JPH10144295A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH10144295A
JPH10144295A JP8298496A JP29849696A JPH10144295A JP H10144295 A JPH10144295 A JP H10144295A JP 8298496 A JP8298496 A JP 8298496A JP 29849696 A JP29849696 A JP 29849696A JP H10144295 A JPH10144295 A JP H10144295A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8298496A
Other languages
Japanese (ja)
Inventor
Hiroto Sagisaka
博人 鷺坂
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8298496A priority Critical patent/JPH10144295A/en
Publication of JPH10144295A publication Critical patent/JPH10144295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which efficiently stores lithium ions in negative electrode active material, and can thereby surely supplement loss in capacity in the negative electrode. SOLUTION: This secondary battery is equipped with a positive electrode 1 containing lithium ions, a negative electrode 2 capable of storing and emitting lithium ions, and with non-aqueous electrolyte. In this case, carbon material 18 used as active material for the negative electrode 2, a conductive metal 15 capable of forming no alloy with lithium, is deposited on the surface of the carbon material to the thickness less than 1μm, and furthermore, metal lithium 16 is deposited on the surface of the conductive metal 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオンを含
む正極と、リチウムイオンを吸蔵放出できる炭素材料か
らなる負極と、非水電解液とを備えたリチウムイオン二
次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery comprising a positive electrode containing lithium ions, a negative electrode made of a carbon material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池は、放電
容量が大きく、高電圧で高エネルギー密度であることか
ら、その発展に大きな期待が寄せられている。
2. Description of the Related Art Conventionally, lithium ion secondary batteries have been expected to be greatly developed because of their large discharge capacity, high voltage and high energy density.

【0003】このリチウムイオン二次電池は、充電時に
は、正極からリチウムイオンが放出されてこのリチウム
イオンが負極に吸蔵され、放電時にはその逆の動作によ
って充放電が行なわれるが、充電時において負極に吸蔵
されるべきリチウムイオン、または、負極に吸蔵された
リチウムイオンが、電解液の分解反応に消費されたり、
あるいは、炭素材料と化合物を作ったりすることによ
り、放電時において負極から放出されるリチウムイオン
量が、吸蔵されたリチウムイオン量よりも少なくなる現
象があり(これが負極ロス容量と称されている)、この
負極ロス容量が、二次電池の高容量化を妨げる一因とな
っている。
In this lithium ion secondary battery, during charging, lithium ions are released from the positive electrode, and the lithium ions are occluded in the negative electrode. When discharging, charging and discharging are performed by the reverse operation. Lithium ions to be occluded, or lithium ions occluded in the negative electrode, are consumed in the decomposition reaction of the electrolytic solution,
Alternatively, there is a phenomenon in which the amount of lithium ions released from the negative electrode at the time of discharge becomes smaller than the amount of occluded lithium ions by producing a compound with a carbon material (this is referred to as negative electrode loss capacity). This negative electrode loss capacity is one of the factors that hinder the increase in capacity of the secondary battery.

【0004】そこで、従来では、前述した負極ロス容量
を補填するために、負極活物質に金属リチウムを直接付
着させておき、この負極活物質を電解液中に入れ、その
時に生じる電位差と濃度差により、リチウムイオンを負
極活物質に吸蔵させる方法等が試みられている。
Therefore, conventionally, in order to compensate for the above-mentioned negative electrode loss capacity, metallic lithium is directly adhered to the negative electrode active material, and this negative electrode active material is put into an electrolytic solution, and a potential difference and a concentration difference generated at that time are caused. Thus, a method of inserting lithium ions into the negative electrode active material has been attempted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな方法であると、負極活物質にリチウムイオンを吸蔵
させるのに時間がかかるだけでなく、負極活物質の表面
に付着させられる金属リチウムの密度にむらが生じて、
金属リチウムが溶けきらずに残ってしまい、この結果、
充放電のサイクル特性に影響を与えてしまうといった不
具合があった。
However, according to such a method, it takes not only long time to occlude lithium ions in the negative electrode active material, but also the density of metallic lithium adhering to the surface of the negative electrode active material. Unevenness occurs,
Metallic lithium is left undissolved, and as a result,
There was a problem that the charge / discharge cycle characteristics were affected.

【0006】本発明は、このような従来の問題点に鑑み
てなされたもので、負極活物質へリチウムイオンを効率
よく吸蔵させて、負極におけるロス容量の補填を確実に
行ない得るリチウムイオン二次電池を提供することを解
決すべき課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem. A lithium ion secondary battery capable of efficiently absorbing lithium ions into a negative electrode active material and reliably compensating for the loss capacity of the negative electrode. Providing a battery is an issue to be solved.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に記載
のリチウムイオン二次電池は、前述した課題を解決する
ために、リチウムイオンを含む正極と、リチウムイオン
を吸蔵放出できる負極と、非水電解液とを備えたリチウ
ムイオン二次電池において、前記負極の活物質に炭素材
料を用い、この炭素材料の表面に、前記リチウムと合金
を作らない導電性金属を1μm以下の厚さに蒸着し、さ
らに、この導電性金属の表面に金属リチウムを蒸着した
ことを特徴としている。
According to a first aspect of the present invention, there is provided a lithium ion secondary battery comprising: a positive electrode containing lithium ions; a negative electrode capable of inserting and extracting lithium ions; In a lithium ion secondary battery provided with a non-aqueous electrolyte, a carbon material is used as an active material of the negative electrode, and a conductive metal that does not form an alloy with lithium has a thickness of 1 μm or less on the surface of the carbon material. It is characterized in that it is deposited, and further, metal lithium is deposited on the surface of the conductive metal.

【0008】また、本発明の請求項2に記載のリチウム
イオン二次電池は、請求項1において、前記リチウムと
合金を作らない導電性金属が銅であることを特徴として
いる。
A lithium ion secondary battery according to a second aspect of the present invention is characterized in that, in the first aspect, the conductive metal that does not form an alloy with lithium is copper.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図面を参照して説明する。図1は、本実施形態に係
わるリチウムイオン二次電池の縦断面図で、このリチウ
ムイオン二次電池は、シート状の正極板1および負極板
2をフィルム状のセパレータ3を挟んで重ね合わせると
ともに、これらを渦巻き状に巻回することによって形成
されたスパイラル電極4と、このスパイラル電極が収納
される負極端子を兼ねた有底筒状の外装缶5と、この外
装缶5の開口部に絶縁ガスケット6を介して取り付けら
れて、この開口部を封止する封口板7と、この封口板7
にスポット溶接等によって一体化された正極端子8と、
この正極端子8と前記封口板7との間に介装されて、電
池内圧が上昇した場合に内部ガスを外部へ放出するシー
ト状の安全弁9と、前記正極板1と前記封口板7とを導
通させる正極リード端子10と、前記負極板2と前記外
装缶5とを導通させる負極リード端子11とによって構
成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a lithium ion secondary battery according to the present embodiment. In the lithium ion secondary battery, a sheet-like positive electrode plate 1 and a negative electrode plate 2 are overlapped with a film-like separator 3 interposed therebetween. A spiral electrode 4 formed by spirally winding them, a bottomed cylindrical outer can 5 also serving as a negative electrode terminal in which the spiral electrode is housed, and an opening in the outer can 5 insulated. A sealing plate 7 attached via a gasket 6 to seal the opening;
A positive electrode terminal 8 integrated by spot welding or the like;
A sheet-shaped safety valve 9 that is interposed between the positive electrode terminal 8 and the sealing plate 7 and that discharges internal gas to the outside when the internal pressure of the battery increases, and the positive electrode plate 1 and the sealing plate 7 It is constituted by a positive electrode lead terminal 10 that conducts electricity and a negative electrode lead terminal 11 that conducts electricity between the negative electrode plate 2 and the outer can 5.

【0010】詳述すれば、前記正極板1は、正極活物質
にLiMn2O4、導電材にカーボン粉末、また、結着剤
にポリテトラフルオロエチレン(以下、PTFEと称
す)の水性ディスパージョンを用い、これらを重量比で
100:10:10の割合で混合し、水でペースト状に
混練したものを、集電体としての厚さ30μmのアルミ
ニウム箔の両面に塗布した後、乾燥・圧延して前記集電
体の両面に合剤を一体形成し、ついで、所定の大きさに
切断してシート状に形成したものである。
More specifically, the positive electrode plate 1 uses LiMn 2 O 4 as a positive electrode active material, carbon powder as a conductive material, and an aqueous dispersion of polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder. These were mixed at a weight ratio of 100: 10: 10, kneaded in a paste with water, applied to both sides of a 30-μm-thick aluminum foil as a current collector, dried and rolled, The mixture was integrally formed on both surfaces of the current collector, and then cut into a predetermined size to form a sheet.

【0011】ここで、前記PTFEの水性ディスパージ
ョンは固形分の割合であり、前記正極活物質の重量を
4.7gとした。
Here, the aqueous dispersion of PTFE was a solid content ratio, and the weight of the positive electrode active material was 4.7 g.

【0012】そして、この正極板1は、その合剤の一部
が長さ方向と直交するように掻き取られることにより集
電体が露出させられ、この露出させられた部分に前記正
極リード端子10がスポット溶接によって取り付けられ
ている。
In the positive electrode plate 1, the current collector is exposed by scraping a part of the mixture so as to be orthogonal to the length direction, and the exposed portion of the positive electrode lead terminal 10 are attached by spot welding.

【0013】また、前記負極板2は、負極活物質に炭素
材料としての人造黒鉛を用い、結着剤にポリビニリデン
フロリド(以下、PVDFと称す)を用い、これらの負
極活物質と結着剤とを重量比で100:5の割合で混合
するとともに(ここで、前記負極活物質の人造黒鉛の重
量を2.1gとした)、NMP溶剤を加えて混練してス
ラリーを生成し、このスラリーを集電体としての厚さ1
0μmの銅箔13の片面に塗布・乾燥させて合剤14を
一体形成した後に、蒸着装置内に設置して前記合剤14
の表面(すなわち負極活物質である人工黒鉛の表面)
に、リチウムと合金を作らない金属としての銅元素15
を1μm以下の厚みに蒸着し、さらに、この蒸着された
銅の表面に、想定される負極ロス容量分の金属リチウム
16を蒸着し、所定の大きさに切断してシート状に形成
したものであり(図3参照)、2枚のシートを重ね合わ
せることによって負極電極となされている。
The negative electrode plate 2 uses artificial graphite as a carbon material as a negative electrode active material, and uses polyvinylidene fluoride (hereinafter, referred to as PVDF) as a binder to bind to these negative electrode active materials. And a mixing agent at a weight ratio of 100: 5 (here, the weight of the artificial graphite as the negative electrode active material was 2.1 g), and an NMP solvent was added and kneaded to form a slurry. Thickness of slurry as current collector 1
After coating and drying on one side of a copper foil 13 of 0 μm to form a mixture 14 integrally, the mixture 14 is placed in a vapor deposition apparatus and the mixture 14 is placed.
Surface (that is, the surface of artificial graphite that is the negative electrode active material)
In addition, copper element 15 as a metal that does not form an alloy with lithium
Is deposited to a thickness of 1 μm or less, and further, metal lithium 16 is deposited on the surface of the deposited copper in an amount corresponding to an assumed negative electrode loss capacity, and cut into a predetermined size to form a sheet. Yes (see FIG. 3), a negative electrode is formed by stacking two sheets.

【0014】なお、前記銅15および金属リチウム16
の蒸着は、銅15および金属リチウム16の加熱に抵抗
加熱を用い、真空度10-6Torr以下の条件で行な
い、膜厚の測定は顕微干渉計にて行なった。
The copper 15 and the metallic lithium 16
Was deposited using resistance heating to heat the copper 15 and the metal lithium 16 under the conditions of a degree of vacuum of 10 −6 Torr or less, and the film thickness was measured with a microinterferometer.

【0015】そして、この負極板2は、その合剤の一部
が長さ方向と直交するように掻き取られることにより集
電体が露出させられ、この露出させられた部分に前記負
極リード端子11がスポット溶接によって取り付けられ
ている。
In the negative electrode plate 2, the current collector is exposed by scraping a part of the mixture so as to be orthogonal to the length direction, and the exposed portion of the negative electrode lead terminal 11 is attached by spot welding.

【0016】一方、このように構成された各正極板1お
よび負極板2は、図1に示すように前述したようにセパ
レータ3を介して渦巻き状に巻回されてスパイラル電極
4となされて前記外装缶5内に挿入されるとともに、そ
の底部には絶縁底板12が設置され、さらに、前記正極
リード端子10が前記封口板7へ、また、負極リード端
子11が前記外装缶5の内部底面へそれぞれスポット溶
接によって接続される。
On the other hand, each of the positive electrode plate 1 and the negative electrode plate 2 configured as described above is spirally wound with the separator 3 interposed therebetween as shown in FIG. In addition to being inserted into the outer can 5, an insulating bottom plate 12 is provided at the bottom thereof, and the positive lead terminal 10 is connected to the sealing plate 7 and the negative lead terminal 11 is connected to the inner bottom surface of the outer can 5. Each is connected by spot welding.

【0017】このようにスパイラル電極4が挿入された
外装缶5内には、エチレンカーボネートとジエチルカー
ボネートが1:1の割合で混合された有機溶媒に、電解
質としてLiPF6を1mol/lを加えて生成した電
解液が2.3ml注入され、前記絶縁ガスケット6が外
周に取り付けられるとともに、前記正極端子8が取り付
けられた封口板7が、前記外装缶5の開口部を覆うよう
にしてその内側に設置された後に、前記外装缶5の開口
縁部が内側へ全周に亙って加締められて、前記絶縁ガス
ケット6を介して前記封口板7が外装缶5に固定される
とともに、前記絶縁ガスケット6が圧縮されることによ
り、外装缶5の開口部が気密に封口されて、本実施形態
に係わるリチウムイオン二次電池が組み上げられる。
In the outer can 5 into which the spiral electrode 4 is inserted as described above, 1 mol / l of LiPF6 is added as an electrolyte to an organic solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1. 2.3 ml of the injected electrolyte solution is injected, the insulating gasket 6 is attached to the outer periphery, and the sealing plate 7 to which the positive electrode terminal 8 is attached is installed inside the outer can 5 so as to cover the opening. After that, the opening edge portion of the outer can 5 is swaged inward over the entire circumference to fix the sealing plate 7 to the outer can 5 via the insulating gasket 6 and the insulating gasket. 6 is compressed, the opening of the outer can 5 is hermetically sealed, and the lithium ion secondary battery according to the present embodiment is assembled.

【0018】このようにして組み上げられた本実施形態
に係わるリチウムイオン二次電池に関し、組立後、温度
45℃で5日間保存した後、定電流定電圧充電(充電電
流0.5C、充電電圧4.2V)と定電流放電(放電電
流0.5C、放電電圧3.0V)とを100サイクル行
ない、初期充電容量と初期放電容量とを測定したとこ
ろ、表1に示す結果が得られ、また、サイクル特性を測
定したところ、図2に示す結果が得られた。
With respect to the thus assembled lithium ion secondary battery according to the present embodiment, after assembling, storing it at a temperature of 45 ° C. for 5 days, charging at a constant current and a constant voltage (a charging current of 0.5 C and a charging voltage of 4 C) .2 V) and constant current discharge (discharge current 0.5 C, discharge voltage 3.0 V) for 100 cycles, and the initial charge capacity and initial discharge capacity were measured. The results shown in Table 1 were obtained. When the cycle characteristics were measured, the results shown in FIG. 2 were obtained.

【表1】 また、比較のために以下の比較例1〜3に示す条件でリ
チウムイオン二次電池を作成し、本実施形態と同様の条
件で初期充電容量と初期放電容量、および、サイクル特
性について測定し、その結果を表1および図2に示す。
なお、各比較例と本実施形態とは、負極の構造が異なる
のみでその他の部分は本実施形態において示した前記構
成と全く同一である。
[Table 1] Further, for comparison, lithium ion secondary batteries were prepared under the conditions shown in Comparative Examples 1 to 3 below, and the initial charge capacity and the initial discharge capacity were measured under the same conditions as in the present embodiment, and the cycle characteristics were measured. The results are shown in Table 1 and FIG.
In addition, each comparative example and this embodiment differ only in the structure of the negative electrode, and the other parts are exactly the same as the configuration shown in the present embodiment.

【0019】比較例1 負極電極の活物質に人造黒鉛を、また、結着剤としてP
VDFを用い、これらにNMP溶剤を加えて混練してス
ラリーを作成し、このスラリーを厚さ20μmの銅箔の
両面に塗布・乾燥させて負極を形成し、この負極電極を
用いて二次電池を作成した。
Comparative Example 1 Artificial graphite was used as an active material of a negative electrode, and P was used as a binder.
Using a VDF, an NMP solvent is added thereto and kneaded to form a slurry. The slurry is applied to both sides of a copper foil having a thickness of 20 μm and dried to form a negative electrode. A secondary battery is formed using the negative electrode. It was created.

【0020】比較例2 負極電極の活物質に人造黒鉛を、また、結着剤としてP
VDFを用い、これらにNMP溶剤を加えて混練してス
ラリーを作成し、厚さ10μmの銅箔の片面に塗布した
後に乾燥させ、蒸着装置において、前記活物質の表面に
銅元素を1μm超の厚さに蒸着した後に、その表面に、
負極ロス容量分の金属リチウムを蒸着し、この電極を2
枚重ね合わせて負極電極として二次電池を作成した。
Comparative Example 2 Artificial graphite was used as the active material of the negative electrode, and P was used as the binder.
Using a VDF, an NMP solvent was added to these and kneaded to prepare a slurry. The slurry was applied to one surface of a copper foil having a thickness of 10 μm, and dried. After evaporation to the thickness, on the surface,
Metallic lithium is deposited by the amount corresponding to the negative electrode loss capacity.
A secondary battery was formed as a negative electrode by stacking the sheets.

【0021】比較例3 負極電極の活物質に人造黒鉛を、また、結着剤としてP
VDFを用い、これらにNMP溶剤を加えて混練してス
ラリーを作成し、厚さ10μmの銅箔の片面に塗布して
乾燥させた後、蒸着装置において、負極ロス容量分の金
属リチウムを、前記活物質の表面に直接蒸着し、この電
極を2枚重ね合わせて負極電極として二次電池を作成し
た。
Comparative Example 3 Artificial graphite was used as the active material of the negative electrode, and P was used as the binder.
Using a VDF, an NMP solvent was added thereto and kneaded to prepare a slurry. The slurry was applied to one surface of a copper foil having a thickness of 10 μm and dried. A secondary battery was formed as a negative electrode by depositing two electrodes directly on the surface of the active material.

【0022】前記表1に示す結果から明らかなように、
本実施形態に係わるリチウムイオン二次電池は、初期放
電容量/初期充電容量が各比較例に比して2.7%〜
6.4%の向上が見られ、充放電効率が大幅に改善され
ている。
As is clear from the results shown in Table 1 above,
The lithium ion secondary battery according to the present embodiment has an initial discharge capacity / initial charge capacity of 2.7% or more as compared with each comparative example.
An improvement of 6.4% is seen, and the charge / discharge efficiency is greatly improved.

【0023】また、図2に示す結果から明らかなよう
に、充放電のサイクル特性においても、本実施形態に係
わるリチウムイオン二次電池は、充放電回数の増加にも
拘わらず、ほぼ安定した放電容量が確保されている。
As is apparent from the results shown in FIG. 2, the lithium-ion secondary battery according to the present embodiment has almost stable discharge characteristics despite the increase in the number of times of charging and discharging. Capacity is secured.

【0024】このように、本実施形態において高い充放
電効率が得られるとともに、電池容量が大きくかつ充放
電サイクル特性が大幅に改善される要因としては、負極
活物質に銅元素15を膜厚1μm以下に蒸着するととも
に、この銅元素15の表面に金属リチウム16を蒸着す
ることにより、前記銅元素15によって前記金属リチウ
ム16が均一に分散されて負極活物質の表面に蒸着され
ること、また、銅元素15の蒸着膜の膜厚が1μm以下
となされていることにより、負極活物質と金属リチウム
との導通が良好に行なわれて、前記負極活物質へのリチ
ウムイオンの溶け込みが円滑に行なわれること等が考え
られる。
As described above, the high charge-discharge efficiency is obtained in the present embodiment, the battery capacity is large, and the charge-discharge cycle characteristics are greatly improved. By vapor deposition below, by depositing metal lithium 16 on the surface of the copper element 15, the metal lithium 16 is uniformly dispersed by the copper element 15 and deposited on the surface of the negative electrode active material. When the thickness of the deposited film of the copper element 15 is 1 μm or less, conduction between the negative electrode active material and metallic lithium is performed well, and lithium ions are smoothly dissolved into the negative electrode active material. And so on.

【0025】すなわち、負極ロス容量分のリチウムイオ
ンの補填のない比較例1と金属リチウムのみを蒸着した
比較例3および実施例との対比において、比較例1に対
して比較例3が充放電回数が少ない領域で放電容量が大
きく、かつ、実施例が充放電回数に拘わりなく放電容量
が大きいことから、金属リチウム16からのリチウムイ
オンの補填が、電池容量の増加に寄与していることが想
定される。
That is, in comparison between Comparative Example 1 in which lithium ion was not compensated for the negative electrode loss capacity, Comparative Example 3 in which only metal lithium was deposited, and Example, Comparative Example 3 was different from Comparative Example 1 in the number of charge / discharge cycles. Since the discharge capacity is large in the region where the amount is small, and the discharge capacity is large irrespective of the number of times of charging and discharging in the embodiment, it is assumed that the supplementation of lithium ions from the metal lithium 16 contributes to the increase in the battery capacity. Is done.

【0026】そして、比較例3においては、充放電回数
が増加するにつれて放電容量が減少し、比較例1よりも
放電容量が小さくなる現象が生じているが、これは、金
属リチウムを負極活物質に直接蒸着させた場合、蒸着さ
れた金属リチウム膜のある部位に、金属リチウムと炭素
との導通が悪い箇所が生じ、この導通の悪い箇所におけ
る金属リチウムがイオン化せず、前記負極活物質中に溶
け込まないで残り、この残された金属リチウムが放電容
量を低下させている原因と想定される。
In Comparative Example 3, the discharge capacity decreased as the number of times of charging and discharging increased, and the discharge capacity became smaller than that in Comparative Example 1. When directly vapor-deposited on a portion of the deposited metal lithium film, a portion where conduction between metal lithium and carbon is poor occurs, and the metal lithium at the portion where the conduction is poor does not ionize, and the lithium metal is not ionized in the negative electrode active material. It is supposed that the metal lithium remains without being dissolved and the remaining metal lithium lowers the discharge capacity.

【0027】このことは、実施例において金属リチウム
と負極活物質とをリチウムと合金を作らない銅元素15
を介して接触させることにより、充放電サイクルに拘わ
りなく全般的に放電容量が高められており、この銅元素
15の機能が、前記金属リチウム16と炭素との導通状
態を改善するものである。
This means that, in the embodiment, the metallic lithium and the negative electrode active material are replaced by a copper element 15 which does not form an alloy with lithium.
, The discharge capacity is generally increased irrespective of the charge / discharge cycle, and the function of the copper element 15 is to improve the conduction state between the metal lithium 16 and carbon.

【0028】また、比較例2のように銅元素の膜厚を1
μm超とした場合、放電量が減少しており、炭素表面が
銅元素で覆われたためリチウムイオンの出入りが抑制さ
れると考えられる。
Further, as in Comparative Example 2, the thickness of the copper
When the thickness exceeds μm, the discharge amount is reduced, and it is considered that the inflow and out of lithium ions are suppressed because the carbon surface is covered with the copper element.

【0029】なお、前述した一実施形態は一例であっ
て、設計要求等に基づき種々変更可能である。たとえ
ば、前記実施形態においては、円筒形の二次電池を示し
たが、ボタン形等その他の形状とすることも可能であ
り、また、リチウムと合金を作らない金属として銅15
を例示したが、これは、銅15が特に導電性に優れてい
る点に注目して採用したものであり、電池の種類等によ
り他の金属に変更してもよいものである。
The above-described embodiment is merely an example, and various modifications can be made based on design requirements and the like. For example, in the above-described embodiment, the cylindrical secondary battery is shown. However, other shapes such as a button shape may be used, and copper 15 may be used as a metal that does not form an alloy with lithium.
However, this is adopted by paying attention to the fact that the copper 15 is particularly excellent in conductivity, and may be changed to another metal depending on the type of the battery or the like.

【0030】[0030]

【発明の効果】以上説明したように、本発明の請求項1
に係わるリチウムイオン二次電池によれば、負極活物質
の表面にリチウムと合金を作らない導電性金属を1μm
以下の厚さに蒸着し、この導電性金属の表面に金属リチ
ウムを蒸着した構成とすることにより、金属リチウムと
負極活物質との導通状態を良好なものとして、負極のロ
ス容量分のリチウムイオンを負極活物質中に円滑にかつ
確実に溶け込ませ、これによって、初期の充放電効率を
高めることができるとともに、電池用容量を増加させ、
さらに、充放電サイクル特性を向上させることができ
る。
As described above, according to the first aspect of the present invention,
According to the lithium ion secondary battery according to the above, a conductive metal that does not form an alloy with lithium is 1 μm
By depositing the following thickness and depositing metallic lithium on the surface of the conductive metal, the conduction state between metallic lithium and the negative electrode active material is improved, and lithium ions corresponding to the loss capacity of the negative electrode are used. Into the negative electrode active material smoothly and reliably, thereby increasing the initial charge and discharge efficiency and increasing the battery capacity,
Furthermore, charge / discharge cycle characteristics can be improved.

【0031】また、本発明の請求項2に係わるリチウム
イオン二次電池によれば、請求項1におけるリチウムと
合金を作らない導電性金属に銅を用いることにより、前
記金属リチウムと負極活物質との導通を確実に行なっ
て、請求項1において得られる作用効果を一層確実なも
のとすることができる。
According to the lithium ion secondary battery of claim 2 of the present invention, by using copper as the conductive metal that does not form an alloy with lithium in claim 1, the metallic lithium and the negative electrode active material And the operation and effect obtained in claim 1 can be further ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わるリチウムイオン二
次電池の縦断面図である。
FIG. 1 is a longitudinal sectional view of a lithium ion secondary battery according to an embodiment of the present invention.

【図2】本発明の一実施形態に係わるリチウムイオン二
次電池および従来のリチウムイオン二次電池の充放電サ
イクル特性図である。
FIG. 2 is a charge / discharge cycle characteristic diagram of a lithium ion secondary battery according to one embodiment of the present invention and a conventional lithium ion secondary battery.

【図3】負極板の拡大縦断面図である。FIG. 3 is an enlarged vertical sectional view of a negative electrode plate.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 15 銅(導電性金属) 16 金属リチウム DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 15 Copper (conductive metal) 16 Metal lithium

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを含む正極(1)と、リ
チウムイオンを吸蔵放出できる負極(2)と、非水電解
液とを備えたリチウムイオン二次電池において、前記負
極(2)の活物質に炭素材料を用い、この炭素材料の表
面に、前記リチウムと合金を作らない導電性金属(1
5)を1μm以下の厚さに蒸着し、さらに、この導電性
金属(15)の表面に金属リチウム(16)を蒸着した
ことを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery comprising a positive electrode (1) containing lithium ions, a negative electrode (2) capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, the active material of the negative electrode (2) A conductive metal (1) that does not form an alloy with lithium is used on the surface of the carbon material.
5) A lithium ion secondary battery characterized in that (5) is deposited to a thickness of 1 μm or less, and further, metal lithium (16) is deposited on the surface of the conductive metal (15).
【請求項2】 前記リチウムと合金を作らない導電性金
属(15)が銅であることを特徴とする請求項1に記載
のリチウムイオン二次電池。
2. The lithium ion secondary battery according to claim 1, wherein the conductive metal that does not form an alloy with lithium is copper.
JP8298496A 1996-11-11 1996-11-11 Lithium ion secondary battery Pending JPH10144295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8298496A JPH10144295A (en) 1996-11-11 1996-11-11 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8298496A JPH10144295A (en) 1996-11-11 1996-11-11 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10144295A true JPH10144295A (en) 1998-05-29

Family

ID=17860472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8298496A Pending JPH10144295A (en) 1996-11-11 1996-11-11 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10144295A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
FR2873854A1 (en) * 2004-07-30 2006-02-03 Commissariat Energie Atomique PROCESS FOR PRODUCING A LITHIUM ELECTRODE, LITHIUM ELECTRODE THAT CAN BE OBTAINED BY THIS METHOD AND USES THEREOF
JP2006253081A (en) * 2005-03-14 2006-09-21 Toshiba Corp Non-aqueous electrolyte battery
US7443651B2 (en) 2003-09-30 2008-10-28 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
US7548409B2 (en) 2004-03-31 2009-06-16 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using a mesopore carbon material as a negative electrode
JP2010251339A (en) * 2010-08-11 2010-11-04 Nec Corp Secondary battery, and negative electrode for the same
JP2011009228A (en) * 2010-08-09 2011-01-13 Nec Corp Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
US7443651B2 (en) 2003-09-30 2008-10-28 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
US7548409B2 (en) 2004-03-31 2009-06-16 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using a mesopore carbon material as a negative electrode
FR2873854A1 (en) * 2004-07-30 2006-02-03 Commissariat Energie Atomique PROCESS FOR PRODUCING A LITHIUM ELECTRODE, LITHIUM ELECTRODE THAT CAN BE OBTAINED BY THIS METHOD AND USES THEREOF
JP2006253081A (en) * 2005-03-14 2006-09-21 Toshiba Corp Non-aqueous electrolyte battery
JP4519685B2 (en) * 2005-03-14 2010-08-04 株式会社東芝 Non-aqueous electrolyte battery
JP2011009228A (en) * 2010-08-09 2011-01-13 Nec Corp Negative electrode for secondary battery, secondary battery, and method of manufacturing negative electrode for secondary battery
JP2010251339A (en) * 2010-08-11 2010-11-04 Nec Corp Secondary battery, and negative electrode for the same

Similar Documents

Publication Publication Date Title
RU2156523C2 (en) Lithium cell improvement technique
EP3813158A1 (en) Nonaqueous electrolyte secondary battery
CN116547847A (en) Nonaqueous electrolyte secondary battery
US11069935B2 (en) Cell and battery
JPH10144295A (en) Lithium ion secondary battery
JP2002270245A (en) Nonaqueous secondary cell
WO2022202395A1 (en) Cylindrical battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JPH11126600A (en) Lithium ion secondary battery
US20220278323A1 (en) Non-aqueous electrolyte secondary battery
US11289745B2 (en) Elimination of gaseous reactants in lithium ion batteries
EP3806200A1 (en) Nonaqueous electrolyte secondary battery
CN114830370A (en) Electrode for secondary battery and secondary battery
JP4280349B2 (en) Organic electrolyte secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JPH11176420A (en) Nonaqueous electrolyte secondary battery
JP2005019086A (en) Nonaqueous electrolyte secondary battery
EP3958351A1 (en) Non-aqueous electrolyte secondary battery
CN111492528B (en) Nonaqueous electrolyte secondary battery
JP7337515B2 (en) Non-aqueous electrolyte battery
WO2022202291A1 (en) Non-aqueous electrolyte secondary battery
JPH1040959A (en) Nonaqueous electrolyte secondary battery
JP2018156724A (en) Lithium ion secondary battery
JP2002260605A (en) Cylindrical battery
JP6255502B2 (en) Lithium ion secondary battery