JPH10144208A - Formation of electrode - Google Patents

Formation of electrode

Info

Publication number
JPH10144208A
JPH10144208A JP28777896A JP28777896A JPH10144208A JP H10144208 A JPH10144208 A JP H10144208A JP 28777896 A JP28777896 A JP 28777896A JP 28777896 A JP28777896 A JP 28777896A JP H10144208 A JPH10144208 A JP H10144208A
Authority
JP
Japan
Prior art keywords
electrode
glass substrate
electrodes
glass
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28777896A
Other languages
Japanese (ja)
Other versions
JP3636255B2 (en
Inventor
Yasunori Kima
泰則 来間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP28777896A priority Critical patent/JP3636255B2/en
Publication of JPH10144208A publication Critical patent/JPH10144208A/en
Application granted granted Critical
Publication of JP3636255B2 publication Critical patent/JP3636255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture in a simplified process, and to prevent silver (Ag) from diffusing into a glass base in a burning process. SOLUTION: In a first process, a surface forming at least an electrode is polished in a glass base 1. In a second process, an electrode 31 is formed of conductive material containing Ag. The electrode is manufactured through the procedure including the first and second process. Furthermore, a transparent conductive film 4 composed mostly of indium oxide or tin oxide is configured between the glass base 1 and the electrode 31 formed of the conductive material containing Ag. By polishing the surface of the glass base 1 in the first process, colloid formation is restrained in the glass produced in burning of the material to prevent discoloration of the glass base 1 and to improve insulation between the electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマディスプ
レイパネル(PDP)、フィールドエミッションディス
プレイ(FED)、液晶表示装置(LCD)、蛍光表示
装置、混成集積回路等における電極に係り、詳しくはこ
れらの構成部品であるガラス基板の上に電極を形成する
方法に関するものである。
The present invention relates to electrodes in a plasma display panel (PDP), a field emission display (FED), a liquid crystal display (LCD), a fluorescent display, a hybrid integrated circuit, and the like. The present invention relates to a method for forming an electrode on a glass substrate as a component.

【0002】[0002]

【発明が解決しようとする課題】従来より、上記の如き
表示装置や集積回路においては、その電極や配線に安価
で生産性に優れたAgを使用することが検討されてい
る。しかしながら、Agの使用に関してはそれ特有の問
題があり、この点について代表的な表示装置であるPD
Pを例に挙げて以下に説明する。
Conventionally, it has been studied to use inexpensive and highly productive Ag for the electrodes and wirings in the above-described display devices and integrated circuits. However, the use of Ag has its own problems, and in this regard, a typical display device such as PD
This will be described below using P as an example.

【0003】一般にPDPは、2枚の対向するガラス基
板にそれぞれ規則的に配列した一対の電極を設け、その
間にNe,Xe等の不活性ガスを主体とするガスを封入
した構造になっている。そして、これらの電極間に電圧
を印加し、電極周辺の微小なセル内で放電を発生させる
ことにより、各セルを発光させて表示を行うようにして
いる。情報表示をするためには、規則的に並んだセルを
選択的に放電発光させるものである。このPDPには、
電極が放電空間に露出している直流型(DC型)と絶縁
層で覆われている交流型(AC型)の2タイプがあり、
さらに表示機能や駆動方法の違いによって双方ともリフ
レッシュ駆動方式とメモリー駆動方式とに分類される。
In general, a PDP has a structure in which a pair of electrodes arranged regularly on two opposing glass substrates are provided, and a gas mainly containing an inert gas such as Ne or Xe is sealed between them. . Then, a voltage is applied between these electrodes, and a discharge is generated in minute cells around the electrodes, so that each cell emits light and display is performed. In order to display information, regularly arranged cells are selectively discharged to emit light. In this PDP,
There are two types, a direct current type (DC type) in which the electrodes are exposed to the discharge space, and an alternating current type (AC type) in which the electrodes are covered with an insulating layer.
Further, both are classified into a refresh driving method and a memory driving method according to the difference in display function and driving method.

【0004】図1にAC型PDPの一構成例を示してあ
る。この図は前面板と背面板を離した状態で示したもの
で、図示のように2枚のガラス基板1,2が互いに平行
に且つ対向して配設されており、両者は背面板となるガ
ラス基板2上に互いに平行に設けられたセル障壁3によ
り一定の間隔に保持されるようになっている。前面板と
なるガラス基板1の背面側には透明電極である維持電極
4と金属電極であるバス電極5とで構成される複合電極
6が互いに平行に形成され、これを覆って誘電体層7が
形成されており、さらにその上に保護層8(MgO層)
が形成されている。一方、背面板となるガラス基板2の
前面側には複合電極6と直交するようにセル障壁3の間
に位置してアドレス電極9が互いに平行に形成されてお
り、さらにセル障壁3の壁面とセル底面を覆うようにし
て蛍光体10が設けられている。このAC型PDPは面
放電型であって、前面板上の複合電極間に交流電圧を印
加し、空間に漏れた電界で放電させる構造である。この
場合,交流をかけているために電界の向きは周波数に対
応して変化する。そしてこの放電により生じる紫外線に
より蛍光体10を発光させ、前面板を透過する光を観察
者が視認するようになっている。
FIG. 1 shows a configuration example of an AC type PDP. This figure shows the front plate and the back plate separated from each other. As shown in the figure, two glass substrates 1 and 2 are arranged in parallel and opposed to each other, and both become the back plate. The cell barriers 3 provided on the glass substrate 2 in parallel to each other are held at regular intervals. On the back side of the glass substrate 1 serving as a front plate, a composite electrode 6 composed of a sustain electrode 4 which is a transparent electrode and a bus electrode 5 which is a metal electrode is formed in parallel with each other. Is formed, and a protective layer 8 (MgO layer) is further formed thereon.
Are formed. On the other hand, on the front side of the glass substrate 2 serving as the back plate, address electrodes 9 are formed between the cell barriers 3 so as to be orthogonal to the composite electrode 6 and parallel to each other. The phosphor 10 is provided so as to cover the cell bottom. The AC type PDP is of a surface discharge type, and has a structure in which an AC voltage is applied between composite electrodes on a front panel to discharge by an electric field leaking into a space. In this case, since the alternating current is applied, the direction of the electric field changes according to the frequency. Then, the phosphor 10 emits light by the ultraviolet light generated by the discharge, so that an observer can visually recognize the light transmitted through the front plate.

【0005】上記AC型PDPの前面板における複合電
極6は、維持電極4のみでは抵抗値が高く電極として使
えないので、抵抗値を低くするために維持電極4上にバ
ス電極5を形成したものである。維持電極4の材料とし
てはITO、SnO2 、ZnO等が考えられるが、成膜
やパターニングの容易さから通常はITOが用いられて
いる。一方、バス電極5は金属材料で形成されるが、こ
れを金属薄膜単層で構成する場合には、バス電極5に求
められる抵抗値から低抵抗率の材料、例えばCuやAl
の使用が考えられる。しかし、Cuを使用した場合、バ
ス電極5の下地層であるITOとの密着性が悪い上に、
後工程である誘電体層7形成時の焼成処理の結果、材料
の熱酸化により抵抗値が上昇するという問題がある。ま
た、Alを使用した場合でも、後工程の焼成処理によっ
て材料の熱酸化や表面の粗面化(ヒロック)が起きると
いう問題がある。したがって、バス電極5は金属薄膜単
層ではなく、Cr/Cu/CrやCr/Al/Crのよ
うに異なる金属材料の組合せにより構成するのが一般的
である。この場合、下層のCrは下地層である維持電極
4との密着層として機能し、上層のCrはCuやAlの
酸化防止層として機能する。また、上記のようなAC型
PDPに限らずDC型PDPの電極でも、同様の理由で
前記バス電極と同様の積層構造及び材料が用いられてい
る。しかしこのような積層構造を採ると、金属単層のよ
うな問題は起きないものの、バス電極を形成するために
スパッタや蒸着などの薄膜形成技術とエッチング加工を
3回も必要とし、工程が複雑になり、従って時間がかか
り、処理能力に欠けるという問題がある。
The composite electrode 6 on the front panel of the AC type PDP has a bus electrode 5 formed on the sustain electrode 4 in order to reduce the resistance since the sustain electrode 4 alone has a high resistance and cannot be used as an electrode. It is. The material of the sustain electrode 4 may be ITO, SnO 2 , ZnO, or the like. However, ITO is usually used because of ease of film formation and patterning. On the other hand, the bus electrode 5 is formed of a metal material. When the bus electrode 5 is formed of a single metal thin film, a low resistivity material such as Cu or Al
The use of is considered. However, when Cu is used, adhesion to ITO, which is a base layer of the bus electrode 5, is poor, and
As a result of the subsequent baking process when the dielectric layer 7 is formed, there is a problem that the resistance value increases due to thermal oxidation of the material. Further, even when Al is used, there is a problem that the material is thermally oxidized and the surface is roughened (hillocks) due to the subsequent baking treatment. Therefore, the bus electrode 5 is not generally formed of a single metal thin film, but is generally formed of a combination of different metal materials such as Cr / Cu / Cr and Cr / Al / Cr. In this case, the lower Cr functions as an adhesion layer with the sustain electrode 4 serving as a base layer, and the upper Cr functions as an antioxidant layer for Cu and Al. Further, not only the AC-type PDP but also the DC-type PDP has the same laminated structure and material as those of the bus electrode for the same reason. However, adopting such a laminated structure does not cause the problem of a single metal layer, but requires three thin film forming techniques such as sputtering and vapor deposition and etching to form a bus electrode, and the process is complicated. Therefore, there is a problem that it takes time and lacks processing ability.

【0006】このような問題を解決する手段として、例
えば特願平8−11468号に開示されているように、
スクリーン印刷法やフォトリソ法で厚膜印刷ペーストを
電極形状にパターニングする方法が有力である。そし
て、バス電極に要求される導電性、耐熱性及びコストを
考慮すると、厚膜印刷ペーストとしてはAgを含有する
導体ペーストが適している。しかし、Agを含有する導
体ペーストを使用した場合、この導体ペーストを500
℃以上で焼成するとAgが維持電極を通過してガラス中
に拡散し、ガラス基板がいわゆるアンバー色を呈するた
め、特に観察者に面している前面板には使用できないと
いう問題がある。また、背面板であっても電極間に導電
性のAg粒子が存在するために、電極間の絶縁性が低下
するという問題があった。ガラス基板呈色の原因は、ガ
ラス基板表面に存在するSnが還元剤として作用し、ガ
ラス基板中にAgのコロイド粒子が形成されるためと説
明されている。その場合の反応式は次の通りである。 2Ag+ +Sn2+ → 2Ag+Sn4+
As means for solving such a problem, for example, as disclosed in Japanese Patent Application No. 8-11468,
A method of patterning a thick film printing paste into an electrode shape by a screen printing method or a photolithography method is effective. In consideration of the conductivity, heat resistance and cost required for the bus electrode, a conductor paste containing Ag is suitable as the thick film printing paste. However, when a conductor paste containing Ag is used, this conductor paste is
If baked at a temperature of not less than ° C., Ag diffuses into the glass through the sustain electrode, and the glass substrate exhibits a so-called amber color. Therefore, there is a problem that it cannot be used particularly for the front plate facing the observer. Further, even in the case of the back plate, there is a problem that the insulating property between the electrodes is reduced due to the presence of conductive Ag particles between the electrodes. It is described that the coloration of the glass substrate is caused by the fact that Sn existing on the surface of the glass substrate acts as a reducing agent and Ag colloid particles are formed in the glass substrate. The reaction formula in that case is as follows. 2Ag + + Sn 2+ → 2Ag + Sn 4+

【0007】以上、PDPを例に挙げてAgの電極を使
用する場合の問題点について説明したが、他の表示装置
や集積回路などにおいても電極や配線にAgを用いよう
とすると同様な問題が起こり得る。
Although the problem in the case of using the Ag electrode with the PDP as an example has been described above, the same problem occurs in other display devices and integrated circuits when Ag is used for the electrode and the wiring. It can happen.

【0008】本発明は、上記のような問題点に鑑みてな
されたものであり、その目的とするところは、煩雑でな
い工程で作製することができ、且つ焼成工程でAgがガ
ラス基板中に拡散しない電極の形成方法を提供すること
にある。
The present invention has been made in view of the above-mentioned problems, and has as its object to be able to be manufactured in a simple process, and to diffuse Ag into a glass substrate in a firing process. It is an object of the present invention to provide a method for forming an electrode that does not need to be used.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る電極の形成方法は、ガラス基板の少な
くとも電極を形成する面を研磨する第1工程と、Agを
含有する導体材料で電極を形成する第2工程とを含むこ
とを特徴とする。さらには、ガラス基板とAgを含有す
る導体材料で形成した電極との間に、インジウム酸化物
或いはスズ酸化物を主成分とする透明導電性膜を形成す
ることを特徴とする。
In order to achieve the above object, an electrode forming method according to the present invention comprises a first step of polishing at least a surface of a glass substrate on which an electrode is to be formed, and a step of using a conductive material containing Ag. And a second step of forming an electrode. Further, a transparent conductive film containing indium oxide or tin oxide as a main component is formed between the glass substrate and an electrode formed of a conductive material containing Ag.

【0010】[0010]

【発明の実施の形態】本発明は、PDPをはじめとして
ガラス基板上に電極を形成する必要のある表示装置や集
積回路などに適用できるものであるが、ここでは図1に
示すAC型PDP背面板のアドレス電極と前面板の複合
電極について実施例を述べることにより実施形態を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be applied to a display device or an integrated circuit in which an electrode needs to be formed on a glass substrate such as a PDP, but here, an AC type PDP shown in FIG. Embodiments will be described by describing examples of the address electrodes on the face plate and the composite electrodes on the front plate.

【0011】(実施例1)背面板となるガラス基板2に
はフロート法で形成したソーダライムガラスを使用し
た。フロート法では液状のSnの上でガラス平板を形成
するために、ガラス中に不純物としてSnが注入され
る。一般に、Snに接した側のガラス面をボトム面、反
対側の面をトップ面と呼ぶが、ボトム面の方がSnの含
有量が大きい。まず、図2(a)に示すように、研磨機
Gを使用して背面板となるガラス基板2の表面を研磨し
た。研磨の厚みは、トップ面であってもガラス表面から
少なくとも数μmのオーダーでSnが注入されているの
で、これ以上の厚みであることが望ましい。実質的には
5〜10μm研磨すれば、Snは殆ど検出されないレベ
ルに達する。
(Embodiment 1) A soda lime glass formed by a float method was used for a glass substrate 2 serving as a back plate. In the float method, Sn is injected into glass as an impurity in order to form a glass flat plate on liquid Sn. Generally, the glass surface on the side in contact with Sn is called a bottom surface, and the surface on the opposite side is called a top surface. The bottom surface has a larger Sn content. First, as shown in FIG. 2A, the surface of a glass substrate 2 serving as a back plate was polished using a polishing machine G. The thickness of the polishing is desirably greater than the thickness of the top surface since Sn is injected at least on the order of several μm from the glass surface. Substantially, when the polishing is performed at 5 to 10 μm, Sn reaches a level at which almost no detection is possible.

【0012】上記のような物理研磨の代わりに化学研磨
を行ってもよい。ちなみに、下記組成のエッチング液を
使用してガラス基板をエッチングしたところ、本溶液中
でのガラスのエッチング速度は、室温で約0.5μm/
分であった。したがって、化学研磨法で5〜10μmけ
ずり取るには10〜20分間処理すればよい。 過酸化水素 10wt% 1水素2弗化アンモニウム 4wt% 水 86wt%
Chemical polishing may be performed instead of physical polishing as described above. Incidentally, when a glass substrate was etched using an etching solution having the following composition, the etching rate of glass in this solution was about 0.5 μm /
Minutes. Therefore, to remove 5 to 10 μm by the chemical polishing method, the treatment may be performed for 10 to 20 minutes. Hydrogen peroxide 10 wt% 1 hydrogen ammonium difluoride 4 wt% Water 86 wt%

【0013】次いで、表面研磨を終えた基板上にAgを
含有する導体材料で金属電極を形成するが、例えば、図
2(b)に示すように、スクリーン印刷法で導体材料2
1(Ag印刷ペースト、ESL社製「D590」)をア
ドレス電極9の形状にパターン塗布した。図中22はス
クリーン版、23はスキージである。次いで、170℃
で30分間導体材料21を乾燥し、さらに580℃で1
0分間焼成することで図2(c)に示すように、金属電
極24を形成した。本実施例では金属電極の線幅は80
μmであった。
Next, a metal electrode is formed of a conductive material containing Ag on the substrate whose surface has been polished. For example, as shown in FIG.
1 (Ag printing paste, “D590” manufactured by ESL) was applied in a pattern to the shape of the address electrode 9. In the figure, reference numeral 22 denotes a screen plate, and 23 denotes a squeegee. Then 170 ° C
The conductor material 21 is dried at 580 ° C. for 30 minutes.
By baking for 0 minutes, a metal electrode 24 was formed as shown in FIG. In this embodiment, the line width of the metal electrode is 80.
μm.

【0014】金属電極24を形成する方法はスクリーン
印刷法でなくてもよい。例えば、表面研磨を終えた基板
上の全面に導体材料(Ag印刷ペースト、ESL社製
「D590」)の膜を形成した後、その導体材料の膜上
にフォトレジスト(東京応化工業社製「OFPR80
0」)でアドレス電極9の形状を有するマスク層を形成
し、30wt%HNO3 中で不要部分をエッチングする
方法でも金属電極24を形成可能であった。或いは、表
面研磨を終えた基板上の全面にフォトレジスト(東京応
化工業社製「OFPR800」)を塗布し、アドレス電
極9の形状でUV露光を行い、アドレス電極9の形状に
フォトレジストを除去してフォトレジストの膜に凹部を
形成した後、この凹部中に導体材料(Ag印刷ペース
ト、ESL社製「D590」)を充填し、150℃で3
0分間導体材料を乾燥した後、1wt%NaOH水溶液
でフォトレジストを剥離し、さらに580℃で10分間
導体材料の焼成を行い、金属電極24を形成することが
できた。さらには、導体材料として、a)Ag粉末、
b)側鎖にカルボキシル基とエチレン性不飽和基を有す
るアクリル系共重合体、c)光反応性化合物、d)光重
合開始剤からなる感光性を有するAgペーストを使用し
ても金属電極24を形成することができた。この場合、
表面研磨を終えた基板上の全面に感光性を有するAgペ
ーストを塗布して100℃で20分間乾燥させ、UV露
光を経てから0.2wt%NaCO3 水溶液をスプレー
することにより現像を行ってアドレス電極9の形状にパ
ターニングした後、580℃で10分間ペーストの焼成
を行い、金属電極24を形成した。
The method for forming the metal electrode 24 need not be a screen printing method. For example, after a film of a conductive material (Ag printing paste, “D590” manufactured by ESL) is formed on the entire surface of the substrate after the surface polishing, a photoresist (“OFPR80” manufactured by Tokyo Ohka Kogyo Co., Ltd.) is formed on the conductive material film.
0 "), a metal layer 24 could be formed by a method of forming a mask layer having the shape of the address electrode 9 and etching unnecessary portions in 30 wt% HNO 3 . Alternatively, a photoresist (“OFPR800” manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the entire surface of the substrate after the surface polishing, and UV exposure is performed in the shape of the address electrode 9 to remove the photoresist in the shape of the address electrode 9. After forming a concave portion in the photoresist film, a conductive material (Ag printing paste, “D590” manufactured by ESL) is filled in the concave portion.
After drying the conductor material for 0 minutes, the photoresist was stripped with a 1 wt% NaOH aqueous solution, and the conductor material was baked at 580 ° C. for 10 minutes, whereby the metal electrode 24 could be formed. Further, a) Ag powder,
The metal electrode 24 can be obtained by using a photosensitive Ag paste consisting of b) an acrylic copolymer having a carboxyl group and an ethylenically unsaturated group in a side chain, c) a photoreactive compound, and d) a photopolymerization initiator. Could be formed. in this case,
A photosensitive Ag paste is applied to the entire surface of the substrate after the surface polishing, dried at 100 ° C. for 20 minutes, exposed to UV light, and then developed by spraying a 0.2 wt% NaCO 3 aqueous solution to address. After patterning into the shape of the electrode 9, the paste was baked at 580 ° C. for 10 minutes to form the metal electrode 24.

【0015】上記のいずれの方法で金属電極24を形成
した場合でも、ガラス表面にSnが存在しないため前記
のSnとAgとの反応が抑制され、焼成処理後もガラス
基板は変色することがなく、したがって、電極間の絶縁
性も良好であり、電極作動の信頼性が向上した。
When the metal electrode 24 is formed by any of the above methods, the reaction between Sn and Ag is suppressed because Sn does not exist on the glass surface, and the glass substrate does not discolor even after the baking treatment. Therefore, the insulation between the electrodes was also good, and the reliability of the electrode operation was improved.

【0016】このように背面板となるガラス基板2上に
アドレス電極9を形成した後、スクリーン印刷法により
絶縁体ペースト(ノリタケカンパニーリミテッド製「N
P−7948」)を8回積層した後580℃で10分間
焼成し、幅70μm、高さ140μmの障壁リブ3を形
成した。障壁リブ3を形成した後、障壁リブ3の間にR
GB各色の蛍光体を充填し背面板を完成した。実際にパ
ネル点灯試験を行ったところ、ガラス基板表面を研磨し
ない従来のパネルと比較して同様の駆動電圧及びパネル
輝度が得られたが、Agコロイド形成によるガラス基板
の変色がなく、したがってアドレス電極間の絶縁性が向
上した。
After the address electrodes 9 are formed on the glass substrate 2 serving as the back plate as described above, an insulating paste ("Noritake Co., Ltd."
P-7948 ”) was laminated eight times and then fired at 580 ° C. for 10 minutes to form barrier ribs 3 having a width of 70 μm and a height of 140 μm. After the barrier ribs 3 are formed, R
The phosphor of each color of GB was filled to complete the back plate. When a panel lighting test was actually performed, the same driving voltage and panel luminance were obtained as compared with a conventional panel in which the glass substrate surface was not polished. However, there was no discoloration of the glass substrate due to the formation of Ag colloid. The insulation between them has improved.

【0017】(実施例2)背面板に使用したのと同じソ
ーダライムガラスを前面板に使用した。そしてまず、実
施例1と同様、図3(a)に示すように、研磨機を使用
して前面板となるガラス基板1の表面を研磨した。研磨
によりガラス基板に存在するSnを除去することは実施
例1と同様である。
Example 2 The same soda lime glass as that used for the back plate was used for the front plate. First, as in Example 1, as shown in FIG. 3A, the surface of the glass substrate 1 serving as the front plate was polished using a polishing machine. The removal of Sn present on the glass substrate by polishing is the same as in the first embodiment.

【0018】続いて、図3(b)に示すように、表面研
磨を終えたガラス基板1上に所定の形状を有する透明導
電性膜で維持電極4を形成した。詳しくは、ガラス基板
上に透明導電性膜として膜厚0.15μmのITOをス
パッタ法により膜形成し、次いでITO膜上にフォトレ
ジスト(東京応化工業製「OFPR800」)でエッチ
ングマスクを形成した後、水、塩酸、硝酸を1:1:
0.08の割合で混合した液中でITO膜をエッチング
し、フォトレジストを剥離してから基板水洗を行って乾
燥させることで、線幅188μmの維持電極4を形成し
た。
Subsequently, as shown in FIG. 3B, a sustain electrode 4 was formed of a transparent conductive film having a predetermined shape on the glass substrate 1 whose surface was polished. Specifically, after forming a film of ITO having a thickness of 0.15 μm as a transparent conductive film on a glass substrate by a sputtering method, and then forming an etching mask with a photoresist (“OFPR800” manufactured by Tokyo Ohka Kogyo Co., Ltd.) on the ITO film, , Water, hydrochloric acid, nitric acid 1: 1
The ITO film was etched in a solution mixed at a ratio of 0.08, the photoresist was peeled off, the substrate was washed with water, and dried to form the sustain electrode 4 having a line width of 188 μm.

【0019】透明導電性膜の材料としてはITO以外に
もSnO2 (スズネサ)膜等も可能である。SnO
2 (スズネサ)膜を使用した場合、まずガラス基板1上
に維持電極4の逆パターンでマスク層を形成した後、C
VD法により膜形成を行い、続いてマスク層を剥離する
ことによりパターニングした。透明導電性膜の膜厚はI
TO、SnO2 (スズネサ)膜等ともに0.05〜0.
4μm程度である。
As a material of the transparent conductive film, an SnO 2 (tinnesa) film or the like can be used in addition to ITO. SnO
2 When a (tinnesa) film is used, first, a mask layer is formed on the glass
A film was formed by the VD method, and subsequently, the mask layer was peeled off to perform patterning. The thickness of the transparent conductive film is I
Both the TO and SnO 2 (tinnesa) films are 0.05-0.
It is about 4 μm.

【0020】透明電極のみでは抵抗値が高く、電極とし
て使えないため、図3(c)に示すように、抵抗値を低
くするために透明電極上にバス電極となる金属電極31
を形成し、複合電極6を形成した。Agを含有する導体
材料で金属電極31を形成するが、実施例1と同様に、
スクリーン印刷法であっても他の方法であっても可能で
あった。金属電極31の線幅は64μmであった。
Since the transparent electrode alone has a high resistance and cannot be used as an electrode, as shown in FIG. 3C, a metal electrode 31 serving as a bus electrode is formed on the transparent electrode to reduce the resistance.
Was formed to form the composite electrode 6. The metal electrode 31 is formed of a conductive material containing Ag.
Both screen printing and other methods were possible. The line width of the metal electrode 31 was 64 μm.

【0021】なお、本実施例では第1層である維持電極
4のパターニングを終えてから第2層である金属電極3
1を形成したが、第2層を形成後に第1層である維持電
極4のパターニングを行うことも可能であった。すなわ
ち、この場合、ガラス基板1の片面上に透明導電性膜を
成膜した後、上述の方法と同様の方法で第2層を形成
し、フォトレジスト(東京応化工業社製「OFPR80
0」)で維持電極4の形状でエッチングマスク層を形成
後、透明導電性膜の不要部分をエッチングした。本例で
も、上記の実施例と同様の構成を有する複合電極6を形
成できた。
In this embodiment, after the patterning of the sustain electrode 4 as the first layer is completed, the metal electrode 3 as the second layer is formed.
Although No. 1 was formed, it was also possible to pattern the sustain electrode 4 as the first layer after forming the second layer. That is, in this case, after a transparent conductive film is formed on one surface of the glass substrate 1, a second layer is formed by the same method as described above, and a photoresist (“OFPR80” manufactured by Tokyo Ohka Kogyo Co., Ltd.) is formed.
0 ”), after forming an etching mask layer in the shape of the sustain electrode 4, unnecessary portions of the transparent conductive film were etched. Also in this example, a composite electrode 6 having the same configuration as that of the above-described example could be formed.

【0022】このように前面板となるガラス基板1上に
複合電極6を形成した後、スクリーン印刷法により誘電
体ペースト(日本電気硝子社製「PLS−3232」)
を塗布し、560℃で10分間焼成して誘電体層6を形
成した。この焼成処理でもガラス基板へのAg拡散は抑
制された。次いで、誘電体層6上に真空蒸着法でMgO
層を形成し、前面板を完成させた。さらに、常法により
形成した背面板と合わせてガス封入することでパネルを
完成させた。実際にパネル点灯試験を行ったところ、バ
ス電極がCr/Cu/Crで構成される従来のパネルと
比較して、同様の駆動電圧及びパネル輝度が得られた。
さらに、表面研磨をしないガラス基板上にAgを含有す
る導体材料で金属電極を形成する場合と比較して、ガラ
ス基板の変色がなく、画像表示は良好であった。
After the composite electrode 6 is formed on the glass substrate 1 serving as the front plate as described above, a dielectric paste ("PLS-3232" manufactured by NEC Corporation) is formed by a screen printing method.
And baked at 560 ° C. for 10 minutes to form a dielectric layer 6. Ag diffusion into the glass substrate was also suppressed by this baking treatment. Next, MgO is formed on the dielectric layer 6 by a vacuum evaporation method.
Layers were formed to complete the front panel. Further, the panel was completed by gas sealing together with a back plate formed by a conventional method. When a panel lighting test was actually performed, similar driving voltage and panel luminance were obtained as compared with a conventional panel in which bus electrodes were composed of Cr / Cu / Cr.
Further, as compared with the case where a metal electrode was formed of a conductive material containing Ag on a glass substrate which was not surface-polished, there was no discoloration of the glass substrate and the image display was good.

【0023】上記の説明は面放電型AC型PDPの電極
を例に採ったが、対向型AC型PDPあるいはDC型P
DPといった各種のPDPの電極を形成した場合でも、
さらには他の表示装置や集積回路等における電極や配線
を形成した場合でも本実施例と同様の効果が得られる。
In the above description, electrodes of a surface discharge type AC PDP are taken as an example.
Even when various PDP electrodes such as DP are formed,
Furthermore, the same effects as in the present embodiment can be obtained even when electrodes and wirings in other display devices and integrated circuits are formed.

【0024】[0024]

【発明の効果】以上説明したように、本発明はガラス基
板上に電極を形成する際、安価でかつ生産性に優れた材
料であるところのAgを含有する導体材料を使用する
が、第1工程でガラス基板表面を研磨することにより、
本材料の焼成時に発生するガラス中のAgコロイド形成
を抑制してガラス基板の変色をなくし、さらに電極間の
絶縁性を向上させることができる。
As described above, according to the present invention, when an electrode is formed on a glass substrate, a conductive material containing Ag, which is a material which is inexpensive and excellent in productivity, is used. By polishing the glass substrate surface in the process,
It is possible to suppress the formation of Ag colloid in the glass which is generated when the present material is fired, to eliminate the discoloration of the glass substrate, and to improve the insulation between the electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】AC型プラズマディスプレイパネルの一構成例
をその前面板と背面板を離間した状態で示す構造図であ
る。
FIG. 1 is a structural diagram showing an example of a configuration of an AC type plasma display panel in a state where a front plate and a back plate are separated from each other.

【図2】本発明に係る電極の形成方法の一例を説明する
ための工程図である。
FIG. 2 is a process diagram illustrating an example of a method for forming an electrode according to the present invention.

【図3】本発明に係る電極の形成方法の他の例を説明す
るための工程図である。
FIG. 3 is a process chart for explaining another example of the method for forming an electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 前面板 2 背面板 3 障壁リブ 4 維持電極 5 バス電極 6 複合電極 7 誘電体層 8 保護層(MgO層) 9 アドレス電極 10 蛍光層 21 導体材料 22 スクリーン版 23 スキージ 24 金属電極 31 金属電極 DESCRIPTION OF SYMBOLS 1 Front plate 2 Back plate 3 Barrier rib 4 Sustain electrode 5 Bus electrode 6 Composite electrode 7 Dielectric layer 8 Protective layer (MgO layer) 9 Address electrode 10 Fluorescent layer 21 Conductor material 22 Screen plate 23 Squeegee 24 Metal electrode 31 Metal electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板の少なくとも電極を形成する
面を研磨する第1工程と、Agを含有する導体材料で電
極を形成する第2工程とを含むことを特徴とする電極の
形成方法。
1. A method for forming an electrode, comprising: a first step of polishing at least a surface of a glass substrate on which an electrode is to be formed; and a second step of forming an electrode using a conductive material containing Ag.
【請求項2】 ガラス基板の少なくとも電極を形成する
面を研磨する第1工程と、インジウム酸化物或いはスズ
酸化物を主成分とする透明導電性膜を形成する第2工程
と、Agを含有する導体材料で電極を形成する第3工程
とを含むことを特徴とする電極の形成方法。
2. A first step of polishing at least a surface of a glass substrate on which an electrode is to be formed, a second step of forming a transparent conductive film containing indium oxide or tin oxide as a main component, and containing Ag. Forming an electrode from a conductive material.
JP28777896A 1996-09-10 1996-10-30 Electrode formation method Expired - Fee Related JP3636255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28777896A JP3636255B2 (en) 1996-09-10 1996-10-30 Electrode formation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23914896 1996-09-10
JP8-239148 1996-09-10
JP28777896A JP3636255B2 (en) 1996-09-10 1996-10-30 Electrode formation method

Publications (2)

Publication Number Publication Date
JPH10144208A true JPH10144208A (en) 1998-05-29
JP3636255B2 JP3636255B2 (en) 2005-04-06

Family

ID=26534102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28777896A Expired - Fee Related JP3636255B2 (en) 1996-09-10 1996-10-30 Electrode formation method

Country Status (1)

Country Link
JP (1) JP3636255B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086931A1 (en) 1999-09-27 2001-03-28 Nippon Sheet Glass Co., Ltd. Method of manufacturing a glass substrate for displays and a glass substrate for displays manufactured by same
WO2004051607A1 (en) * 2002-11-29 2004-06-17 Matsushita Electric Industrial Co., Ltd. Image display and method for manufacturing same
WO2004051606A1 (en) * 2002-11-29 2004-06-17 Matsushita Electric Industrial Co., Ltd. Image display and method for evaluating glass substrate to be used in same
JP2004191366A (en) * 2002-11-29 2004-07-08 Matsushita Electric Ind Co Ltd Imaging display apparatus and method for evaluating glass substrate for the same
US7276325B2 (en) 2003-02-14 2007-10-02 E.I. Dupont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1086931A1 (en) 1999-09-27 2001-03-28 Nippon Sheet Glass Co., Ltd. Method of manufacturing a glass substrate for displays and a glass substrate for displays manufactured by same
WO2004051607A1 (en) * 2002-11-29 2004-06-17 Matsushita Electric Industrial Co., Ltd. Image display and method for manufacturing same
WO2004051606A1 (en) * 2002-11-29 2004-06-17 Matsushita Electric Industrial Co., Ltd. Image display and method for evaluating glass substrate to be used in same
JP2004191366A (en) * 2002-11-29 2004-07-08 Matsushita Electric Ind Co Ltd Imaging display apparatus and method for evaluating glass substrate for the same
US7495393B2 (en) 2002-11-29 2009-02-24 Panasonic Corporation Image display device and method for manufacturing same
US7545561B2 (en) 2002-11-29 2009-06-09 Panasonic Corporation Image display and method for evaluating glass substrate to be used in same
US7744439B2 (en) 2002-11-29 2010-06-29 Panasonic Corporation Image display device and manufacturing method of the same
US7276325B2 (en) 2003-02-14 2007-10-02 E.I. Dupont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition
US7303854B2 (en) 2003-02-14 2007-12-04 E.I. Du Pont De Nemours And Company Electrode-forming composition for field emission type of display device, and method using such a composition

Also Published As

Publication number Publication date
JP3636255B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
EP0945887B1 (en) Plasma display panel
KR19990036713A (en) Wiring board and gas discharge display device using same
JP3636255B2 (en) Electrode formation method
JP3297782B2 (en) Plasma addressed liquid crystal display device and method of manufacturing plasma addressed liquid crystal display device
JP3499360B2 (en) AC type plasma display panel
JP3299888B2 (en) Plasma display panel and method of manufacturing the same
JPH09245652A (en) Electrode of plasma display panel and its manufacture
JP2002298744A (en) Plasma display panel and its base board
JP2993263B2 (en) Plasma display panel
JP2003331736A (en) Plasma display device and its manufacturing method
JPH09274860A (en) Plasma display panel
JPH0773809A (en) Display element
JPH11312463A (en) Wiring board and gas discharge display device using it
JPH0922655A (en) Electrode for plasma display device
JP2002124190A (en) Plasma information display element
JP2002324483A (en) Glass substrate for display and method for manufacturing the same
JP3946241B2 (en) Plasma display panel and manufacturing method thereof
JPH0765729A (en) Plasma display panel and manufacture thereof
JPH0935628A (en) Electrode formation of ac plasma display panel
JPH11242935A (en) Plasma information display element
JPH11204042A (en) Electrode structure of display panel and formation thereof
JP4408312B2 (en) Electrode formation method
KR100310466B1 (en) Plasma display panel
JP2000011884A (en) Gas discharge type display device and wiring board used for the same
JPH09283029A (en) Plasma display panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees