JPH10144315A - Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH10144315A
JPH10144315A JP9050558A JP5055897A JPH10144315A JP H10144315 A JPH10144315 A JP H10144315A JP 9050558 A JP9050558 A JP 9050558A JP 5055897 A JP5055897 A JP 5055897A JP H10144315 A JPH10144315 A JP H10144315A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9050558A
Other languages
Japanese (ja)
Inventor
Atsushi Yamanaka
厚志 山中
Riyuuichi Kuzuo
竜一 葛尾
Tomio Tsujimura
富雄 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9050558A priority Critical patent/JPH10144315A/en
Publication of JPH10144315A publication Critical patent/JPH10144315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide active material for a positive electrode by which discharge capacity and coulomb efficiency can be enhanced and its manufacturing method. SOLUTION: Lithium and cobalt double oxide powder containing boron and magnesium, which complies with a condition of x=0.97-1.005, y=0.01-0.04, z=0.01-0.05 in a formula of Li×Co2 -x-y-zByMgzO2 , and lithium cobalt double oxide powder containing boron, which compiles with a condition of x=0.97-1.005, y=0.01-0.12 in a formula of LixCo2 -x-yByO2 , are synthesized, and the powder synthesized with a specific surface of 0.2-1.1m<2> /g and an average article diameter of 4.0-16μm is used as active material for a positive electrode. A proper method to produce the active material for the positive electrode is that lithium compound, cobalt compound boron compound and magnesium compound are wet ground and blended and after adjusting an average article diameter to not more than 0.1μm it is baked for 6-20 hours at the temperature of 800-950 deg.C in air stream containing oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極にリチウム金
属、リチウム合金またはカーボンを用いる非水系電解質
二次電池用正極活物質およびその製造方法に関し、特に
正極活物質の改良により二次電池のサイクル特性(高容
量の維持)の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery using lithium metal, a lithium alloy or carbon as a negative electrode and a method for producing the same. It relates to improvement of characteristics (maintaining high capacity).

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
の携帯機器の普及にともない、高いエネルギー密度を有
し、小型、軽量で、高い容量を持つ二次電池の開発が強
く望まれている。このようなものとして、負極にリチウ
ム金属、リチウム合金あるいはカーボンを用いるリチウ
ムイオン二次電池があり、研究開発が盛んに行われてい
る。
2. Description of the Related Art In recent years, with the spread of portable devices such as portable telephones and notebook personal computers, development of secondary batteries having a high energy density, small size, light weight and high capacity has been strongly desired. As such a device, there is a lithium ion secondary battery using a lithium metal, a lithium alloy, or carbon for a negative electrode, and research and development have been actively conducted.

【0003】リチウムコバルト複酸化物(LiCoO
2 )を正極活物質に用いたリチウムイオン二次電池は4
V級の高い電圧が得られるため、高エネルギー密度を持
つ二次電池として期待され、実用化が進んでいる。
[0003] Lithium-cobalt double oxide (LiCoO)
2 ) Lithium-ion secondary battery using positive electrode active material is 4
Since a high V-class voltage can be obtained, it is expected as a secondary battery having a high energy density, and its practical use is progressing.

【0004】しかしながら、リチウムコバルト複酸化物
を正極活物質に用いた二次電池は、クーロン効率(放電
容量/充電容量)が低く、また放電容量(正極活物質の
利用率)や、サイクル特性(高容量の維持)が不十分で
あるなどの問題があった。
[0004] However, a secondary battery using a lithium-cobalt double oxide as a positive electrode active material has low Coulomb efficiency (discharge capacity / charge capacity), discharge capacity (utilization rate of positive electrode active material), and cycle characteristics ( (Maintenance of high capacity) was insufficient.

【0005】クーロン効率の低さは電極特性に起因す
る。その要因としては、正極活物質と電解質との界面の
電極反応性に影響を及ぼす活物質の比表面積や濡れ性等
の表面性状の問題と、活物質の充填密度に影響を及ぼす
粒子形状および粒度分布の問題を挙げることができる。
[0005] The low coulomb efficiency is due to electrode characteristics. Factors include surface properties such as specific surface area and wettability of the active material that affect electrode reactivity at the interface between the positive electrode active material and the electrolyte, and particle shape and particle size that affect the packing density of the active material. The problem of distribution can be cited.

【0006】正極活物質の利用率が低い原因としては、
充放電が困難な未反応コバルト酸化物の含有を挙げるこ
とができる。この問題を防止する目的で、原料中のLi
/Co比を1以上に設定し、合成を行う方法が取られて
いる。
[0006] The reason for the low utilization rate of the positive electrode active material is as follows.
An unreacted cobalt oxide which is difficult to charge and discharge can be included. In order to prevent this problem, Li
A method is adopted in which the / Co ratio is set to 1 or more to perform synthesis.

【0007】しかし、たとえば、特開平3−27256
4号公報には、過剰Li原料を用いて合成を行った場
合、リチウムコバルト複酸化物結晶の[104]面配向
するため、リチウムイオンのインターカレートに寄与す
る[003]面の発達が抑制され、これによりリチウム
イオンの吸蔵放出性能が低下することが指摘されてい
る。
However, for example, see Japanese Patent Application Laid-Open No. 3-27256.
No. 4 discloses that when synthesis is performed using an excess Li raw material, the lithium-cobalt double oxide crystal is oriented in the [104] plane, so that the development of the [003] plane that contributes to intercalation of lithium ions is suppressed. It has been pointed out that this reduces the lithium ion storage / release performance.

【0008】発明者らは、リチウムコバルト複酸化物の
開発を進めた結果、ホウ酸の添加により焼成時に溶融リ
チウム塩の粘性が低下し、得られるリチウムコバルト複
酸化物の結晶粒が大きくなり、かつ結晶性が向上するこ
とを見いだした。
As a result of the development of the lithium-cobalt composite oxide, the addition of boric acid lowers the viscosity of the molten lithium salt at the time of calcination, and the crystal grains of the obtained lithium-cobalt double oxide are increased. And it was found that the crystallinity was improved.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、リチ
ウムコバルト複酸化物を原料として、二次電池の放電容
量およびクーロン効率を向上させることが可能な非水系
電解質二次電池用正極活物質およびその製造方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery which can improve the discharge capacity and Coulomb efficiency of a secondary battery using a lithium cobalt double oxide as a raw material. And a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】発明者らは、正極活物質
の研究を進めるなかで、リチウムコバルト複酸化物にお
いてホウ素添加により粒子径制御が可能であること、さ
らにホウ素と共にマグネシウムの添加により導電率の向
上が図れることを見い出した。
Means for Solving the Problems In the course of research on the positive electrode active material, the present inventors have found that the particle size can be controlled by adding boron to a lithium-cobalt double oxide, and the addition of boron together with magnesium results in a conductive property. Rate can be improved.

【0011】すなわち、本発明は式LixCo2−x−y−
zByMgzO2においてx=0.97〜1.005、y=0.
01〜0.04、z=0.01〜0.05であるホウ素と
マグネシウムを含むリチウムコバルト複酸化物の粉末を
合成し、比表面積が0.2〜1.1m2 /gであり、平
均粒子径が4.0〜16μmである該粉末を正極活物質
とする。
That is, the present invention relates to the formula LixCo 2 -x-y-
x = 0.97~1.005 in zByMgzO 2, y = 0.
A powder of a lithium-cobalt double oxide containing boron and magnesium having a specific surface area of 0.2 to 1.1 m 2 / g having a specific surface area of 0.2 to 1.1 m 2 / g having a mean surface area of 0.01 to 0.04 and z = 0.01 to 0.05 is obtained. The powder having a particle size of 4.0 to 16 μm is used as a positive electrode active material.

【0012】また、式LixCo2−x−yByO2において
x=0.97〜1.005、y=0.01〜0.12である
ホウ素を含むリチウムコバルト複酸化物の粉末を合成
し、比表面積が0.2〜1.1m2 /gであり、平均粒
子径が4.0〜16μmである該粉末を正極活物質とす
る。
Also, in the formula LixCo 2 -x-yByO 2
A powder of a lithium-cobalt double oxide containing boron in which x = 0.97 to 1.005 and y = 0.01 to 0.12 is synthesized, and has a specific surface area of 0.2 to 1.1 m 2 / g. The powder having an average particle diameter of 4.0 to 16 μm is used as a positive electrode active material.

【0013】本発明の正極活物質を製造する適切な方法
は、リチウム化合物、コバルト化合物、ホウ素化合物お
よびマグネシウム化合物を式 LixCo2−x−y−zBy
MgzO2 においてx=0.97〜1.005、y=0.0
1〜0.04、z=0.01〜0.05となるように湿式
粉砕混合し、平均粒子径を1.0μm以下に調製した
後、酸素を含む気流中で、温度が800〜950℃で6
〜20時間焼成することを特徴とする。
A suitable method for preparing the cathode active material of the present invention is to convert a lithium compound, a cobalt compound, a boron compound and a magnesium compound into a compound of the formula LixCo 2 -x-y-zBy.
X = 0.97 to 1.005, y = 0.0 in MgzO 2
After wet-pulverizing and mixing so as to be 1 to 0.04 and z = 0.01 to 0.05, and adjusting the average particle diameter to 1.0 μm or less, in an air stream containing oxygen, the temperature is 800 to 950 ° C. At 6
It is characterized by firing for up to 20 hours.

【0014】また、リチウム化合物、コバルト化合物お
よびホウ素化合物を式LixCo2−x−yByO2において
x=0.97〜1.005、y=0.01〜0.12となる
ように湿式粉砕混合し、平均粒子径を1.0μm以下に
調製した後、酸素を含む気流中で、温度が800〜95
0℃で6〜20時間焼成する。
Further, a lithium compound, a cobalt compound and a boron compound are represented by the formula LixCo 2 -x-yByO 2
After wet pulverization and mixing so that x = 0.97 to 1.005 and y = 0.01 to 0.12, the average particle diameter is adjusted to 1.0 µm or less, and then the temperature is reduced in a stream containing oxygen. 800-95
Bake at 0 ° C for 6 to 20 hours.

【0015】あるいは、リチウム化合物、コバルト化合
物およびホウ素化合物を、Li/Coモル比が0.95
〜1.0、B/Coモル比が0.01〜0.12となる
ように湿式粉砕混合し、原料粉末の平均粒子径が1.0
μm以下とした後に、酸素気流中で、温度が750℃〜
950℃で、10〜20時間焼成する。
Alternatively, a lithium compound, a cobalt compound and a boron compound are mixed with a Li / Co molar ratio of 0.95.
~ 1.0, the wet pulverization and mixing so that the B / Co molar ratio is 0.01 ~ 0.12, and the average particle diameter of the raw material powder is 1.0
μm or less, the temperature is 750 ° C.
Bake at 950 ° C. for 10 to 20 hours.

【0016】[0016]

【発明の実施の形態】原料のコバルト化合物としては、
たとえば水酸化コバルト、炭酸コバルト、酸化コバルト
を用いることが可能である。また、リチウム化合物とし
ては、炭酸リチウム、水酸化リチウム、水酸化リチウム
1水和物、硝酸リチウム、あるいはこれらの混合物を用
いることができる。さらに、ホウ素化合物としては、無
水ホウ酸、ホウ酸等を用いることができる。また、マグ
ネシウム化合物としては、塩基性炭酸マグネシウム、水
酸化マグネシウムを用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a raw material cobalt compound,
For example, cobalt hydroxide, cobalt carbonate, and cobalt oxide can be used. As the lithium compound, lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate, or a mixture thereof can be used. Further, as the boron compound, boric anhydride, boric acid and the like can be used. As the magnesium compound, basic magnesium carbonate and magnesium hydroxide can be used.

【0017】上記原料を、モル比でLi/Coを0.9
5〜1.0、B/Coを0.01〜0.12に混合し、
湿式で粉砕した後、焼成して合成することで結晶性のよ
い正極活物質を得ることができる。本発明の製造方法の
特徴であるホウ素の添加量は、リチウムコバルト複酸化
物の組成式LixCo2-xByO2においてx=0.95〜
1.0、y=0.01〜0.12が望ましい。より好まし
くは、y の値は0.015以上0.09以下である。
0.01未満では、添加効果がなく結晶性の良い活物質
が得られない。0.12を超えると不純物相(Li3
3)が生成するため結晶性は劣化し、同時に導電性も
低下する。活物質の導電率の低下は、助電剤を多く必要
とするため好ましくない。
The above raw materials are prepared by mixing Li / Co in a molar ratio of 0.9.
5 to 1.0, B / Co is mixed to 0.01 to 0.12,
A positive electrode active material with good crystallinity can be obtained by pulverizing in a wet manner and then firing to synthesize. The addition amount of boron which is a feature of the production method of the present invention, x = 0.95 to the composition formula LixCo 2 -xByO 2 of lithium cobalt complex oxide
1.0, y = 0.01 to 0.12. More preferably, the value of y is 0.015 or more and 0.09 or less.
If it is less than 0.01, there is no effect of addition and an active material having good crystallinity cannot be obtained. If it exceeds 0.12, the impurity phase (Li 3 B
Since O 3 ) is generated, the crystallinity is degraded, and at the same time, the conductivity is also lowered. A decrease in the conductivity of the active material is not preferable because a large amount of an auxiliary agent is required.

【0018】また、上記原料を式LixCo2-x-y-zBy
MgzO2 においてx=0.97〜1.005、y=0.0
1〜0.04、z=0.01〜0.05となるように混合
し、湿式で粉砕した後に、焼成することで、結晶性がよ
く、かつ導電率の高い正極活物質を得ることができる。
Further, the above raw material is represented by the formula LixCo 2 -xy-zBy
X = 0.97 to 1.005, y = 0.0 in MgzO 2
1 to 0.04, z = 0.01 to 0.05, mixed and wet pulverized, and then fired to obtain a positive electrode active material with good crystallinity and high conductivity. it can.

【0019】均一な組成の正極活物質を得るためには、
粉砕混合を湿式で行うことが効果的であり、かつ平均粒
子径を1.0μm以下に調製することが重要である。
In order to obtain a positive electrode active material having a uniform composition,
It is effective to carry out the pulverization and mixing in a wet manner, and it is important to adjust the average particle diameter to 1.0 μm or less.

【0020】なお、湿式の粉砕混合法としては、ボール
ミル、ビーズミル等の装置を用いることができ、溶媒と
しては純水が望ましいがエタノール等のアルコールでも
問題なく使用できる。
As a wet pulverization / mixing method, an apparatus such as a ball mill or a bead mill can be used. As a solvent, pure water is preferable, but an alcohol such as ethanol can be used without any problem.

【0021】リチウムの含有量はx=0.97〜1.00
5が良く、0.97未満では、焼成時の反応性が低下
し、均一な正極活物質が得られない。このため、該正極
活物質を組み込んだ二次電池の容量維持率が低下する。
また、1.005を超えると、過剰のリチウムが粒子表
面に残り、吸湿および空気中の炭酸ガスとの反応が起き
易くなり、その結果正極活物質が失活してしまう。
The content of lithium is x = 0.97 to 1.00.
If the ratio is less than 0.97, the reactivity during firing decreases, and a uniform positive electrode active material cannot be obtained. For this reason, the capacity retention of the secondary battery incorporating the positive electrode active material decreases.
On the other hand, if the value exceeds 1.005, excess lithium remains on the particle surface, and moisture absorption and reaction with carbon dioxide in the air are likely to occur, with the result that the positive electrode active material is deactivated.

【0022】ホウ素の含有量はy=0.01〜0.04が
良い。0.01未満では、ホウ素添加による結晶性の向
上が十分ではない。0.04を超えると、同時に添加す
るマグネシウムが析出し、結晶性が低下し、該正極活物
質を組み込んだ二次電池の放電容量が低下する。
The content of boron is preferably y = 0.01 to 0.04. If it is less than 0.01, the crystallinity is not sufficiently improved by adding boron. If it exceeds 0.04, magnesium to be added at the same time precipitates, the crystallinity decreases, and the discharge capacity of the secondary battery incorporating the positive electrode active material decreases.

【0023】マグネシウムの含有量はz=0.01〜0.
05が良い。0.01未満では、導電率の向上の効果が
不十分である。0.05を超えると、異相が析出するた
め結晶性が低下してしまう。
The content of magnesium is z = 0.01-0.
05 is good. If it is less than 0.01, the effect of improving the conductivity is insufficient. If it exceeds 0.05, a different phase is precipitated, and the crystallinity is lowered.

【0024】別な実施の形態として、前記原料を式Li
xCo2-x-yByO2においてx=0.97〜1.005、y=
0.01〜0.12となるように混合し、湿式で粉砕し
た後に、焼成することで、結晶性がよい正極活物質を得
ることができる。Mgを含有する場合に比べて、導電率
がやや劣るが、粒子制御(結晶性の改良)のためのBの
添加範囲を広げられる。
In another embodiment, the raw material is of the formula Li
x = 0.97 to 1.005 in xCo 2 -x-yByO 2 , y =
The positive electrode active material having good crystallinity can be obtained by mixing the mixture so as to be 0.01 to 0.12, pulverizing the mixture by a wet method, and baking the mixture. Although the conductivity is slightly inferior to the case where Mg is contained, the addition range of B for controlling particles (improving crystallinity) can be widened.

【0025】均一な組成の正極活物質を得るためには、
粉砕混合を湿式で行うことが効果的であり、かつ平均粒
子径を1.0μm以下に調製することが重要である。
In order to obtain a positive electrode active material having a uniform composition,
It is effective to carry out the pulverization and mixing in a wet manner, and it is important to adjust the average particle diameter to 1.0 μm or less.

【0026】なお、湿式の粉砕混合法としては、ボール
ミル、ビーズミル等の装置を用いることができ、溶媒と
しては純水が望ましいがエタノール等のアルコールでも
問題なく使用できる。
As the wet pulverizing and mixing method, an apparatus such as a ball mill or a bead mill can be used. As the solvent, pure water is preferable, but alcohol such as ethanol can be used without any problem.

【0027】リチウムの含有量はx=0.97〜1.00
5が良く、0.97未満では、焼成時の反応性が低下
し、均一な正極活物質が得られない。このため、該正極
活物質を組み込んだ二次電池の容量維持率が低下する。
また、1.005を超えると、過剰のリチウムが粒子表
面に残り、吸湿および空気中の炭酸ガスとの反応が起き
易くなり、その結果正極活物質が失活してしまう。
The content of lithium is x = 0.97 to 1.00.
If the ratio is less than 0.97, the reactivity during firing decreases, and a uniform positive electrode active material cannot be obtained. For this reason, the capacity retention of the secondary battery incorporating the positive electrode active material decreases.
On the other hand, if the value exceeds 1.005, excess lithium remains on the particle surface, and moisture absorption and reaction with carbon dioxide in the air are likely to occur, with the result that the positive electrode active material is deactivated.

【0028】ホウ素の含有量はy=0.01〜0.12が
良い。0.01未満では、ホウ素添加による結晶性の向
上が十分ではない。0.12を越えると、不純物相であ
るLi3BO3が生成し、結晶性が劣化し、同時に導電性
も低下する。正極活物質の導電率の低下は、助電材を多
く必要とするため好ましくない。
The boron content is preferably y = 0.01 to 0.12. If it is less than 0.01, the crystallinity is not sufficiently improved by adding boron. If it exceeds 0.12, Li 3 BO 3 which is an impurity phase is generated, and crystallinity is deteriorated, and at the same time, conductivity is also lowered. A decrease in the conductivity of the positive electrode active material is not preferable because a large amount of an auxiliary material is required.

【0029】マグネシウムの添加の有無に関わらずいず
れの場合でも、焼成温度は800℃以上950℃以下が
望ましい。より好ましくは850℃以上950℃以下で
ある。焼成温度が800℃未満、特に750℃未満の場
合には、得られる正極活物質は、結晶性が悪く、電気特
性が劣るために、該正極活物質を組み込んだ二次電池の
クーロン効率が低下してしまう。本発明の趣旨はより低
温で結晶性の優れた正極活物質を得ることであるため、
上限の指定はあまり意味を持たないが、焼成温度が10
00℃、特に1050℃を超えた場合、焼成時にLiの
気散が激しくなるため均一な正極活物質が得られにくく
なり、該正極活物質を組み込んだ二次電池の容量維持率
が悪化する。
Regardless of whether magnesium is added or not, the firing temperature is desirably 800 ° C. to 950 ° C. in any case. More preferably, it is 850 ° C or more and 950 ° C or less. When the sintering temperature is lower than 800 ° C., particularly lower than 750 ° C., the obtained positive electrode active material has poor crystallinity and poor electric characteristics, and therefore, the coulomb efficiency of the secondary battery incorporating the positive electrode active material decreases. Resulting in. Since the purpose of the present invention is to obtain a positive electrode active material having excellent crystallinity at lower temperatures,
Although the specification of the upper limit does not make much sense, if the firing temperature is 10
When the temperature exceeds 00 ° C., particularly 1050 ° C., the diffusion of Li intensifies during firing, so that it is difficult to obtain a uniform positive electrode active material, and the capacity retention of a secondary battery incorporating the positive electrode active material deteriorates.

【0030】焼成時間は長ければ問題はないが、工業的
に生産性を考慮すれば6時間以上20時間以下程度が望
ましい。焼成時間が短いと、未反応物の残留および結晶
性の低下により、該正極活物質を組み込んだ二次電池の
クーロン効率と容量維持率が低下する。
Although there is no problem if the calcination time is long, it is preferably about 6 hours or more and 20 hours or less in view of industrial productivity. If the calcination time is short, the coulomb efficiency and capacity retention of the secondary battery incorporating the positive electrode active material are reduced due to the remaining unreacted substances and a decrease in crystallinity.

【0031】焼成時の雰囲気は酸素を含む気流であれば
よく、空気気流であってもよい。
The atmosphere during firing may be an air stream containing oxygen, and may be an air stream.

【0032】本発明により得られるリチウムコバルト複
酸化物を正極活物質として用いることにより、正極活物
質の利用率およびクーロン効率が高く、サイクル特性の
優れた二次電池を得ることが可能となる。
By using the lithium-cobalt double oxide obtained by the present invention as a positive electrode active material, it becomes possible to obtain a secondary battery having a high utilization rate and a high Coulomb efficiency of the positive electrode active material and excellent cycle characteristics.

【0033】[0033]

【実施例】【Example】

(実施例1)炭酸リチウム(Li2CO3:純度99
%)、酸化コバルト(Co34:Co含有量73.3w
t%)、ホウ酸(H3BO3:純度99.5%)および塩
基性炭酸マグネシウム(MgO含有率41.8wt%)
を式LixCo2-x-y-zByMgzO2においてx=1.0、y
=0.04、z=0.03になるようにそれぞれ秤とり、
容量400ccのボールミル容器を用い、直径10mm
のYSZ(イットリア安定化ジルコニア)ボールを75
0g用い、さらに蒸留水100ccを加えて、回転速度
を85rpmとして15時間粉砕混合を行った。
(Example 1) Lithium carbonate (Li 2 CO 3 : purity 99)
%), Cobalt oxide (Co 3 O 4 : Co content 73.3w)
t%), boric acid (H 3 BO 3 : purity 99.5%) and basic magnesium carbonate (MgO content: 41.8 wt%)
In the formula LixCo 2 -xy-zByMgO 2 , x = 1.0, y
= 0.04 and z = 0.03, respectively.
Using a ball mill container with a capacity of 400 cc, a diameter of 10 mm
75 YSZ (Yttria stabilized zirconia) balls
Using 0 g, 100 cc of distilled water was further added, and the mixture was ground and mixed for 15 hours at a rotation speed of 85 rpm.

【0034】YSZボールとスラリーをふるいを用いて
分けとり、80℃で2時間予備乾燥をした後、100℃
で1時間乾燥を行なった。得られた混合粉末はマイクロ
トラック粒度分布測定機により、平均粒子径が0.65
μmであることを確認した。マグネシアセッターを用い
て、酸素流量が0.3リットル/minで、加熱速度が
300℃/hで850℃まで加熱し、20時間保持する
ことにより合成を行った。
The YSZ ball and the slurry are separated using a sieve, preliminarily dried at 80 ° C. for 2 hours, and then dried at 100 ° C.
For 1 hour. The average particle diameter of the obtained mixed powder was 0.65 by a Microtrac particle size distribution analyzer.
μm was confirmed. Using a magnesia setter, synthesis was performed by heating to 850 ° C. at an oxygen flow rate of 0.3 liter / min and a heating rate of 300 ° C./h, and holding for 20 hours.

【0035】得られた正極活物質の組成はICP分析に
より求め、表1に示す。
The composition of the obtained positive electrode active material was determined by ICP analysis and is shown in Table 1.

【0036】表2に示す導電率σは次のように求めた。
ダイキン工業(株)製ポリフロン(F−201)をバイ
ンダーとして、正極活物質に対して2重量%添加し、乳
鉢混合を行った後、静水圧プレスにより2t/cm2
圧力で、約5×5×35mmの直方体に成型した。接点
にIn−Ga液体合金を塗布し、直流4端子法により抵
抗Rを求め、(1)式により算出した。
The conductivity σ shown in Table 2 was determined as follows.
As a binder, 2% by weight of polyflon (F-201) manufactured by Daikin Industries, Ltd. was added to the positive electrode active material, mixed with a mortar, and then subjected to hydrostatic pressing at a pressure of 2 t / cm 2 at about 5 ×. It was molded into a 5 × 35 mm rectangular parallelepiped. The contact was coated with an In-Ga liquid alloy, the resistance R was determined by a direct current four-terminal method, and calculated by the equation (1).

【0037】σ=(1/R)(L/S) (1) ただし、Sは試料の断面積、Lは電圧測定端子の距離で
ある。
Σ = (1 / R) (L / S) (1) where S is the cross-sectional area of the sample, and L is the distance between the voltage measuring terminals.

【0038】得られた正極活物質の窒素吸着によるBE
T法でもとめた比表面積は、0.62m2 /gであり、
マイクロトラックにより求めた平均粒子径は10.1μ
m、であった。この結果を表2に示す。
BE by nitrogen adsorption of the obtained positive electrode active material
The specific surface area determined by the T method is 0.62 m 2 / g,
The average particle size determined by Microtrack is 10.1μ
m. Table 2 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】さらに以下の手順で、得られた正極活物質
を二次電池に組み込んで、充放電容量を測定した。正極
活物質を120mgと、アセチレンブラック22mgお
よびポリテトラフッ化エチレン樹脂(PTFE)8mg
を混合し、200MPaの圧力で直径11mmにプレス
成型して、真空乾燥機中120℃で12時間乾燥して正
極を得た。
Further, according to the following procedure, the obtained positive electrode active material was incorporated into a secondary battery, and the charge / discharge capacity was measured. 120 mg of positive electrode active material, 22 mg of acetylene black and 8 mg of polytetrafluoroethylene resin (PTFE)
Were mixed, press-molded to a diameter of 11 mm at a pressure of 200 MPa, and dried in a vacuum dryer at 120 ° C. for 12 hours to obtain a positive electrode.

【0042】図1は、本発明の実施例の正極活物質を組
み込んだ二次電池の一部破断斜視図である。
FIG. 1 is a partially cutaway perspective view of a secondary battery incorporating a positive electrode active material according to an embodiment of the present invention.

【0043】前記正極5を、Ar雰囲気のグローブボッ
クス中で、2032型コイン電池(ボタン型電池とも呼
ぶ)に組み立てた。負極2には直径17mm、厚さ1m
mのリチウム金属を用い、電解液には1モルのLiPF
6 を支持塩とするエチレンカーボネート(EC)と1,
2ジメトキシエタン(DME)の等量混合溶液を用い
た。セパレータ3は膜厚25μmのポリエチレン多孔膜
を用いた。図中に電解液を示していないが、電解液はコ
イン電池内部の空隙に存在する。なお、コイン電池は1
0時間程放置し、OCVが安定した後、電流密度1.0
mA/cm2 でカットオフ4.3−3.0Vで充放電試
験を行った。1、50、100回目の放電容量とクーロ
ン効率と、100回目の容量維持率の測定結果を表3に
示す。
The positive electrode 5 was assembled into a 2032 type coin battery (also called a button type battery) in a glove box in an Ar atmosphere. The negative electrode 2 has a diameter of 17 mm and a thickness of 1 m
m of lithium metal and 1 mol of LiPF
Ethylene carbonate (EC) with 6 as supporting salt and 1,
An equal volume mixed solution of 2 dimethoxyethane (DME) was used. As the separator 3, a polyethylene porous film having a thickness of 25 μm was used. Although the electrolytic solution is not shown in the figure, the electrolytic solution exists in a void inside the coin battery. The coin battery is 1
Leave it for about 0 hours, and after the OCV becomes stable,
A charge / discharge test was performed at a cutoff of 4.3 to 3.0 V at mA / cm 2 . Table 3 shows the measurement results of the discharge capacity, Coulomb efficiency, and the 100th capacity retention rate at the 1, 50, and 100 times.

【0044】[0044]

【表3】 [Table 3]

【0045】(実施例2)炭酸リチウム、酸化コバル
ト、ホウ酸および塩基性炭酸マグネシウムを式LixC
2-x-y-zByMgzO2 においてx=0.98、y=0.0
15、z=0.01になるようにそれぞれ秤とり、焼成温
度を870℃とし、他の条件は実施例1と同様にして正
極活物質を合成した。分析結果の組成を表1に、導電率
σと比表面積と平均粒子径を表2に、実施例1と同様に
して該正極物質を組み込んだコイン電池の放電容量と、
クーロン効率と、100回目の容量維持率の測定結果を
表3に示す。
Example 2 Lithium carbonate, cobalt oxide, boric acid and basic magnesium carbonate were converted to a compound of the formula LixC
x = 0.98, y = 0.0 in o 2 -xy-zByMgO 2
The positive electrode active material was synthesized in the same manner as in Example 1 except that the weighing was performed at 870 ° C. at 15, and z = 0.01. The composition of the analysis result is shown in Table 1, the conductivity σ, the specific surface area and the average particle size are shown in Table 2, and the discharge capacity of the coin battery incorporating the cathode material in the same manner as in Example 1;
Table 3 shows the measurement results of the Coulomb efficiency and the 100th capacity retention ratio.

【0046】(実施例3)炭酸リチウム、酸化コバル
ト、ホウ酸および塩基性炭酸マグネシウムを式LixC
2-x-y-zByMgzO2 においてx=1.0、y=0.0
1、z=0.05になるようにそれぞれ秤とり、焼成温度
を920℃とし、他の条件は実施例1と同様にして正極
活物質を合成した。分析結果の組成を表1に、導電率σ
と比表面積と平均粒子径を表2に、実施例1と同様にし
て該正極物質を組み込んだコイン電池の放電容量と、ク
ーロン効率と、100回目の容量維持率の測定結果を表
3に示す。
Example 3 Lithium carbonate, cobalt oxide, boric acid and basic magnesium carbonate were converted to a compound of the formula LixC
x = 1.0 and y = 0.0 in o 2 -xy-zByMgO 2
The positive electrode active material was synthesized in the same manner as in Example 1 except that the sintering temperature was set to 920 ° C. and z = 0.05. Table 1 shows the composition of the analysis results,
, Specific surface area, and average particle size are shown in Table 2. Table 3 shows the measurement results of the discharge capacity, the Coulomb efficiency, and the 100th capacity retention rate of the coin battery incorporating the cathode material in the same manner as in Example 1. .

【0047】(実施例4)炭酸リチウム、酸化コバル
ト、およびホウ酸を式LixCo2-x-yByO2においてx=
1.0、y=0.08になるようにそれぞれ秤とり、実施
例1と同様にして正極活物質を合成した。分析結果の組
成を表1に、導電率σと比表面積と平均粒子径を表2
に、実施例1と同様にして該正極物質を組み込んだコイ
ン電池の放電容量と、クーロン効率と、100回目の容
量維持率の測定結果を表3に示す。
Example 4 Lithium carbonate, cobalt oxide, and boric acid were converted to a compound of the formula LixCo 2 -x-yByO 2 where x =
1.0 and y = 0.08, respectively, and the cathode active material was synthesized in the same manner as in Example 1. Table 1 shows the composition of the analysis results, and Table 2 shows the conductivity σ, specific surface area, and average particle size.
Table 3 shows the measurement results of the discharge capacity, the Coulomb efficiency, and the 100th capacity retention rate of the coin battery incorporating the cathode material in the same manner as in Example 1.

【0048】(比較例1)炭酸リチウム、酸化コバルト
および塩基性炭酸マグネシウムを式LixCo2-x-zMg
zO2においてx=1.0、z=0.08になるようにそれぞ
れ秤とり、焼成温度を1000℃として、他の条件は実
施例1と同様にして正極活物質を合成した。分析結果の
組成を表1に、導電率σと比表面積と平均粒子径を表2
に、実施例1と同様にして該正極物質を組み込んだコイ
ン電池の放電容量と、クーロン効率と、100回目の容
量維持率の測定結果を表3に示す。
(Comparative Example 1) Lithium carbonate, cobalt oxide and basic magnesium carbonate were converted to the formula LixCo 2 -x-zMg
A positive electrode active material was synthesized by weighing each of zO 2 so that x = 1.0 and z = 0.08, setting the firing temperature to 1000 ° C., and using the other conditions as in Example 1. Table 1 shows the composition of the analysis results, and Table 2 shows the conductivity σ, specific surface area, and average particle size.
Table 3 shows the measurement results of the discharge capacity, the Coulomb efficiency, and the 100th capacity retention rate of the coin battery incorporating the cathode material in the same manner as in Example 1.

【0049】(比較例2)炭酸リチウム、酸化コバル
ト、ホウ酸および塩基性炭酸マグネシウムを式LixC
2-x-y-zByMgzO2 においてx=0.96、y=0.0
5、z=0.03になるようにそれぞれ秤とり、実施例1
と同様にして正極活物質を合成した。分析結果の組成を
表1に、導電率σと比表面積と平均粒子径を表2に、実
施例1と同様にして該正極活物質を組み込んだコイン電
池の放電容量と、クーロン効率と、100回目の容量維
持率の測定結果を表3に示す。
Comparative Example 2 Lithium carbonate, cobalt oxide, boric acid and basic magnesium carbonate were converted to a compound of the formula LixC
x = 0.96, y = 0.0 in o 2 -xy-zByMgO 2
5, weighed each so that z = 0.03, and
A positive electrode active material was synthesized in the same manner as described above. The composition of the analysis result is shown in Table 1, the electrical conductivity σ, the specific surface area and the average particle diameter are shown in Table 2, and the discharge capacity, Coulomb efficiency and 100 of the coin battery incorporating the positive electrode active material in the same manner as in Example 1 are shown. Table 3 shows the results of the second measurement of the capacity retention ratio.

【0050】表3から明らかなように、本発明によるホ
ウ素とマグネシウムを含むリチウムコバルト複酸化物を
二次電池の正極活物質として用いた場合(実施例1〜
3)、充放電のクーロン効率(放電容量/充電容量)、
容量維持率(100回目の放電容量/1回目の放電容
量)ともに、比較例の正極活物質を使用した二次電池よ
りも優れた特性を示す。
As is clear from Table 3, when the lithium-cobalt double oxide containing boron and magnesium according to the present invention was used as a positive electrode active material of a secondary battery (Examples 1 to 3).
3), Coulomb efficiency of charge / discharge (discharge capacity / charge capacity),
Both the capacity retention ratio (100th discharge capacity / first discharge capacity) show characteristics superior to the secondary battery using the positive electrode active material of the comparative example.

【0051】また、本発明によるホウ素を含むリチウム
コバルト複酸化物を二次電池の正極活物質として用いた
場合(実施例4)、比較例の正極活物質を使用した二次
電池よりも優れた容量維持率を有する特性を示す。
Further, when the lithium-cobalt double oxide containing boron according to the present invention was used as the positive electrode active material of the secondary battery (Example 4), it was superior to the secondary battery using the positive electrode active material of the comparative example. It shows the characteristic of having a capacity retention ratio.

【0052】また、本実施例における二次電池は、リチ
ウム金属を負極とするボタン型電池であったが、本発明
の正極活物質の使用がこれに限定されるものではなく、
電池反応によりLiが可逆的にインターカレート可能な
カーボンファイバー、グラファイト等のカーボンを負極
にした二次電池にも用いることができる。
Although the secondary battery in this embodiment is a button battery using lithium metal as a negative electrode, the use of the positive electrode active material of the present invention is not limited to this.
The present invention can also be used for a secondary battery in which carbon such as carbon fiber or graphite capable of reversibly intercalating Li by a battery reaction is used as a negative electrode.

【0053】(実施例5〜8および比較例3、4)表4
に示すように、炭酸リチウム(Li2Co3:純度99
%)、酸化コバルト(Co34:Co含有量73wt
%)、ホウ酸(H3BO3:純度99.5%)および純水
90ccをそれぞれ秤とり、容量400ccのボールミ
ル容器を用い、直径10mmのYSZ(イットリア安定
化ジルコニア)ボールを750g用い、回転速度を85
rpmとして15時間粉砕混合を行った。
(Examples 5 to 8 and Comparative Examples 3 and 4) Table 4
As shown in the figure, lithium carbonate (Li 2 Co 3 : purity 99)
%), Cobalt oxide (Co 3 O 4 : Co content 73 wt%)
%), Boric acid (H 3 BO 3: Take weighing 99.5%) and pure water 90cc, respectively, using a ball mill container having a capacity of 400 cc, using 750g of YSZ (yttria-stabilized zirconia) balls having a diameter of 10 mm, rotating Speed 85
The mixture was ground and mixed at 15 rpm for 15 hours.

【0054】YSZボールとスラリーをふるいを用いて
分けとり、80℃で3時間予備乾燥をした後、120℃
で1時間乾燥を行った。得られた混合粉末はマイクロト
ラック粒度分布測定機により、平均粒子径が0.65μ
mであることを確認した。マグネシウムセッターを用い
て、酸素流量が0.3リットル/minで、加熱速度が
300℃/hで900℃まで加熱し、15時間保持する
ことにより合成を行った。
The YSZ ball and the slurry are separated using a sieve, preliminarily dried at 80 ° C. for 3 hours, and then dried at 120 ° C.
For 1 hour. The obtained mixed powder was analyzed by a Microtrac particle size distribution analyzer to have an average particle diameter of 0.65 μm.
m. Using a magnesium setter, the synthesis was performed by heating to 900 ° C. at a heating rate of 300 ° C./h at an oxygen flow rate of 0.3 liter / min and holding for 15 hours.

【0055】表4に得られた正極活物質の調合組成と、
原料の調合量を示す。
Table 4 shows the composition of the positive electrode active material obtained,
Shows the blending amount of raw materials.

【0056】[0056]

【表4】 [Table 4]

【0057】XRD測定の結果、比較例4(y=0.14
7)の正極活物質にLi3BO3の析出が認められた。
As a result of XRD measurement, Comparative Example 4 (y = 0.14
Precipitation of Li 3 BO 3 was observed in the positive electrode active material of 7).

【0058】正極活物質約3gを乳鉢を用いて粉砕し、
ポリテトラフッ化エチレン樹脂(ダイキン工業(株)
製:F−201)を2wt%添加し混合した後、直方体
(約30×5×5mm)に荷重2トンの静水圧プレスで
成型した。これを直流4端子法により導電率を測定し
た。表5に得られた正極活物質の導電率を示す。
About 3 g of the positive electrode active material is ground using a mortar,
Polytetrafluoroethylene resin (Daikin Industries, Ltd.)
(F-201) was added at 2 wt% and mixed, and then formed into a rectangular parallelepiped (about 30 × 5 × 5 mm) by a hydrostatic press with a load of 2 tons. The conductivity was measured by a DC four-terminal method. Table 5 shows the conductivity of the obtained positive electrode active material.

【0059】[0059]

【表5】 [Table 5]

【0060】表5に示すように、ホウ素添加量が増加す
るとともに導電率が低下することがわかる。
As shown in Table 5, it is found that the conductivity decreases as the amount of boron added increases.

【0061】得られた正極活物質を用いて二次電池を組
み、充放電容量を測定した。正極活物質120mgとア
セチレンブラック22mgとポリテトラフッ化エチレン
樹脂(PTFE)8mgとを混合し、200MPaの圧
力で直径11mmにプレス成形し正極とした。作製した
正極を、真空乾燥機中120℃で1晩乾燥させ、アルゴ
ン雰囲気のグローブボックス中で、2032型コイン電
池に組み立てた。負極には直径17mm、厚さ1mmの
リチウム金属を用い、電解液には1モルのLiPF6
支持塩とするエチレンカーボネート(EC)とジエチル
カーボネート(PC)の等量混合溶液を用いた。セパレ
ータは膜厚25μmのポリエチレン多孔膜を用いた。な
おコイン電池は約10時間放置し、OCVが安定した
後、電流密度1.0mA/cm2 でカットオフ4.3−
3.0Vとして100回の充放電試験を行った。結果を
表6に示す。
A secondary battery was assembled using the obtained positive electrode active material, and the charge / discharge capacity was measured. A positive electrode was prepared by mixing 120 mg of the positive electrode active material, 22 mg of acetylene black, and 8 mg of polytetrafluoroethylene resin (PTFE), and press-molding to a diameter of 11 mm at a pressure of 200 MPa. The produced positive electrode was dried in a vacuum dryer at 120 ° C. overnight, and assembled into a 2032 type coin battery in a glove box under an argon atmosphere. For the negative electrode, lithium metal having a diameter of 17 mm and a thickness of 1 mm was used, and as the electrolytic solution, a mixed solution of equivalent amounts of ethylene carbonate (EC) and diethyl carbonate (PC) using 1 mol of LiPF 6 as a supporting salt was used. As the separator, a polyethylene porous film having a thickness of 25 μm was used. The coin battery was left for about 10 hours, and after the OCV was stabilized, the cutoff was 4.3 at a current density of 1.0 mA / cm 2.
The charge and discharge test was performed 100 times at 3.0 V. Table 6 shows the results.

【0062】[0062]

【表6】 [Table 6]

【0063】実施例5〜8に示すとおり本発明による正
極活物質を用いた二次電池はクーロン効率、容量維持率
ともに優れていることがわかる。
As shown in Examples 5 to 8, it can be seen that the secondary batteries using the positive electrode active material according to the present invention are excellent in both Coulomb efficiency and capacity retention.

【0064】(実施例9、10および比較例5)炭酸リ
チウム(Li2Co3)93.3g、炭酸コバルト(Co
34)203.48g、ホウ酸(H3BO3)4.37g
をそれぞれ秤とり、純水360ccを加えた後、直径1
0mmのYSZボールを3650g用い、容量2000
ccのボールミル容器で、回転速度を67rpmとして
15時間粉砕混合を行った。
(Examples 9 and 10 and Comparative Example 5) 93.3 g of lithium carbonate (Li 2 Co 3 ) and cobalt carbonate (Co
3 O 4 ) 203.48 g, boric acid (H 3 BO 3 ) 4.37 g
Are weighed, and 360 cc of pure water is added thereto.
3650g of YSZ ball of 0mm, capacity 2000
In a cc ball mill container, pulverization and mixing were performed at a rotation speed of 67 rpm for 15 hours.

【0065】YSZボールミルとスラリーをふるいを用
いて分けとり、80℃で3時間予備乾燥をした後、12
0℃で1時間乾燥を行った。得られた混合粉末はマイク
ロトラック粒度分布測定機により、平均粒子径0.6μ
mであることを確認した。
The YSZ ball mill and the slurry were separated by using a sieve, and were preliminarily dried at 80 ° C. for 3 hours.
Drying was performed at 0 ° C. for 1 hour. The resulting mixed powder was analyzed by a Microtrac particle size distribution analyzer, using an average particle diameter of 0.6 μm.
m.

【0066】この混合粉末約90gをマグネシウムセッ
ターを用いて、酸素流量0.3リットル/minで、加
熱速度が300℃/hで、表7に示す焼成温度まで加熱
し、10時間保持することにより合成を行った。
About 90 g of the mixed powder was heated using a magnesium setter at an oxygen flow rate of 0.3 L / min at a heating rate of 300 ° C./h to the firing temperature shown in Table 7, and held for 10 hours. Synthesis was performed.

【0067】このとき組成はLi1.0Co1.0030.028
2となる。実施例5と同様に充放電試験を実施した。
その結果を表7に示す。
At this time, the composition is Li 1.0 Co 1.003 B 0.028
It becomes O 2 . A charge / discharge test was performed in the same manner as in Example 5.
Table 7 shows the results.

【0068】[0068]

【表7】 [Table 7]

【0069】表7に示すように、本発明による正極活物
質をリチウム二次電池に用いた場合、充放電のクーロン
効率が高く、しかも容量維持率の高い性能を有する二次
電池が得られる。
As shown in Table 7, when the positive electrode active material according to the present invention is used in a lithium secondary battery, a secondary battery having high charge / discharge coulomb efficiency and high capacity retention rate can be obtained.

【0070】[0070]

【発明の効果】本発明による正極活物質は、非水系電解
質二次電池の正極活物質として用いることで、二次電池
の放電容量(正極活物質の利用率)およびクーロン効率
を向上させることが可能であり、容量維持率の優れた二
次電池が作製できるという効果がある。
The positive electrode active material according to the present invention can be used as a positive electrode active material for a non-aqueous electrolyte secondary battery to improve the discharge capacity (utilization rate of the positive electrode active material) and the Coulomb efficiency of the secondary battery. It is possible to produce a secondary battery having an excellent capacity retention ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた2032型コイン電池
の一部破断斜視図である。
FIG. 1 is a partially broken perspective view of a 2032 type coin battery used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 負極缶 2 リチウム金属ペレット 3 セパレータ 4 ガスケット 5 正極ペレット 6 正極缶 DESCRIPTION OF SYMBOLS 1 Negative electrode can 2 Lithium metal pellet 3 Separator 4 Gasket 5 Positive electrode pellet 6 Positive electrode can

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素とマグネシウムを含むリチウムコ
バルト複酸化物の粉末であり、比表面積が0.2〜1.
1m2 /gであり、平均粒子径が4.0〜16μmであ
り、かつ、式LixCo2−x−y−zByMgzO2において
x=0.97〜1.005、y=0.01〜0.04、z=
0.01〜0.05であることを特徴とする非水系電解
質二次電池用正極活物質。
1. A powder of a lithium-cobalt double oxide containing boron and magnesium, having a specific surface area of 0.2 to 1.
1 m 2 / g, the average particle size is 4.0 to 16 μm, and in the formula Li x Co 2 -x-y-zByMgO 2
x = 0.97 to 1.005, y = 0.01 to 0.04, z =
A positive electrode active material for a non-aqueous electrolyte secondary battery, which is 0.01 to 0.05.
【請求項2】 リチウム化合物、コバルト化合物、ホウ
素化合物およびマグネシウム化合物を式LixCo2−x
−y−zByMgzO2においてx=0.97〜1.005、y
=0.01〜0.04、z=0.01〜0.05となるよ
うに湿式で粉砕混合し、平均粒子径を1.0μm以下に
調製した後、酸素を含む気流中で、温度が800〜95
0℃で、6〜20時間焼成することを特徴とする請求項
1に記載の非水系電解質二次電池用正極活物質の製造方
法。
2. A lithium compound, a cobalt compound, a boron compound and a magnesium compound having the formula LixCo 2 -x
X = from .97 to 1.005 in -y-zByMgzO 2, y
= 0.01-0.04, pulverized and mixed in a wet manner so that z = 0.01-0.05, and adjusted to an average particle size of 1.0 μm or less. 800-95
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the method is calcined at 0 ° C. for 6 to 20 hours.
【請求項3】 ホウ素を含むリチウムコバルト複酸化物
の粉末であり、比表面積が0.2〜2.0m2 /gであ
り、平均粒子径が4.0〜16μmであり、かつ、式L
ixCo2−x−yByO2においてx=0.97〜1.00
5、y=0.01〜0.12であることを特徴とする非水
系電解質二次電池用正極活物質。
3. A powder of a lithium-cobalt double oxide containing boron, having a specific surface area of 0.2 to 2.0 m 2 / g, an average particle diameter of 4.0 to 16 μm, and a formula L
x = 0.97 to 1.00 in ixCo 2 −x−yByO 2
5. A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein y is 0.01 to 0.12.
【請求項4】 リチウム化合物、コバルト化合物および
ホウ素化合物を式LixCo2−x−yByO2においてx=
0.97〜1.005、y=0.01〜0.12となるよ
うに湿式で粉砕混合し、平均粒子径を1.0μm以下に
調製した後、酸素を含む気流中で、温度が800〜95
0℃で6〜20時間焼成することを特徴とする請求項3
に記載の非水系電解質二次電池用正極活物質の製造方
法。
4. A lithium compound, a cobalt compound and a boron compound having the formula LixCo 2 -x-yByO 2 where x =
0.97 to 1.005, y = 0.01 to 0.12, wet pulverization and mixing to adjust the average particle diameter to 1.0 μm or less, and then, in an oxygen-containing air flow, at a temperature of 800 ~ 95
4. The sintering at 0 DEG C. for 6 to 20 hours.
3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to item 1.
【請求項5】 リチウム化合物、コバルト化合物および
ホウ素化合物を、Li/Coモル比を0.95〜1.0
とし、B/Coモル比を0.01〜0.12として湿式
粉砕混合し、平均粒子径を1.0μm以下に調製した
後、酸素気流中で温度が750℃〜950℃で、10〜
20時間焼成することを特徴とする非水系電解質二次電
池用正極活物質の製造方法。
5. A lithium compound, a cobalt compound and a boron compound having a Li / Co molar ratio of 0.95 to 1.0.
The mixture was wet-pulverized and mixed at a B / Co molar ratio of 0.01 to 0.12 to adjust the average particle diameter to 1.0 μm or less.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by firing for 20 hours.
JP9050558A 1996-09-13 1997-03-05 Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture Pending JPH10144315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9050558A JPH10144315A (en) 1996-09-13 1997-03-05 Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24291596 1996-09-13
JP8-242915 1996-09-13
JP9050558A JPH10144315A (en) 1996-09-13 1997-03-05 Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10144315A true JPH10144315A (en) 1998-05-29

Family

ID=26391038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9050558A Pending JPH10144315A (en) 1996-09-13 1997-03-05 Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10144315A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
CN100394639C (en) * 2000-04-04 2008-06-11 索尼株式会社 Non-aqueous electrolyte secondary battery
US7842268B2 (en) * 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
CN100394639C (en) * 2000-04-04 2008-06-11 索尼株式会社 Non-aqueous electrolyte secondary battery
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP4604347B2 (en) * 2000-12-27 2011-01-05 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US7842268B2 (en) * 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
KR101104664B1 (en) 2005-02-14 2012-01-13 에이지씨 세이미 케미칼 가부시키가이샤 Method for producing lithium containing complex oxide for positive electrode of lithium secondary battery

Similar Documents

Publication Publication Date Title
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
EP4057390A1 (en) Carbon-coated lithium-rich oxide composite material and preparation method therefor
CN108390022B (en) Carbon-metal oxide composite coated lithium battery ternary positive electrode material, preparation method thereof and lithium battery
KR101234965B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20160045029A (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
KR20150090963A (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
US20230307631A1 (en) Positive electrode material, battery, and electronic device
CN108807920B (en) LASO-coated octahedral-structure lithium nickel manganese oxide composite material and preparation method thereof
KR102649226B1 (en) lithium ion battery
CN112447948A (en) Sulfide-coated positive electrode material, preparation method thereof and lithium ion battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
US20130330625A1 (en) Lithium Nickel Cobalt Composite Oxide Cathode Material
KR20190042700A (en) The anode of a lithium ion battery
KR101537067B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same
EP4250400A1 (en) Positive electrode piece, battery and electronic device
KR100824931B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
Xue et al. Synthesis and performance of hollow LiNi 0.5 Mn 1.5 O 4 with different particle sizes for lithium-ion batteries
JPH1027613A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery and manufacture thereof
JPH10144315A (en) Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture
CN115072797A (en) Preparation method and application of lithium ion battery positive electrode material