JP4345625B2 - Diffraction grating - Google Patents

Diffraction grating Download PDF

Info

Publication number
JP4345625B2
JP4345625B2 JP2004274369A JP2004274369A JP4345625B2 JP 4345625 B2 JP4345625 B2 JP 4345625B2 JP 2004274369 A JP2004274369 A JP 2004274369A JP 2004274369 A JP2004274369 A JP 2004274369A JP 4345625 B2 JP4345625 B2 JP 4345625B2
Authority
JP
Japan
Prior art keywords
light
wavelength
grating
groove
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004274369A
Other languages
Japanese (ja)
Other versions
JP2006091204A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004274369A priority Critical patent/JP4345625B2/en
Publication of JP2006091204A publication Critical patent/JP2006091204A/en
Application granted granted Critical
Publication of JP4345625B2 publication Critical patent/JP4345625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分光光度計などに使用される反射型の回折格子に関する。   The present invention relates to a reflective diffraction grating used in a spectrophotometer or the like.

一般に分光光度計等の光学測定装置では、種々の波長が混じった光から特定の波長を有する単色光を取り出したりスペクトルに分解したりするために回折格子が使用される。図3は従来知られている回折格子の分光の原理を説明するための断面図である(例えば非特許文献1など参照)。なお、ここでは、格子溝の断面形状が矩形状であるラメラー型(ラミナー型と呼ばれることもある)の回折格子を示しているが、溝断面形状が鋸歯状であるブレーズド型(エシェレット型と呼ばれることもある)や溝断面形状が正弦波状であるホログラフィック型でも分光の原理は基本的には同様である。   In general, in an optical measuring device such as a spectrophotometer, a diffraction grating is used to extract monochromatic light having a specific wavelength from light mixed with various wavelengths or decompose it into a spectrum. FIG. 3 is a cross-sectional view for explaining the principle of spectral spectroscopy of a conventionally known diffraction grating (for example, see Non-Patent Document 1). Here, a lamellar type (sometimes called a laminar type) diffraction grating in which the cross-sectional shape of the grating groove is rectangular is shown, but a blazed type (called an echelle type) in which the groove cross-sectional shape is a sawtooth shape. The principle of spectroscopy is basically the same even in a holographic type in which the groove cross-sectional shape is sinusoidal.

図3に示すように、反射型の回折格子1は基板10上に周期Dの格子溝11が規則的に配列された光学素子である。この回折格子1に対し、格子溝11の法線Pとの成す角度θ1で以て入射した光が法線Pとの成す角度θ2で以て回折したとき、隣り合う格子溝11における光束の光路差ΔL1は次の(1)式で与えられる。
ΔL1=D・(sinθ1−sinθ2) …(1)
この光路差ΔL1が波長λの1/2の偶数倍、即ち、
(λ/2)×2M=Mλ
但し、M=1、2、3、…
と等しくなるとき出射光は強め合うことになる。したがって、次の(2)式を満足する特定の波長λを持つ光が回折格子1から出射(回折)して来る。
D・(sinθ1−sinθ2)=Mλ …(2)
As shown in FIG. 3, the reflective diffraction grating 1 is an optical element in which grating grooves 11 having a period D are regularly arranged on a substrate 10. When light incident on the diffraction grating 1 at an angle θ1 formed with the normal line P of the grating groove 11 is diffracted at an angle θ2 formed with the normal line P, the optical path of the light beam in the adjacent grating groove 11 The difference ΔL1 is given by the following equation (1).
ΔL1 = D · (sin θ1-sin θ2) (1)
This optical path difference ΔL1 is an even multiple of 1/2 of the wavelength λ, that is,
(Λ / 2) × 2M = Mλ
However, M = 1, 2, 3, ...
The emitted light will strengthen each other. Therefore, light having a specific wavelength λ that satisfies the following equation (2) is emitted (diffracted) from the diffraction grating 1.
D · (sin θ1-sin θ2) = Mλ (2)

例えば、θ1+θ2=αを一定にする条件の下で入射角θ1及び出射角θ2を変化させることにより、回折光の波長λを任意に変化させることができる。また、入射光が白色光である場合にも、出射角θ2を変化させることにより特定波長を持つ光を回折光として取り出すことができる。   For example, the wavelength λ of the diffracted light can be arbitrarily changed by changing the incident angle θ1 and the outgoing angle θ2 under the condition that θ1 + θ2 = α is constant. Even when the incident light is white light, light having a specific wavelength can be extracted as diffracted light by changing the emission angle θ2.

しかしながら、上記のような従来の回折格子には、所望の波長の光とともに不所望である高次光も同じ方向に出射してくるという原理的な問題がある。即ち、(2)式は、波長がλである1次光、波長がλ/2である2次光、波長がλ/3である3次光、…が強め合って出て来ることを意味するから、いま入射角θ1、出射角(回折角)θ2の配置で以て取り出したい1次光の波長をλAとすると、同時に不要であるλA/2、λA/3、…の光も同じ方向に出射して来ることになる。一般に次数が高くなるに伴って回折光の強度は低下するものの、2次光は無視できない程度に大きな強度を有していることが多い。   However, the conventional diffraction grating as described above has a principle problem that undesired high-order light is emitted in the same direction together with light having a desired wavelength. That is, equation (2) means that the primary light having a wavelength of λ, the secondary light having a wavelength of λ / 2, the tertiary light having a wavelength of λ / 3, and so on are output in an intensified manner. Therefore, if the wavelength of the primary light to be extracted with the arrangement of the incident angle θ1 and the emission angle (diffraction angle) θ2 is λA, the light of λA / 2, λA / 3,. Will come out. In general, as the order increases, the intensity of the diffracted light decreases, but the secondary light often has an intensity that cannot be ignored.

このように従来の回折格子で分光を行う限り、同じ方向から欲しい波長λAの光と不要な波長λA/2の光とが同時に出て来ることは避けられない。そこで、こうした不要な波長光を取り除くために、従来は、波長λAの光を通過させる一方、波長λA/2の光を遮断するような光学特性を有するフィルタを回折格子以降の光路中に挿入して、高次光の影響を除去するようにしている(例えば特許文献1など参照)。   Thus, as long as spectroscopy is performed with a conventional diffraction grating, it is inevitable that light having a desired wavelength λA and unnecessary light having a wavelength λA / 2 come out simultaneously from the same direction. Therefore, in order to remove such unnecessary wavelength light, conventionally, a filter having optical characteristics that allows light of wavelength λA to pass while blocking light of wavelength λA / 2 is inserted into the optical path after the diffraction grating. Thus, the influence of higher-order light is removed (see, for example, Patent Document 1).

ところが、分光光度計等において回折格子を回転させることで選択波長を走査する場合には、各選択波長に対応した高次光を除去するために1種類のフィルタでは対応できなくなり、光学特性の相違する複数種のフィルタを切り換える必要があった。そのため、装置の構成が複雑になり、装置の大形化やコストの増加等の問題がある。またフィルタのような余分な光学素子を光路中に挿入すると、所望の波長光についても光強度を低下させたり迷光の原因となったりするため、高精度な測定のためにはこうした余分な光学素子を除去することが望まれている。   However, when scanning a selected wavelength by rotating a diffraction grating in a spectrophotometer or the like, a single type of filter cannot be used to remove high-order light corresponding to each selected wavelength, and a plurality of optical characteristics differ. It was necessary to switch the kind of filter. Therefore, the configuration of the apparatus becomes complicated, and there are problems such as an increase in the size of the apparatus and an increase in cost. In addition, if an extra optical element such as a filter is inserted in the optical path, the light intensity of the desired wavelength light may be reduced or stray light may be caused. Is desired to be removed.

特開平5−133808号公報(段落0002など)JP-A-5-133808 (paragraph 0002 etc.) 鶴田匡夫著「応用光学I」培風館、1997年6版、p.295“Applied Optics I” Baifukan, 6th edition, 1997, p. 295

本発明はこのような点に鑑みて成されたものであり、その目的とするところは、高次光除去用のフィルタを使用すること無しに不要な高次光を抑制することができる回折格子を提供することにある。   The present invention has been made in view of these points, and an object of the present invention is to provide a diffraction grating that can suppress unnecessary high-order light without using a filter for removing high-order light. It is in.

上記課題を解決するために成された本発明に係る回折格子は、溝周期がDである第1の格子溝の上に、該格子溝と同方向に延伸し溝周期がD/4である第2の格子溝を重ねて刻線して成ることを特徴としている。   The diffraction grating according to the present invention, which has been made to solve the above problems, extends in the same direction as the grating groove on the first grating groove whose groove period is D and has a groove period of D / 4. It is characterized in that the second grating grooves are superimposed and engraved.

本発明に係る回折格子によれば、第1の格子溝により強め合うことで発生する2次光が第2の格子溝では弱め合うことになるので、原理的に2次光が大幅に低減されることになる。したがって、従来殆ど必須であった2次光除去用のフィルタを使用する必要がなくなり、例えば本発明を分光光度計等に適用した場合に光学系の構成が簡単になり、装置の小型化やコスト低減に大きく寄与する。また、フィルタを光路中に挿入しないことによって、所望の光の光量の増加や迷光の減少が達成でき、分析精度の向上を図ることができる。   According to the diffraction grating according to the present invention, the secondary light generated by strengthening the first grating groove is weakened by the second grating groove, so that the secondary light is greatly reduced in principle. Will be. Therefore, it is not necessary to use a filter for removing secondary light, which has been almost essential in the past. For example, when the present invention is applied to a spectrophotometer or the like, the configuration of the optical system is simplified, and the size and cost of the apparatus are reduced. Significantly contributes to reduction. Further, by not inserting the filter into the optical path, it is possible to achieve an increase in the amount of desired light and a decrease in stray light, thereby improving the analysis accuracy.

なお、第2の格子溝で強め合う1次光等は回折格子から出射するが、回折格子を可視領域で使用する場合、こうした光の波長は空気中での吸収が大きな190nm以下とすることができるため、実際には無視することができる。但し、本発明に係る回折格子を赤外領域で使用したり空気中以外(例えば真空中)で使用したりする場合には、上記のような第2の格子溝による不所望の回折光が吸収を受けずに問題となる可能性があるが、その場合でも、従来のように選択波長に応じて多種類のフィルタを適宜切り換える必要はなくなり、例えば所定の波長領域除去用のフィルタを1つ用意しておけば対応が可能であって、従来に比べて装置の構成を大幅に簡素化できる。   Note that the primary light that reinforces in the second grating groove is emitted from the diffraction grating. However, when the diffraction grating is used in the visible region, the wavelength of such light should be 190 nm or less, which is highly absorbed in air. In fact, it can be ignored. However, when the diffraction grating according to the present invention is used in the infrared region or used in the air other than the air (for example, in a vacuum), undesired diffracted light is absorbed by the second grating groove as described above. However, even in such a case, there is no need to switch between various types of filters according to the selected wavelength as in the prior art. For example, one filter for removing a predetermined wavelength region is prepared. If so, it is possible to cope with it, and the configuration of the apparatus can be greatly simplified as compared with the conventional case.

図1、図2を参照して、本発明に係る回折格子の分光の原理について説明する。図1は本発明による回折格子の断面斜視図、図2はこの回折格子の分光の動作原理を説明するための光路図である。図1に示すように、この回折格子1は、従来の溝周期Dの格子溝(これを第1の格子溝と呼ぶ)11の上に、それと同一方向に延伸し溝周期がD/4である第2の格子溝12を重ねて形成したものである。   The principle of spectroscopy of the diffraction grating according to the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional perspective view of a diffraction grating according to the present invention, and FIG. 2 is an optical path diagram for explaining the operating principle of spectroscopy of this diffraction grating. As shown in FIG. 1, this diffraction grating 1 extends on a conventional grating groove 11 having a groove period D (referred to as a first grating groove) 11 in the same direction as that and has a groove period of D / 4. A certain second grating groove 12 is formed in an overlapping manner.

第1の格子溝11における回折条件は既述の通りである。一方、第2の格子溝12の回折条件を考えると、第1の格子溝11と同様に、法線Pとの成す角度θ1で以て入射した光が法線Pとの成す角度θ2で以て回折したとき、隣り合う格子溝12における光束の光路差ΔL2は次の(3)式で与えられる。
ΔL2=(D/4)・(sinθ1−sinθ2) …(3)
この第2の格子溝12によって強め合う条件は、(2)式と同様に次の(4)式となる。
(D/4)・(sinθ1−sinθ2)=Nλ …(4)
但し、N=1、2、3、…
The diffraction conditions in the first grating groove 11 are as described above. On the other hand, when considering the diffraction condition of the second grating groove 12, similarly to the first grating groove 11, the incident light at an angle θ1 formed with the normal line P is determined at an angle θ2 formed with the normal line P. Then, the optical path difference ΔL2 between the light beams in the adjacent grating grooves 12 is given by the following equation (3).
ΔL2 = (D / 4) · (sin θ1−sin θ2) (3)
The conditions for strengthening the second grating grooves 12 are the following equation (4) as in the equation (2).
(D / 4) · (sin θ1−sin θ2) = Nλ (4)
However, N = 1, 2, 3,...

第1の格子溝11で取り出したい1次光の波長をλAとすると、(2)式より、
D・(sinθ1−sinθ2)=λA
であるから、溝周期がD/4である第2の格子溝12では、波長がλA/4である1次光、波長がλA/8である2次光、波長がλA/12である3次光、…を強め合うことが分かる。他方、逆に弱め合う条件は、次の(5)式を満足するときである。
(D/4)・(sinθ1−sinθ2)=(2N−1)・(λ/2) …(5)
即ち、波長がλA/2である1次光、波長がλA/6である2次光、波長がλA/10である3次光、…が弱め合うことになる。ちなみに、λA/2よりも長い波長では強め合うことも弱め合うこともない。
Assuming that the wavelength of the primary light to be extracted by the first grating groove 11 is λA, from the equation (2),
D · (sin θ1−sin θ2) = λA
Therefore, in the second grating groove 12 having a groove period of D / 4, the primary light having a wavelength of λA / 4, the secondary light having a wavelength of λA / 8, and the wavelength of λA / 12 3 You can see that the next light is strengthened. On the other hand, the condition for weakening is when the following equation (5) is satisfied.
(D / 4) · (sin θ 1 −sin θ 2) = (2N−1) · (λ / 2) (5)
That is, primary light having a wavelength of λA / 2, secondary light having a wavelength of λA / 6, tertiary light having a wavelength of λA / 10, etc. are weakened. Incidentally, there is no strengthening or weakening at wavelengths longer than λA / 2.

即ち、溝周期Dである第1の格子溝11では波長λA/2である2次光が不所望の回折光として出て来る筈であるが、溝周期D/4である第2の格子溝12ではこの波長λA/2の光は1次光として弱め合うことになるから、結果として、この回折格子1からの波長λA/2の回折光の出射は抑制されることになる。このようにして、本発明による回折格子では、所望の波長λAの1次回折光の2次光を軽減することができる。   That is, in the first grating groove 11 having the groove period D, the secondary light having the wavelength λA / 2 should come out as undesired diffracted light, but the second grating groove having the groove period D / 4. 12, the light of this wavelength λA / 2 is weakened as primary light, and as a result, the emission of the diffracted light of wavelength λA / 2 from the diffraction grating 1 is suppressed. In this way, the diffraction grating according to the present invention can reduce the second-order light of the first-order diffracted light having the desired wavelength λA.

本発明に係る回折格子について、具体例を挙げて説明する。ここでは、溝本数密度:600本/mm(D=1667nm)の第1の格子溝11の上に、溝本数密度:2400本/mm(D=417nm)の第2の格子溝12が重なって刻線されている例を考える。   The diffraction grating according to the present invention will be described with specific examples. Here, the second grating grooves 12 having a groove number density of 2400 lines / mm (D = 417 nm) are overlapped on the first grating grooves 11 having a groove number density of 600 lines / mm (D = 1667 nm). Consider an engraved example.

この回折格子1を、α(=θ1+θ2)=90°一定の条件で使用する場合について想定する。まず入射角θ1=54.77°とすると、第1の格子溝11により、波長が400nmである1次光、200nmである2次光、…が回折されて出射する。他方、第2の格子溝12により、波長が100nmである1次光、50nmである2次光、…が回折されて(強め合って)出射して来る一方、波長が200nmである1次光、67nmである2次光、…は弱め合って相殺される。したがって、第1及び第2の格子溝11、12を併せて考えると、波長が400nmである1次光、100nmである1次光、50nmである2次光、等が回折されることになる。ここで、この回折格子1が空気中で使用される場合、波長が190nm程度以下である光は空気中で大きく減衰するから、波長が100nmである1次光、50nmである2次光、及びそれよりも短波長の光は無視することができる。このように、従来の回折格子では出て来る筈である200nmの2次光は抑制され、この回折格子1から出て来ない(又は強度がきわめて弱い)ことが分かる。   Assume that the diffraction grating 1 is used under the condition of α (= θ1 + θ2) = 90 °. First, when the incident angle θ1 is 54.77 °, the first grating groove 11 diffracts and emits primary light having a wavelength of 400 nm, secondary light having a wavelength of 200 nm,. On the other hand, the first grating light having a wavelength of 200 nm is emitted from the second grating groove 12 while the primary light having a wavelength of 100 nm, the secondary light having a wavelength of 50 nm,... , 67 nm secondary light, etc. are weakened and canceled out. Therefore, when considering the first and second grating grooves 11 and 12 together, the primary light having a wavelength of 400 nm, the primary light having a wavelength of 100 nm, the secondary light having a wavelength of 50 nm, and the like are diffracted. . Here, when the diffraction grating 1 is used in the air, the light having a wavelength of about 190 nm or less is greatly attenuated in the air. Therefore, the primary light having a wavelength of 100 nm, the secondary light having a wavelength of 50 nm, and Light with shorter wavelengths can be ignored. Thus, it can be seen that the secondary light of 200 nm, which should appear in the conventional diffraction grating, is suppressed and does not come out of the diffraction grating 1 (or the intensity is very weak).

次に、入射角θ1=62.28°であるすると、第1の格子溝11により、波長が700nmである1次光、350nmである2次光、…が回折されて出射する。他方、第2の格子溝12により、波長が175nmである1次光、87.5nmである2次光、…が回折されて出射してくる一方、波長が350nmである1次光、117nmである2次光、…は弱め合って相殺される。したがって、第1及び第2の格子溝11、12を併せて考えると、波長が700nmである1次光、175nmである1次光、87.5nmである2次光、等が回折されることになる。ここでも空気中での減衰を考慮すると、波長が175nmである1次光、87.5nmである2次光、及びそれよりも短波長の光は無視することができる。したがって、従来の回折格子では出て来る筈である350nmの2次光は抑制され、この回折格子1から出て来ない(又は強度がきわめて弱い)ことが分かる。   Next, when the incident angle θ1 = 62.28 °, the first grating groove 11 diffracts and emits the primary light having a wavelength of 700 nm, the secondary light having a wavelength of 350 nm,. On the other hand, the first grating light having a wavelength of 175 nm, the secondary light having a wavelength of 87.5 nm, and the like are diffracted and emitted by the second grating groove 12, while the primary light having a wavelength of 350 nm is emitted at 117 nm. Some secondary light ... is weakened and offset. Accordingly, when considering the first and second grating grooves 11 and 12 together, the primary light having a wavelength of 700 nm, the primary light having a wavelength of 175 nm, the secondary light having a wavelength of 87.5 nm, and the like are diffracted. become. Again, considering attenuation in the air, the primary light having a wavelength of 175 nm, the secondary light having a wavelength of 87.5 nm, and light having a shorter wavelength can be ignored. Therefore, it can be seen that the secondary light of 350 nm, which should appear in the conventional diffraction grating, is suppressed and does not come out of the diffraction grating 1 (or the intensity is very weak).

この回折格子を空気中で使用する以外の場合、例えば真空中で使用する場合には190nm以下の波長光の減衰は期待できないから、その際にはこれに代わる紫外光除去フィルタを回折格子の後段の光路中に挿入すればよい。回折格子を回転させて波長走査、波長選択を行う場合でも、紫外光除去フィルタの切り換えは不要である。   When this diffraction grating is not used in air, for example, when it is used in a vacuum, attenuation of light with a wavelength of 190 nm or less cannot be expected. In this case, an ultraviolet light removal filter instead of this is used after the diffraction grating. Can be inserted into the optical path. Even when wavelength scanning and wavelength selection are performed by rotating the diffraction grating, switching of the ultraviolet light removal filter is not necessary.

また、より長い波長領域(赤外領域)でこの回折格子を使用しようとする場合、第2の格子溝12の1次回折光が190nmよりも大きくなって、たとえ空気中の使用であっても殆ど減衰されなくなる。したがって、そうした長波長領域でこの回折格子を使用する場合には、例えば400nm程度以下の紫外光を除去するフィルタを挿入すればよい。   Further, when this diffraction grating is to be used in a longer wavelength region (infrared region), the first-order diffracted light of the second grating groove 12 is larger than 190 nm, and even if it is used in the air. No longer attenuated. Therefore, when this diffraction grating is used in such a long wavelength region, a filter for removing ultraviolet light having a wavelength of about 400 nm or less may be inserted.

上述したような回折格子1は、従来と同様の製造工程を利用して製作することができる。具体的には、まずレーザの2光束干渉で形成した溝本数密度:600本/mmの格子溝(第1の格子溝11)をホログラフィック露光法により、基板上に塗布したフォトレジストに露光する。これによって形成したパターンを、イオンビームエッチング法等で基板に転写して格子溝を形成し、さらに改めて溝本数密度:2400本/mmの露光配置で、再び同様の工程を繰り返せばよい。但し、製造方法は必ずしもこれに限定されるものではなく、上述したような条件を満たす格子溝形状が形成できさえすればよい。   The diffraction grating 1 as described above can be manufactured by using a manufacturing process similar to the conventional one. More specifically, first, a grating groove (first grating groove 11) formed by two-beam interference of a laser and having a groove density of 600 / mm is exposed to a photoresist coated on a substrate by a holographic exposure method. . The pattern thus formed is transferred to the substrate by an ion beam etching method or the like to form lattice grooves, and the same process may be repeated again with an exposure arrangement with a groove number density of 2400 lines / mm. However, the manufacturing method is not necessarily limited to this, as long as a lattice groove shape that satisfies the above-described conditions can be formed.

また、上記実施例では、格子溝の断面形状が矩形状であるラメラー型の回折格子について説明したが、溝断面形状が鋸歯状であるブレーズ型の回折格子や溝断面形状が正弦波状であるホログラフィック型の回折格子でも同様の手法を採用することができる。またそれ以外の点についても、本発明の趣旨の範囲で適宜に変更や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。   In the above embodiment, a lamellar diffraction grating having a rectangular cross-sectional shape of the grating groove has been described. However, a blazed diffraction grating having a sawtooth-shaped groove cross-section or a hollow having a sinusoidal groove cross-sectional shape. A similar technique can be adopted for graphic diffraction gratings. In addition, it is apparent that other points are included in the scope of the claims of the present application even if appropriate changes, corrections, and additions are made within the scope of the present invention.

本発明の一実施例である回折格子の断面斜視図。1 is a cross-sectional perspective view of a diffraction grating that is one embodiment of the present invention. 本実施例による回折格子の分光の動作原理を説明するための光路図。The optical path figure for demonstrating the operation | movement principle of spectroscopy of the diffraction grating by a present Example. 従来の回折格子の分光の動作原理を説明するための光路図。The optical path figure for demonstrating the operation | movement principle of the spectroscopy of the conventional diffraction grating.

符号の説明Explanation of symbols

1…回折格子
10…基板
11…第1の格子溝(溝間隔:D)
12…第2の格子溝(溝間隔:D/4)
DESCRIPTION OF SYMBOLS 1 ... Diffraction grating 10 ... Board | substrate 11 ... 1st grating groove (groove space | interval: D)
12 ... 2nd lattice groove (groove interval: D / 4)

Claims (1)

溝周期がDである第1の格子溝の上に、該格子溝と同方向に延伸し溝周期がD/4である第2の格子溝を重ねて刻線して成ることを特徴とする回折格子。   A second grating groove extending in the same direction as the grating groove and overlaid with a second grating groove having a groove period of D / 4 is formed on the first grating groove having a groove period of D. Diffraction grating.
JP2004274369A 2004-09-22 2004-09-22 Diffraction grating Expired - Fee Related JP4345625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274369A JP4345625B2 (en) 2004-09-22 2004-09-22 Diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274369A JP4345625B2 (en) 2004-09-22 2004-09-22 Diffraction grating

Publications (2)

Publication Number Publication Date
JP2006091204A JP2006091204A (en) 2006-04-06
JP4345625B2 true JP4345625B2 (en) 2009-10-14

Family

ID=36232291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274369A Expired - Fee Related JP4345625B2 (en) 2004-09-22 2004-09-22 Diffraction grating

Country Status (1)

Country Link
JP (1) JP4345625B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5145516B2 (en) * 2008-12-10 2013-02-20 綜研化学株式会社 Wavelength demultiplexing optical element and coupler
JP5621394B2 (en) * 2009-11-19 2014-11-12 セイコーエプソン株式会社 Sensor chip, sensor cartridge and analyzer
TWI481857B (en) * 2009-11-19 2015-04-21 Seiko Epson Corp Sensor chip, sensor cartridge, and analysis apparatus
EP2325634B1 (en) 2009-11-19 2015-03-18 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
JP5589656B2 (en) * 2009-12-11 2014-09-17 セイコーエプソン株式会社 Sensor chip, sensor cartridge and analyzer
WO2012128323A1 (en) * 2011-03-22 2012-09-27 株式会社ニコン Optical element, illuminating apparatus, measuring apparatus, photomask, exposure method, and device manufacturing method
US20140055847A1 (en) * 2011-04-28 2014-02-27 Basf Ir reflectors for solar light management
US10852640B2 (en) * 2019-01-15 2020-12-01 Carl Zeiss Smt Gmbh Optical diffraction component for suppressing at least one target wavelength by destructive interference

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9007559U1 (en) * 1990-03-13 1992-09-24 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut, De
JP3641316B2 (en) * 1995-05-08 2005-04-20 松下電器産業株式会社 Optical encoder
JP3287236B2 (en) * 1996-10-03 2002-06-04 キヤノン株式会社 Manufacturing method of diffractive optical element
JP2000275442A (en) * 1999-03-24 2000-10-06 Fujikura Ltd Optical band path filter
JP4397482B2 (en) * 1999-11-22 2010-01-13 Hoya株式会社 Beam splitting element
US6829092B2 (en) * 2001-08-15 2004-12-07 Silicon Light Machines, Inc. Blazed grating light valve
JP4162987B2 (en) * 2002-12-26 2008-10-08 日本板硝子株式会社 Reflective diffraction grating
JP2006072112A (en) * 2004-09-03 2006-03-16 Toshiba Corp Optical low pass filter and optical apparatus

Also Published As

Publication number Publication date
JP2006091204A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
CA2111808C (en) Method for forming a bragg grating in an optical medium
KR20070011326A (en) Planar waveguide reflective diffraction grating
JP4345625B2 (en) Diffraction grating
US20060109532A1 (en) System and method for forming well-defined periodic patterns using achromatic interference lithography
US8169703B1 (en) Monolithic arrays of diffraction gratings
JP2014209237A (en) Optical designs for zero order reduction
WO2002057814A3 (en) Diffraction grating-based wavelength selection unit
US7352931B1 (en) Method and phase mask for manufacturing a multi-channel optical grating
EP2711746A1 (en) Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
US7068884B2 (en) Apodized fiber bragg grating and improved phase mask, method and system for making the same
JPS6141150A (en) Exposure device
JP2012009872A (en) Illuminating optical system, exposure equipment, and projector
JP2002048908A (en) Device for formation of deviated diffraction beam and splitter to decrease sensitivity to manufacture tolerance
CA2401111A1 (en) Process for the fabrication of a phase mask for optical fiber processing, optical fiber-processing phase mask, optical fiber with a bragg grating, and dispersion compensating device using the optical fiber
WO2003046628A8 (en) Method for fabricating chirped fiber bragg gratings
Sheng et al. Split of phase shifts in a phase mask for fiber Bragg gratings
JP5339027B2 (en) Spectrometer
US20080112670A1 (en) Wavelength filter
KR100584403B1 (en) Diffcraction grating and laser television using the same
JP2000105307A (en) Manufacture of digital braze diffraction grating
CA2426443A1 (en) Phase mask for forming diffraction grating, and optical fiber and optical waveguide having diffraction grating duplicated using the phase mask
EP1191366B1 (en) Optical fibre grating fabrication apparatus which minimizes diffraction effects
US7317575B2 (en) Tunable dispersive optical system
JP2001059773A (en) Conical diffraction oblique-incidence spectroscope and diffraction grating therefor
US20110299078A1 (en) Spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R151 Written notification of patent or utility model registration

Ref document number: 4345625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees