JPH10148372A - Control device of air conditioner - Google Patents

Control device of air conditioner

Info

Publication number
JPH10148372A
JPH10148372A JP8306357A JP30635796A JPH10148372A JP H10148372 A JPH10148372 A JP H10148372A JP 8306357 A JP8306357 A JP 8306357A JP 30635796 A JP30635796 A JP 30635796A JP H10148372 A JPH10148372 A JP H10148372A
Authority
JP
Japan
Prior art keywords
power supply
air conditioner
compressor
voltage
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8306357A
Other languages
Japanese (ja)
Other versions
JP3676526B2 (en
Inventor
Yuichi Itoi
裕一 糸井
Itsuo Suzuki
五雄 鈴木
Sadao Yajima
禎夫 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30635796A priority Critical patent/JP3676526B2/en
Publication of JPH10148372A publication Critical patent/JPH10148372A/en
Application granted granted Critical
Publication of JP3676526B2 publication Critical patent/JP3676526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an unsafe condition such as the malfunction and burning of the equipment by comparing the operation data with the preliminarily obtained operation data of an air conditioner at the normal power source voltage, and judging the mistaken connection of the power source below the rated voltage. SOLUTION: In a control device of an air conditioner, a compressor is intentionally operated in the lock mode before entering the normal operation only for the first operation after resetting and turning on the main power source. The judgment point and the threshold are recorded in advance, and a compressor 34 is energized under the condition of the judgment point to detect the primary current, and it is judged that the 100V power source is not connected in a 200V power source model by whether the detected current value is larger or smaller than the threshold. As a result of the judgment, if result is normal, the operation is shifted to the normal one. If the result shows the different power source, it is indicated that the power source voltage is abnormal by an LED display 41, and no operation is performed unless the power source is tuned OFF/ON.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和機に係
り、特に異電源投入保護に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner and, more particularly, to protection against turning on a different power supply.

【0002】[0002]

【従来の技術】[Prior art]

従来例1.図13は、例えば特開昭62−129641
号公報に示された従来の空気調和機の制御装置を示す回
路図である。図において、1は電源、2は高圧の交流電
圧を低圧交流電圧に変換する変圧器、3は室内機制御回
路、9は室内機制御回路3内に設けられたコネクタ、
7、8は室内機制御回路3内に設けられた接続端子であ
る。10、12は端子盤、11はリモコン、13は室外
機制御回路である。14は交流を直流に変換する全波整
流器、15は前記全波整流器14により得られる直流電
圧を平滑する安定化電源回路、16は上記直流電圧が設
定レベルに対して低い時に出力を発生する電圧検知回
路、17は電圧検知回路16の出力端に接続されたトラ
ンジスタ、18はトランジスタ17の動作により電圧レ
ベルが変化する入力端子とトランジスタ19を動作させ
る出力端子を持つリセット回路、20は前記リセット回
路18の出力端子の出力電圧レベルによりリセットされ
るとともに、室外機制御回路13に運転信号を送るマイ
クロコンピュータ、21は上記トランジスタ19の動作
時に出力される信号により、リモコン11の電源遮断信
号および室外機制御回路13への運転信号を遮断するカ
ットオフ回路、22はバッファである。一方、23は電
流検知回路、24は電流検知回路23の出力で動作する
トランジスタであって、上記トランジスタ17と抵抗2
5を介して直列に接続されていて、そのコレクタ側が上
記リセット回路18の入力端子に接続されている。26
は直流電圧を表わし、27は0Vを表わす。
Conventional example 1. FIG. 13 shows, for example, Japanese Unexamined Patent Application Publication No.
FIG. 1 is a circuit diagram illustrating a conventional control device for an air conditioner disclosed in Japanese Unexamined Patent Application Publication No. H11-157,086. In the figure, 1 is a power supply, 2 is a transformer for converting a high-voltage AC voltage into a low-voltage AC voltage, 3 is an indoor unit control circuit, 9 is a connector provided in the indoor unit control circuit 3,
7 and 8 are connection terminals provided in the indoor unit control circuit 3. Reference numerals 10 and 12 are terminal boards, 11 is a remote controller, and 13 is an outdoor unit control circuit. 14 is a full-wave rectifier for converting AC to DC, 15 is a stabilized power supply circuit for smoothing the DC voltage obtained by the full-wave rectifier 14, and 16 is a voltage that generates an output when the DC voltage is lower than a set level. A detection circuit, 17 is a transistor connected to the output terminal of the voltage detection circuit 16, 18 is a reset circuit having an input terminal whose voltage level changes by the operation of the transistor 17, and an output terminal for operating the transistor 19, and 20 is the reset circuit. A microcomputer which is reset by the output voltage level of the output terminal 18 and sends an operation signal to the outdoor unit control circuit 13. A microcomputer 21 outputs a power cutoff signal of the remote controller 11 and an outdoor unit A cut-off circuit for interrupting the operation signal to the control circuit 13, and 22 is a buffer. On the other hand, 23 is a current detection circuit, and 24 is a transistor that operates with the output of the current detection circuit 23.
5 is connected in series, and its collector side is connected to the input terminal of the reset circuit 18. 26
Represents a DC voltage, and 27 represents 0V.

【0003】次に動作について説明する。リモコン11
や室外機制御回路13が間違えて端子盤10、12を接
続して異常な電流が流れた場合、電流検知回路23によ
りその異常電流を検出し、直ちにリセット回路18によ
りマイクロコンピュータ20の動作を止めるとともに、
カットオフ回路21によりリモコン11及び室外機制御
回路13の電源を遮断する。
Next, the operation will be described. Remote control 11
When the abnormal current flows by connecting the terminal boards 10 and 12 by mistake or the outdoor unit control circuit 13 mistakenly detects the abnormal current by the current detection circuit 23 and immediately stops the operation of the microcomputer 20 by the reset circuit 18. With
The power supply of the remote controller 11 and the outdoor unit control circuit 13 is cut off by the cutoff circuit 21.

【0004】上述の従来例は、室内機の制御回路内にお
ける電圧及びリモコンと室外制御回路へ流入する電流を
検出し、この検出信号により室内機のマイクロコンピュ
ータ20をリセットしてリモコンの電源と室外機制御回
路への信号機を電気的遮断するとともに、リセット回路
に設定する遅延時間をリモコンの電源電圧が完全に放電
する時間以上に設定してあるために、各制御回路に誤配
線あるいは短絡が生じても、また瞬時電圧降下等で電源
電圧が降下しても、常に確実に各制御回路にリセットが
かかることから、誤動作およびマイクロコンピュータの
暴走が防止されて信頼性が高くなる。また、ヒューズが
不要となることから安価になるとともに、ヒューズ交換
のメンテナンスも不要になるなどの効果がある。
In the above-mentioned conventional example, the voltage in the control circuit of the indoor unit and the current flowing into the remote control and the outdoor control circuit are detected, and the microcomputer 20 of the indoor unit is reset by this detection signal to thereby control the power supply of the remote control and the outdoor. Since the signal to the machine control circuit is electrically cut off and the delay time set in the reset circuit is set to be longer than the time when the power supply voltage of the remote control is completely discharged, erroneous wiring or short circuit occurs in each control circuit. However, even if the power supply voltage drops due to an instantaneous voltage drop or the like, each control circuit is always reliably reset, so that malfunction and runaway of the microcomputer are prevented and reliability is improved. Further, there is an effect that the cost is reduced because the fuse is not required, and maintenance for replacing the fuse is not required.

【0005】従来例2.図14は、例えば特開平7−3
22472号公報に示された従来の空気調和機の電源短
絡保護装置のブロック図である。これは、電源線の誤接
続による電源のデッドショートが発生したとき、電流保
護装置(電流ヒューズ)を溶断することなく、電源線の
デッドショートから機器を保護することを目的とするも
ので、図14に示すように、商用電源に接続された、過
電流検出切り替え装置101のNC端子103には過電
流検出装置104を接続し、制御装置108内部には、
過電流検出装置104の電圧差をデジタル信号化する電
圧変換手段109と過電流検出装置104の電圧差をデ
ジタル信号と事前に異常時の過電流値を保存しておく過
電流設定値111を比較する比較演算判定手段110と
比較演算結果から過電流検出切り替え装置101に信号
を送信する送信手段112を設け、電源のループ誤接続
によるデッドショートが発生したとき、過電流検出切り
替え装置101を制御することにより、室内機に供給す
る商用電源を停止し、機器が発煙・発火などの不安全状
態になることのない電源短絡保護装置ができるというも
のである。
Conventional example 2. FIG.
It is a block diagram of the power supply short circuit protection device of the conventional air conditioner shown in 22472 gazette. The purpose of this is to protect the equipment from dead shorts in the power supply line without blowing the current protection device (current fuse) when a power supply dead short circuit occurs due to incorrect connection of the power supply line. As shown in FIG. 14, the overcurrent detection device 104 is connected to the NC terminal 103 of the overcurrent detection switching device 101 connected to the commercial power source, and the control device 108 has:
The voltage conversion means 109 for converting the voltage difference of the overcurrent detection device 104 into a digital signal is compared with the digital signal of the voltage difference of the overcurrent detection device 104 and the overcurrent set value 111 in which an overcurrent value at the time of abnormality is stored in advance. And a transmitting unit 112 for transmitting a signal to the overcurrent detection switching device 101 based on the result of the comparison operation, and controls the overcurrent detection switching device 101 when a dead short occurs due to a power supply loop erroneous connection. Thus, a commercial power supply to the indoor unit is stopped, and a power supply short-circuit protection device that does not cause an unsafe state such as smoking or ignition of the device can be provided.

【0006】従来例3.また、元電源の誤投入を考慮し
ている例もあるが、その場合は機器に直接破損をもたら
す定格電源電圧より高い電圧に対してだけで、定格電源
電圧より低い電圧に対しては保護する手段が無かった。
Conventional example 3. In some cases, erroneous switching of the main power supply is considered.In such a case, protection is provided only for voltages higher than the rated power supply voltage that directly damages the equipment, and for voltages lower than the rated power supply voltage. There was no means.

【0007】[0007]

【発明が解決しようとする課題】従来の空調機用保護装
置は以上のように構成されているので、接続線の誤配線
に対しての破損には対策がなされていたが、元電源の誤
投入に対しての保護がされていなかった(従来例1、
2)。また、元電源の誤投入を考慮している従来例3の
場合は、定格電圧より低い電圧を接続された場合、表面
化しにくい誤動作が続くため電源電圧の誤投入が長期間
分からないことがあるという問題点があった。
Since the conventional protection device for an air conditioner is configured as described above, measures have been taken against damage due to incorrect wiring of the connection lines. There was no protection against input (conventional example 1,
2). In addition, in the case of Conventional Example 3 in which erroneous input of the main power supply is considered, if a voltage lower than the rated voltage is connected, erroneous operation that is difficult to surface continues, and erroneous input of power supply voltage may not be known for a long time. There was a problem.

【0008】この発明は、上記のような問題点を解決す
るためになされたもので、施工時等に定格電圧以下の電
源の誤接続が行われた場合、機器が誤動作、焼損などの
不安全状態にならないように保護できる空気調和機の制
御装置を得ることを目的とする。さらに、電源電圧の誤
投入を容易に発見でき、部品の誤交換を未然に防ぐこと
ができる空気調和機の制御装置を得ることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and when a power supply having a voltage lower than the rated voltage is erroneously connected at the time of construction or the like, unsafe operation such as malfunction or burnout of the equipment. It is an object of the present invention to provide a control device for an air conditioner that can be protected from being in a state. It is still another object of the present invention to provide a control device for an air conditioner that can easily detect erroneous input of a power supply voltage and prevent erroneous replacement of components.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係る空
気調和機の制御装置は、圧縮機運転開始時に、その時点
での空気調和機の運転データと、予め求められた正常電
源電圧時の空気調和機の運転データとを比較することに
より定格電圧以下の電源の誤接続を判定する手段を備え
たことを特徴とする。
According to a first aspect of the present invention, there is provided a control apparatus for an air conditioner, comprising: at the time of starting operation of a compressor, operating data of the air conditioner at that time; Means for judging an erroneous connection of a power supply having a rated voltage or less by comparing the operation data of the air conditioner with the power supply.

【0010】請求項2の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
圧縮機のロック運転時の入力電流を検出する手段と、圧
縮機ロック運転時の入力電流から定格電圧以下の電源の
誤接続を判定する手段とを備えたことを特徴とする。
According to a second aspect of the present invention, there is provided an air conditioner control apparatus according to the first aspect, wherein:
It is characterized by comprising a means for detecting an input current during the lock operation of the compressor, and a means for determining an erroneous connection of a power supply having a rated voltage or less from the input current during the lock operation of the compressor.

【0011】請求項3の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
圧縮機運転開始時に、圧縮機の運転中の力率を検出する
手段と、圧縮機運転中の力率から定格電圧以下の電源の
誤接続を判定する手段とを備えたことを特徴とする。
According to a third aspect of the present invention, there is provided the air conditioner control device according to the first aspect,
At the start of the compressor operation, there are provided means for detecting a power factor during operation of the compressor, and means for judging an erroneous connection of a power supply having a rated voltage or less from the power factor during operation of the compressor.

【0012】請求項4の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
圧縮機駆動用電源等を過電流から保護する過電流保護手
段と、電源電圧を所定電圧上昇させて、圧縮機を運転す
る手段と、電源電圧を所定電圧上昇させて前記圧縮機を
運転した場合、過電流保護手段が動作しない場合は定格
電圧以下の電圧と判定する手段とを備えたことを特徴と
する。
According to a fourth aspect of the present invention, there is provided the air conditioner control device according to the first aspect,
Overcurrent protection means for protecting a compressor drive power supply or the like from overcurrent; means for operating the compressor by increasing the power supply voltage by a predetermined voltage; and operating the compressor by increasing the power supply voltage by a predetermined voltage. Means for determining that the voltage is equal to or lower than the rated voltage when the overcurrent protection means does not operate.

【0013】請求項5の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
電源の周波数を検出する電源周波数検出手段と、電源周
波数検出手段で検出した電源電圧波形の幅から、定格電
圧以下の電源の誤接続を判定する手段とを備えたことを
特徴とする。
According to a fifth aspect of the present invention, there is provided the air conditioner control device according to the first aspect.
Power supply frequency detection means for detecting the frequency of the power supply, and means for determining erroneous connection of a power supply below the rated voltage based on the width of the power supply voltage waveform detected by the power supply frequency detection means are provided.

【0014】請求項6の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
冷媒配管の温度を検出する冷媒配管温度検出手段と、冷
媒配管温度検出手段が検出した冷媒配管温度の変化する
時間の違いから定格電圧以下の電源の誤接続を判定する
手段とを備えたことを特徴とする。
According to a sixth aspect of the present invention, there is provided the air conditioner control device according to the first aspect, wherein:
Refrigerant pipe temperature detecting means for detecting the temperature of the refrigerant pipe, and means for determining erroneous connection of a power supply having a voltage equal to or lower than the rated voltage based on a difference in time when the refrigerant pipe temperature detected by the refrigerant pipe temperature detecting means changes. Features.

【0015】請求項7の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
圧縮機の運転電流を検出する手段と、運転電流から定格
電圧以下の電源の誤接続を判定する手段とを備えたこと
を特徴とする。
The control device for an air conditioner according to the invention of claim 7 is the control device for an air conditioner according to claim 1,
The compressor further comprises means for detecting the operating current of the compressor, and means for judging an erroneous connection of a power supply having a rated voltage or less from the operating current.

【0016】請求項8の発明に係る空気調和機の制御装
置は、請求項1記載の空気調和機の制御装置において、
冷房運転と暖房運転とを切り替える手段と、配管温度を
検出する配管温度検出手段と、配管温度検出手段が検出
した配管温度を、予め求められた正常電源電圧時の配管
温度と比較することにより定格電圧以下の電源の誤接続
を判定する手段とを備えたことを特徴とする。
An air conditioner control apparatus according to an eighth aspect of the present invention is the air conditioner control apparatus according to the first aspect,
Means for switching between the cooling operation and the heating operation, a pipe temperature detecting means for detecting the pipe temperature, and a rating by comparing the pipe temperature detected by the pipe temperature detecting means with a previously determined pipe temperature at a normal power supply voltage. Means for determining erroneous connection of a power supply having a voltage equal to or lower than the voltage.

【0017】請求項9の発明に係る空気調和機の制御装
置は、請求項2〜8の何れかに記載の空気調和機の制御
装置において、電源電圧が異電圧の場合は、圧縮機の運
転を停止する手段を備えたことを特徴とする。
A control device for an air conditioner according to a ninth aspect of the present invention is the control device for an air conditioner according to any of the second to eighth aspects, wherein the compressor operates when the power supply voltage is different. Is provided.

【0018】請求項10の発明に係る空気調和機の制御
装置は、請求項2〜8の何れかに記載の空気調和機の制
御装置において、電源電圧の判定結果を表示する手段を
備えたことを特徴とする。
According to a tenth aspect of the present invention, there is provided the air conditioner control device according to any one of the second to eighth aspects, further comprising a means for displaying a determination result of a power supply voltage. It is characterized by.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1による空
気調和機の制御装置を図を参照しながら説明する。図1
は、この発明の実施の形態1による空気調和機の制御装
置のブロック図である。図において、1は外部の電源、
31は電源1のノイズを除去するためのノイズフィルタ
ー、39はノイズフィルター31を通ったあとの電流値
及び電圧位相を検出する一次電流検出手段・電源周波数
検出手段である。40は一次電流検出手段・電源周波数
検出手段39で検出したデータをデジタル信号に変換す
るデータ変換手段、20はデータ変換手段40で変換さ
れたデジタル信号が入力されるマイクロコンピュータで
ある。
Embodiment 1 FIG. Hereinafter, a control device for an air conditioner according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG.
FIG. 1 is a block diagram of a control device for an air conditioner according to Embodiment 1 of the present invention. In the figure, 1 is an external power supply,
Reference numeral 31 denotes a noise filter for removing noise of the power supply 1, and 39 denotes primary current detection means and power supply frequency detection means for detecting a current value and a voltage phase after passing through the noise filter 31. Reference numeral 40 denotes data conversion means for converting data detected by the primary current detection means / power supply frequency detection means 39 into a digital signal, and reference numeral 20 denotes a microcomputer to which the digital signal converted by the data conversion means 40 is input.

【0020】一方、14は全波整流器、32は平滑コン
デンサで、圧縮機駆動用の電流は全波整流器14、平滑
コンデンサ32で直流電流に変換される。35は配管温
度検出用のサーミスタ、37はその検出回路で、マイク
ロコンピュータ20は検出回路37、データ変換手段4
0及び室内機からの運転要求データ(図示せず)から圧
縮機34の運転条件を算出する。
On the other hand, 14 is a full-wave rectifier, 32 is a smoothing capacitor, and the current for driving the compressor is converted into a DC current by the full-wave rectifier 14 and the smoothing capacitor 32. 35 is a thermistor for detecting pipe temperature, 37 is a detection circuit thereof, and the microcomputer 20 is a detection circuit 37 and a data conversion means 4.
The operation condition of the compressor 34 is calculated from 0 and operation request data (not shown) from the indoor unit.

【0021】42はパワートランジスタドライブ回路
で、パワートランジスタ33をスイッチングするための
パルス信号がマイクロコンピュータ20から出力され
る。43は圧縮機電流から圧縮機34の運転力率を検出
し、マイクロコンピュータ20にフィードバックをかけ
る圧縮機力率検出回路である。44は過電流検出手段
で、主にパワートランジスタ33を保護するために使用
され、過電流を検出するとマイクロコンピュータ20に
よりソフトウェアで運転を停止するほか、ハードウェア
でもドライブ回路42により運転を停止させている。3
6は冷暖房を切り替える四方弁で、マイクロコンピュー
タ20により制御される。41は主にサービス用に異常
表示や保護表示を行うモニタLEDである。
A power transistor drive circuit 42 outputs a pulse signal for switching the power transistor 33 from the microcomputer 20. Reference numeral 43 denotes a compressor power factor detection circuit that detects the operating power factor of the compressor 34 from the compressor current and provides feedback to the microcomputer 20. Reference numeral 44 denotes an overcurrent detection means, which is mainly used to protect the power transistor 33. When an overcurrent is detected, the operation is stopped by the microcomputer 20 by software, and the operation of the hardware is also stopped by the drive circuit 42. I have. 3
Reference numeral 6 denotes a four-way valve for switching between cooling and heating, which is controlled by the microcomputer 20. Reference numeral 41 denotes a monitor LED that mainly performs an abnormality display and a protection display for a service.

【0022】次に動作を説明する。図2はこの発明の実
施の形態1による空気調和機の制御装置の動作を示すフ
ローチャート図、図3はこの発明の実施の形態1による
空気調和機の制御装置における圧縮機ロック電流特性図
である。図2に示すように、リセットして元電源を入れ
た後の1回目の運転だけ通常運転に入る前に圧縮機を意
図的にロックモードで運転する(ステップ200、20
1)。1回目だけ行うのは、ロック運転における圧縮機
34の信頼性低下防止と通常運転に移行するまでのタイ
ムラグをなくすためである。ロックさせる方法は、圧縮
機起動時に初めから高周波数運転を適正電圧値より低い
電圧値を出力するなどして行わせることで実現できる。
Next, the operation will be described. FIG. 2 is a flowchart showing the operation of the control device for the air conditioner according to Embodiment 1 of the present invention, and FIG. 3 is a compressor lock current characteristic diagram in the control device for air conditioner according to Embodiment 1 of the present invention. . As shown in FIG. 2, the compressor is intentionally operated in the lock mode before the normal operation is performed only in the first operation after the reset and the main power is turned on (steps 200 and 20).
1). The reason for performing only the first time is to prevent the reliability of the compressor 34 from deteriorating during the lock operation and to eliminate the time lag until the shift to the normal operation. The locking method can be realized by performing high-frequency operation from the beginning when the compressor is started by outputting a voltage value lower than the appropriate voltage value.

【0023】ロック状態での入力電流は、図3に示すよ
うにほぼ比例関係になっている。あらかじめ判定ポイン
トとそのときのしきい値を記憶しておき、判定ポイント
の条件で圧縮機34に通電させて一次電流を検出し(ス
テップ202)、検出電流値がしきい値より大きいか小
さいかで200V電源機種において100V電源が接続
されていないことを判定する(ステップ203)。判定
の結果、正常であれば通常運転に移行し(ステップ20
4)、異電源であればLED表示41により電源電圧が
異常であることを表示し、元電源のOFF/ONが実施
されない限り運転は行わない(ステップ205)。
The input current in the locked state has a substantially proportional relationship as shown in FIG. The judgment point and the threshold value at that time are stored in advance, and the primary current is detected by energizing the compressor 34 under the condition of the judgment point (step 202), and whether the detected current value is larger or smaller than the threshold value is determined. It is determined that the 100 V power supply is not connected in the 200 V power supply model (step 203). If the result of determination is normal, the operation shifts to normal operation (step 20).
4) If the power supply is different, the LED display 41 indicates that the power supply voltage is abnormal, and the operation is not performed unless the original power supply is turned off / on (step 205).

【0024】上述の実施の形態では、圧縮機34を意図
的にロック状態で運転させ、電流検出手段により検出し
た電流値をあらかじめ実機試験から求め記憶させていた
正常電源電圧時のデータと比較し、電源電圧が正しいか
どうかの判定を行うことができる空気調和機の制御装置
が得られる。
In the above-described embodiment, the compressor 34 is intentionally operated in the locked state, and the current value detected by the current detecting means is compared with the data at the time of the normal power supply voltage which is obtained in advance from the actual machine test and stored. Thus, a control device for an air conditioner that can determine whether the power supply voltage is correct is obtained.

【0025】実施の形態2.次にこの発明に実施の形態
2について図面を参照しながら説明する。図4はこの発
明の実施の形態2による空気調和機の制御装置の動作を
示すフローチャート図、図5はこの発明の実施の形態2
による空気調和機の制御装置における圧縮機運転開始一
定時間後の力率特性図である。なお、実施の形態1と同
一または相当部分は同一符号を付し、説明を省略する。
図5は圧縮機運転開始一定時間後の力率データである
が、圧縮機34の運転力率は、図1の圧縮機力率検出回
路43にて検出したものである。電源電圧の違いは、圧
縮機駆動のための電圧波形データを固定しておけば、そ
のまま圧縮機34に印加される電圧の違いになってく
る。圧縮機駆動のためのトルクは比較的大きな電力が必
要なため、圧縮機34に印加される電圧の違いは、その
まま力率の違いに表れる。そこで圧縮機運転中の力率を
あらかじめ正常な電源電圧と間違った電源電圧とで確認
したデータと比較すれば、電源電圧が正しいのかどうか
の判定が行える。
Embodiment 2 Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 2 of the present invention. FIG. 5 is a flowchart showing Embodiment 2 of the present invention.
FIG. 4 is a power factor characteristic diagram of the control device for the air conditioner according to the first embodiment after a fixed time period from the start of compressor operation. The same or corresponding parts as in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
FIG. 5 shows the power factor data after a fixed time from the start of the compressor operation. The operating power factor of the compressor 34 is detected by the compressor power factor detection circuit 43 of FIG. If the voltage waveform data for driving the compressor is fixed, the difference in the power supply voltage will be the difference in the voltage applied to the compressor 34 as it is. Since a relatively large electric power is required for the torque for driving the compressor, the difference in the voltage applied to the compressor 34 appears directly in the difference in the power factor. Therefore, by comparing the power factor during the operation of the compressor with data confirmed in advance using a normal power supply voltage and an incorrect power supply voltage, it is possible to determine whether the power supply voltage is correct.

【0026】図4はそのフローチャートを示したもので
ある。リセットして元電源を入れた後の1回目の運転だ
け通常運転に入る前に圧縮機を短時間運転する(ステッ
プ400、401)。1回目だけ判定を行うのは、図5
にも示したように力率の値は、運転モードや温度条件、
運転時間などの違いで大きく変わり、誤判定をなくすた
めである。短時間だけ圧縮機34を運転するのも同様な
理由による。圧縮機力率検出回路43にて力率を検出し
(ステップ402)、検出力率値がしきい値より大きい
か小さいかで200V電源機種において100V電源が
接続されていないことを判定する(ステップ403)。
判定の結果、正常であれば通常運転に移行し(ステップ
404)、異電源であればLED表示41により電源電
圧が異常であることを表示し、元電源のOFF/ONが
実施されない限り運転は行わない(405)。
FIG. 4 is a flowchart showing the operation. The compressor is operated for a short time before the normal operation is performed only in the first operation after the reset and the main power is turned on (steps 400 and 401). FIG. 5 shows that the determination is performed only for the first time.
The power factor value depends on the operating mode, temperature conditions,
This is because the difference greatly changes depending on the operation time and the like, and erroneous determination is eliminated. The compressor 34 is operated for a short time for the same reason. The power factor is detected by the compressor power factor detection circuit 43 (step 402), and it is determined whether or not the 100V power supply is not connected to the 200V power supply model based on whether the detected power factor value is larger or smaller than the threshold value (step 402). 403).
As a result of the determination, if the power is normal, the operation shifts to the normal operation (step 404). If the power is different, the LED display 41 indicates that the power supply voltage is abnormal. Not performed (405).

【0027】上述の実施の形態2は、運転中の圧縮機3
4の力率値をあらかじめ実機試験から求め記憶させてい
た正常電源電圧時のデータと比較して、電源電圧が正し
いかどうかの判定をすることができる空気調和機の制御
装置が得られる。
In the second embodiment, the compressor 3 is in operation.
An air conditioner control device that can determine whether the power supply voltage is correct by comparing the power factor value of No. 4 with the data at the time of the normal power supply voltage that is obtained in advance from the actual machine test and stored is obtained.

【0028】実施の形態3.次にこの発明の実施の形態
3について図面を参照しながら説明する。図6はこの発
明の実施の形態3による空気調和機の制御装置の動作を
示すフローチャート図、図7はこの発明の実施の形態3
による空気調和機の制御装置における圧縮機のV/F特
性図である。なお、実施の形態1、2と同一または相当
部分は同一符号を付し、説明を省略する。
Embodiment 3 Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 3 of the present invention, and FIG. 7 is Embodiment 3 of the present invention.
FIG. 4 is a V / F characteristic diagram of a compressor in a control device for an air conditioner according to the present invention. Note that the same or corresponding parts as in the first and second embodiments are denoted by the same reference numerals, and description thereof will be omitted.

【0029】圧縮機34を運転するために圧縮機34に
印加する電圧の最適値は、圧縮機34の運転周波数や圧
縮機34の種類によって違ってくる。電圧値が大きすぎ
たり小さすぎたりした場合、圧縮機34はロックした
り、過電流が流れすぎたりして図1の過電流検出回路4
4を動作させ、圧縮機34は停止する。そこで意図的に
最適な電圧値以外の電圧を圧縮機34に印加する事によ
り過電流保護に入るかどうかで電源電圧を判定するよう
にしたものである。
The optimum value of the voltage applied to the compressor 34 for operating the compressor 34 depends on the operating frequency of the compressor 34 and the type of the compressor 34. If the voltage value is too large or too small, the compressor 34 locks or overcurrent flows too much, and the overcurrent detection circuit 4 shown in FIG.
4, and the compressor 34 stops. Therefore, the power supply voltage is determined by intentionally applying a voltage other than the optimum voltage value to the compressor 34 to determine whether or not to enter overcurrent protection.

【0030】図7に示すように、判定ポイントの運転周
波数で運転中に出力電圧をaだけ意図的に上昇させると
過電流保護に入る。しかし、電源電圧が100Vであっ
た場合は、aだけ上昇させただけでは過電流保護に入ら
ず、b(a<b)だけ電圧を上昇させる必要がある。
As shown in FIG. 7, when the output voltage is intentionally increased by a during the operation at the operation frequency at the determination point, overcurrent protection is started. However, when the power supply voltage is 100 V, it is necessary to increase the voltage by b (a <b) without going into the overcurrent protection by merely increasing the voltage by a.

【0031】リセットして元電源を入れた後の1回目の
運転だけ通常運転に入る前に、判定ポイントでaだけ出
力電圧を上昇させた最適外の電圧で圧縮機を運転する
(ステップ600、601)。そして、過電流保護検出
手段44で過電流保護を検出する(ステップ602)。
過電流保護に入れば正常、入らなければ電圧が間違って
いると判定する(ステップ603)。判定の結果、正常
であれば通常運転に移行し(ステップ604)、異電源
であればLED表示41により電源電圧が異常であるこ
とを表示し、元電源のOFF/ONが実施されない限り
運転は行わない(ステップ605)。
Before the first operation after resetting and turning on the main power supply and before the normal operation is started, the compressor is operated at a non-optimal voltage whose output voltage is increased by a at the judgment point (step 600, 601). Then, the overcurrent protection detection means 44 detects overcurrent protection (step 602).
If the overcurrent protection is activated, the voltage is determined to be normal, and if not, the voltage is determined to be incorrect (step 603). As a result of the determination, if the power is normal, the operation shifts to the normal operation (step 604). If the power supply is different, the LED display 41 indicates that the power supply voltage is abnormal, and the operation is continued unless the original power supply is turned off / on. Not performed (step 605).

【0032】上述の実施の形態3では、意図的に最適な
電圧値以外の電圧を圧縮機34に印加する事により過電
流保護に入るかどうかで電源電圧を判定することができ
る空気調和機の制御装置を得ることができる。
In the third embodiment, the power supply voltage can be determined by intentionally applying a voltage other than the optimum voltage value to the compressor 34 to determine whether to enter overcurrent protection. A control device can be obtained.

【0033】なお、上述の実施の形態3では、圧縮機3
4を運転して検出する方法を示したが、実施の形態1で
述べたロック運転モードで本実施の形態3を実行して
も、同様の効果が得られる。
In the third embodiment, the compressor 3
Although the method of detecting by driving the fourth embodiment has been described, the same effect can be obtained by executing the third embodiment in the lock operation mode described in the first embodiment.

【0034】実施の形態4.次にこの発明の実施の形態
4について図面を参照しながら説明する。図8はこの発
明の実施の形態4による空気調和機の制御装置の動作を
示すフローチャート図、図9はこの発明の実施の形態4
による空気調和機の制御装置の要部回路図、図10はこ
の発明の実施の形態4による空気調和機の制御装置の動
作を示すタイムチャート図である。なお、実施の形態1
〜3と同一または相当部分は同一符号を付し、説明を省
略する。
Embodiment 4 Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 4 of the present invention, and FIG. 9 is Embodiment 4 of the present invention.
And FIG. 10 is a time chart showing the operation of the control device for an air conditioner according to Embodiment 4 of the present invention. Embodiment 1
The same or corresponding parts as those of Nos. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.

【0035】図9は、図1の一次電流検出手段・電源周
波数検出手段39のうち、電源周波数検出手段の一例を
示す回路図である。ホトカプラ45は交流電源のゼロク
ロス付近だけOFFするので、マイクロコンピュータ2
0への入力波形は図10のようになる。
FIG. 9 is a circuit diagram showing an example of the power supply frequency detecting means of the primary current detecting means / power supply frequency detecting means 39 of FIG. Since the photocoupler 45 is turned off only near the zero cross of the AC power supply, the microcomputer 2
The input waveform to 0 is as shown in FIG.

【0036】電源周波数検出回路は、電源投入直後のみ
電源周波数の測定を行い、図10に示すcの長さにより
50/60Hzの判定を行っている。そこで本実施の形
態では電源電圧の違いによりdの長さも変わることを利
用して電源電圧の判定を行うものである。
The power supply frequency detection circuit measures the power supply frequency only immediately after the power is turned on, and determines 50/60 Hz based on the length c shown in FIG. Therefore, in the present embodiment, the determination of the power supply voltage is performed by utilizing the fact that the length of d changes depending on the power supply voltage.

【0037】リセットして元電源を入れた後の1回目の
運転だけ通常運転に入る前に、電源電圧の波形幅を測定
する(ステップ800、801)。そして波形幅により
電源電圧の判定を行い(ステップ802)、判定の結
果、正常であれば通常運転に移行し(ステップ80
3)、異電源であればLED表示41により電源電圧が
異常であることを表示し、元電源のOFF/ONが実施
されない限り運転は行わない(ステップ804)。
Before the first operation after resetting and turning on the main power supply, and before the normal operation is started, the waveform width of the power supply voltage is measured (steps 800 and 801). Then, the power supply voltage is determined based on the waveform width (step 802). If the result of the determination is normal, the operation shifts to the normal operation (step 80).
3) If the power supply is different, the LED display 41 indicates that the power supply voltage is abnormal, and the operation is not performed unless the original power supply is turned off / on (step 804).

【0038】実施の形態5.次にこの発明の実施の形態
5について図面を参照しながら説明する。図11はこの
発明の実施の形態5による空気調和機の制御装置の動作
を示すフローチャート図である。次に第5実施例につい
て図を参照しながら説明する。圧縮機34がロックして
運転しない場合ももちろんのこと、運転した場合でも電
源電圧の違いが大きい場合は、圧縮機34の運転可能な
能力が違ってくるため、冷媒配管の温度変化の割合が違
ってくる。図11に示すフローチャートは、その温度変
化の違いを使って電源電圧違いを検出することを示した
ものである。絶対温度を使用せずに温度変化の量を使用
したのは、気温のなどの環境条件の違いによって発生す
る誤差を小さくするためである。200V電源による運
転時に比較して、100V電源による運転時は、圧縮機
の運転能力が落ちるため、配管温度の変化幅も小さくな
るわけである。
Embodiment 5 Next, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 5 of the present invention. Next, a fifth embodiment will be described with reference to the drawings. In the case where the compressor 34 is locked and does not operate, as well as in the case where the difference in the power supply voltage is large even when the compressor 34 is operated, the operable capacity of the compressor 34 is different. It will be different. The flowchart shown in FIG. 11 illustrates that a difference in power supply voltage is detected using the difference in temperature change. The reason why the amount of temperature change is used without using the absolute temperature is to reduce an error generated due to a difference in environmental conditions such as temperature. When operating with a 100 V power supply, the operating capacity of the compressor is lower than when operating with a 200 V power supply, so that the range of change in pipe temperature is smaller.

【0039】リセットして元電源を入れた後の1回目の
運転だけ通常運転に入る前に、先ず配管温度を測定する
(ステップ1100、1101)。次に圧縮機34を一
定時間運転する(ステップ1102)。そして、ステッ
プ1103において、配管温度を再測定して変化幅を算
出する。ステップ1104でその変化幅により電源電圧
が正しいかどうかを判定する。判定の結果、正常であれ
ば通常運転に移行し(ステップ1105)、異電源であ
ればLED表示41により電源電圧が異常であることを
表示し、元電源のOFF/ONが実施されない限り運転
は行わない(ステップ1106)。
Before starting normal operation only for the first operation after resetting and turning on the main power supply, first, the pipe temperature is measured (steps 1100 and 1101). Next, the compressor 34 is operated for a predetermined time (step 1102). Then, in step 1103, the pipe temperature is re-measured to calculate the change width. In step 1104, it is determined whether the power supply voltage is correct based on the change width. As a result of the determination, if the power is normal, the operation shifts to the normal operation (step 1105). If the power is different, the LED display 41 indicates that the power supply voltage is abnormal, and the operation is continued unless the original power supply is turned off / on. Not performed (step 1106).

【0040】上述の実施の形態5は、圧縮機運転時の配
管温度の変化割合をあらかじめ実機試験から求め記憶さ
せていた正常電源電圧時のデータと比較し、電源電圧が
正しいかどうかの判定を行う空気調和機の制御装置を得
ることができる。
In the fifth embodiment, the change rate of the pipe temperature during the operation of the compressor is determined in advance from an actual machine test and is compared with the data at the normal power supply voltage to determine whether the power supply voltage is correct. A control device for the air conditioner to be performed can be obtained.

【0041】実施の形態6.次にこの発明の実施の形態
6について図面を参照しながら説明する。図12はこの
発明の実施の形態6による空気調和機の制御装置の動作
を示すフローチャート図である。一次電流の検出値によ
って判定を行うのは同様であるが、圧縮機34を通常に
運転させるところが異なる。前述したように圧縮機34
の運転負荷は、周囲の運転条件や運転モードによって大
きく変わるため、運転時間を短時間にし、冷房と暖房ま
たは電源周波数が50Hzと60Hzとで判定条件を変
える。
Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described with reference to the drawings. FIG. 12 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 6 of the present invention. The determination based on the detected value of the primary current is the same, except that the compressor 34 is operated normally. As described above, the compressor 34
Since the operation load varies greatly depending on the surrounding operation conditions and operation modes, the operation time is shortened, and the judgment conditions are changed between cooling and heating or the power supply frequency of 50 Hz and 60 Hz.

【0042】図12において、リセットして元電源を入
れた後の1回目の運転だけ通常運転に入る前に、先ず電
源周波数を読み込む(ステップ1200、1201)。
ステップ1202で運転モードをチェックし、ステップ
1203で圧縮機34を短時間運転する。図1の一次電
流検出手段・電源周波数検出手段39で一次電流を検出
し(ステップ1204)、ステップ1205で正常値か
判定した判定の結果、正常であれば通常運転に移行し
(ステップ1206)、異電源であればLED表示41
により電源電圧が異常であることを表示し、元電源のO
FF/ONが実施されない限り運転は行わない(ステッ
プ1207)。
In FIG. 12, the power supply frequency is first read before starting the normal operation only in the first operation after the reset and the power supply is turned on (steps 1200 and 1201).
In step 1202, the operation mode is checked, and in step 1203, the compressor 34 is operated for a short time. The primary current is detected by the primary current detecting means / power supply frequency detecting means 39 in FIG. 1 (step 1204), and if it is determined in step 1205 whether or not the value is normal, normal operation is performed (step 1206). LED display 41 if power supply is different
Indicates that the power supply voltage is abnormal,
Operation is not performed unless FF / ON is performed (step 1207).

【0043】上述の実施の形態6は、圧縮機運転時の電
流値をあらかじめ実機試験から求め記憶させていた正常
電源電圧時のデータと比較し、電源電圧が正しいかどう
かの判定を行う空気調和機の制御装置が得られる。
In the sixth embodiment, the current value during the operation of the compressor is obtained from an actual machine test in advance, and is compared with the data at the time of the normal power supply voltage to determine whether the power supply voltage is correct. Machine control device is obtained.

【0044】上述の実施の形態6では、冷暖房と電源周
波数の違いを両方考慮に入れたが、どちらか片方でも判
定可能な場合は、片方だけの判定でよい。
In the above-described sixth embodiment, both the difference between the cooling and heating and the power supply frequency are taken into consideration. However, if it is possible to determine one of them, it is sufficient to determine only one of them.

【0045】実施の形態7.次にこの発明の実施の形態
7について説明する。図1の四方弁36は、マイクロコ
ンピュータ20からの信号を受け、ドライブ回路38が
動作させているが、直接の動作には電源電圧を使用して
いる。ところが電源電圧200V用の四方弁は、100
Vの電圧では動作しない。そのため動作させると暖房に
切り替わるような四方弁を使用した場合、100Vの電
源電圧状態で暖房運転しても、四方弁が切り替わらずに
冷房運転を行うことになる。つまり、冷媒配管の温度
は、正常時と全く違うものになるため、絶対温度で判定
が可能となる。
Embodiment 7 Next, a seventh embodiment of the present invention will be described. The four-way valve 36 in FIG. 1 receives a signal from the microcomputer 20 and operates the drive circuit 38, but uses a power supply voltage for direct operation. However, a four-way valve for a power supply voltage of 200 V has 100
It does not operate at the voltage of V. Therefore, when a four-way valve that switches to heating when operated is used, even if the heating operation is performed with the power supply voltage of 100 V, the cooling operation is performed without switching the four-way valve. That is, since the temperature of the refrigerant pipe is completely different from that in the normal state, the determination can be made based on the absolute temperature.

【0046】検出した配管温度をあらかじめ実機試験か
ら求め記憶させていた正常電源電圧時のデータと比較し
て、低い電源電圧では動作しない四方弁が正常に動作し
ているかどうかで、電源電圧が正しいかどうかの判定を
する。
The detected pipe temperature is obtained from an actual machine test in advance and stored in comparison with the data at the normal power supply voltage, and the power supply voltage is correct based on whether or not the four-way valve which does not operate at the low power supply voltage is operating normally. Is determined.

【0047】上述の実施の形態7では、動作させると暖
房に切り替わる四方弁を使用した場合を例にとったが、
不動作時暖房で動作時冷房の四方弁を使用した場合は、
冷房運転時に暖房になるということは明白である。
In the above-described seventh embodiment, the case where a four-way valve which switches to heating when operated is used is taken as an example.
If you use a four-way valve for heating and cooling when not operating,
It is clear that heating is performed during cooling operation.

【0048】[0048]

【発明の効果】請求項1〜請求項8の発明に係る空気調
和機の制御装置は、圧縮機運転開始時に、その時点での
空気調和機の運転データと、予め求められた正常電源電
圧時の空気調和機の運転データとを比較することにより
定格電圧以下の電源の誤接続を判定する手段を備えたこ
とにより、施工時等に定格電圧以下の電源の誤接続が行
われた場合、機器が誤動作、焼損などの不安全状態にな
らないように保護できる。さらに、電源電圧の誤投入を
容易に発見でき、部品の誤交換を未然に防ぐことができ
る。
The control device for an air conditioner according to any one of the first to eighth aspects of the present invention is characterized in that at the start of the compressor operation, the operation data of the air conditioner at that time and the normal power supply voltage obtained in advance. By providing a means for determining the incorrect connection of the power supply below the rated voltage by comparing the operation data of the air conditioner of Can be protected from becoming an unsafe state such as malfunction or burnout. Further, it is possible to easily find an erroneous input of the power supply voltage, and prevent erroneous replacement of parts.

【0049】請求項9の発明に係る空気調和機の制御装
置は、請求項2〜8の何れかに記載の空気調和機の制御
装置において、電源電圧が定格電圧以下の電圧の場合
は、圧縮機の運転を停止する手段を備えたことにより、
電源が定格電圧以下の電圧の場合、直ちに運転を停止す
るため極めて安全性が向上する。
According to a ninth aspect of the present invention, in the air conditioner control device according to any one of the second to eighth aspects, when the power supply voltage is equal to or lower than the rated voltage, the compression is performed. By having means to stop the operation of the machine,
When the power supply is at a voltage lower than the rated voltage, the operation is immediately stopped, thus greatly improving safety.

【0050】請求項10の発明に係る空気調和機の制御
装置は、請求項2〜8の何れかに記載の空気調和機の制
御装置において、電源電圧が定格電圧以下の電圧かの判
定結果を表示する手段を備えたことにより、電源電圧が
定格電圧以下の電圧電源である旨を自分自身で表示する
ため、サービスの際誤った判定や間違った部品交換をさ
れることがなくなるという効果がある。
According to a tenth aspect of the present invention, there is provided the air conditioner control device according to any one of the second to eighth aspects, wherein the determination result of whether the power supply voltage is equal to or lower than the rated voltage is obtained. By providing the display means, the fact that the power supply voltage is a voltage power supply that is equal to or lower than the rated voltage is displayed by itself, so that there is an effect that erroneous determination and erroneous parts replacement are not performed at the time of service. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による空気調和機の
制御装置の動作を示すブロック図である。
FIG. 1 is a block diagram showing an operation of a control device for an air conditioner according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1による空気調和機の
制御装置の動作を示すフローチャート図である。
FIG. 2 is a flowchart showing an operation of the control device for the air conditioner according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1による空気調和機の
制御装置における圧縮機ロック電流特性図である。
FIG. 3 is a compressor lock current characteristic diagram in the control device for the air conditioner according to Embodiment 1 of the present invention.

【図4】 この発明の実施の形態2による空気調和機の
制御装置の動作を示すフローチャート図である。
FIG. 4 is a flowchart showing an operation of a control device for an air conditioner according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態2による空気調和機の
制御装置の力率特性図である。
FIG. 5 is a power factor characteristic diagram of the control device for an air conditioner according to Embodiment 2 of the present invention.

【図6】 この発明の実施の形態3による空気調和機の
制御装置の動作を示すフローチャート図である。
FIG. 6 is a flowchart showing an operation of the control device for the air conditioner according to Embodiment 3 of the present invention.

【図7】 この発明の実施の形態3による空気調和機の
制御装置の圧縮機のV/F特性図である。
FIG. 7 is a V / F characteristic diagram of a compressor of a control device for an air conditioner according to Embodiment 3 of the present invention.

【図8】 この発明の実施の形態4による空気調和機の
制御装置の動作を示すフローチャート図である。
FIG. 8 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 4 of the present invention.

【図9】 この発明の実施の形態4による空気調和機の
制御装置の要部回路図である。
FIG. 9 is a main part circuit diagram of an air conditioner control device according to Embodiment 4 of the present invention.

【図10】 この発明の実施の形態4による空気調和機
の制御装置の動作を示すタイムチャート図である。
FIG. 10 is a time chart illustrating an operation of a control device for an air conditioner according to Embodiment 4 of the present invention.

【図11】 この発明の実施の形態5による空気調和機
の制御装置の動作を示すフローチャート図である。
FIG. 11 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 5 of the present invention.

【図12】 この発明の実施の形態6による空気調和機
の制御装置の動作を示すフローチャート図である。
FIG. 12 is a flowchart showing the operation of the control device for an air conditioner according to Embodiment 6 of the present invention.

【図13】 従来の空気調和機の制御装置の回路図であ
る。
FIG. 13 is a circuit diagram of a conventional control device for an air conditioner.

【図14】 他の従来の空気調和機の制御装置のブロッ
ク図である。
FIG. 14 is a block diagram of another conventional control device for an air conditioner.

【符号の説明】[Explanation of symbols]

1 電源、20 マイクロコンピュータ、34 圧縮
機、35 サーミスタ、36 四方弁、39 一次電流
検出手段・電源周波数検出手段、41 モニタLED、
43 圧縮機力率検出回路、44 過電流保護検出手
段。
1 power supply, 20 microcomputer, 34 compressor, 35 thermistor, 36 four-way valve, 39 primary current detecting means / power frequency detecting means, 41 monitor LED,
43 Compressor power factor detection circuit, 44 Overcurrent protection detection means.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機運転開始時に、その時点での空気
調和機の運転データと、予め求められた正常電源電圧時
の前記空気調和機の運転データとを比較することにより
定格電圧以下の電源の誤接続を判定する手段を備えたこ
とを特徴とする空気調和機の制御装置。
1. At the start of compressor operation, the operation data of the air conditioner at that time is compared with the operation data of the air conditioner at the time of a normal power supply voltage which is obtained in advance. A control device for an air conditioner, comprising: means for judging an incorrect connection of the air conditioner.
【請求項2】 前記圧縮機のロック運転時の入力電流を
検出する手段と、 前記圧縮機ロック運転時の入力電流から定格電圧以下の
電源の誤接続を判定する手段と、を備えたことを特徴と
する請求項1記載の空気調和機の制御装置。
2. A compressor comprising: a means for detecting an input current during a lock operation of the compressor; and a means for determining an erroneous connection of a power supply having a rated voltage or less from the input current during the lock operation of the compressor. The control device for an air conditioner according to claim 1, wherein:
【請求項3】 前記圧縮機運転開始時に、前記圧縮機の
運転中の力率を検出する手段と、 前記圧縮機運転中の力率から定格電圧以下の電源の誤接
続を判定する手段と、を備えたことを特徴とする請求項
1記載の空気調和機の制御装置。
3. A means for detecting a power factor during operation of the compressor at the start of operation of the compressor; a means for determining erroneous connection of a power supply having a rated voltage or less based on the power factor during operation of the compressor; The control device for an air conditioner according to claim 1, further comprising:
【請求項4】 前記圧縮機駆動用電源等を過電流から保
護する過電流保護手段と、 電源電圧を所定電圧上昇させて、前記圧縮機を運転する
手段と、 前記電源電圧を所定電圧上昇させて前記圧縮機を運転し
た場合、前記過電流保護手段が動作しない場合は定格電
圧以下の電圧と判定する手段と、を備えたことを特徴と
する請求項1記載の空気調和機の制御装置。
4. An overcurrent protection means for protecting the compressor drive power supply and the like from overcurrent; a means for operating the compressor by increasing a power supply voltage by a predetermined voltage; and increasing the power supply voltage by a predetermined voltage. 2. The control device for an air conditioner according to claim 1, further comprising: means for judging a voltage equal to or lower than a rated voltage when the overcurrent protection means does not operate when the compressor is operated.
【請求項5】 電源の周波数を検出する電源周波数検出
手段と、 前記電源周波数検出手段で検出した電源電圧波形の幅か
ら、定格電圧以下の電源の誤接続を判定する手段と、を
備えたことを特徴とする請求項1記載の空気調和機の制
御装置。
5. A power supply frequency detecting means for detecting a frequency of a power supply, and a means for judging an erroneous connection of a power supply having a rated voltage or less from a width of a power supply voltage waveform detected by the power supply frequency detecting means. The control device for an air conditioner according to claim 1, wherein:
【請求項6】 冷媒配管の温度を検出する冷媒配管温度
検出手段と、 前記冷媒配管温度検出手段が検出した前記冷媒配管温度
の変化する時間の違いから定格電圧以下の電源の誤接続
を判定する手段と、を備えたことを特徴とする請求項1
記載の空気調和機の制御装置。
6. A refrigerant pipe temperature detecting means for detecting a temperature of a refrigerant pipe, and an erroneous connection of a power supply having a rated voltage or less is determined based on a difference in a change time of the refrigerant pipe temperature detected by the refrigerant pipe temperature detecting means. And means.
The control device for an air conditioner as described in the above.
【請求項7】 前記圧縮機の運転電流を検出する手段
と、 前記運転電流から定格電圧以下の電源の誤接続を判定す
る手段と、を備えたことを特徴とする請求項1記載の空
気調和機の制御装置。
7. The air conditioner according to claim 1, further comprising: means for detecting an operating current of the compressor; and means for judging an erroneous connection of a power supply having a rated voltage or less based on the operating current. Machine control device.
【請求項8】 冷房運転と暖房運転とを切り替える手段
と、 配管温度を検出する配管温度検出手段と、 前記配管温度検出手段が検出した配管温度を、予め求め
られた正常電源電圧時の配管温度と比較することにより
定格電圧以下の電源の誤接続を判定する手段と、を備え
たことを特徴とする空気調和機の制御装置。
8. A means for switching between a cooling operation and a heating operation, a pipe temperature detecting means for detecting a pipe temperature, and a pipe temperature detected by the pipe temperature detecting means at a normal power supply voltage determined in advance. Means for judging an erroneous connection of a power supply having a rated voltage or less by comparing with a control voltage of the air conditioner.
【請求項9】 前記電源電圧が異電圧の場合は、前記圧
縮機の運転を停止する手段を備えたことを特徴とする請
求項2〜8の何れかに記載の空気調和機の制御装置。
9. The control device for an air conditioner according to claim 2, further comprising means for stopping the operation of the compressor when the power supply voltage is a different voltage.
【請求項10】 前記電源電圧の判定結果を表示する手
段を備えたことを特徴とする請求項2〜8の何れかに記
載の空気調和機の制御装置。
10. The control device for an air conditioner according to claim 2, further comprising means for displaying a result of the determination of the power supply voltage.
JP30635796A 1996-11-18 1996-11-18 Air conditioner control device Expired - Fee Related JP3676526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30635796A JP3676526B2 (en) 1996-11-18 1996-11-18 Air conditioner control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30635796A JP3676526B2 (en) 1996-11-18 1996-11-18 Air conditioner control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005064881A Division JP3987071B2 (en) 2005-03-09 2005-03-09 Air conditioner control device

Publications (2)

Publication Number Publication Date
JPH10148372A true JPH10148372A (en) 1998-06-02
JP3676526B2 JP3676526B2 (en) 2005-07-27

Family

ID=17956100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30635796A Expired - Fee Related JP3676526B2 (en) 1996-11-18 1996-11-18 Air conditioner control device

Country Status (1)

Country Link
JP (1) JP3676526B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019809A (en) * 2007-07-11 2009-01-29 Sharp Corp Refrigerator and inspection device
JP2010101586A (en) * 2008-10-25 2010-05-06 Toto Ltd Bathroom dryer
JP2012240854A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Single crystal production apparatus
JP5874943B1 (en) * 2015-03-27 2016-03-02 Toto株式会社 Ventilation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019809A (en) * 2007-07-11 2009-01-29 Sharp Corp Refrigerator and inspection device
JP2010101586A (en) * 2008-10-25 2010-05-06 Toto Ltd Bathroom dryer
JP2012240854A (en) * 2011-05-16 2012-12-10 Toyota Motor Corp Single crystal production apparatus
JP5874943B1 (en) * 2015-03-27 2016-03-02 Toto株式会社 Ventilation equipment

Also Published As

Publication number Publication date
JP3676526B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
EP0488240B1 (en) Inverter apparatus provided with electric discharge control circuit of DC smoothing capacitor and method of controlling the same
US7800872B2 (en) Switch-state monitoring device
JP3409327B2 (en) Inverter device
US20210108823A1 (en) Air conditioner
JP2013162719A (en) Rush-current prevention device
JPH10148372A (en) Control device of air conditioner
JPH04156222A (en) Inverter device
JP3745264B2 (en) Power supply device and air conditioner using the same
JP3987071B2 (en) Air conditioner control device
US10072666B2 (en) Hermetic compressor driving device
JP2000002188A (en) Control device of air-conditioner
JPS61231877A (en) Dc power source
JP2001086762A (en) Power supply device
JPH10337091A (en) Method of controlling restart of inverter for motor drive
KR100222955B1 (en) Motor controlling method and its device
JP2001268933A (en) Overvoltage inhibition circuit of capacitor
JPH0543800U (en) Inverter device
JP2005010066A (en) Three-phase open-phase detecting circuit, and air-conditioner using the same
KR100308563B1 (en) Outdoor unit power supply and method of the separate air conditioner
JP2541188B2 (en) Phase loss detector
JPH11215837A (en) Overcurrent protective circuit for inverter
JP3215336B2 (en) Sensorless pump controller
JPH11341820A (en) Voltage-type inverter
JP3768024B2 (en) Power converter
KR100222927B1 (en) Motor controlling method and its device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees