JPH10148707A - Diffraction grating and spectroscope - Google Patents

Diffraction grating and spectroscope

Info

Publication number
JPH10148707A
JPH10148707A JP8323610A JP32361096A JPH10148707A JP H10148707 A JPH10148707 A JP H10148707A JP 8323610 A JP8323610 A JP 8323610A JP 32361096 A JP32361096 A JP 32361096A JP H10148707 A JPH10148707 A JP H10148707A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
wavelength
grooves
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323610A
Other languages
Japanese (ja)
Inventor
Naoto Kihara
直人 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8323610A priority Critical patent/JPH10148707A/en
Publication of JPH10148707A publication Critical patent/JPH10148707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction grating, in which the light having a wavelength ratio of rational number mixed into diffracted light flux to be used, is fundamentally completely eliminated, and to provide a spectroscope which can fundamentally eliminate light of a wavelengths other than the wavelength to be used, without using a filter or total reflection mirror. SOLUTION: In the diffraction grating, where many recessed grooves or projecting lines 2 are disposed on the surface of substrate 1, a plenty of these recessed groves or the projecting lines are disposed so that their disposition pitches have a quasi-periodicity. Further, the diffraction grating has a first diffraction grating 5 and a second diffraction grating 6 arranged in a path of light passing through the first diffraction grating 5, and the first diffraction grating 5 comprises many recessed grooves or projecting lines disposed on the surface of the substrate so that the disposition pitch of the recessed grooves or the projecting lines has a quasi-periodicity, while the second diffraction grating 6 comprises many recessed grooves or projecting lines 2 disposed on the surface of the substrate so that the disposition pitch of the recessed grooves or the projecting lines has a periodicity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分光光学系などで
使われる回折格子と、それを用いた分光装置に関するも
のである。
[0001] 1. Field of the Invention [0002] The present invention relates to a diffraction grating used in a spectroscopic optical system and the like, and a spectroscopic device using the same.

【0002】[0002]

【従来の技術】従来の回折格子は、透過型の回折格子又
は反射型の回折格子のいずれの場合においても、凹溝又
は凸条の配列ピッチが周期性を持つように多数列配列し
て構成されており、一般には格子溝を等間隔に配列して
形成されている。このため、素子表面に刻線された隣接
する2本の格子溝を通る回折光の光路差は、常に使用す
る光の波長の整数倍となっていた。そのために、同一方
向に回折される光束中には、使用する光の波長と整数の
波長比を持つ光が混入していた。例えば波長λの光の1
次回折光と、波長λ/2の光の2次回折光と、波長λ/
3の光の3次回折光は、その光路差がいずれもλである
ために、いずれも同一方向に回折される。より一般的に
は、波長λの光のn次回折光と、波長n/m・λの光の
m次回折光は、その光路差がいずれもnλであるため
に、同一方向に回折される(n,mは自然数)。このた
め、同一方向に回折される光束中には、波長比がn/
m、すなわち有理数である光が混入していた。この結
果、上記従来の回折格子を使った分光装置では、回折光
束中に整数比の波長を持つ光が常に混在していた。そこ
で、使用する波長の光以外の光を除去する目的で、種々
のフィルターや、特に短波長域では全反射鏡が使われて
いた。
2. Description of the Related Art A conventional diffraction grating is constructed by arranging a large number of rows so that the arrangement pitch of concave grooves or ridges has a periodicity in either a transmission type diffraction grating or a reflection type diffraction grating. In general, lattice grooves are arranged at equal intervals. For this reason, the optical path difference of the diffracted light passing through two adjacent grating grooves engraved on the element surface is always an integral multiple of the wavelength of the light used. Therefore, light having a wavelength ratio of an integer to the wavelength of the light to be used is mixed in the light flux diffracted in the same direction. For example, 1 of light of wavelength λ
Order diffracted light, second order diffracted light of wavelength λ / 2, wavelength λ /
Each of the third-order diffracted lights of light No. 3 is diffracted in the same direction because the optical path difference is λ. More generally, the n-th order diffracted light of the wavelength λ and the m-th order diffracted light of the wavelength n / m · λ are diffracted in the same direction because the optical path difference is nλ (n , M is a natural number). For this reason, in the light beam diffracted in the same direction, the wavelength ratio is n /
m, that is, light which is a rational number was mixed. As a result, in the above-described spectral device using the diffraction grating, light having an integer ratio of wavelength is always mixed in the diffracted light beam. Therefore, in order to remove light other than the light having the wavelength to be used, various filters, and in particular, a total reflection mirror has been used in a short wavelength region.

【0003】[0003]

【発明が解決しようとする課題】このように、従来の
「回折格子」では、同一の回折光束中に混在する整数波
長比を持つ光(より正確には、有理数波長比を持つ光)
の発生を根絶することは不可能であった。また、従来の
「分光装置」では、回折格子から回折される整数波長比
の光の除去のために挿入されたフィルターを、波長毎に
換える必要があり、さらに混入光も原理上完全に除去す
ることは出来なかった。全反射鏡を使用する場合でも、
使用波長域の変更に伴い全反射角を変える必要が生じ、
その結果光路の変更を要し、複雑な光学系を採用するこ
とになっていた。
As described above, in the conventional "diffraction grating", light having an integer wavelength ratio mixed in the same diffracted light beam (more precisely, light having a rational wavelength ratio).
It was impossible to eradicate the outbreak. In addition, in the conventional “spectroscopic device”, it is necessary to change a filter inserted for removing light having an integer wavelength ratio diffracted from the diffraction grating for each wavelength, and furthermore, the mixed light is completely removed in principle. I couldn't do that. Even when using a total reflection mirror,
It is necessary to change the total reflection angle with the change of the used wavelength range,
As a result, the optical path had to be changed, and a complicated optical system had to be adopted.

【0004】そこで本発明は、使用する波長の回折光束
中に混入する波長比が有理数の光を原理的に根絶した回
折格子を提供することを課題とする。本発明はまた、従
来用いられていたフィルターや全反射鏡を使わずに、使
用する波長以外の光を簡便にそして原理的に完全に除去
できる分光装置を提供することを課題とする。
Accordingly, an object of the present invention is to provide a diffraction grating in which light having a ratio of a rational number mixed into a diffracted light beam having a wavelength to be used is eradicated in principle. Another object of the present invention is to provide a spectroscopic device capable of simply and in principle completely removing light other than the wavelength to be used without using a filter or a total reflection mirror which has been conventionally used.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、透過型又は
反射型基板の表面に、凹溝又は凸条を多数列配列した透
過型又は反射型回折格子において、前記凹溝又は凸条の
配列ピッチが準周期性を持つように、該凹溝又は凸条を
多数列配列したことを特徴とする透過型又は反射型回折
格子である。この構成により、使用する波長の回折光束
中に混入する光のうち、使用する光との波長比が有理数
の光は除去されて、波長比が無理数の光だけとなる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, that is, a transmission type or a transmission type in which a large number of grooves or projections are arranged on the surface of a transmission type or reflection type substrate. A transmission or reflection type diffraction grating, wherein a large number of the grooves or the ridges are arranged so that the arrangement pitch of the grooves or the ridges has a quasi-periodicity. With this configuration, of the light mixed in the diffracted light beam having the wavelength to be used, the light having a ratio of the ratio of the used light to the rational number is removed, and only the light having the irrational number of the wavelength ratio is obtained.

【0006】本発明はまた、第1の回折格子と、該第1
の回折格子を通過した光の光路中に配置した第2の回折
格子とを有し、前記第1の回折格子は、基板の表面に、
凹溝又は凸条の配列ピッチが準周期性を持つように、該
凹溝又は凸条を多数列配列して構成され、前記第2の回
折格子は、基板の表面に、凹溝又は凸条の配列ピッチが
周期性を持つように、該凹溝又は凸条を多数列配列して
構成された、分光装置である。その際、第1の回折格子
と第2の回折格子とを入れ替えて配置しても良い。この
構成により、使用する波長の回折光束中に混入する光の
うち、凹溝又は凸条の配列ピッチが準周期性を持つよう
に配列した回折格子によって、使用する光との波長比が
有理数の光は除去されて、波長比が無理数の光だけとな
る。他方、回折光束中に混入する光のうち、凹溝又は凸
条の配列ピッチが周期性を持つように配列した回折格子
によって、使用する光との波長比が無理数の光は除去さ
れて、波長比が有理数の光だけとなる。したがって両回
折格子を直列に通過することにより、使用する波長の光
だけが選択されて分光される。
The present invention also relates to a first diffraction grating and the first diffraction grating.
And a second diffraction grating arranged in the optical path of the light that has passed through the diffraction grating, wherein the first diffraction grating is disposed on the surface of the substrate.
The grooves or the ridges are arranged in a large number of rows so that the arrangement pitch of the grooves or the ridges has a quasi-periodicity. The second diffraction grating has a groove or a ridge on the surface of the substrate. Is a spectroscopic device configured by arranging a large number of the concave grooves or convex stripes such that the arrangement pitch has periodicity. At this time, the first diffraction grating and the second diffraction grating may be replaced with each other. With this configuration, of the light mixed in the diffracted light beam of the wavelength to be used, the diffraction grating arranged so that the arrangement pitch of the concave grooves or the ridges has a quasi-periodicity causes the wavelength ratio with the light to be used to be a rational number. The light is removed, leaving only the light with an irrational wavelength ratio. On the other hand, of the light mixed in the diffracted light beam, the diffraction grating arranged so that the arrangement pitch of the concave grooves or the ridges has periodicity, the light having an irrational wavelength ratio to the light used is removed, The wavelength ratio is only rational light. Therefore, by passing through both diffraction gratings in series, only the light of the wavelength to be used is selected and separated.

【0007】本発明はまた、第1の回折格子と、該第1
の回折格子を通過した光の光路中に配置した第2の回折
格子とを有し、前記第1の回折格子は、基板の表面に、
凹溝又は凸条の配列ピッチが準周期性を持つように、該
凹溝又は凸条を多数列配列して構成され、前記第2の回
折格子は、基板の表面に、凹溝又は凸条の配列ピッチが
前記第1の回折格子の準周期性とは異なる準周期性を持
つように、該凹溝又は凸条を多数列配列して構成され
た、分光装置である。この構成により、使用する波長の
回折光束中に混入する光のうち、使用する光との波長比
が有理数の光は両回折格子によって除去され、使用する
光との波長比が無理数の光は、いずれかの回折格子によ
って除去される。したがって両回折格子を直列に通過す
ることにより、使用する波長の光だけが選択されて分光
される。
[0007] The present invention also relates to a first diffraction grating and the first diffraction grating.
And a second diffraction grating arranged in the optical path of the light that has passed through the diffraction grating, wherein the first diffraction grating is disposed on the surface of the substrate.
The grooves or the ridges are arranged in a large number of rows so that the arrangement pitch of the grooves or the ridges has a quasi-periodicity. The second diffraction grating has a groove or a ridge on the surface of the substrate. Is a spectroscopic device configured by arranging a large number of the concave grooves or the ridges such that the arrangement pitch has a quasi-periodicity different from the quasi-periodicity of the first diffraction grating. With this configuration, of the light mixed in the diffracted light beam having the wavelength to be used, the light having a ratio of the ratio of the light to be used to the light having a rational number is removed by both diffraction gratings, and the light having the ratio of the wavelength to the light to be used being irrational to the light , Are removed by any of the diffraction gratings. Therefore, by passing through both diffraction gratings in series, only the light of the wavelength to be used is selected and separated.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。先ず回折格子について説明する。図1と図
2は本発明による反射型回折格子の一実施例を示し、こ
の回折格子は平面状の基板1の表面に直線状の格子溝2
が多数列配列されて構成されている。各格子溝2の配列
ピッチは、任意の無理数:τを用いて、 なる関係にあるd1とd2の2種類あり、この2種類のピ
ッチd1、d2はフィボナッチ(fibonacci)数列をなす
ように配列されている。例えば、 A1=d1、 A2=d2、 An=An-1n-2(n≧3) とすると、 A3=d214=d2125=d212216=d212212127=d2122121221221 ‥‥‥‥‥‥ となるが、2種類のピッチd1、d2はこのように配列さ
れている。
Embodiments of the present invention will be described below. First, the diffraction grating will be described. 1 and 2 show an embodiment of a reflection type diffraction grating according to the present invention. This diffraction grating has a linear grating groove 2 formed on a surface of a planar substrate 1.
Are arranged in a large number of rows. The arrangement pitch of each lattice groove 2 is determined using an arbitrary irrational number: τ. There are two types, d 1 and d 2 , which have the following relationship, and the two types of pitches d 1 and d 2 are arranged so as to form a Fibonacci sequence. For example, A 1 = d 1, A 2 = d 2, A n = A n-1 When A n-2 (n ≧ 3 ), A 3 = d 2 d 1 A 4 = d 2 d 1 d 2 A 5 = d 2 d 1 d 2 d 2 d 1 A 6 = d 2 d 1 d 2 d 2 d 1 d 2 d 1 d 2 A 7 = d 2 d 1 d 2 d 2 d 1 d 2 d 1 d 2 d 2 d 1 d 2 d 2 d 1 }, but the two types of pitches d 1 and d 2 are arranged in this manner.

【0009】固体物理学・結晶学で周知のように、フィ
ボナッチ数列は準周期列を生成し、そのフーリエスペク
トルも相互に無理数比を持つ準周期列をなす。フィボナ
ッチ数列のスペクトルに就いて説明する。フィボナッチ
列のn番目の格子点の座標Xnは、基準長さdを使い無
次元・規格化すると、 ここで、τは任意の無理数、α及びβは任意の実数であ
る。又 は最大整数を与える関数である。(1)式より、各格子
点の間隔は、 なる無理数比(1+τ)/τを持つ2つの格子間隔が準
周期的に配列する。
As is well known in solid state physics and crystallography, a Fibonacci sequence generates a quasi-periodic sequence, and its Fourier spectrum also forms a quasi-periodic sequence having an irrational ratio with each other. The spectrum of the Fibonacci sequence will be described. The coordinates X n of the n-th grid point of the Fibonacci sequence are dimensionless and normalized using the reference length d, Here, τ is an arbitrary irrational number, and α and β are arbitrary real numbers. or Is a function that gives the largest integer. From equation (1), the interval between each grid point is Two lattice intervals having an irrational ratio (1 + τ) / τ are quasi-periodically arranged.

【0010】この格子列Xnのフーリエスぺクトルf
(k): は既に固体物理学や結晶学で良く知られているように、 となる。
[0010] The Fourier vector f of this lattice sequence X n
(K): Is already well known in solid state physics and crystallography, Becomes

【0011】ここでp,qは、初期値;F1=1,F0
1なるフィボナッチ数列Fnを用いて(フィボナッチ数
列とは初期値;F1,F0が既知で、n>2なるFnが、
n=Fn-1+Fn-2で決定される数列)、 (p,q)=(Fn+1,Fn) ;nは正の整数 ‥‥(5) なる組のみを採る。初めの数項を挙げれば、(1,
1),(2,1),(3,2),(5,3),(8,
5),(13,8),・・・が(4)式中で許される
(p,q)の組となる。これらのp,qに対して、 となる。(4)式より格子列Xnのフーリエスペクトル
f(k)は、上記のkp,qのみにスペクトルを持ち、
(5)(6)式より各スぺクトル間の比は無理数にな
る。従って各スペクトル値には整数倍の高調成分が存在
しないことが結論される。
Here, p and q are initial values; F 1 = 1, F 0 =
Using 1 becomes Fibonacci sequence F n (the initial value is the Fibonacci sequence; F 1, F 0 is known, n> 2 becomes F n is,
F n = F n-1 + F n-2 sequence determined by), (p, q) = (F n + 1, F n); n takes only positive integer ‥‥ (5) becomes set. To name the first few terms, (1,
1), (2,1), (3,2), (5,3), (8,
5), (13, 8),... Are the (p, q) pairs allowed in equation (4). For these p and q, Becomes From equation (4), the Fourier spectrum f (k) of the lattice sequence X n has a spectrum only in the above k p, q ,
From the expressions (5) and (6), the ratio between the spectra becomes an irrational number. Therefore, it is concluded that there is no integral multiple of harmonic components in each spectrum value.

【0012】ここで、同一方向に回折される光の波長比
が無理数となることを説明する。図2に示すように、広
いスペクトルを持つ光束は準周期型回折格子により分光
される。このとき、溝に垂直方向に延びる構造の、周波
数が増大する向きに数えてm番目のフーリエスペクトル
をqm、同方向の単位ベクトルをe、さらに入射光と回
折光の波数ベクトルを夫々qin、qoutと記すと、準周
期型回折格子への入射光と回折光は、 なる関係を満たす。さらに(9)式を書き直すと、 となる。任意の整数i、jに対するフーリエスペクトル
i、qjの比は無理数、すなわち、 であるから、同一の回折角に対するフーリエスペクトル
i、qjに対応する光の波長λi、λjは、(10)式及
び(11)式より、 となる。
Here, it will be described that the wavelength ratio of light diffracted in the same direction becomes an irrational number. As shown in FIG. 2, a light beam having a wide spectrum is separated by a quasi-periodic diffraction grating. At this time, the m-th Fourier spectrum of the structure extending in the direction perpendicular to the groove, counted in the direction in which the frequency increases, is q m , the unit vector in the same direction is e, and the wave number vectors of the incident light and the diffracted light are q in , Q out , the incident light and the diffracted light on the quasi-periodic diffraction grating are Satisfy the relationship Further rewriting equation (9), Becomes The ratio of the Fourier spectra q i , q j to any integer i, j is irrational, ie, Therefore , the wavelengths λ i , λ j of the light corresponding to the Fourier spectra q i , q j for the same diffraction angle are given by the following equations (10) and (11). Becomes

【0013】すなわち入射角θinで入射する平行な光束
は、格子溝2により回折され、回折角θoutで射出する
回折光束中の光の波長の相互比は、常に無理数となり、
波長比が有理数となる光を除去することができる。なお
本実施例では、反射型の回折格子を用いたが、本発明は
透過型の回折格子にも等しく適用することができる。ま
た本実施例では、基板の表面に凹溝を形成したが、基板
の表面に凸条を形成しても良い。また本実施例では2種
類の配列ピッチd1、d2を用いたが、配列ピッチの種類
は3種類以上でも良い。
That is, the parallel light beam incident at the incident angle θ in is diffracted by the grating groove 2, and the mutual ratio of the wavelength of the light in the diffracted light beam emitted at the diffraction angle θ out is always an irrational number.
Light whose wavelength ratio becomes a rational number can be removed. In this embodiment, the reflection type diffraction grating is used. However, the present invention can be equally applied to a transmission type diffraction grating. Further, in the present embodiment, the concave groove is formed on the surface of the substrate, but a ridge may be formed on the surface of the substrate. In the present embodiment, two types of arrangement pitches d 1 and d 2 are used, but three or more types of arrangement pitches may be used.

【0014】次に分光装置について説明する。図3は本
発明による分光装置の一実施例を示し、最低波長λmin
から最高波長λmaxまでの広いスペクトル幅を持つ光束
は、分光装置の入口スリット3に入射し、コリメートレ
ンズ4で平行光束に変換されて、準周期型反射回折格子
5に入射する。準周期型回折格子5から回折した光束
は、次に通常の周期型反射回折格子6に入射する。周期
型回折格子6で回折した光束は、集光レンズ7で出口ス
リット8に集光されて、出口スリット8より射出する。
Next, the spectrometer will be described. FIG. 3 shows an embodiment of the spectroscopic device according to the present invention, in which the minimum wavelength λ min
The light beam having a wide spectrum width from to the maximum wavelength λ max enters the entrance slit 3 of the spectroscope, is converted into a parallel light beam by the collimator lens 4, and enters the quasi-periodic reflection diffraction grating 5. The light beam diffracted from the quasi-periodic diffraction grating 5 then enters a normal periodic reflection diffraction grating 6. The light beam diffracted by the periodic diffraction grating 6 is condensed by an exit slit 8 by a condenser lens 7 and exits from the exit slit 8.

【0015】いま、分光装置の出口スリット8より取り
出そうとする光の波長をλとし、入口スリット3に入射
するその他の光の波長をλ′(λ′≠λ)とすると、準
周期型回折格子5から所望の波長λの光と同一方向に回
折する光には、波長比λ′/λが有理数の光は存在しな
い。したがって波長比λ′/λが無理数の光だけが、所
望の波長λの光と共に周期型回折格子6に入射する。続
いて周期型回折格子6から所望の波長λの光と同一方向
に回折する光には、波長比λ′/λが無理数の光は存在
しない。したがって所望の波長λの光だけが出口スリッ
ト8に入射する。すなわち、2つの回折格子5,6で連
続して回折される光は、所望の波長λを持つものだけと
なり、こうして原理的に単一波長の光だけを分光し、高
次回折光の混在を阻止することができる。
Assuming that the wavelength of light to be extracted from the exit slit 8 of the spectrometer is λ and the wavelength of other light incident on the entrance slit 3 is λ ′ (λ ′ ≠ λ), a quasi-periodic diffraction grating From the light diffracted in the same direction as the light of the desired wavelength λ from 5, there is no light whose wavelength ratio λ ′ / λ is a rational number. Therefore, only light having an irrational wavelength ratio λ ′ / λ enters the periodic diffraction grating 6 together with light having a desired wavelength λ. Subsequently, the light diffracted from the periodic diffraction grating 6 in the same direction as the light having the desired wavelength λ does not include light having an irrational wavelength ratio λ ′ / λ. Therefore, only light having a desired wavelength λ enters the exit slit 8. That is, the light continuously diffracted by the two diffraction gratings 5 and 6 is only light having a desired wavelength λ. Thus, in principle, only light of a single wavelength is spectrally separated and high-order diffracted light is prevented from being mixed. can do.

【0016】なお本実施例では、前段に準周期型回折格
子5を配置して、所望の波長λ以外の波長λ′の光のう
ち、波長比λ′/λが有理数の光を除外し、後段に周期
型回折格子6を配置して、所望の波長λ以外の波長λ′
の光のうち、波長比λ′/λが無理数の光を除外した
が、前段に周期型回折格子を配置して波長比が無理数の
光を除外し、後段に準周期型回折格子を配置して波長比
が有理数の光を除外することもできる。また前段と後段
との双方に準周期型回折格子を配置しても良い。但しこ
の場合には、両者の準周期性が異なるように、例えば格
子溝の配列ピッチを前段と後段とで変える必要がある。
In this embodiment, a quasi-periodic diffraction grating 5 is arranged at the front stage to exclude light having a ratio of wavelength λ '/ λ from the light of wavelength λ' other than the desired wavelength λ. A periodic diffraction grating 6 is arranged at the subsequent stage, and a wavelength λ ′ other than the desired wavelength λ is provided.
Out of the light, the light whose wavelength ratio λ '/ λ is irrational is excluded, but the periodic diffraction grating is arranged at the front stage to exclude the light whose wavelength ratio is irrational, and the quasi-periodic diffraction grating is installed at the latter stage. It is also possible to dispose the light whose ratio of wavelengths is rational number by disposing. Also, quasi-periodic diffraction gratings may be arranged in both the former stage and the latter stage. However, in this case, it is necessary to change, for example, the arrangement pitch of the lattice grooves between the front stage and the rear stage so that the two have different quasi-periodicity.

【0017】[0017]

【発明の効果】以上説明したように、本発明の回折格子
では同一方向の回折光束中に無理数比の波長を持つ光し
か含まれないから、有理数比の波長を持つ光を除去する
ことができる。また本発明による回折格子を通常の回折
格子と直列に組み合わせることにより、所望の光に対し
て無理数比の波長を持つ光も有理数比の波長を持つ光も
除去されるから、フィルターや全反射鏡を使わずに、原
理的に単一波長の光のみを分光する分光装置を実現する
ことができる。
As described above, since the diffraction grating of the present invention contains only light having an irrational ratio wavelength in a diffracted light beam in the same direction, it is possible to remove light having a rational number wavelength. it can. Also, by combining the diffraction grating according to the present invention in series with a normal diffraction grating, light having a wavelength having an irrational ratio and light having a wavelength having a rational ratio with respect to desired light are removed. In principle, it is possible to realize a spectroscopic device that disperses only light of a single wavelength without using a mirror.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による回折格子の一実施例を示す平面図
である。
FIG. 1 is a plan view showing an embodiment of a diffraction grating according to the present invention.

【図2】本発明による回折格子の作用原理を示す説明図
である。
FIG. 2 is an explanatory view showing the operation principle of the diffraction grating according to the present invention.

【図3】本発明による分光装置の一実施例を示す構成図
である。
FIG. 3 is a configuration diagram showing one embodiment of a spectroscopic device according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…格子溝 3…入口スリット 4…コリメートレン
ズ 5…準周期型回折格子 6…周期型回折格子 7…集光レンズ 8…出口スリット
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Lattice groove 3 ... Entrance slit 4 ... Collimating lens 5 ... Quasi-periodic diffraction grating 6 ... Periodic diffraction grating 7 ... Condensing lens 8 ... Exit slit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透過型基板の表面に、凹溝又は凸条を多数
列配列した透過型回折格子において、 前記凹溝又は凸条の配列ピッチが準周期性を持つよう
に、該凹溝又は凸条を多数列配列したことを特徴とする
透過型回折格子。
1. A transmission type diffraction grating having a plurality of rows of grooves or ridges arranged on a surface of a transmission type substrate, wherein the grooves or ridges are arranged so as to have a quasi-periodic pitch. A transmission type diffraction grating comprising a large number of rows of ridges.
【請求項2】反射型基板の表面に、凹溝又は凸条を多数
列配列した反射型回折格子において、 前記凹溝又は凸条の配列ピッチが準周期性を持つよう
に、該凹溝又は凸条を多数列配列したことを特徴とする
反射型回折格子。
2. A reflection type diffraction grating in which a large number of grooves or ridges are arranged on the surface of a reflection type substrate, wherein the grooves or ridges have a quasi-periodic arrangement pitch. A reflection type diffraction grating comprising a large number of rows of ridges.
【請求項3】第1の回折格子と、該第1の回折格子を通
過した光の光路中に配置した第2の回折格子とを有し、 前記第1の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが準周期性を持つように、該凹溝又は凸条を
多数列配列して構成され、 前記第2の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが周期性を持つように、該凹溝又は凸条を多
数列配列して構成された、分光装置。
3. A semiconductor device comprising: a first diffraction grating; and a second diffraction grating arranged in an optical path of light passing through the first diffraction grating, wherein the first diffraction grating is provided on a surface of a substrate. A plurality of the grooves or the ridges are arranged in rows so that the arrangement pitch of the grooves or the ridges has a quasi-periodicity. The second diffraction grating has a groove or a protrusion on the surface of the substrate. A spectroscopic device comprising a large number of rows of the concave grooves or convex stripes arranged so that the arrangement pitch of the stripes is periodic.
【請求項4】第1の回折格子と、該第1の回折格子を通
過した光の光路中に配置した第2の回折格子とを有し、 前記第1の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが周期性を持つように、該凹溝又は凸条を多
数列配列して構成され、 前記第2の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが準周期性を持つように、該凹溝又は凸条を
多数列配列して構成された、分光装置。
4. A semiconductor device comprising: a first diffraction grating; and a second diffraction grating disposed in an optical path of light passing through the first diffraction grating, wherein the first diffraction grating is provided on a surface of a substrate. A plurality of grooves or protrusions are arranged in a row so that the arrangement pitch of the grooves or protrusions has a periodicity. The second diffraction grating has a groove or protrusion on the surface of the substrate. A spectroscopic device comprising a large number of rows of the concave grooves or convex stripes arranged so that the arrangement pitch has a quasi-periodicity.
【請求項5】第1の回折格子と、該第1の回折格子を通
過した光の光路中に配置した第2の回折格子とを有し、 前記第1の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが準周期性を持つように、該凹溝又は凸条を
多数列配列して構成され、 前記第2の回折格子は、基板の表面に、凹溝又は凸条の
配列ピッチが前記第1の回折格子の準周期性とは異なる
準周期性を持つように、該凹溝又は凸条を多数列配列し
て構成された、分光装置。
5. A semiconductor device comprising: a first diffraction grating; and a second diffraction grating disposed in an optical path of light passing through the first diffraction grating, wherein the first diffraction grating is provided on a surface of a substrate. A plurality of the grooves or the ridges are arranged in rows so that the arrangement pitch of the grooves or the ridges has a quasi-periodicity. The second diffraction grating has a groove or a protrusion on the surface of the substrate. A spectroscopic device comprising a large number of rows of the concave grooves or convex lines arranged so that the arrangement pitch of the stripes has a quasi-periodicity different from the quasi-periodicity of the first diffraction grating.
JP8323610A 1996-11-18 1996-11-18 Diffraction grating and spectroscope Pending JPH10148707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323610A JPH10148707A (en) 1996-11-18 1996-11-18 Diffraction grating and spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323610A JPH10148707A (en) 1996-11-18 1996-11-18 Diffraction grating and spectroscope

Publications (1)

Publication Number Publication Date
JPH10148707A true JPH10148707A (en) 1998-06-02

Family

ID=18156651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323610A Pending JPH10148707A (en) 1996-11-18 1996-11-18 Diffraction grating and spectroscope

Country Status (1)

Country Link
JP (1) JPH10148707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004081620A1 (en) * 2003-03-13 2006-06-15 旭硝子株式会社 Diffraction element and optical device
US9041924B2 (en) 2011-06-23 2015-05-26 Seiko Epson Corporation Transmissive diffraction grating and detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004081620A1 (en) * 2003-03-13 2006-06-15 旭硝子株式会社 Diffraction element and optical device
US9041924B2 (en) 2011-06-23 2015-05-26 Seiko Epson Corporation Transmissive diffraction grating and detection apparatus

Similar Documents

Publication Publication Date Title
EP0602992B1 (en) Grating-prism combination
US7149387B2 (en) Double diffraction grating with flat passband output
US4886341A (en) Diffraction grating having a plurality of different grating constants
KR20070011326A (en) Planar waveguide reflective diffraction grating
US6067197A (en) Difraction grating having enhanced blaze performance at two wavelengths
DE69203195T2 (en) Device for spectrophotometry with spectral band filtering.
JPH10148707A (en) Diffraction grating and spectroscope
JP4345625B2 (en) Diffraction grating
JPS5887431A (en) Double spectrometer
JP2011106842A (en) Diffraction grating spectrometer
JPH10148716A (en) Multi-layer film mirror and spectroscope
JPS59500984A (en) Equipment for performing spectral analysis
JPH10282318A (en) Unequal interval groove diffraction grating and spectroscope
US8786853B2 (en) Monochromator having a tunable grating
JP7195189B2 (en) Spectrometer
TWI251681B (en) Tunable dispersive optical system
JP3323670B2 (en) Radiation spectrometer
Bianco et al. Volume phase holographic echelle grating: a theoretical study
SU1171744A1 (en) Dispergating device
RU2105274C1 (en) Reflecting diffraction grating
JP2005283132A (en) Spectroscope for taking-out synthetic light having optional spectral distribution and method for designing shape of optical mask to be used in the same
US7480048B1 (en) Monochromator employing single grating volume holograms and method of use
JP2001116618A (en) Spectrometer
Kazakov et al. High-Order Diffraction Grating for Optical Spectral Device
DE102012208772B4 (en) Optical grating for Littrow installation and optical arrangement using the optical grating