルトの仕様を満足しな
い。しかも、設備的にも複数の金型温度調節機構が必要
である。この問題を解決する方法の一つとして、樹脂充
填時には金型温度を熱変形温度以上にし、離型時には金
型温度を熱変形温度以下にするという金型温度冷熱サイ
クル法が開発されている。しかし、この方法では、さら
に設備上複雑になり、しかも成形サイクルが長くなると
いう問題が新たに発生する。[0005] As a method for preventing the decrease in transferability,
As disclosed in Japanese Patent Application Laid-Open No. 1-278322, a method has been proposed in which molding is performed by increasing the mold temperature (cavity temperature) in a portion far from the gate. However, in this method, even when the substrate is released from the mold, the mold temperature is high (set at a temperature equal to or higher than the thermal deformation temperature in order to improve transferability). Not satisfied. In addition, a plurality of mold temperature control mechanisms are required in terms of equipment. As one method for solving this problem, a mold temperature cooling / heating cycle method has been developed in which the mold temperature is set to be equal to or higher than the heat deformation temperature when the resin is filled, and the mold temperature is set to be equal to or lower than the heat deformation temperature when releasing the mold. However, in this method, there is a new problem that the equipment becomes more complicated and the molding cycle becomes longer.
【0006】[0006]
【発明が解決しようとする課題】上記したように従来技
術では、均一な転写性を得るには複数の金型温度調節機
構が必要で、しかも得られる成形品は離型・取り出しに
よる変形の増大を余儀なくされる。本発明の課題はこれ
らの問題を解決することにある。As described above, in the prior art, a plurality of mold temperature control mechanisms are required to obtain uniform transferability, and the obtained molded product is increased in deformation due to mold release and removal. Forced to. An object of the present invention is to solve these problems.
【0007】[0007]
【課題を解決するための手段】前記課題を解決するため
に、スタンパ表面における溶融樹脂の温度を転写性向上
可能な温度以上に保ち、さらに基板中心部と外周部との
温度差を無くする手段として、スタンパ下面にある値範
囲の厚みを有する断熱層、若しくは基板中心部から外周
部にかけて厚みを変化させた断熱層を設ける。In order to solve the above-mentioned problems, means for keeping the temperature of the molten resin on the surface of the stamper higher than the temperature at which the transferability can be improved and eliminating the temperature difference between the central portion and the outer peripheral portion of the substrate. A heat insulating layer having a thickness within a certain value range on the lower surface of the stamper or a heat insulating layer having a thickness changed from the central portion to the outer peripheral portion of the substrate is provided.
【0008】[0008]
【発明の実施の形態】以下、本発明にかかる実施例を図
面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0009】実施例1 断熱層を形成するセラミックス材13としてジルコニア
を用い、該厚みをある一定以上の厚みにした本発明によ
る実施例を図2に示す。Embodiment 1 FIG. 2 shows an embodiment according to the present invention in which zirconia is used as the ceramic material 13 for forming the heat insulating layer and the thickness is set to a certain value or more.
【0010】成形転写性を決定する主要因子である充填
された樹脂とスタンパ4との境界面での温度が、断熱材
の厚みによってどう変化するかを、事前にシミュレート
した。シミュレーションに用いた各々の諸元は表1の通
りで、その結果を図3に示す。How the temperature at the interface between the filled resin and the stamper 4, which is a major factor determining the mold transferability, changes with the thickness of the heat insulating material was simulated in advance. Table 1 shows the specifications used in the simulation, and the results are shown in FIG.
【0011】[0011]
【表1】 [Table 1]
【0012】図3の結果は、初期金型温度を離型時に基
板の変形が生じない110℃とし、樹脂とスタンパの境界
面の最高温度(樹脂充填後、約0.2s)を示している。The results in FIG. 3 show that the initial mold temperature is 110 ° C. at which no deformation of the substrate occurs at the time of mold release, and the maximum temperature at the boundary surface between the resin and the stamper (about 0.2 s after filling the resin).
【0013】樹脂温度の上限温度である380℃で成形す
ると、ゲートが設けられている基板中心部では380℃、
ゲートから遠い基板外周部までに約30℃の低下があるの
で外周部の樹脂温度は 350℃となる。これまでの実験
結果から、十分な転写量を得るには樹脂とスタンパ4の
表面との境界面温度が熱変形温度(126℃)よりも高い1
30℃以上必要であるので、図3からジルコニア層の厚み
は0.2mm以上必要となることがわかる。When molding is performed at 380 ° C., which is the upper limit temperature of the resin temperature, 380 ° C.
Since there is a drop of about 30 ° C from the gate to the outer periphery of the substrate, the resin temperature at the outer periphery is 350 ° C. From the experimental results so far, in order to obtain a sufficient transfer amount, the interface temperature between the resin and the surface of the stamper 4 is higher than the thermal deformation temperature (126 ° C.) 1
FIG. 3 shows that the thickness of the zirconia layer is required to be 0.2 mm or more because the temperature is required to be 30 ° C. or more.
【0014】一方、一般に断熱層を設けると冷却速度が
遅くなり成形サイクルが長くなる。そこで、基板離型可
能な温度条件として、樹脂とスタンパの境界温度120℃
とし、該温度に到達するまでの時間についても検討し、
その結果を図4に示した。図4より、生産性の点から、
冷却時間を2s以下に抑えるためにはジルコニアの厚みは
1.0mm以下である必要がある。これらの結果に基づい
て、ジルコニア断熱層の厚みを、基板全体に亘って0.2m
m均一とした。On the other hand, in general, when a heat insulating layer is provided, the cooling rate becomes slow and the molding cycle becomes long. Therefore, as a temperature condition at which the substrate can be released, the boundary temperature between the resin and the stamper is 120 ° C.
And, also consider the time to reach the temperature,
The result is shown in FIG. From FIG. 4, from the viewpoint of productivity,
In order to keep the cooling time under 2 seconds, the thickness of zirconia must be
It must be less than 1.0mm. Based on these results, the thickness of the zirconia heat insulating layer was set to 0.2 m over the entire substrate.
m uniform.
【0015】ジルコニヤ断熱層13の形成には、予め焼
結したものを可動型コア5表面に接着する方法、可動型
コア5表面にスパッタリングによって直接形成する方法
があるが、前者は薄すぎて焼結板を得にくい、後者は形
成速度が極めて遅いなどの欠点がある。そこで、本実施
例では、溶射法によって形成し、その後該表面を研磨し
て平面度0.01mm以下、表面あらさRa 0.3μmまでに仕上
げる方法を採用した。The zirconia heat-insulating layer 13 can be formed by bonding a pre-sintered material to the surface of the movable core 5 or by directly forming it on the surface of the movable core 5 by sputtering. There are drawbacks such as difficulty in obtaining a tie and the latter having an extremely slow forming speed. Therefore, in the present embodiment, a method of forming by a thermal spraying method and then polishing the surface to finish the flatness to 0.01 mm or less and the surface roughness Ra to 0.3 μm is adopted.
【0016】これによって、充填直後の溶融樹脂温度が
ゲートに近い基板内周部より低い基板外周部でも、樹脂
充填直後のスタンパとの境界面温度が130℃と樹脂の熱
変形温度を越え、図6中に示すように内・外周部とも
良好な転写性を得ることができる。しかも、この成形型
では樹脂の冷却速度が遅くなっているので、成形品の内
部応力(複屈折)も小さく抑えることができる。As a result, even when the temperature of the molten resin immediately after filling is lower than the inner peripheral portion of the substrate near the gate, the boundary surface temperature with the stamper immediately after filling the resin exceeds 130 ° C., which is higher than the thermal deformation temperature of the resin. As shown in 6, good transferability can be obtained in both the inner and outer peripheral portions. In addition, since the cooling rate of the resin is low in this molding die, the internal stress (birefringence) of the molded product can be suppressed to a small value.
【0017】上記の例では、断熱性セラミックスとして
ジルコニア(熱伝導率:3.7W/mK)を用いたが、ジルコ
ニアと同様に熱伝導率の小さいチタニア系(熱伝導率:
2.9〜4.1W/mK)でもよい。ちなみに、一般に断熱層とし
ては樹脂材料がよく用いられるが、樹脂材料は弾性率や
硬度はセラミックス材に比べてよりはるかに小さく、射
出成形圧(通常300気圧以上)による変形、成形品の平
面精度を低下させ光ディスク基板の成形には適用できな
い。In the above example, zirconia (thermal conductivity: 3.7 W / mK) was used as the heat insulating ceramic. However, similar to zirconia, a titania-based material having a low thermal conductivity (thermal conductivity: 3.7 W / mK) was used.
2.9-4.1W / mK). By the way, resin material is generally used for the heat insulation layer, but the elasticity and hardness of the resin material are much smaller than those of the ceramic material. And cannot be applied to the molding of the optical disk substrate.
【0018】実施例2 断熱層を形成するセラミックス材13としてジルコニア
を用い、該厚みをゲートからの距離に応じて変化させた
本発明による実施例を図5に示す。Embodiment 2 FIG. 5 shows an embodiment according to the present invention in which zirconia is used as the ceramic material 13 forming the heat insulating layer and the thickness is changed according to the distance from the gate.
【0019】樹脂温度を上限の380℃とした場合、ゲー
トが設けられている基板中心部での溶融樹脂温度は380
℃、ゲートから遠い基板外周部では約30℃の温度低下が
あるため350℃と推定できる。したがって、図3より、
ジルコニア層の厚みとしては、基板中心部で0.13mm以上
で、基板外周部では0.2mm以上必要となる。このよう
に、ジルコニア断熱層の厚みをゲートから遠ざかるに従
って厚くして、基板内周部で0.13mm,外周部で02mmとし
た。When the resin temperature is set to the upper limit of 380 ° C., the molten resin temperature at the center of the substrate where the gate is provided is 380 ° C.
It can be estimated to be 350 ° C because of the temperature drop of about 30 ° C in the outer periphery of the substrate farther from the gate. Therefore, from FIG.
The thickness of the zirconia layer is 0.13 mm or more at the center of the substrate and 0.2 mm or more at the outer periphery of the substrate. As described above, the thickness of the zirconia heat insulating layer was increased as the distance from the gate was increased, and was set to 0.13 mm at the inner periphery of the substrate and 02 mm at the outer periphery.
【0020】上記のような、厚み傾斜を有するジルコニ
ア断熱層の形成には、予め傾斜面加工を施した可動型コ
ア5の表面に、先に示した溶射法にて行い、その後表面
を研磨して平面度0.01mm以下、表面あらさRa 0.3μmま
でに仕上げる。In order to form the zirconia heat insulating layer having a thickness gradient as described above, the surface of the movable core 5 which has been subjected to the inclined surface processing is performed by the above-described thermal spraying method, and then the surface is polished. To a flatness of 0.01 mm or less and a surface roughness Ra of 0.3 μm.
【0021】[0021]
【発明の効果】本発明によれば、充填直後の溶融樹脂温
度がゲートに近い基板内周部より低い基板外周部でも、
樹脂充填直後のスタンパとの境界面温度が130℃と樹脂
の熱変形温度を越え、しかも基板内周部と外周部とで同
じ温度となり、図6中に示すように内・外周部とも良
好な転写性を得ることができる。According to the present invention, even if the molten resin temperature immediately after filling is lower than the inner peripheral portion of the substrate near the gate,
The boundary surface temperature with the stamper immediately after filling the resin is 130 ° C., which exceeds the thermal deformation temperature of the resin, and is the same at the inner and outer peripheral portions of the substrate. As shown in FIG. Transferability can be obtained.
【図1】従来技術による光ディスク基板成形型の断面図
である。FIG. 1 is a cross-sectional view of a conventional optical disk substrate molding die.
【図2】本発明による光ディスク基板成形型の可動型コ
ア部の断面図である。FIG. 2 is a sectional view of a movable core portion of the optical disc substrate forming die according to the present invention.
【図3】本発明のの基礎となる断熱材の厚みとスタンパ
表面の最高温度との関係を示す図。FIG. 3 is a diagram showing the relationship between the thickness of a heat insulating material that forms the basis of the present invention and the maximum temperature of the surface of a stamper.
【図4】本発明のの基礎となる断熱材の厚みとスタンパ
表面温度が120℃に到達する時間との関係を示す図。FIG. 4 is a diagram showing the relationship between the thickness of a heat insulating material that forms the basis of the present invention and the time required for the surface temperature of the stamper to reach 120 ° C.
【図5】本発明による光ディスク基板成形型の可動型コ
ア部の断面図であるFIG. 5 is a sectional view of a movable core portion of the optical disk substrate forming die according to the present invention.
【図6】従来技術及び本発明による光ディスク基板の成
形転写性を示す図である。FIG. 6 is a view showing the molding transferability of an optical disk substrate according to the related art and the present invention.
1…光ディスク基板成形型、2…固定型、3…可動型、
4…スタンパ、、5…可動型コア、6…光ディスク基
板、7…スタンパ内周ホルダ、8…スタンパ外周ホル
ダ、9…中心穴形成ポンチ、10…エジェクタ、11…
情報ピット及びレーザ光案内溝、12…冷却回路、13
…ジルコニア断熱層、1: optical disk substrate molding die, 2: fixed die, 3: movable die,
4 stamper, 5 movable core, 6 optical disk substrate, 7 stamper inner peripheral holder, 8 stamper outer peripheral holder, 9 center punch forming punch, 10 ejector, 11 ...
Information pit and laser light guide groove, 12 cooling circuit, 13
... Zirconia insulation layer,
Claims (2)
パと金型コアとの間にセラミックスによる断熱層を形成
し、該セラミックス層の厚みを0.2mm〜1.0mmの範囲とし
たことを特徴とする光ディスク基板成形方法。1. An optical disc substrate forming method, wherein a heat insulating layer made of ceramic is formed between a stamper and a mold core, and the thickness of the ceramic layer is set in a range of 0.2 mm to 1.0 mm. Molding method.
パと金型コアとの間にセラミックスによる断熱層を形成
し、基板中心部から外周部に向けて該セラミックス断熱
層の厚みを増加させたことを特徴とする光ディスク基板
成形方法。2. A method for molding an optical disk substrate, wherein a heat insulating layer made of ceramic is formed between a stamper and a mold core, and the thickness of the ceramic heat insulating layer is increased from the center of the substrate toward the outer periphery. Optical disc substrate molding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30901396A JPH10149587A (en) | 1996-11-20 | 1996-11-20 | Forming method of optical disk substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30901396A JPH10149587A (en) | 1996-11-20 | 1996-11-20 | Forming method of optical disk substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10149587A true JPH10149587A (en) | 1998-06-02 |
Family
ID=17987841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30901396A Pending JPH10149587A (en) | 1996-11-20 | 1996-11-20 | Forming method of optical disk substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10149587A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1027978A2 (en) * | 1999-02-09 | 2000-08-16 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
WO2003070444A3 (en) * | 2002-02-20 | 2004-03-04 | Hofstetter Ag Otto | Injection molding device |
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
WO2007123210A1 (en) * | 2006-04-20 | 2007-11-01 | Sumitomo Heavy Industries, Ltd. | Resin molding apparatus and method of resin molding |
-
1996
- 1996-11-20 JP JP30901396A patent/JPH10149587A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6998163B2 (en) | 1999-02-09 | 2006-02-14 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
EP1211040A2 (en) * | 1999-02-09 | 2002-06-05 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
EP1027978A2 (en) * | 1999-02-09 | 2000-08-16 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
US7419710B2 (en) | 1999-02-09 | 2008-09-02 | Ricoh Company, Ltd. | Stamper for molding article and method of producing said stamper |
US6468618B1 (en) * | 1999-02-09 | 2002-10-22 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
US6686018B2 (en) | 1999-02-09 | 2004-02-03 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
EP1211040A3 (en) * | 1999-02-09 | 2002-08-07 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
EP1027978A3 (en) * | 1999-02-09 | 2000-09-27 | Ricoh Company, Ltd. | Optical disk and method of producing the same |
WO2003070444A3 (en) * | 2002-02-20 | 2004-03-04 | Hofstetter Ag Otto | Injection molding device |
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
JP4955662B2 (en) * | 2006-04-20 | 2012-06-20 | 住友重機械工業株式会社 | Resin molding apparatus and resin molding method |
EP2008786A1 (en) * | 2006-04-20 | 2008-12-31 | Sumitomo Heavy Industries, Ltd. | Resin molding apparatus and resin molding method |
JP2009220587A (en) * | 2006-04-20 | 2009-10-01 | Sumitomo Heavy Ind Ltd | Resin molding apparatus |
EP2008786A4 (en) * | 2006-04-20 | 2010-03-17 | Sumitomo Heavy Industries | Resin molding apparatus and resin molding method |
KR100998865B1 (en) * | 2006-04-20 | 2010-12-08 | 스미도모쥬기가이고교 가부시키가이샤 | Resin molding apparatus and method of resin molding |
US7919035B2 (en) | 2006-04-20 | 2011-04-05 | Sumitomo Heavy Industries, Ltd. | Resin molding apparatus and resin molding method |
US7938642B2 (en) | 2006-04-20 | 2011-05-10 | Sumitomo Heavy Industries, Ltd. | Resin molding apparatus |
WO2007123210A1 (en) * | 2006-04-20 | 2007-11-01 | Sumitomo Heavy Industries, Ltd. | Resin molding apparatus and method of resin molding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0675888B2 (en) | Disk injection molding method | |
JP3550461B2 (en) | Plastic molding method and optical disk manufacturing method | |
JPH10149587A (en) | Forming method of optical disk substrate | |
JP5650641B2 (en) | Disc substrate molding apparatus, disc substrate molding method, and disc substrate molding die | |
JPS62208919A (en) | Molding mold core | |
JPS62135334A (en) | Method and apparatus for preparing disk substrate for recording optical information | |
JP2006327147A (en) | Forming method of plastic lens and plastic lens | |
JPH10230524A (en) | Mold for optical disc substrate and manufacture | |
JPH11228152A (en) | Method and device for forming glass substrate | |
JPS61100425A (en) | Mold for molding plastic | |
JPH09295319A (en) | Mold for molding disk substrate | |
JP2001310358A (en) | Mold for molding disk substrate | |
JP3690740B2 (en) | Stamper for optical disc | |
JPS6259014A (en) | Mold for molding disc-type recording medium | |
JPS6179614A (en) | Molding method of resin base | |
JP2000263615A (en) | Mold for optical information recording medium substrate | |
JP2001334534A (en) | Method and apparatus for manufacturing heat insulating mold | |
JP2791087B2 (en) | Optical disk substrate and method of manufacturing the same | |
JP2002347093A (en) | Mold for injection molding | |
JPH0531777A (en) | Method of molding optical disk substrate | |
JPH11291292A (en) | Molding die | |
JPS63255816A (en) | Production of substrate for magnetic disk | |
JPH0757306A (en) | Metal mold for molding optical disk | |
JP2003340877A (en) | Method for manufacturing recording-medium substrate, recording-medium substrate, recording medium and injection molding device | |
JPS60132719A (en) | Preparation of plastic lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030722 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040130 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040409 |