JPH10144459A - Conductive heating element - Google Patents

Conductive heating element

Info

Publication number
JPH10144459A
JPH10144459A JP14839097A JP14839097A JPH10144459A JP H10144459 A JPH10144459 A JP H10144459A JP 14839097 A JP14839097 A JP 14839097A JP 14839097 A JP14839097 A JP 14839097A JP H10144459 A JPH10144459 A JP H10144459A
Authority
JP
Japan
Prior art keywords
silicide
ceramic
fused
fusion
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14839097A
Other languages
Japanese (ja)
Other versions
JP3567678B2 (en
Inventor
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14839097A priority Critical patent/JP3567678B2/en
Publication of JPH10144459A publication Critical patent/JPH10144459A/en
Application granted granted Critical
Publication of JP3567678B2 publication Critical patent/JP3567678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve defects such as brittleness and softening of electrothermal materials at a high temperature and provide a conductive heating element having its superior adhesion strength of a heater film, release resistance, and oxidation resistance properties by fusing a film made of a micro-tissue resistance heating material consisting of silicide simple tissue, a blended tissue of the silicide and Si, or Si-simple tissue on a surface of a ceramic base material. SOLUTION: A silicide or the silicide and Si, or Si film is fused on a full surface of a pipe-shaped ceramic base material 1, and a fusion layer 2 is formed. Otherwise, the silicide, the silicide and Si, or Si is fused spirally around a ceramics round rod. Still otherwise, one of these is fused around a planar ceramic base material in a circuit pattern. For the base material 1, an aluminum nitride, silicon nitride, alumina, chromia, or the like is employed. At both ends of the fusion layer 2, there is connected to a conductor coupled with an external power source by a mechanical or metallurgical means. This conductive heating element stand steep heating and high-temperature heating and has superior durability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通電発熱体にかか
わり、さらに詳しくは、セラミック絶縁基材の表面に抵
抗発熱材料の被膜が溶融融着した構造の通電発熱体に係
わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric heating element, and more particularly to an electric heating element having a structure in which a coating of a resistance heating material is melt-fused on the surface of a ceramic insulating substrate.

【0002】[0002]

【従来の技術】伝熱性の良いセラミック板にヒーター回
路を焼き付けると温度むらの小さい面状発熱体が得られ
る。セラミックヒーターと称せられるこの種のヒーター
には次のような構造と特性が求められている。 回路とセラミックの密着強度が高い。 ヒーター回路材が耐酸化性に優れ、高温でも使用で
きること。 ヒーターの発熱密度の大きなこと。つまりヒーター
回路の電気抵抗が高いこと。そして最も重要なことは安
価に大型品を製造できることである。 しかしながら現状では次の二つのタイプがあるに過ぎな
い。すなわち、 (1)あらかじめ焼結されたセラミック板に電熱金属の
回路を焼き付けたタイプ。 このタイプは白金や白金合金あるいは銀等の貴金属の粉
末にガラスを混合したペーストを回路模様に焼結した構
造である。欠点は、 セラミックの片面に焼き付けるタイプ(片面焼付け)
に限られる。つまり回路を焼き付けられた面はむき出し
になっているので、用途によってはこの部分を絶縁する
必要がある。 電熱回路の密着強度が弱く剥がれやすい欠点がある。 最高使用温度はバインダーに使ったガラスの融点に制
限され、せいぜい400〜500℃で,1000℃以上
の様な高温使用は不可能である。 (2)セラミック焼結時に電熱回路を一体的に焼き付け
るタイプ このタイプはセラミックのグリーンシートにタングステ
ン等の高融点金属の粉末ペーストを回路模様に印刷し、
印刷回路の上にさらにグリーンシートを重ね、加圧して
一体的に焼結した構造である。最終的な構造はセラミッ
クの板の中に電熱回路が内蔵された構造(両面焼付け)
で、電熱回路の両面はセラミック板である。(1)の欠
点、つまり電熱回路がむき出しになる欠点は解消される
が、 逆に回路をセラミックでくるむ必要があるために、周
端部まで回路を形成できず、周端部の温度が下がる欠点
がある。均一な温度分布得難い。 薄肉の平板状のものは、焼成時ソリが発生する。ソリ
のないもの得るためには加圧焼結が必要。この方法には
セラミックの焼成時に発生する変形の問題が根源的に存
在する。変形のない大型寸法のものは得難い。また三次
元形状体も不可能。金型が必要なために、少量品ではコ
ストが極めて高くなる。 電熱金属はセラミックの焼成温度で溶融しないタング
ステン、モリブデン等の高融点金属に限定される。 タングステン、モリブデンは酸化に弱い欠点があり、電
熱回路を包むセラミックには無欠陥、完全機密性が要求
される。大気中での高温長時間使用に問題がある。ま
た、タングステン、モリブデン等は電気抵抗小さく、発
熱密度も小さい問題もある。セラミックヒーターには以
上のような問題がある。
2. Description of the Related Art When a heater circuit is baked on a ceramic plate having good heat conductivity, a planar heating element having small temperature unevenness can be obtained. This type of heater, called a ceramic heater, is required to have the following structure and characteristics. High adhesion strength between circuit and ceramic. The heater circuit material has excellent oxidation resistance and can be used even at high temperatures. The heating density of the heater is large. That is, the electric resistance of the heater circuit is high. The most important thing is that large products can be manufactured at low cost. However, at present there are only two types: (1) A type in which an electric heating metal circuit is baked on a ceramic plate that has been sintered in advance. This type has a structure in which a paste obtained by mixing glass with a powder of a noble metal such as platinum, a platinum alloy, or silver is sintered into a circuit pattern. Disadvantage is the type of baking on one side of ceramic (one side baking)
Limited to In other words, the surface where the circuit is baked is exposed, and it is necessary to insulate this part depending on the application. There is a disadvantage that the adhesion strength of the electric heating circuit is weak and it is easily peeled off. The maximum operating temperature is limited by the melting point of the glass used for the binder, and it is at most 400 to 500 ° C, and it is impossible to use a high temperature such as 1000 ° C or more. (2) A type in which an electric heating circuit is integrally baked during ceramic sintering. This type prints a high-melting point metal powder paste such as tungsten on a ceramic green sheet in a circuit pattern.
It has a structure in which a green sheet is further stacked on a printed circuit, and is pressed and sintered integrally. The final structure is a structure in which an electric heating circuit is built in a ceramic plate (both sides are baked)
Then, both sides of the electric heating circuit are ceramic plates. The disadvantage of (1), that is, the disadvantage that the electric heating circuit is exposed, is resolved, but conversely, since the circuit must be wrapped with ceramic, a circuit cannot be formed up to the peripheral end, and the temperature of the peripheral end decreases. There are drawbacks. It is difficult to obtain a uniform temperature distribution. A thin flat plate is warped during firing. Pressure sintering is required to obtain a product without warpage. In this method, there is a fundamental problem of deformation occurring during firing of the ceramic. It is difficult to obtain a large size without deformation. Also, three-dimensional shapes are not possible. Since a mold is required, the cost is extremely high for a small number of products. Electrothermal metals are limited to high melting point metals such as tungsten and molybdenum that do not melt at the firing temperature of the ceramic. Tungsten and molybdenum have a weak point against oxidation, and the ceramic surrounding the electric heating circuit is required to have no defect and complete confidentiality. There is a problem with long-term use at high temperatures in the atmosphere. Tungsten, molybdenum, and the like also have problems in that the electric resistance is small and the heat generation density is small. The ceramic heater has the above problems.

【0003】一方、二珪化モリブデン(MoSi)に
代表される珪化物は、耐酸化性に極めて優れ、大気中、
高温まで通電発熱できる材料としてよく知られるところ
である。これら珪化物発熱体の最大の欠点は非常に脆い
ことである。この脆さゆえに通常ガラス粉末を混ぜてあ
る程度の強度を持つ板や棒に焼結して使用しているが、
このバインダーにガラスを使用しているために、耐熱性
にも問題がある。また、珪化物そのものが高温で軟化す
る性質があり、発熱体が垂れて変形する問題がある。
On the other hand, silicides represented by molybdenum disilicide (MoSi 2 ) are extremely excellent in oxidation resistance,
It is well known as a material capable of conducting and generating heat to a high temperature. The biggest drawback of these silicide heating elements is that they are very brittle. Due to this brittleness, glass powder is usually mixed and sintered into a plate or rod with a certain strength,
Since glass is used for the binder, there is also a problem in heat resistance. In addition, the silicide itself has a property of softening at a high temperature, and there is a problem that the heating element hangs down and is deformed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる状況
に鑑みてなされたもので、その目的とするところは、 基材として予め焼結されたセラミックを使用し、目的
に応じて電熱回路の片面焼付け、両面焼付けのいずれに
も適用でき、 加圧も必要とせず、上記したセラミック焼成時の歪み
の問題も解消でき、 回路とセラミックの密着強度が高く、 耐酸化性に優れ、大気中高温でも使用でき、 大型品、三次元形状体でも安価に製造でき、 抵抗が高く、ワット密度の高いヒーターも可能な新し
い構造の通電発熱体を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to use a ceramic which has been sintered in advance as a base material, and to provide an electric heating circuit according to the purpose. It can be applied to both single-sided and double-sided baking, does not require pressure, can eliminate the above-mentioned problem of distortion during ceramic baking, has high adhesion strength between circuit and ceramic, has excellent oxidation resistance, and has high temperature in air. It is intended to provide an electric heating element with a new structure that can be used, and can be manufactured at a low cost even for large items and three-dimensional bodies, and can also be used for heaters with high resistance and high watt density.

【0005】[0005]

【課題を解決するための手段】上記問題は次の手段によ
って解決できる。すなわち、 1.電気絶縁性の窒化物系あるいは炭化物系セラミック
基材の表面に、ミクロ組織が珪化物単体組織あるいは珪
化物とSiの混在組織あるいはSi単体組織からなる抵
抗発熱材料の被膜が融着した構造からなることを特徴と
する通電発熱体。 2.電気絶縁性のセラミック基材の表面に、0.5%以
上の活性金属を含有し、かつミクロ組織が珪化物単体組
織あるいは珪化物とSiの混在組織からなる抵抗発熱材
料の被膜が融着した構造からなることを特徴とする通電
発熱体。 3.上記セラミック基材が窒化アルミニウム系セラミッ
ク、抵抗発熱材料のミクロ組織が珪化物とSiの混在す
る組織である上記1あるいは2のいずれかにに記載の通
電発熱体。 4.上記セラミック基材が窒化ケイ素系セラミック、抵
抗発熱材料のミクロ組織が珪化物とSiの混在する組織
である上記1あるいは2のいずれかに記載の通電発熱
体。 5.上記セラミック基材が酸化物系セラミックである上
記2に記載の通電発熱体。 6.上記酸化物系セラミックがアルミナ系セラミック、
抵抗発熱材料のミクロ組織が珪化物組織である上記5に
記載の通電発熱体。
The above problem can be solved by the following means. That is, 1. The surface of the electrically insulating nitride-based or carbide-based ceramic substrate has a structure in which a coating of a resistance heating material consisting of a silicide simple structure, a mixed structure of silicide and Si, or a Si simple structure is fused to a microstructure. A current-carrying heating element characterized in that: 2. A coating of a resistance heating material containing 0.5% or more active metal and having a microstructure consisting of a silicide simple structure or a mixed structure of silicide and Si was fused to the surface of the electrically insulating ceramic substrate. A current-carrying heating element having a structure. 3. 3. The energization heating element according to any one of 1 or 2, wherein the ceramic substrate is an aluminum nitride-based ceramic, and the microstructure of the resistance heating material is a mixture of silicide and Si. 4. 3. The energization heating element according to any one of 1 or 2, wherein the ceramic substrate is a silicon nitride ceramic, and the microstructure of the resistance heating material is a mixture of silicide and Si. 5. 3. The electric heating element according to the above item 2, wherein the ceramic base is an oxide ceramic. 6. The oxide ceramic is an alumina ceramic,
6. The heating element according to the above item 5, wherein the microstructure of the resistance heating material is a silicide structure.

【0006】[0006]

【発明の実施の形態】電気絶縁性の窒化物系、炭化物系
セラミックの代表的なものとして窒化アルミニウムセラ
ミック、窒化ケイ素セラミック、炭化ケイ素セラミック
がある。本発明の電気絶縁性の窒化物系、炭化物系セラ
ミックとは、これら窒化アルミニウムセラミック、窒化
ケイ素セラミック、炭化ケイ素セラミック単体、および
これらのセラミックと他の窒化物、炭化物、ホー化物、
酸化物セラミックとの複合セラミックを包含する。これ
ら窒化物、炭化物セラミックの中で、とりわけ窒化アル
ミニウム系セラミックは熱伝導性に優れているので、通
電発熱体の基材として最も好適に使用できる。基材とし
て二枚のセラミックを用い、この二枚のセラミックの間
に抵抗発熱材料の膜を挟み、二枚のセラミックの両面に
融着させた構造の、いわゆる両面焼付けタイプの通電発
熱体の場合、二枚のセラミックは必ずしも同じセラミッ
クである必要はないが、線膨張係数は近似したセラミッ
クを選定する方がよい。
BEST MODE FOR CARRYING OUT THE INVENTION Aluminum nitride ceramics, silicon nitride ceramics, and silicon carbide ceramics are typical of electrically insulating nitride-based and carbide-based ceramics. The electrically insulating nitride-based or carbide-based ceramic of the present invention refers to these aluminum nitride ceramics, silicon nitride ceramics, silicon carbide ceramics alone, and these ceramics and other nitrides, carbides, borides,
Includes composite ceramics with oxide ceramics. Among these nitride and carbide ceramics, aluminum nitride-based ceramics, in particular, have excellent thermal conductivity, and therefore can be most preferably used as a base material for an electric heating element. In the case of a so-called double-sided baking type current-carrying heating element that uses two ceramics as a base material, sandwiches a film of a resistance heating material between these two ceramics, and fuses them on both sides of the two ceramics The two ceramics do not necessarily have to be the same ceramic, but it is better to select a ceramic having an approximate linear expansion coefficient.

【0007】Siと全率固溶体を作る元素、例えばGe
を除いて、Siはほとんどの金属と珪化物を作る。Xは
Siと珪化物を作る元素とすると、X−Si合金のSi
の変化によるミクロ組織の基本的な変化は次のようにな
る。 Siが徐々に増えていくと、ある組成のところで最
初の珪化物を形成する。ここの組成をSi(1)とす
る。Si<Si(1)の区域では、Xなる金属のマトリ
ックスにXなる金属の珪化物相が混在する組織。あるい
はSiが多少固溶したXなる金属のマトリックスにXな
る金属の珪化物相が混在する組織。 Si(1)からさらにSiが増加すると、組成のこ
となる珪化物が次々と現れ、ある組成Si(2)を過ぎ
たところから珪化物とSiの混在する共晶が現れる。S
i(1)はX元素の最もリッチな珪化物、Si(2)は
Siの最もリッチな珪化物である。 Si(1)≦Si≦Si(2)の区域では、 この区域は、一種あるいは二種以上の珪化物の混在組
織。 Si(2)を過ぎてSi(100%)未満までの間 Si(2)<Si<Si(100%) この区域は、Siと珪化物の混在する組織。 Si=100%ではSiの多結晶組織となる。 ここで、上記したX−Siの二元系に第3,第4,第
5,…元素が添加されても、組織そのものの基本的な骨
格、つまりマトリックスに珪化物が存在するという基本
的な骨格は変わらない。つまり第3,第4,第5,…元
素はマトリックスに固溶されるか、珪化物に固溶されて
複珪化物を形成するか、あるいは、ほかの化合物を形成
してマトリックスに晶出、あるいは析出するかであり、
少なくとも珪化物(あるいは複珪化物)がマトリックス
から消滅することはない。なお、本発明では「珪化物」
なる表現は、本来の珪化物と複珪化物を含めた総称とし
て使用した。
An element which forms a solid solution with Si, for example, Ge
With the exception of Si, most metals form silicides. Assuming that X is an element that forms silicide with Si, Si of the X-Si alloy
The basic change of the microstructure due to the change is as follows. As the Si increases gradually, the first silicide is formed at a certain composition. The composition here is Si (1). In a region of Si <Si (1), a structure in which a silicide phase of a metal X is mixed in a matrix of a metal X. Alternatively, a structure in which a silicide phase of a metal X is mixed in a matrix of a metal X where a certain amount of Si is dissolved. When Si further increases from Si (1), silicides having different compositions appear one after another, and a eutectic mixture of silicide and Si appears after a certain composition Si (2). S
i (1) is the richest silicide of element X, and Si (2) is the richest silicide of Si. In the area of Si (1) ≦ Si ≦ Si (2), this area is a mixed structure of one or more silicides. From Si (2) to less than Si (100%) Si (2) <Si <Si (100%) This area is a mixed structure of Si and silicide. When Si = 100%, a polycrystalline structure of Si results. Here, even if the third, fourth, fifth,... Elements are added to the above-described binary system of X—Si, the basic skeleton of the structure itself, that is, the basic structure in which silicide is present in the matrix. The skeleton does not change. That is, the third, fourth, fifth,... Elements are solid-dissolved in the matrix, are dissolved in silicide to form double silicides, or form other compounds and crystallize in the matrix. Or it is precipitated
At least the silicide (or double silicide) does not disappear from the matrix. In the present invention, "silicide"
The expression is used as a generic term including the original silicide and double silicide.

【0008】の一部(Si≧5%)、、、の組
成範囲は溶融すると窒化物系、炭化物系セラミックに濡
れて融着する。
[0008] A part of the composition range (Si ≥ 5%), when melted, wets and fuses with nitride-based and carbide-based ceramics.

【0009】通電発熱体としては、の融着する組成
(Si≧5%)、および、、の組成範囲が使用で
きる。とりわけ、、の組成範囲が好適である。
、、の組成は、上記した電気絶縁性の窒化物、炭
化物セラミックに対して融着性がある上に、 1.線膨張係数が4〜8×10−6(とくに、の組
成範囲は4〜6×10−6)で、必要に応じて、ミクロ
組織の中の珪化物の量を調整することによって線膨張係
数を調整でき、基材のセラミックと整合させることがで
き、融着界面での熱応力を極小に抑制し、高温まで安定
し、発熱体の剥離防止に対して極めて有利である。また
、の組成範囲は、融点も低いので融着温度を低くで
きる利点がある。そして珪化物は高温(おおむね100
0℃以上)では軟化、変形するいう発熱体として欠点が
あるが、セラミックに融着させることによって変形は防
止され、しかも融着界面で応力緩和がなされるので、欠
点はむしろ有利な性質になる。つまり珪化物、あるいは
珪化物を含む組織の金属は高温使用のヒーターを目的と
してセラミックに融着させる被膜としては極めて好適で
ある。 2.大気中、高温(1000℃以上)での耐酸化性に優
れている。大気中、高温使用を考えた場合、の区域よ
り、、の組成範囲が耐酸化性に優れ、しかも 3.電気抵抗が大きいので抵抗回路の長さを短くでき、
単位面積当たりのワット密度の大きいヒーターが得られ
る。以上の様な理由で、通電発熱体としてはの区域よ
り、、の組成範囲、とりわけ、の組成範囲が
好ましい。
As the current-carrying heating element, a composition for fusing (Si ≧ 5%) and a composition range of can be used. In particular, the composition range of is preferred.
The composition of (1), (2), (3) has a melting property with respect to the above-mentioned electrically insulating nitride and carbide ceramics. The linear expansion coefficient is 4 to 8 × 10 −6 (particularly, the composition range is 4 to 6 × 10 −6 ), and the linear expansion coefficient is adjusted by adjusting the amount of silicide in the microstructure as necessary. Can be adjusted, and can be matched with the ceramic of the base material, the thermal stress at the fusion interface is suppressed to a minimum, the temperature is stabilized up to a high temperature, and the heating element is extremely advantageous for preventing peeling. In addition, the composition range has an advantage that the melting temperature is low, so that the fusion temperature can be lowered. And silicide is high temperature (approximately 100
(0 ° C. or higher), there is a defect as a heating element that softens and deforms. However, since the deformation is prevented by fusing to the ceramic and stress is relaxed at the fusion interface, the defect becomes a rather advantageous property. . In other words, silicide or a metal having a structure containing silicide is extremely suitable as a coating to be fused to ceramic for the purpose of using a heater at a high temperature. 2. It has excellent oxidation resistance in air and at high temperatures (1000 ° C. or higher). Considering the use in the atmosphere and at a high temperature, the composition range is more excellent in oxidation resistance than in the area of, and 3. Since the electrical resistance is large, the length of the resistor circuit can be shortened,
A heater having a large watt density per unit area can be obtained. For the reasons described above, the composition range, particularly the composition range, is more preferable than the area as the energizing heating element.

【0010】の区域は熱膨張係数が大きく、かつ電気
抵抗が小さいので、熱応力を小さくし、電気抵抗を大き
くするために被膜厚さを薄くする必要がある。好ましく
は、膜厚は20μm以下、最も好ましくは10μm以下
がよい。融着膜が20μmを越えると剥離しやすくな
る。の区域では、Cr−Si系、Cr−Si−活性金
属系合金は熱膨張係数が比較的小さく、耐酸化性にも優
れているので好ましい。
[0010] Since the area (1) has a large coefficient of thermal expansion and a small electric resistance, it is necessary to reduce the film thickness in order to reduce the thermal stress and increase the electric resistance. Preferably, the film thickness is 20 μm or less, most preferably 10 μm or less. When the fusion film exceeds 20 μm, it is easy to peel off. In the area (2), Cr-Si-based and Cr-Si-active metal-based alloys are preferable because of their relatively small coefficient of thermal expansion and excellent oxidation resistance.

【0011】上記したX−Si合金のX元素としては、
Cr,Mo,W、Fe,Ni, Co,B,Pおよび活
性金属、およびPt,Pd、Rh,Ir,Cu、Agお
よびその他の珪化物形成元素等を目的に応じて適宜選択
できる。また、これらの元素は目的に応じて一種あるい
は二種以上を適宜混ぜて使用してよい。例えば二種以上
の元素の添加はミクロ組織の珪化物の微細化に効果があ
る。添加量は、上記、のミクロ組織を形成する範
囲、つまり珪化物生成範囲、珪化物とSiを形成する範
囲であれば適宜選択できるが、最も好ましい範囲は、
のミクロ組織になる範囲、つまり珪化物とSiの混在す
る組成範囲である。の範囲はミクロ組織の中の珪化物
の量を調整することによって線膨張係数と電気抵抗を適
宜調整でき、しかも融点が低く、低い温度でセラミック
に融着させることができるので、この点でも有利であ
る。以上これらの元素の中でとくに好ましいのは、活性
金属元素である。
[0011] As the X element of the above X-Si alloy,
Cr, Mo, W, Fe, Ni, Co, B, P and an active metal, and Pt, Pd, Rh, Ir, Cu, Ag, and other silicide-forming elements can be appropriately selected depending on the purpose. These elements may be used singly or as a mixture of two or more depending on the purpose. For example, the addition of two or more elements is effective in reducing the microstructure of silicide. The amount of addition can be appropriately selected as long as it is within the range for forming the microstructure described above, that is, the range for forming silicide, and the range for forming silicide and Si.
, Ie, a composition range in which silicide and Si are mixed. By adjusting the amount of silicide in the microstructure, the linear expansion coefficient and the electric resistance can be appropriately adjusted, and the melting point is low, and the ceramic can be fused to the ceramic at a low temperature. It is. Among these elements, an active metal element is particularly preferred.

【0012】また、上記元素以外の元素でもミクロ組織
を変えない範囲なら添加してもよい。たとえばSiに固
溶してSiの電気抵抗を下げる元素、あるいは珪化物の
中に侵入してその珪化物の特性(電気抵抗、線膨張係
数、融点等)を変化させる元素は目的に応じて適宜添加
してよい。不純物半導体の製造で、P形半導体、N型半
導体を作るために高純度Siに3価、5価の金属を極微
量(ppm〜ppb単位)添加して電気抵抗を低下させ
ることが行われているが、これは本発明でも有効であ
り、これは前者の場合に相当する。すなわち、ミクロ組
織の一部を構成するSiの中に3価、5価の元素を微量
含有させることによってその電気抵抗を変える方法は本
発明融着膜の電気抵抗の調節法としても有効な方法であ
る。なお、その他電気抵抗を下げる方法としては、使用
するSiの原料素材に微量元素(Fe,P,Al,C
等)が含有されている鋳造用Si原料を使用するのも効
果的であり、また、高純度シリコン原料にB,Al,P
等の3価、5価の元素、あるいはその他の元素を微量添
加して電気抵抗を調整するのも勿論有効である。なお、
B,Pは共にSiに微量固溶もされ同時に珪化物も形成
する。
Elements other than the above elements may be added as long as the microstructure is not changed. For example, an element which forms a solid solution with Si and lowers the electrical resistance of Si, or an element which penetrates into silicide and changes the characteristics (electrical resistance, coefficient of linear expansion, melting point, etc.) of the silicide is appropriately determined according to the purpose. May be added. In the production of impurity semiconductors, a very small amount (ppm to ppb unit) of trivalent or pentavalent metal is added to high-purity Si to produce a P-type semiconductor or an N-type semiconductor to lower the electric resistance. However, this is also effective in the present invention, which corresponds to the former case. That is, the method of changing the electric resistance of Si, which constitutes a part of the microstructure, by adding a small amount of trivalent or pentavalent element is an effective method for adjusting the electric resistance of the fused film of the present invention. It is. In addition, as another method of lowering the electric resistance, trace elements (Fe, P, Al, C
It is also effective to use a Si raw material for casting that contains B, Al, P
It is of course also effective to adjust the electric resistance by adding a trivalent or pentavalent element such as the above or a small amount of other elements. In addition,
Both B and P are also dissolved in Si in a trace amount and form silicide at the same time.

【0013】Siは本来半導体で極めて高抵抗である
が、不純物として見做される微量元素はSiの導電性を
著しく改良するので、本発明Si原料には上記したよう
な微量元素が含まれるSiがむしろ好適である。また、
珪化物の中に侵入してその珪化物の特性(電気抵抗、線
膨張係数、融点等)を変える元素の好例は、MoSi
の中に侵入して(MoAl)Siなる複珪化物を
形成するAlの場合がある。この場合、MoSiの融
点2060℃が1800℃に下がる。
Although Si is originally a semiconductor and has a very high resistance, trace elements considered as impurities significantly improve the conductivity of Si. Therefore, the Si raw material of the present invention contains Si as described above. Is rather preferred. Also,
A good example of an element that penetrates into a silicide and changes the characteristics (electrical resistance, linear expansion coefficient, melting point, etc.) of the silicide is MoSi 2
There is a case in which Al penetrates into and forms a double silicide of (Mo 5 Al 3 ) Si 2 . In this case, the melting point of MoSi 2 at 2060 ° C. drops to 1800 ° C.

【0014】GeはSiと同じような性質の元素で、S
iと珪化物を作らず、すべての割合で全率固溶体を作る
ことができるので、目的、用途に応じて適宜添加でき
る。融点、電気抵抗の調節元素として有効である。
Ge is an element having similar properties to Si.
Since a solid solution can be formed in all proportions without forming a silicide with i, it can be appropriately added depending on the purpose and application. It is effective as an element for controlling the melting point and electric resistance.

【0015】活性金属とはセラミックに対して濡れ、拡
散を促進する元素で、本発明では、V,Nb,Ta,T
i,Zr,Hf,Y,Mn,Ca,Mg,希土類元素お
よびアルミニウム等々を活性金属と表現した。Siに活
性金属が添加されると、濡れが著しく促進され、濡れ角
が小さくなる。この結果、融着させる融着膜の厚さを薄
くして薄膜化が可能になり、電気抵抗を大きくさせるの
に顕著な効果がある。また融着強度も向上する。濡れ性
の改善は、0.1%程度の微量添加から効果が現れてく
るが、実用的な効果を得るためには、0.5%以上の添
加がよい。Si−活性金属の二元合金の場合、活性金属
の量が増えると相対的にSiの量が減る。大気中の耐酸
化性を考慮した場合、Siは少なくとも3%以上、最も
好ましくは、、の領域、つまり珪化物領域以上、添
加した方がよい。因みに、Si−Ti合金のばあい、8
4%近傍で、TiSiの組成の珪化物が生成される。
Ti:46%付近でTiSiなる珪化物が生成され
る。Tiが46%未満つまりSiが54%を越えるとT
iSiとSiの共晶が現れる。したがって、の区域
は、Ti:84%を越えて100%までの範囲。の区
域はTi:46〜84%、の区域は、0.5%以上4
6%未満までの範囲である。したがってSi−Ti二元
合金で大気中の耐酸化を考慮した場合、Tiの上限はお
おむね84%である。なおもちろん第3、第四、…の元
素が添加されれば当然上限値は変化する。またもちろん
SiをCr等の耐酸化性付与元素で置き換えるようにし
てもよい。
The active metal is an element which promotes the wetting and diffusion of the ceramic, and in the present invention, V, Nb, Ta, T
i, Zr, Hf, Y, Mn, Ca, Mg, rare earth elements, aluminum and the like are expressed as active metals. When an active metal is added to Si, wetting is significantly promoted and the wetting angle is reduced. As a result, the thickness of the fusion-bonded film to be fused can be reduced to make it thinner, which has a remarkable effect in increasing electric resistance. Also, the fusion strength is improved. The effect of improving the wettability can be obtained from the addition of a small amount of about 0.1%, but in order to obtain a practical effect, the addition of 0.5% or more is preferable. In the case of a binary alloy of Si-active metal, the amount of Si decreases relatively as the amount of active metal increases. In consideration of the oxidation resistance in the atmosphere, it is preferable to add Si in an amount of at least 3% or more, and most preferably, in a region, that is, a silicide region or more. By the way, in the case of Si-Ti alloy, 8
In the vicinity of 4%, silicide having a composition of Ti 3 Si is generated.
Ti: A silicide of TiSi 2 is generated at around 46%. If Ti is less than 46%, that is, Si exceeds 54%, T
A eutectic of iSi 2 and Si appears. Therefore, the area of Ti ranges from 84% to 100%. Area is Ti: 46-84%, area is 0.5% or more 4
The range is up to less than 6%. Therefore, when oxidation resistance in the atmosphere is considered in a Si-Ti binary alloy, the upper limit of Ti is approximately 84%. If the third, fourth,... Elements are added, the upper limit naturally changes. Of course, Si may be replaced with an oxidation resistance imparting element such as Cr.

【0016】Siと活性金属が共存する組成では、前記
した窒化物、炭化物以外、酸化物セラミック一般に融着
するようになる。したがって基材に酸化物セラミックを
選択できる。
In a composition in which Si and an active metal coexist, other than the above-mentioned nitrides and carbides, they are fused to oxide ceramics in general. Therefore, an oxide ceramic can be selected for the base material.

【0017】酸化物セラミックの種類は、融着させる抵
抗発熱材料の線膨張係数に応じて、その線膨張係数と整
合するように適宜選択すればよい。概ね(3〜9)×1
の範囲の線膨張係数を持つ酸化物の中から、適宜そ
の種類を選択するようにすればよい。基材にアルミナ
系、クロミア系、ジルコニア系セラミックを使用したと
き、融着金属の組成は、の珪化物組成が最も好まし
い。珪化物の線膨張係数は概ね5〜9×10−6の範囲
に分布するので、これらの中からアルミナ系、クロミア
系,ジルコニア系セラミックのそれに近似したものを選
択することができ、線膨張係数の整合を計ることができ
る。
The type of oxide ceramic may be appropriately selected according to the coefficient of linear expansion of the resistance heating material to be fused so as to match the coefficient of linear expansion. Generally (3-9) x 1
From 0 6 oxide having a linear expansion coefficient in the range of, it is sufficient to appropriately select the type. When an alumina-based, chromia-based, or zirconia-based ceramic is used as the base material, the composition of the fused metal is most preferably a silicide composition. Since the linear expansion coefficient of the silicide is generally in the range of 5 to 9 × 10 −6 , it is possible to select an alumina-based, chromia-based, or zirconia-based ceramic from these, and to select a linear expansion coefficient. Can be measured.

【0018】融着層には、主に電気抵抗等の調整のため
に必要に応じて融着材料に不溶解のセラミック発熱体
(SiC,ZrO等)あるいはその他絶縁セラミック
の粉末、繊維、あるいは融着金属に難溶解性の、例えば
高融点珪化物、ホー化物等の金属間化合物の発熱体の粉
末、繊維、あるいは高融点金属粉末、繊維等を適宜混合
させてもよい。あるいは融着材料をバインダーとしてこ
れら発熱体の粉末、繊維を結合させ、同時に基材セラミ
ックに融着させてもよい。融着材料はろう材としても使
用でき、セラミック基材にセラミック、金属、金属間化
合物の発熱抵抗体の箔、板、線を接合して使用できる。
例えば金属箔使用の場合、二枚のセラミックにW,Mo
等の金属箔を挟み、全面ろう材でくるむ様にロー付する
とW,Moの耐酸化性の問題も同時に解消できる。
The fusion layer is provided with a ceramic heating element (SiC, ZrO 2 or the like) insoluble in the fusion material or other insulating ceramic powder, fiber, or the like, if necessary, mainly for adjusting electric resistance and the like. Powders or fibers of a heating element of an intermetallic compound, such as a high melting point silicide or a hodide, which is hardly soluble in the fusion metal, may be appropriately mixed with a high melting point metal powder or fiber. Alternatively, the powders and fibers of these heating elements may be combined using the fusion material as a binder and simultaneously fused to the base ceramic. The fusion material can also be used as a brazing material, and can be used by bonding a ceramic, metal, or intermetallic compound heat generating resistor foil, plate, or wire to a ceramic substrate.
For example, in the case of using metal foil, W, Mo
And the like, and brazing the whole surface with a brazing material, the problem of oxidation resistance of W and Mo can be solved at the same time.

【0019】基材セラミックに融着させる融着膜の厚さ
は、薄いほど有利である。薄いほど電気抵抗が大きくな
るので発熱回路の長さを短くできる利点がある。また、
融着界面での熱応力が小さくなり、高温、長期間使用が
可能になる。融着膜の厚さはおおむね数μm〜500μ
mの範囲が最もよい。
The thinner the fusion film to be fused to the base ceramic, the more advantageous. There is an advantage that the length of the heat generating circuit can be shortened because the electrical resistance increases as the thickness decreases. Also,
The thermal stress at the fusion interface is reduced, and it can be used at high temperature for a long time. The thickness of the fusion film is about several μm to 500μ
The range of m is best.

【0020】本発明の抵抗発熱膜は、一枚のセラミック
基材の片面に融着させる片面融着タイプ、二枚のセラミ
ックの間に挟んで両方のセラミックに融着させる両面融
着タイプのいずれにも適用できる。
The resistance heating film of the present invention can be either a single-sided fusion type in which a single ceramic substrate is fused to one surface or a double-sided fusion type in which the ceramic is sandwiched between two ceramics and fused to both ceramics. Also applicable to

【0021】両面融着タイプでは、回路と回路の間の隙
間に溶融金属が浸透して回路が短絡する場合がある。こ
の問題に対しては、回路と回路の間、二枚のセラミック
の隙間を融着金属膜の厚さよりも広く開けておくと短絡
防止に効果がある。具体的には、融着する前に回路と回
路の間部分にあらかじめ溝を形成して重ね合わして融着
するとよい。
In the double-side fusion type, the molten metal may penetrate into the gap between the circuits, and the circuit may be short-circuited. To solve this problem, it is effective to prevent a short circuit between the circuits by providing a gap between the two ceramics wider than the thickness of the fused metal film. More specifically, it is preferable to form a groove in a portion between circuits before fusion and then overlap and fuse them.

【0022】抵抗発熱膜の融着は、所定の成分組成に調
整した金属粉末をセラミック融着面に塗着して、あるい
は所定成分に調整した金属箔を回路模様に貼着し、これ
を加熱、溶融、融着させる。また融着面に溶射、スパッ
タリング、PVD,CVD等の成膜手段で融着させる金
属の膜を成膜しておき、これを加熱、溶融、融着させる
ようにしてもよい。また、成分の一部を成膜しておき、
ほかの元素は粉末塗着、金属箔貼着して溶融、融着させ
てもよい。融着するときの雰囲気は、真空、還元、不活
性雰囲気がよい。
The fusion of the resistance heating film is performed by applying a metal powder adjusted to a predetermined component composition to a ceramic fusion bonding surface, or attaching a metal foil adjusted to a predetermined component to a circuit pattern and heating it. Melt and fuse. Alternatively, a metal film to be fused may be formed on the fusion surface by thermal spraying, sputtering, PVD, CVD, or the like, and then heated, melted, or fused. In addition, some of the components are deposited,
Other elements may be melted and fused by powder coating or metal foil sticking. The atmosphere at the time of fusion is preferably a vacuum, reduction, or inert atmosphere.

【0023】抵抗発熱膜をセラミック基材の片面に融着
させる片面融着タイプと二枚のセラミックに挟んで融着
させる両面融着タイプでは、抵抗発熱膜の厚さの均一
性、平坦性、均一融着性は両面融着タイプが優れてい
る。また片面融着タイプではセラミック基材と抵抗発熱
膜の線膨張係数に違いがあると融着後セラミックが多少
変形することもある。また加熱時セラミック面が多少変
形することもある。一方線膨張係数が同じあるいは近似
した二枚のセラミックに挟んで融着させると、抵抗発熱
膜とセラミック基材の線膨張係数に多少の違いがあって
も融着後変形が発生しない、また加熱時に変形が発生し
ない特徴がある。均一加熱、温度分布の均一性の観点か
らは、両面融着構造が好ましい。
In the single-side fusion type in which the resistance heating film is fused to one surface of the ceramic base material and in the double-side fusion type in which the resistance heating film is sandwiched and fused between two ceramics, the uniformity of the thickness of the resistance heating film, the flatness, and the like. The uniform fusion property is superior to the double-side fusion type. Further, in the single-side fusion type, if the linear expansion coefficient of the ceramic base material and the resistance heating film is different, the ceramic may be slightly deformed after fusion. In addition, the ceramic surface may be slightly deformed during heating. On the other hand, when fusion is performed between two ceramics with the same or similar linear expansion coefficients, deformation does not occur after fusion even if there is a slight difference in the linear expansion coefficient between the resistance heating film and the ceramic substrate. There is a feature that deformation does not occur sometimes. From the viewpoint of uniform heating and uniformity of temperature distribution, a double-sided fused structure is preferred.

【0024】また、両面融着構造では、発熱回路の外に
むき出しの部分は融着膜の厚さに相当する部分(端面)
だけであるので、耐蝕、耐酸化に関しては極めて好適な
構造である。さらに厚さに相当する部分のむきだしにな
った部分はゾルーゲル法でセラミック膜を被覆したり、
あるいは無機接着剤を隙間に埋めたり、あるいはガラス
封着したり、あるいはセラミック基材の周囲を融着金属
で封止したりして外部から保護できる。
In the double-sided fusion structure, a portion exposed outside the heat generating circuit is a portion (end face) corresponding to the thickness of the fusion film.
Therefore, the structure is extremely suitable for corrosion resistance and oxidation resistance. Furthermore, the exposed part of the part corresponding to the thickness is covered with a ceramic film by the sol-gel method,
Alternatively, it can be protected from the outside by filling the gap with an inorganic adhesive, sealing with glass, or sealing the periphery of the ceramic substrate with a fusion metal.

【0025】融着させる温度は少なくとも融液の出現す
る温度、つまり固相線温度以上が必要で、最も好ましく
は液相温度以上がよい。
The fusion temperature must be at least the temperature at which the melt appears, that is, the solidus temperature or higher, and most preferably the liquidus temperature or higher.

【0026】融着金属のSi原料としては、半導体用途
のSiから、金属鋳物で成分調整に使用するSiまで適
宜選択使用できる。鋳物用途ではFe,C,P,Al等
の微量元素が含有されており、これら微量元素はSiの
導電性をよくするので、本発明には有効である。また半
導体用途の不純物が添加されたSi(P型半導体、N型
半導体)も本発明では有効である。
The Si raw material for the fusion metal can be appropriately selected and used from Si used for semiconductors to Si used for component adjustment in metal castings. In casting applications, trace elements such as Fe, C, P, and Al are contained, and these trace elements improve the conductivity of Si, and are effective in the present invention. Further, Si (P-type semiconductor, N-type semiconductor) to which impurities for semiconductor use are added is also effective in the present invention.

【0027】なお、ここで本発明の抵抗発熱材料の融着
膜は、ほかの抵抗発熱材料の膜と途中で適宜つなぎ合わ
せて(つまり本発明融着膜にほかの抵抗発熱材料の膜を
重ねて焼き付けてつなぎ合わせる構造)使用しても良
い。すなわち、従来のセラミック板に抵抗発熱材料の膜
を焼き付けた構造のセラミックヒーターの途中の一部を
本発明の抵抗発熱材料の融着膜にしてつなぎ合わせる構
造にしても良い。また本発明の抵抗発熱材料の融着膜の
途中の一部を従来の抵抗発熱材料の膜を焼き付けたもの
にして、これをつなぎ合わせて使用しても良い。とくに
端子部分は本発明の抵抗発熱材料の融着膜にするのが有
効である。すなわち端子をセラミックに接合する材料と
して本発明融着合金は好適であるので、この端子は本発
明合金で融着し、この端子に従来の抵抗発熱材料の膜を
焼き付けて使用するようにすると良い。あるいは端子接
合と端子付近の発熱回路の一部を本発明合金の融着膜で
形成し、本発明融着回路に従来の抵抗発熱材料の膜を焼
き付けて使用するようにすると良い。また、従来のタン
グステン同時焼成構造型セラミックヒーターの端子接合
用ろう材としても本発明融着合金は好適である。
Here, the fused film of the resistance heating material of the present invention is appropriately joined to another film of the resistance heating material in the middle (that is, the film of the other resistance heating material is laminated on the fusion film of the invention). Structure which is baked and connected). That is, a structure may be adopted in which a part of a ceramic heater having a structure in which a film of a resistance heating material is baked on a conventional ceramic plate is connected to a fusion film of the resistance heating material of the present invention. Further, a part of the fused film of the resistance heating material of the present invention may be formed by baking a film of the conventional resistance heating material, and used by connecting the films. In particular, it is effective that the terminal portion is a fusion film of the resistance heating material of the present invention. That is, since the fused alloy of the present invention is suitable as a material for joining the terminal to the ceramic, the terminal is fused with the alloy of the present invention, and a film of a conventional resistance heating material is preferably used by baking the terminal. . Alternatively, it is preferable to form a part of the heat generation circuit near the terminal junction and the terminal with a fusion film of the alloy of the present invention, and to use a conventional film of a resistance heating material on the fusion circuit of the present invention. The fused alloy of the present invention is also suitable as a brazing material for terminal joining of a conventional tungsten co-fired structure type ceramic heater.

【0028】次に本発明の構造を図面によって説明す
る。図1〜3は本発明の片面融着構造の実施の形態を説
明した図である。図1はパイプ状のセラミック基材の表
面全面に珪化物あるいは、珪化物+Si、あるいはSi
の膜を融着させた構造、図2はセラミックの丸棒に螺旋
状に珪化物あるいは、珪化物+Si、あるいはSiの膜
を融着させた構造、図3は板状のセラミック基材に回路
模様に融着させた構造を説明した図である。
Next, the structure of the present invention will be described with reference to the drawings. 1 to 3 are views illustrating an embodiment of a single-sided fusion bonding structure according to the present invention. FIG. 1 shows that a silicide or silicide + Si or Si
FIG. 2 shows a structure obtained by spirally fusing a silicide or a silicide + Si or Si film on a ceramic round bar, and FIG. 3 shows a circuit formed on a plate-like ceramic substrate. It is a figure explaining the structure fused to the pattern.

【0029】図1で、1は窒化アルミ、窒化ケイ素、ア
ルミナ、クロミア等のセラミックパイプからなる基材、
2は基材に融着した珪化物、あるいは珪化物+Si、あ
るいはSiの融着層。融着層の両端は、機械的あるいは
冶金的な手段で、外部電源に連結された導体と接続され
る。
In FIG. 1, reference numeral 1 denotes a substrate made of a ceramic pipe such as aluminum nitride, silicon nitride, alumina, and chromia;
2 is a silicide fused to the base material, or a silicide + Si, or a fused layer of Si. Both ends of the fusion layer are connected to conductors connected to an external power source by mechanical or metallurgical means.

【0030】図2は丸棒の基材に螺旋状の融着膜が形成
された例。図3は板状基材に配線回路模様の融着膜が形
成された例である。これらの模様の形成は、融着金属の
粉末を模様状に塗布して融着させるような方法でもよい
し、いったん全面に融着膜を形成し、エッチング、ブラ
スト等の除去加工によって不要な部分を除去して目的の
模様を形成するようにしてもよい。
FIG. 2 shows an example in which a spiral fusion film is formed on a base material of a round bar. FIG. 3 shows an example in which a fusion film of a wiring circuit pattern is formed on a plate-like base material. These patterns may be formed by applying a fusion metal powder in the form of a pattern and fusing it, or by forming a fusion film once on the entire surface and removing unnecessary portions by etching, blasting or the like. May be removed to form a desired pattern.

【0031】図5〜16は本発明の両面融着構造の実施
の形態を説明した図である。図5は融着金属のヒーター
回路の一例を示した図であり、実際の構造は、このヒー
ター回路が二枚のセラミック基材に挟まれ、セラミック
の両面に融着した構造である。図5で、1は融着金属の
ヒーター回路、2,3は電源との接続端子である。図6
はこの様なヒーター回路が二枚のセラミック基材に挟ま
れた構造のものであり、その、A−A断面図である。図
7は図6の構造の製造工程の一例を示した図である。図
8は、ヒーター回路の短絡防止の構造を説明した図であ
る。
FIGS. 5 to 16 are views for explaining an embodiment of the double-sided fusion bonding structure of the present invention. FIG. 5 is a view showing an example of a heater circuit of a fusion metal. The actual structure is such that this heater circuit is sandwiched between two ceramic substrates and fused to both surfaces of the ceramic. In FIG. 5, reference numeral 1 denotes a fusion metal heater circuit, and reference numerals 2 and 3 denote connection terminals for a power supply. FIG.
FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, which has a structure in which such a heater circuit is sandwiched between two ceramic substrates. FIG. 7 is a diagram showing an example of a manufacturing process of the structure of FIG. FIG. 8 is a diagram illustrating a structure for preventing a short circuit in a heater circuit.

【0032】図6で、融着金属のヒーター回路3は二枚
のセラミック基材4,5の間に挟まれ、融着している。
融着金属はヒーター回路であると同時に、二枚のセラミ
ックを接合するろう材の役割も果たしている。回路の形
成は、例えば次のような方法でなされる。 二枚のセラミックの一方、あるいは両方に融着金属
の組成に調整した金属粉末を回路模様に塗着して、二枚
のセラミックを重ね合わせて加熱、溶解して融着させ
る。あるいは 二枚のセラミックの一方、あるいは両方に融着金属
の膜を回路模様に被覆し、二枚のセラミックを重ね合わ
せて加熱、溶解して融着させる。融着金属の膜はスパッ
タリング、PVD,CVD等の方法で形成する。 とを折衷した方法、つまり成膜と粉末の塗布の
両方を使って回路模様を描き、加熱、溶解して融着させ
る。あるいは それぞれのセラミックの接合面にあらかじめ金属を
融着させて融着膜を形成しておき、この膜をショットブ
ラスト等の方法で除去加工して回路模様を形成する。 模様を形成された二枚のセラミックを位置をよく合わせ
て重ね合わせ、加熱、再溶融して二枚のセラミックを接
合する。以上のような方法である。
In FIG. 6, the heater circuit 3 for the fusion metal is sandwiched between two ceramic substrates 4 and 5 and is fused.
The fusion metal is not only a heater circuit but also a brazing filler metal for joining the two ceramics. The circuit is formed, for example, by the following method. A metal powder adjusted to the composition of the fusion metal is applied to a circuit pattern on one or both of the two ceramics, and the two ceramics are superposed, heated, melted and fused. Alternatively, one or both of the two ceramics are coated with a film of a fusion metal in a circuit pattern, and the two ceramics are superposed, heated, melted and fused. The film of the fusion metal is formed by a method such as sputtering, PVD, or CVD. A circuit pattern is drawn using a compromise between the two methods, that is, film formation and powder application, and is heated, melted, and fused. Alternatively, a metal is fused in advance to the joint surface of each ceramic to form a fusion film, and this film is removed by a method such as shot blasting to form a circuit pattern. The two ceramics on which the pattern is formed are overlapped with good alignment, heated and re-melted to join the two ceramics. This is the method described above.

【0033】図7のように、それぞれのセラミックの接
合面にあらかじめ金属を融着させて融着膜6を形成して
おき、この膜をショットブラスト、エッチング等の方法
で除去加工して回路模様を形成した後、重ね合わせて、
加熱して(必要に応じて加圧加熱して)融点以下の温度
で焼結する方法でもよい。
As shown in FIG. 7, a fusion film 6 is formed by fusing a metal in advance on the bonding surface of each ceramic, and this film is removed by a method such as shot blasting or etching to form a circuit pattern. After forming
A method of sintering at a temperature equal to or lower than the melting point by heating (pressing and heating as necessary) may be used.

【0034】図6,7の構造のように二枚のセラミック
にヒーター回路を挟んで融着させる構造では、融着金属
が横に浸透し、回路が短絡する場合がある。金属膜が厚
くなるほど短絡が起こりやすくなる。短絡に対しては、
図8のように、回路と回路の間の隙間に溝7を形成し
て、セラミック板の間隙を広くするよい。
In a structure in which a heater circuit is sandwiched between two ceramics as in the structures shown in FIGS. 6 and 7, the fused metal may penetrate laterally and short-circuit the circuit. As the metal film becomes thicker, a short circuit is more likely to occur. For short circuit,
As shown in FIG. 8, a groove 7 may be formed in the gap between the circuits to widen the gap between the ceramic plates.

【0035】二枚のセラミックにヒーター回路を挟んで
融着させた場合、二枚のセラミックの間には融着金属の
ヒーター回路の厚さに相当する隙間が残る。隙間がある
と、用途によっては異物が混入して回路の短絡が起こる
こともある。端面の隙間の封止は重要な問題になること
がある。端面封止には、セラミック端面の周りを図9の
ような融着金属の帯で囲って、閉回路8を形成し、この
閉回路8をセラミックの両面に融着させることによって
封止することも有効な方法である。封止閉回路8の融着
はヒーター回路を融着させるときに同時に行い。ヒータ
ー回路の融着金属と同じ金属を融着させてもよいし、あ
るいはヒーター回路の融着金属と同じ融着条件で融着で
きる材料を使用すればよい。また、他の封止方法として
は、セラミック接着剤を含浸させて固化させてもよい。
また、ガラスを融着させてもよい。
When the two ceramics are fused with the heater circuit interposed therebetween, a gap corresponding to the thickness of the heater circuit of the fusion metal remains between the two ceramics. If there is a gap, a foreign matter may be mixed depending on the application, and a short circuit of the circuit may occur. Sealing the gaps at the end faces can be an important issue. For sealing the end face, a closed circuit 8 is formed by surrounding the ceramic end face with a band of a fusion metal as shown in FIG. 9 and sealing is performed by fusing the closed circuit 8 to both surfaces of the ceramic. Is also an effective method. The fusion of the sealing closed circuit 8 is performed simultaneously with the fusion of the heater circuit. The same metal as the fusion metal of the heater circuit may be fused, or a material that can be fused under the same fusion conditions as the fusion metal of the heater circuit may be used. Further, as another sealing method, a ceramic adhesive may be impregnated and solidified.
Further, glass may be fused.

【0036】[図9の説明]図9は、二枚のセラミック
の一方あるいは両方のヒーター回路形成面にヒータ一回
路の融着金属を図のように塗着し、同時に金属閉回路8
模様にヒーター回路の融着金属と同じ金属あるいはヒー
ター回路の融着金属と同じ融着条件で融着できる材料を
塗着し、重ね合わせて同時に加熱、融着させた構造を示
した図である。ヒーター回路、閉回路8共にセラミック
の中に隠され表には出てこないので点線で表示した。ヒ
ーター回路と閉回路は互いに電気的に絶縁されている。
[Explanation of FIG. 9] FIG. 9 shows that one or both heater circuit forming surfaces of two ceramics are coated with a fusion metal of a heater circuit as shown in FIG.
It is a figure showing a structure where the same metal as the fusion metal of the heater circuit or a material that can be fused under the same fusion conditions as the fusion metal of the heater circuit was applied to the pattern, and the pattern was overlapped and heated and fused at the same time. . Since both the heater circuit and the closed circuit 8 are hidden in the ceramic and do not come out of the table, they are indicated by dotted lines. The heater circuit and the closed circuit are electrically insulated from each other.

【0037】ヒーター回路の端末と外部電源との接続に
は次のような接続構造が有効である。 使用したセラミック基材の線膨張係数と近似した線
膨張係数を有する金属の端子をロー付して、該金属端子
とリード線を接続する。図10〜11の構造。図10は
回路の端末に直接端子金属をロー付した構造、図11は
回路の端末をセラミック基材の外表面まで引き出し、外
表面でロー付した構造。すなわちセラミック基材の一方
に回路引き出し用の二つの孔(単相の場合)、三つの孔
(三相の場合)を穿孔し、孔の内面に沿って融着金属で
メタライズして外まで回路を引き出し、引き出したとこ
ろでロー付する。あるいは引き出し用の孔に近似した線
膨張係数を有する金属(Mo,W等)のリード線を直接
差し込みリード線と孔の隙間もロー材で埋めて回路の端
末と直接ロー付した構造でもよい。あるいは孔を細径孔
にし、融着金属で孔を埋めてしまい、外に導通させ、リ
ード線とロー付する。片面融着構造では、回路端末にセ
ラミック基材と線膨張係数が近似した金属のリボン端子
をロー付し、リボン端子と外部リード線を電気的に接続
する方法もよい。また、図12のようにセラミック小片
9をヒーター回路の上に接合しておき、小片9の孔にリ
ード線を差込み、ロー付けして固定するようにしてもよ
い。ろう付けは、融着金属そのものを使用して回路形成
時、端子も同時にロー付してもよいし、あるいは回路形
成後耐酸化性の優れた高温ろう、たとえばNiろう等を
使用してロー付してもよい。セラミック基材が窒化アル
ミニウム系セラミック、窒化ケイ素系セラミック、炭化
ケイ素系セラミックの場合、端子材料はMo,W、ある
いは窒化アルミニウム系セラミック、窒化ケイ素系セラ
ミック、炭化ケイ素系セラミックの多孔体に融着金属を
含浸させて作った複合材料の端子等も好適である。金属
端子、リード線は、中実材のほか、線を束ねたもの、箔
を重ねたもの、あるいは織布状等々、適宜選定してよ
い。
The following connection structure is effective for connecting the terminal of the heater circuit to an external power supply. A metal terminal having a linear expansion coefficient similar to the linear expansion coefficient of the used ceramic base material is soldered, and the metal terminal is connected to a lead wire. The structure of FIGS. FIG. 10 shows a structure in which a terminal metal is directly brazed to a terminal of a circuit, and FIG. In other words, two holes (for a single phase) and three holes (for a three phase) for drawing out a circuit are drilled in one side of the ceramic substrate, and metallized with a fusion metal along the inner surface of the hole to extend the circuit to the outside. Pull out and braze it when it is pulled out. Alternatively, a structure in which a lead wire of a metal (Mo, W, or the like) having a linear expansion coefficient similar to that of a drawing hole is directly inserted, and a gap between the lead wire and the hole is filled with a brazing material to directly braze the terminal of the circuit. Alternatively, the hole is made into a small diameter hole, and the hole is filled with a fusion metal, and the hole is electrically connected to the outside. In the single-sided fusion bonding structure, a method may be used in which a metal terminal having a metal substrate having a similar linear expansion coefficient to a ceramic base is soldered to a circuit terminal, and the ribbon terminal and an external lead wire are electrically connected. Alternatively, as shown in FIG. 12, the ceramic small piece 9 may be joined to the heater circuit, and a lead wire may be inserted into the hole of the small piece 9 and fixed by brazing. The brazing may be performed by soldering the terminals at the same time as forming the circuit using the fusion metal itself, or by using a high-temperature brazing material having excellent oxidation resistance after forming the circuit, such as Ni brazing. May be. When the ceramic substrate is an aluminum nitride-based ceramic, a silicon nitride-based ceramic, or a silicon carbide-based ceramic, the terminal material is Mo, W, or a fused metal on a porous body of aluminum nitride-based ceramic, silicon nitride-based ceramic, or silicon carbide-based ceramic. Also, a terminal of a composite material made by impregnating with such a material is suitable. Metal terminals and lead wires may be appropriately selected from solid materials, bundled wires, laminated foils, woven fabrics, and the like.

【0038】[0038]

【実施例】実施例によって本発明を説明する。 実施例1(両面融着タイプ) セラミック基材:窒化アルミニウム、窒化ケイ素、炭化
ケイ素、アルミナの4種類の基材使用。炭化ケイ素は電
気抵抗1011Ω・cmのものを使用。 基材の寸法 : 10×30×0.6mmの板。 融着金属 :上記セラミック基材(窒化アルミニウ
ム、窒化ケイ素、炭化ケイ素、アルミナ)の上に、図1
3に示すように、2mm幅で22mmの長さで下記組成
(表1)に調合した金属粉末をポリビニルアルコールの
エタノール溶液と混ぜてペースト状となし、これを塗布
した後、図14に示した両端に孔(φ1mm)の開いた
同じセラミック基材を重ね合わせ、乾燥後、加熱溶融し
て図15のように融着させた。孔間の距離20mm。S
iの原料は、半導体基板を破砕して粉にしたものと、9
9.999%純度(Al,Mg,Ca,Na≦1pp
m)の粉末使用。半導体基板を破砕して粉にしたものは
BドープしたP型Si。BドープしたP型Siの抵抗値
は0.0〜0.1Ω・cm。BドープしたP型Siを使
用した試料は「P型Si」と表示。表示のない試料は9
9.999%純度の粉末使用。加熱雰囲気は、真空(5
×10−5Torr)、アルゴン。融着金属のミクロ組
織は、上記した、、のミクロ組織になる範囲、つ
まり珪化物生成範囲、珪化物とSi混在組織を形成する
範囲、Si単体組織、この三つの組成成分を選んだ。
The present invention will be described by way of examples. Example 1 (double-side fusion type) Ceramic base material: Use of four types of base materials: aluminum nitride, silicon nitride, silicon carbide, and alumina. Silicon carbide having an electrical resistance of 10 11 Ω · cm is used. Substrate dimensions: 10 × 30 × 0.6 mm plate. Fusion metal: FIG. 1 on the above ceramic substrate (aluminum nitride, silicon nitride, silicon carbide, alumina)
As shown in FIG. 3, a metal powder prepared in the following composition (Table 1) having a width of 2 mm and a length of 22 mm was mixed with an ethanol solution of polyvinyl alcohol to form a paste, which was applied, and shown in FIG. The same ceramic base material having holes (φ1 mm) at both ends was overlapped, dried, heated and melted and fused as shown in FIG. Distance between holes 20 mm. S
The raw material of i was obtained by crushing a semiconductor substrate into powder and 9
9.999% purity (Al, Mg, Ca, Na ≦ 1 pp
m) Use of powder. The pulverized semiconductor substrate is B-doped P-type Si. The resistance value of B-doped P-type Si is 0.0 to 0.1 Ω · cm. Samples using B-doped P-type Si are indicated as “P-type Si”. 9 samples without indication
9.99% pure powder used. The heating atmosphere is vacuum (5
× 10 −5 Torr), argon. The microstructure of the fused metal was selected from the above three ranges, ie, the range of microstructure, namely, the range of silicide formation, the range of forming a mixed structure of silicide and Si, and the Si single structure.

【表1】 基材:ALNは窒化アルミ SiCは炭化ケイ素 SiNは窒化ケイ素 Alは高純度アルミナ 雰囲気は、番号1,16,18がアルゴン雰囲気、他は
真空雰囲気 電気抵抗は、図15の二つの孔に抵抗測定用の電極を差
し込んで測定した。
[Table 1] Substrate: ALN is aluminum nitride SiC is silicon carbide SiN is silicon nitride Al 2 O 3 is high-purity alumina The atmospheres are numbers 1, 16, and 18 in an argon atmosphere, and others are in a vacuum atmosphere. An electrode for resistance measurement was inserted into the sample.

【0039】実施例2(加熱テスト) 実施例1の試料に交流電圧を印加して加熱テストした。
5分で500℃まで加熱し、常温まで放冷。これを10
0回繰り返した。いずれの試料にもヒーターの剥離、割
れはなかった。次に融着金属の耐酸化性テストした。実
施例1の試料を1000℃に5時間加熱した。融着被膜
の酸化による電気抵抗の変化も認められなかった。
Example 2 (Heating Test) The sample of Example 1 was subjected to a heating test by applying an AC voltage.
Heat to 500 ° C in 5 minutes and let cool to room temperature. This is 10
Repeated 0 times. No peeling or cracking of the heater was found in any of the samples. Next, the oxidation resistance test of the fused metal was performed. The sample of Example 1 was heated to 1000 ° C. for 5 hours. No change in electrical resistance due to oxidation of the fusion coating was observed.

【0040】実施例3(被膜の均一融着性の比較) ヒーター回路をセラミック基材の片面だけに融着させた
もの(片面融着構造)と、二枚の基板に挟んで両方のセ
ラミックに融着させた構造(両面融着構造)のものにつ
いて被膜の厚さムラ(凹凸、平坦性),幅のムラ、表面
性状について比較をした。 セラミック基材: 窒化アルミニウム 基材の寸法 : 100×100×0.6mmの板。 融着金属 : 融着金属としては濡れ性のことなる
二つの成分選択高純度Si(99.999%)、Si−
25%Tiを選択して比較することとした。 Si粉末(粒度325メッシュアンダー)をポリビニル
アルコールのエタノール溶液と混ぜてペースト状とな
し、これを上記窒化アルミニウム基材の表面に図16の
回路模様に印刷した。回路の幅:10mm、回路と回路
の間隔:5mm 片面融着試料は、片面に印刷した試料を乾燥後、真空中
(5×10−5Torr)で加熱、融着させた。両面融
着試料は、印刷した上に、さらに同じセラミックの板を
位置を整合させて重ね合せ、乾燥後、真空中(5×10
−5Torr)で加熱、融着させた。高純度Siの試料
は1450℃に加熱して融着させた。Si−25%Ti
の試料は1400℃に加熱して融着させた。 結果 [片面融着試料]高純度Siの試料は、被膜が盛上が
り、凹凸のある被膜。また、回路パターンの幅も当初の
印刷された幅よりも狭くなることが観察された。Si−
25%Tiの試料は、凹凸がほとんどない平坦な被膜が
形成された。回路パターンの幅も当初の印刷された幅と
ほぼ同じ回路が形成された。片面融着試料は融着させる
金属の濡れ性の違いにより被膜の平坦度、凹凸の程度に
違いが生ずることが観察された。 [両面融着試料]一方、二枚のセラミックに挟んで融着
させた両面融着試料は、高純度Siの試料、Si−25
%Tiの試料共、両面からセラミック板で挟んでいるた
めに、被膜の盛り上りもなく完全融着し、平坦で、凹凸
起伏のない被膜が形成された。また回路パターンの幅も
当初の印刷された幅とほぼ同程度の幅で融着していた。
両面融着試料は融着させる金属の濡れ性に違いがあって
も、平坦で凹凸起伏のない被膜が融着することが観察さ
れた。両面融着タイプは、被膜の平坦性、つまり厚さの
均一性、回路幅の均一性の点では片面融着タイプよりも
優れていることが確認できた。
Example 3 (Comparison of Uniform Fusing Property of Coating) A heater circuit was fused only to one side of a ceramic base material (single-sided fusion structure), and a ceramic circuit was sandwiched between two substrates, and was applied to both ceramics. For the fused structure (double-sided fused structure), the thickness unevenness (unevenness, flatness), width unevenness, and surface properties of the film were compared. Ceramic substrate: Aluminum nitride Dimensions of substrate: 100 × 100 × 0.6 mm plate. Fused metal: Two components having different wettability are selected as the fused metal. High purity Si (99.999%), Si-
25% Ti was selected for comparison. Si powder (particle size: 325 mesh under) was mixed with an ethanol solution of polyvinyl alcohol to form a paste, which was printed on the surface of the aluminum nitride substrate in a circuit pattern shown in FIG. Circuit width: 10 mm, interval between circuits: 5 mm The single-sided fused sample was obtained by drying a sample printed on one side, and then heating and fusing in a vacuum (5 × 10 −5 Torr). The double-sided fusion-bonded sample was printed, and the same ceramic plate was further superimposed and aligned, dried, and then dried under vacuum (5 × 10
-5 Torr). The high-purity Si sample was heated to 1450 ° C. and fused. Si-25% Ti
The sample was heated to 1400 ° C. and fused. Result [Single-sided fusion sample] The high-purity Si sample was a film with a swelling and unevenness. It was also observed that the width of the circuit pattern was narrower than the originally printed width. Si-
The 25% Ti sample formed a flat film with almost no irregularities. The circuit width was almost the same as the originally printed width. It was observed that the single-sided fused sample caused a difference in the flatness of the coating and the degree of unevenness due to the difference in the wettability of the metal to be fused. [Double-side fused sample] On the other hand, a double-side fused sample sandwiched between two ceramics was a high-purity Si sample, Si-25.
Since both the samples of% Ti were sandwiched between the ceramic plates from both sides, the coating was completely fused without swelling of the coating, and a flat coating without unevenness was formed. In addition, the width of the circuit pattern was fused at substantially the same width as the originally printed width.
In the double-sided fused sample, it was observed that a flat and uneven coating was fused even if the wettability of the metal to be fused was different. It was confirmed that the double-sided fusion type was superior to the single-sided fusion type in terms of the flatness of the coating, that is, the uniformity of the thickness and the uniformity of the circuit width.

【0041】実施例4(融着構造と加熱時の変形量の比
較テスト) セラミック基材: 窒化アルミニウム 基材の寸法 : 10×110×0.6mmの板。 融着金属 : Si−25%Ti Si原料 : 99.999%純度(Al,Mg,
Ca,Na≦1ppm) 上記組成に調合した粉末金属をポリビニルアルコールの
エタノール溶液と混ぜてペースト状と成し、これを上記
セラミックの板(下板)の片面全面に塗布し、乾燥後、
両端に直径1mmの孔(孔間の距離:100mm)を開
けた同じセラミック板(上板)を重ね合わし、真空中
(5×10−5 Torr)で1400℃に加熱溶融し
て、二枚のセラミックを融着させた。また、比較のため
に上記セラミックの板の片面全面に塗布し、乾燥後、真
空中(5×10−5 Torr)で1400℃に加熱溶
融して融着させた片面融着の試料も作成した。 [結果]二種類の試料(両面融着、片面融着試料)を融
着後、両端に交流電圧を印加して500℃に5分で昇温
した。この時、片面融着試料は200ミクロンの反りが
発生した。一方両面融着タイプはほぼ皆無であった。両
面融着構造は片面融着構造に比較して加熱時の変形防止
に著効があることが判明した。
Example 4 (Comparison test of fusion structure and deformation during heating) Ceramic substrate: Aluminum nitride Dimension of substrate: 10 × 110 × 0.6 mm plate. Fused metal: Si-25% Ti Si raw material: 99.999% purity (Al, Mg,
(Ca, Na ≦ 1 ppm) The powdered metal prepared in the above composition is mixed with an ethanol solution of polyvinyl alcohol to form a paste, which is applied to one entire surface of the ceramic plate (lower plate), dried,
The same ceramic plate (upper plate) having holes 1 mm in diameter (distance between holes: 100 mm) at both ends was overlapped, and heated and melted at 1400 ° C. in a vacuum (5 × 10 −5 Torr). The ceramic was fused. For comparison, a sample of single-sided fusion bonding was also applied by applying to the entire surface of one side of the ceramic plate, drying, and then heating and fusing to 1400 ° C. in vacuum (5 × 10 −5 Torr). . [Results] After two kinds of samples (two-sided and one-sided fused samples) were fused, an AC voltage was applied to both ends and the temperature was raised to 500 ° C. in 5 minutes. At this time, the single-sided fused sample was warped by 200 microns. On the other hand, there was almost no double-side fusion type. The double-sided fusion structure was found to be more effective in preventing deformation during heating than the single-sided fusion structure.

【0042】実施例5 セラミック基材:窒化アルミニウム、炭化ケイ素、窒化
ケイ素の3種類の基材使用。炭化ケイ素は、電気抵抗:
1011Ω−cmのものを使用。 基材の寸法 : 10×30×0.6mmの板。 融着金属 : 上記セラミック基材の片面に、図4
に示すように、2mm幅、22mmの長さで、下記組成
(表2)に調合した金属粉末をポリビニルアルコールの
エタノール溶液と混ぜてペースト状となし、これを極く
薄く塗布し、乾燥後、加熱、溶融して融着させた。 S1の原料は、半導体基板を破砕して粉にしたものと、
99.999%純度の粉末を使用。半導体基板を破砕し
て粉にしたものはBドープしたP型Si。Bドープした
P型Siの抵抗値は、0.0〜0.1Ω・cm。Bドー
プしたP型Si使用した試料は「P型Si」と表示。表
示のない試料は99.999%純度の粉末使用。加熱雰
囲気は、真空(5×10−5Torr)、アルゴン。融
着金属のミクロ組織は、上記した、、のミクロ組
織になる範囲、つまり珪化物生成範囲、珪化物とSi混
在組織を形成する範囲、Si単体組織、この三つの組成
を選んだ。電気抵抗は20mmの距離で測定した。
Example 5 Ceramic substrate: Three types of substrates of aluminum nitride, silicon carbide and silicon nitride were used. Silicon carbide has electrical resistance:
Use 10 11 Ω-cm. Substrate dimensions: 10 × 30 × 0.6 mm plate. Fused metal: on one side of the ceramic substrate, Fig. 4
As shown in the figure, a metal powder prepared in the following composition (Table 2) having a width of 2 mm and a length of 22 mm was mixed with an ethanol solution of polyvinyl alcohol to form a paste, which was applied very thinly and dried. It was heated, melted and fused. The raw material of S1 is obtained by crushing a semiconductor substrate into powder,
Uses 99.999% pure powder. The pulverized semiconductor substrate is B-doped P-type Si. The resistance value of B-doped P-type Si is 0.0 to 0.1 Ω · cm. Samples using B-doped P-type Si are indicated as “P-type Si”. Unlabeled samples use 99.999% pure powder. The heating atmosphere is vacuum (5 × 10 −5 Torr) and argon. The microstructure of the fused metal was selected from the three ranges described above, that is, a range in which a silicide is formed, a range in which a mixed structure of silicide and Si is formed, and a single Si structure. The electric resistance was measured at a distance of 20 mm.

【表2】 基材:ALNは窒化アルミ、SiCは炭化ケイ素、Si
Nは窒化ケイ素、雰囲気は、番号1,3,13がアルゴ
ン、他は真空。電気抵抗は、20mm長さ間の抵抗を測
定した。
[Table 2] Base material: ALN is aluminum nitride, SiC is silicon carbide, Si
N is silicon nitride, the atmosphere is argon for numbers 1, 3, and 13, and the others are vacuum. The electric resistance measured resistance between 20 mm length.

【0043】実施例6(加熱テスト) 実施例5の試料に交流電圧を印加して加熱テストした。
5分で500℃まで加熱し、常温まで放冷。これを10
0回繰り返した。いずれの試料にもヒーターの剥離、割
れはなかった。次に融着金属の耐酸化性テストした。実
施例5の試料を1000℃に5時間加熱した。融着被膜
の酸化による剥落、および電気抵抗の変化も認められな
かった。
Example 6 (Heating test) A heating test was performed by applying an AC voltage to the sample of Example 5.
Heat to 500 ° C in 5 minutes and let cool to room temperature. This is 10
Repeated 0 times. No peeling or cracking of the heater was found in any of the samples. Next, the oxidation resistance test of the fused metal was performed. The sample of Example 5 was heated to 1000 ° C. for 5 hours. No peeling of the fused coating due to oxidation and no change in electrical resistance were observed.

【0044】[0044]

【発明の効果】本発明は以上詳記したように、珪化物、
Siあるいは珪化物とSiの混合組織の電熱材料の膜を
セラミック基材に融着させた複合構造の電熱材料であっ
て、電熱材料の脆さと高温で軟化する欠点が改良され、
しかも薄膜化されたもので、ヒーター被膜の密着強度、
耐剥離性、大気中での耐酸化性に優れ、急加熱、高温加
熱に耐え、耐久性に優れ、構造が簡単で安価に製造でき
る利点も有し、産業上極めて有意義な発明である。
According to the present invention, as described in detail above, silicides,
An electrothermal material having a composite structure in which a film of an electrothermal material having a mixed structure of Si or silicide and Si is fused to a ceramic base material, and the defect of the electrothermal material being brittle and softening at high temperatures is improved.
In addition, it is a thin film, and the adhesion strength of the heater film,
This is an invention that is extremely industrially significant because it has excellent peeling resistance, oxidation resistance in the atmosphere, withstands rapid heating and high-temperature heating, has excellent durability, has a simple structure and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の実施の形態を説明した図であ
る。
FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】 図2は本発明の実施の形態を説明した図であ
る。
FIG. 2 is a diagram illustrating an embodiment of the present invention.

【図3】 図3は本発明の実施の形態を説明した図であ
る。
FIG. 3 is a diagram illustrating an embodiment of the present invention.

【図4】 図4は実施例の説明図。FIG. 4 is an explanatory diagram of the embodiment.

【図5】 図5は融着金属のヒーター回路の一例を示し
た図である。
FIG. 5 is a diagram showing an example of a heater circuit of a fusion metal.

【図6】 図6は図5のA−A−断面図である。FIG. 6 is a sectional view taken along line AA of FIG.

【図7】 図7は図6の構造の製造工程の一例を示した
図である。
FIG. 7 is a view showing one example of a manufacturing process of the structure of FIG. 6;

【図8】 図8はヒーター回路の短絡防止の構造の説明
図。
FIG. 8 is an explanatory diagram of a structure for preventing a short circuit in a heater circuit.

【図9】 図9はセラミック端面の封止構造の説明図。FIG. 9 is an explanatory view of a sealing structure of a ceramic end face.

【図10】 図10はヒーター回路の端末に端子を接続
した構造の説明図。
FIG. 10 is an explanatory diagram of a structure in which terminals are connected to terminals of a heater circuit.

【図11】 図11はヒーター回路の端末に端子を接続
した構造の説明図。
FIG. 11 is an explanatory diagram of a structure in which terminals are connected to terminals of a heater circuit.

【図12】 図12はヒーター回路の端末にリード線を
接続した構造の説明図。
FIG. 12 is an explanatory diagram of a structure in which a lead wire is connected to a terminal of a heater circuit.

【図13】 図13は実施例の説明図。FIG. 13 is an explanatory diagram of the embodiment.

【図14】 図14は実施例の説明図。FIG. 14 is an explanatory diagram of the embodiment.

【図15】 図15は実施例の説明図。FIG. 15 is an explanatory diagram of the embodiment.

【図16】 図16は実施例の説明図。FIG. 16 is an explanatory diagram of the embodiment.

【符号の説明】[Explanation of symbols]

1 …セラミック基材 2 …融着層 3 … ヒーター回路 4,5 … セラミック基材 6 … 融着膜 7 … 溝
8 … 閉回路 9 … セラミック小片
DESCRIPTION OF SYMBOLS 1 ... Ceramic base material 2 ... Fused layer 3 ... Heating circuit 4,5 ... Ceramic base material 6 ... Fused film 7 ... Groove
8 Closed circuit 9 Ceramic piece

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平8−204088 (32)優先日 平8(1996)6月29日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平8−279832 (32)優先日 平8(1996)9月12日 (33)優先権主張国 日本(JP) ──────────────────────────────────────────────────続 き Continuation of the front page (31) Priority claim number Japanese Patent Application No. 8-204088 (32) Priority date Hei 8 (1996) June 29 (33) Priority claim country Japan (JP) (31) Priority Claim No. Japanese Patent Application No. 8-279832 (32) Priority Date Hei 8 (1996) September 12 (33) Priority Country Japan (JP)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性の窒化物系あるいは炭化物系セ
ラミック基材の表面に、ミクロ組織が珪化物単体組織あ
るいは珪化物とSiの混在組織あるいはSi単体組織か
らなる抵抗発熱材料の被膜が融着した構造からなること
を特徴とする通電発熱体。
1. A coating of a resistance heating material having a microstructure of a silicide simple structure, a mixed structure of silicide and Si, or a single Si structure on a surface of an electrically insulating nitride-based or carbide-based ceramic substrate. A current-carrying heating element characterized by having a worn structure.
【請求項2】電気絶縁性のセラミック基材の表面に、
0.5%以上の活性金属を含有し、かつミクロ組織が珪
化物単体組織あるいは珪化物とSiの混在組織からなる
抵抗発熱材料の被膜が融着した構造からなることを特徴
とする通電発熱体。
2. The method according to claim 1, further comprising the step of:
A current-carrying heating element comprising an active metal of 0.5% or more, and a microstructure having a structure in which a coating of a resistance heating material comprising a silicide simple structure or a mixed structure of silicide and Si is fused. .
【請求項3】上記セラミック基材が窒化アルミニウム系
セラミック、抵抗発熱材料のミクロ組織が珪化物とSi
の混在する組織である請求項1あるいは2のいずれかに
記載の通電発熱体。
3. The ceramic base material is an aluminum nitride ceramic, and the microstructure of the resistance heating material is silicide and Si.
The current-carrying heating element according to claim 1, wherein the current-carrying heating element has a mixed structure.
【請求項4】上記セラミック基材が窒化ケイ素系セラミ
ック、抵抗発熱材料のミクロ組織が珪化物とSiの混在
する組織である請求項1あるいは2のいずれかにに記載
の通電発熱体。
4. The electric heating element according to claim 1, wherein the ceramic substrate is a silicon nitride-based ceramic, and the microstructure of the resistance heating material is a mixture of silicide and Si.
【請求項5】上記セラミック基材が酸化物系セラミック
である請求項2に記載の通電発熱体。
5. The current-carrying heating element according to claim 2, wherein said ceramic substrate is an oxide ceramic.
【請求項6】上記酸化物系セラミックがアルミナ系セラ
ミック、抵抗発熱材料のミクロ組織が珪化物組織である
請求項5に記載の通電発熱体。
6. The electric heating element according to claim 5, wherein the oxide ceramic is an alumina ceramic, and the microstructure of the resistance heating material is a silicide structure.
JP14839097A 1996-05-05 1997-04-30 Electric heating element Expired - Fee Related JP3567678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14839097A JP3567678B2 (en) 1996-05-05 1997-04-30 Electric heating element

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP8-146408 1996-05-05
JP14640896 1996-05-05
JP15282396 1996-05-09
JP8-152823 1996-05-09
JP16357796 1996-05-20
JP8-163577 1996-05-20
JP20408896 1996-06-29
JP8-204088 1996-06-29
JP8-279832 1996-09-12
JP27983296 1996-09-12
JP14839097A JP3567678B2 (en) 1996-05-05 1997-04-30 Electric heating element

Publications (2)

Publication Number Publication Date
JPH10144459A true JPH10144459A (en) 1998-05-29
JP3567678B2 JP3567678B2 (en) 2004-09-22

Family

ID=27553006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14839097A Expired - Fee Related JP3567678B2 (en) 1996-05-05 1997-04-30 Electric heating element

Country Status (1)

Country Link
JP (1) JP3567678B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296254A (en) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it
WO2006068131A1 (en) * 2004-12-20 2006-06-29 Ngk Spark Plug Co., Ltd. Ceramic heater, heat exchange unit, and warm water washing toilet seat
JP2008243460A (en) * 2007-03-26 2008-10-09 Doshisha Thin-film heating element and its manufacturing method
JP2010010009A (en) * 2008-06-30 2010-01-14 Kurosaki Harima Corp Method of flattening of resistance temperature curve of molten silicon electrical heating alloy
KR100945236B1 (en) * 2008-09-22 2010-03-03 박승무 Semiconductor heater and manufacturing method thereof and electronic boiler using semiconductor heater
JP2010129290A (en) * 2008-11-26 2010-06-10 Kyushu Nissho:Kk Heating device
JP2013502368A (en) * 2009-08-21 2013-01-24 マサチューセッツ インスティテュート オブ テクノロジー Silicon rich alloy
CN110719655A (en) * 2018-07-11 2020-01-21 江苏先丰纳米材料科技有限公司 High-efficiency energy-saving heating pipe and preparation method thereof
KR20200076761A (en) * 2017-11-21 2020-06-29 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Integral heater and manufacturing method
US11083050B2 (en) 2017-11-21 2021-08-03 Watlow Electric Manufacturing Company Integrated heater and method of manufacture
JP2021522649A (en) * 2018-04-17 2021-08-30 ワトロー エレクトリック マニュファクチュアリング カンパニー All aluminum heater
WO2023189184A1 (en) * 2022-03-31 2023-10-05 株式会社巴川製紙所 Sheet-shaped heater

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296254A (en) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it
EP1830139B1 (en) * 2004-12-20 2023-05-31 NGK Spark Plug Co., Ltd. Ceramic heater, heat exchange unit, and warm water washing toilet seat
WO2006068131A1 (en) * 2004-12-20 2006-06-29 Ngk Spark Plug Co., Ltd. Ceramic heater, heat exchange unit, and warm water washing toilet seat
EP1830139A1 (en) 2004-12-20 2007-09-05 Ngk Spark Plug Co., Ltd. Ceramic heater, heat exchange unit, and warm water washing toilet seat
US7875832B2 (en) 2004-12-20 2011-01-25 Ngk Spark Plug Co., Ltd. Ceramic heater, heat exchange unit, and warm water washing toilet seat
JP2008243460A (en) * 2007-03-26 2008-10-09 Doshisha Thin-film heating element and its manufacturing method
JP2010010009A (en) * 2008-06-30 2010-01-14 Kurosaki Harima Corp Method of flattening of resistance temperature curve of molten silicon electrical heating alloy
KR100945236B1 (en) * 2008-09-22 2010-03-03 박승무 Semiconductor heater and manufacturing method thereof and electronic boiler using semiconductor heater
JP2010129290A (en) * 2008-11-26 2010-06-10 Kyushu Nissho:Kk Heating device
JP2013502368A (en) * 2009-08-21 2013-01-24 マサチューセッツ インスティテュート オブ テクノロジー Silicon rich alloy
KR20200076761A (en) * 2017-11-21 2020-06-29 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Integral heater and manufacturing method
US11083050B2 (en) 2017-11-21 2021-08-03 Watlow Electric Manufacturing Company Integrated heater and method of manufacture
JP2021522649A (en) * 2018-04-17 2021-08-30 ワトロー エレクトリック マニュファクチュアリング カンパニー All aluminum heater
CN110719655A (en) * 2018-07-11 2020-01-21 江苏先丰纳米材料科技有限公司 High-efficiency energy-saving heating pipe and preparation method thereof
WO2023189184A1 (en) * 2022-03-31 2023-10-05 株式会社巴川製紙所 Sheet-shaped heater

Also Published As

Publication number Publication date
JP3567678B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
US6448538B1 (en) Electric heating element
CN107787259B (en) Method for producing a composite material
JP5345449B2 (en) Junction structure and manufacturing method thereof
JPH10144459A (en) Conductive heating element
JP3238051B2 (en) Brazing material
US6603650B1 (en) Electrostatic chuck susceptor and method for fabrication
JPH0870036A (en) Electrostatic chuck
JP4557398B2 (en) Electronic element
JP6507826B2 (en) Conductive joint and method of manufacturing the same
JP4044244B2 (en) Silicon nitride ceramic heater
JP3681824B2 (en) Ceramic bonded body and ceramic bonding method
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JP4441080B2 (en) Manufacturing method of composite member
TW444210B (en) Electric conduction heating mechanism and electrostatic chuck using this electric conductive heating mechanism
JPH04129189A (en) Ceramic heater
JP4210417B2 (en) Composite member formed by joining different kinds of members and method for manufacturing the composite member
JP3577109B2 (en) Metallized substrate
JPH0369873B2 (en)
JP7576413B2 (en) Joint and substrate holding member
JPS6345193A (en) Silicon carbide base ceramic sintered body with metallized surface and manufacture
JP3254478B2 (en) Electric resistor
JPH04300259A (en) Joining member and joining
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JP4880830B2 (en) Aluminum nitride substrate with metallized layer
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040106

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees