JPH10141924A - Laser measuring method using knife-edge method - Google Patents

Laser measuring method using knife-edge method

Info

Publication number
JPH10141924A
JPH10141924A JP29356896A JP29356896A JPH10141924A JP H10141924 A JPH10141924 A JP H10141924A JP 29356896 A JP29356896 A JP 29356896A JP 29356896 A JP29356896 A JP 29356896A JP H10141924 A JPH10141924 A JP H10141924A
Authority
JP
Japan
Prior art keywords
measurement
measured
fine powder
laser
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29356896A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kakino
義昭 垣野
Atsushi Matsubara
厚 松原
Iwao Yamaji
伊和夫 山路
Tomohiko Kawai
友彦 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRAPHIC PROD KK
NIPPON DEJITETSUKU KK
Yasuda Kogyo KK
Original Assignee
GRAPHIC PROD KK
NIPPON DEJITETSUKU KK
Yasuda Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRAPHIC PROD KK, NIPPON DEJITETSUKU KK, Yasuda Kogyo KK filed Critical GRAPHIC PROD KK
Priority to JP29356896A priority Critical patent/JPH10141924A/en
Publication of JPH10141924A publication Critical patent/JPH10141924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the surface of a die, etc., containing a part having such a surface shape that is difficult to be measured by an auto-focus method. SOLUTION: In an auto-focus measuring method in which the surface shape of an object to be measured is measured by irradiating the object with laser light and detecting an auto-focusing position, the part to be measured of the object is covered with fine power of a ceramic, etc., before measurement. At the time of measuring the surface shape of the part to be measured, the fine power of the ceramic, etc., is mixed in volatile oil and the surface to be measure is covered with the mixture by sprayed the mixture upon the surface with an air gun 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザ光を利用して
物体の形状を計測する方法に関し、とくにナイフエッジ
法によるレーザ計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of an object using laser light, and more particularly to a laser measurement method using a knife edge method.

【0002】[0002]

【従来の技術】被測定物の表面形状や表面の性状を測定
する方法にオートフォーカス法による計測方法がある。
オートフォーカス法では被測定物の表面にレーザ光を照
射し、被測定物からの反射光を検出し、サーボ機構等に
より被測定物を焦点位置に自動的に合わせるよう制御す
ることによって計測するものである。ナイフエッジ法も
被測定物の焦点位置からのずれを検知して測定する方法
であり、きわめて高精度な測定が可能であるという特徴
を有する。
2. Description of the Related Art As a method of measuring the surface shape and surface properties of an object to be measured, there is a measuring method by an autofocus method.
In the autofocus method, measurement is performed by irradiating the surface of the measured object with laser light, detecting reflected light from the measured object, and controlling the servo to automatically adjust the measured object to the focal point position. It is. The knife edge method is also a method of detecting and measuring the deviation of the object to be measured from the focal position, and has a feature that extremely high-precision measurement is possible.

【0003】図3はナイフエッジ法による計測方法の原
理図を示す。ナイフエッジ法では対物レンズ8を通して
レーザ光を被測定物10に照射し、被測定物10からの
反射光を対物レンズ8の後方でナイフエッジ12によっ
て半分カットする。14は対物レンズ8によって絞られ
た光を検知するセンサである。図3(a) は被測定物10
がフォーカス位置よりも離れている状態、図3(c) はフ
ォーカス位置よりも近づいた状態である。
FIG. 3 shows a principle diagram of a measuring method by the knife edge method. In the knife edge method, a laser beam is irradiated on the object 10 through the objective lens 8, and the reflected light from the object 10 is cut in half by the knife edge 12 behind the objective lens 8. Reference numeral 14 denotes a sensor that detects light focused by the objective lens 8. FIG. 3A shows the measured object 10.
3 is a state where it is farther from the focus position, and FIG. 3C is a state where it is closer than the focus position.

【0004】光軸を挟んで配置したセンサをA、Bとす
ると、図3(b) の場合にはセンサA、Bに均等に光があ
たるのに対して、図3(a) の場合にはセンサBの側に多
くの光があたり、図3(c) の場合はセンサAの側に多く
の光があたる。ナイフエッジ法ではセンサA、Bにあた
る光量を比較することにより被測定物10がフォーカス
位置のどちら側にあるかがわかり、サーボ機構等を利用
してセンサA、Bに均等に光があたるよう測定系を移動
してオートフォーカスさせることができる。そして、そ
の測定系の移動量から被測定物の形状を計測することが
できる。
Assuming that sensors A and B are arranged with the optical axis interposed therebetween, in the case of FIG. 3 (b), light is evenly applied to the sensors A and B, whereas in the case of FIG. 3A, a lot of light hits the sensor B side, and in the case of FIG. 3C, a lot of light hits the sensor A side. In the knife-edge method, by comparing the light amounts corresponding to the sensors A and B, it is possible to determine on which side of the focus position the object under test 10 is located, and use a servo mechanism or the like so that the sensors A and B are evenly irradiated with light. You can move the system to autofocus. Then, the shape of the measured object can be measured from the movement amount of the measurement system.

【0005】[0005]

【発明が解決しようとする課題】ところで、このナイフ
エッジ法によるレーザ計測方法では被測定物にレーザ光
を照射し、被測定物の表面からの反射光を利用して計測
するから被測定物の表面状態によって計測精度が影響を
受ける。すなわち、被測定物にレーザ光を照射した際に
被測定物からの反射光が測定系側で検知しやすい場合は
問題ないのであるが、測定しようとする部位が傾斜面で
測定系側に反射光が反射されないような場合は検知する
光量が不足してオートフォーカスさせることができず、
測定不能になるという問題がある。
By the way, in the laser measuring method by the knife edge method, an object to be measured is irradiated with a laser beam, and the measurement is performed by using the reflected light from the surface of the object to be measured. Measurement accuracy is affected by surface conditions. In other words, there is no problem if the reflected light from the measured object is easily detected on the measuring system side when the measured object is irradiated with laser light, but the part to be measured is reflected on the inclined surface toward the measuring system side. If the light is not reflected, the amount of light to be detected is insufficient and auto focus cannot be performed.
There is a problem that measurement becomes impossible.

【0006】たとえば、ボールエンドミルによって切削
加工して得た金型の仕上げ面には加工条痕が生成される
が、この加工条痕がある金型面を計測する場合、測定部
位の角度とともに加工条痕の方向が測定精度に大きく影
響を与える。図2(a) は加工条痕と平行方向からレーザ
光を照射した場合、図2(b) は加工条痕と垂直な方向か
らレーザ光を照射した場合である。いずれも測定部位は
光軸に対して傾斜しており、図2(a) に示す場合は測定
面で反射した光はほとんど測定系とは反対側に全反射さ
れ測定系に反射されないことを示し、図2(b) に示す場
合は反射光が測定系に向けて反射されることを示す。金
型面ではほとんど乱反射しないから、図2(a) に示すよ
うな配置の場合は測定不能状態になる。
[0006] For example, machining marks are formed on the finished surface of a mold obtained by cutting with a ball end mill. When measuring a mold surface having such machining marks, the machining is performed together with the angle of the measurement site. The direction of the streak greatly affects the measurement accuracy. FIG. 2A shows a case where laser light is irradiated from a direction parallel to the processing streak, and FIG. 2B shows a case where laser light is irradiated from a direction perpendicular to the processing streak. In each case, the measurement site is inclined with respect to the optical axis, and the case shown in Fig. 2 (a) indicates that the light reflected on the measurement surface is almost totally reflected on the opposite side to the measurement system and is not reflected on the measurement system. 2 (b) shows that the reflected light is reflected toward the measurement system. Since almost no irregular reflection occurs on the mold surface, measurement is impossible in the case of the arrangement shown in FIG.

【0007】本発明はこのような加工条痕が形成された
金型面を計測する場合のように、被測定物の種類や表面
状態によって測定系に光が反射せず、高精度の計測が困
難な場合であっても確実に表面状態の計測を可能とする
ナイフエッジ法によるレーザ計測方法を提供するこを目
的としている。
According to the present invention, as in the case of measuring a mold surface on which such processing streaks are formed, light is not reflected on the measuring system depending on the type and surface condition of the object to be measured, and high-precision measurement can be performed. It is an object of the present invention to provide a laser measurement method by the knife edge method that can reliably measure a surface state even in a difficult case.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため次の構成を備える。すなわち、被測定体にレー
ザ光を照射し、オートフォーカス位置から被測定体の表
面形状を計測するレーザ計測方法において、前記被測定
体の測定対象部位をあらかじめセラミックス等の微粉に
より被覆して計測を行うことを特徴とする。また、揮発
油にセラミックス等の微粉を混合し、エアガンを用いて
測定対象部位に吹き付けることによりセラミックスの微
粉で測定対象部位を被覆することを特徴とする。
The present invention has the following arrangement to achieve the above object. That is, in a laser measurement method of irradiating a laser beam to an object to be measured and measuring a surface shape of the object to be measured from an autofocus position, measurement is performed by previously covering a measurement target portion of the object to be measured with fine powder such as ceramics. It is characterized by performing. In addition, the present invention is characterized in that fine particles of ceramics or the like are mixed with the volatile oil and sprayed on the measurement target portion using an air gun, thereby covering the measurement target portion with the ceramic fine powder.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて説明する。本発明に係るナイフエッジ法によるレ
ーザ計測方法は、測定対象の測定部位の性状によって計
測不能となることを防止するため、被測定物で測定しよ
うとする部位の表面をセラミックス等の微粉で被覆し、
通常の計測方法では測定系に反射光が入射せず測定不能
となるような場合でも必ず反射光が測定系に入射するよ
うにして測定できるようにするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. The laser measurement method according to the knife edge method according to the present invention is to coat the surface of the part to be measured with the object to be measured with fine powder of ceramics or the like in order to prevent the measurement from being impossible due to the properties of the measurement part of the measurement target. ,
In a normal measurement method, even when the reflected light does not enter the measurement system and measurement becomes impossible, the reflected light is always incident on the measurement system so that the measurement can be performed.

【0010】被測定物の測定面を被覆するセラミックス
等の微粉は照射されたレーザ光のうち必ず測定系に反射
される光を生じさせるために使用している。実施形態で
はセラミックスの微粉として粒径1mμ以下の粉体を使
用し、揮発油にセラミックスの微粉を混合し、エアガン
を用いて被測定物の表面に吹き付けて測定面をセラミッ
クスの微粉で被覆した。
[0010] Fine powder of ceramics or the like covering the measurement surface of the object to be measured is used to generate light reflected by the measurement system in the irradiated laser light. In the embodiment, a powder having a particle diameter of 1 μm or less is used as the ceramic fine powder, the ceramic fine powder is mixed with the volatile oil, and the surface to be measured is sprayed to the surface of the object to be measured with an air gun to cover the measurement surface with the ceramic fine powder.

【0011】図1は被測定物10の被測定面にセラミッ
クスの微粉を吹き付ける様子を示す。12はエアガン、
14はノズルである。エアガン12は3軸(XYZ)の
制御軸を有する制御機の1軸の先端に取り付け、測定対
象物に均一に塗布できるよう塗布条件を設定する。セラ
ミックスの微粉を塗布する際には、図1に示すように被
測定物10の被測定面の形状に沿ってエアガン12を移
動させて行う。
FIG. 1 shows a state in which fine powder of ceramics is sprayed on the surface of the object 10 to be measured. 12 is an air gun,
14 is a nozzle. The air gun 12 is attached to the tip of one axis of a controller having three axes (XYZ) of control axes, and sets application conditions so that the air gun 12 can be uniformly applied to the measurement object. When applying the ceramic fine powder, the air gun 12 is moved along the shape of the measured surface of the measured object 10 as shown in FIG.

【0012】本実施形態では、使用した粉末の粒径によ
りエアガンのノズル径を0.2mm〜0.4mmの範囲で調
節して使用した。使用したセラミックスはSi3 4
粉末である。粉末は粒径0.23〜1.10μmのもの
を混合して使用した。エア圧は、粉末の種類と粒径、塗
布厚によって0.1〜4kgf/cm2 の範囲で調節した。被
測定物10の表面に塗布するセラミックスの微粉の厚さ
はできるだけ薄い方が、被測定物10の表面性状を精度
よく測定することができる。上記方法により、被測定面
を被覆するセラミックスの被覆厚を2μm程度とするこ
とができた。
In this embodiment, the nozzle diameter of the air gun is adjusted in the range of 0.2 mm to 0.4 mm according to the particle size of the powder used. The ceramic used was a powder of Si 3 N 4 . Powders having a particle size of 0.23 to 1.10 μm were mixed and used. The air pressure was adjusted in the range of 0.1 to 4 kgf / cm 2 depending on the type, particle size and coating thickness of the powder. If the thickness of the ceramic fine powder applied to the surface of the device under test 10 is as thin as possible, the surface properties of the device under test 10 can be accurately measured. According to the above method, the coating thickness of the ceramic covering the surface to be measured could be reduced to about 2 μm.

【0013】図2に示すような加工条痕が形成されてい
る金型について、セラミックスの微粉を塗布した場合と
セラミックスの微粉を塗布しない場合とで測定面を光軸
に対して傾斜させ測定可能な傾斜角の範囲を調べた結果
を以下に示す。測定は金型面の表面粗さとの関係を調べ
るため表面粗さの異なる金型について行った。測定結果
はレーザ光を加工条痕にほぼ平行に入射させた場合と加
工条痕にほぼ垂直に入射させた場合とについて示す。な
お、図2のαで示す金型面の傾斜角とは光軸を鉛直線方
向とした場合、光軸と被測定面法線とのなす角をいう。
With respect to the mold having processing marks as shown in FIG. 2, the measurement surface can be inclined with respect to the optical axis when the ceramic fine powder is applied and when the ceramic fine powder is not applied. The results of examining the range of various inclination angles are shown below. The measurement was performed on dies having different surface roughness in order to examine the relationship with the surface roughness of the die surface. The measurement results are shown for a case where the laser beam is incident substantially parallel to the processing streak and a case where the laser light is incident substantially perpendicular to the processing streak. The inclination angle of the mold surface indicated by α in FIG. 2 refers to the angle formed between the optical axis and the normal to the surface to be measured when the optical axis is in the vertical direction.

【0014】表1はセラミックスの微粉を塗布していな
い金型面を測定対象とし、金型面を光軸に対して傾斜さ
せて測定の可否を調べた結果である。レーザ光を加工条
痕に対してほぼ垂直な向き(図2(b))にあてた場合であ
る。
[0014] Table 1 shows the results of examining whether or not the measurement can be performed by inclining the mold surface with respect to the optical axis with respect to the mold surface on which the ceramic fine powder is not applied. This is a case where the laser beam is directed in a direction substantially perpendicular to the processing streak (FIG. 2B).

【0015】[0015]

【表1】 [Table 1]

【0016】表中で○印は測定可能であったもの、△印
は測定が困難であったもの、×印は測定不能であったも
のである。上記結果から、たとえば0.8μm Rmax の
場合は傾斜角20度まで容易に測定できるが、25度以
上になると測定が困難になり、35度以上になると測定
不能になることがわかる。また、表面粗さが12.5μ
m Rmax 、25μm Rmax程度になると、45度程度の
傾斜角まで容易に測定できた。
In the table, the mark あ っ た indicates that measurement was possible, the mark 測定 indicates that measurement was difficult, and the mark × indicates that measurement was impossible. From the above results, it can be seen that, for example, in the case of 0.8 μm Rmax, it is easy to measure up to an inclination angle of 20 °, but it becomes difficult to measure at an angle of 25 ° or more, and it becomes impossible to measure at an angle of 35 ° or more. The surface roughness is 12.5μ
When m Rmax was about 25 μm Rmax, it was easy to measure up to a tilt angle of about 45 degrees.

【0017】表2はセラミックスの微粉を塗布していな
い金型面で、レーザ光を加工条痕に対してほぼ平行な向
き(図2(a))にあてて試験した結果を示す。
Table 2 shows the results of a test in which the laser beam was directed in a direction substantially parallel to the processing streak (FIG. 2A) on the mold surface on which the ceramic fine powder was not applied.

【0018】[0018]

【表2】 [Table 2]

【0019】この試験によれば、たとえば0.8μm R
max の場合は傾斜角5度で測定困難になり、傾斜角15
度以上で測定不能となった。また、表面粗さが12.5
μmRmax 、25μm Rmax 程度の場合でも傾斜角5度
程度で測定困難となった。加工条痕に平行にレーザ光を
入射させた場合は、金型面での全反射によって、オート
フォーカスがしにくくなり、測定が困難になることがわ
かる。
According to this test, for example, 0.8 μm R
In the case of max, measurement becomes difficult at an inclination angle of 5 degrees, and an inclination angle of
Measurement became impossible at more than the degree. Further, the surface roughness is 12.5
Even in the case of about .mu.m Rmax and about 25 .mu.m Rmax, measurement became difficult at an inclination angle of about 5 degrees. It can be seen that when laser light is incident parallel to the processing streak, autofocus becomes difficult due to total reflection on the mold surface, and measurement becomes difficult.

【0020】表3は金型面にセラミックスの微粉を塗布
し、測定面にレーザ光を照射して傾斜角を変えて測定の
可否を調べた結果を示す。加工条痕に対して垂直にレー
ザ光を入射させた場合と加工条痕に対して平行にレーザ
光を入射させた場合の結果を示す。なお、この試験で使
用した金型面の表面粗さは4μm Rmax のものである。
Table 3 shows the results obtained by applying fine ceramic powder to the mold surface and irradiating the measurement surface with laser light to change the inclination angle to determine whether or not measurement is possible. The results are shown for the case where the laser beam is incident perpendicular to the processing streak and the case where the laser beam is incident parallel to the processing streak. The surface roughness of the mold surface used in this test was 4 μm Rmax.

【0021】[0021]

【表3】 [Table 3]

【0022】セラミックスの微粉で金型面を被覆した場
合は表3に示すように、加工条痕に垂直にレーザ光を入
射させた場合も加工条痕に平行にレーザ光を入射させた
場合も傾斜角60度までは測定可能となり、傾斜角65
度で測定不能となった。このように、セラミックスの微
粉で金型面を被覆する方法は加工条痕の向き等にかかわ
らずにオートフォーカスすることを可能とし、金型面の
ように全反射しやすい測定対象に適用してきわめて有効
である。このようにセラミックスの微粉で測定対象を被
覆することにより測定可能範囲を拡大できるのは、セラ
ミックスの微粉が球状をなしており、入射光に対して垂
直な面が必ず存在することから、確実に測定系に反射光
を戻すことができるからである。
As shown in Table 3, when the mold surface is coated with the fine powder of ceramics, the laser beam is incident perpendicularly to the processing streak and the laser beam is incident parallel to the processing streak. Measurement is possible up to a tilt angle of 60 degrees, and a tilt angle of 65 degrees.
It became impossible to measure in degrees. In this way, the method of coating the mold surface with ceramic fine powder enables autofocus regardless of the direction of the processing streak, etc., and is applied to a measurement object that is easily totally reflected such as the mold surface. Very effective. The reason that the measurable range can be expanded by coating the measurement target with ceramic fine powder in this way is because the ceramic fine powder is spherical and there is always a plane perpendicular to the incident light. This is because reflected light can be returned to the measurement system.

【0023】セラミックスの微粉を使用する本実施形態
による方法は、微粉からの反射光を利用してオートフォ
ーカスを可能とするものであるから、セラミックスに微
粉に限らず、測定系に反射光を戻すことができるもので
あれば、素材が限定されるものではない。たとえば、プ
ラスチック材を用いた微粉、あるいは金属微粉などを利
用することも可能である。プラスチックの微粉は柔軟性
を有しているから、被測定体の表面に塗布した際にセラ
ミックスの微粉を使用する場合よりも被測定体を損傷さ
せる作用が小さいという利点がある。なお、表面性状の
計測に使用する微粉としては1μm径程度の球体状の粉
体が好適に利用できる。
In the method according to the present embodiment using the fine powder of ceramics, it is possible to perform autofocus by using the reflected light from the fine powder. Therefore, the reflected light is returned not only to the fine powder but also to the measuring system. The material is not limited as long as the material can be used. For example, fine powder using a plastic material, metal fine powder, or the like can be used. Since the plastic fine powder has flexibility, there is an advantage that the action of damaging the object to be measured is smaller than when using ceramic fine powder when applied to the surface of the object to be measured. In addition, as the fine powder used for measuring the surface properties, a spherical powder having a diameter of about 1 μm can be suitably used.

【0024】上記実施形態では加工条痕を有する金型面
を測定対象として試験を行ったが、測定対象はもちろん
金型面に限るものではなく、金型面と同様にレーザ光を
全反射しやすい測定対象にも同様にセラミックスの微粉
を被覆することで同様に適用することが可能である。ま
た、セラミックス等の微粉で被測定物の測定面を被覆し
た場合も、測定面の形状が確実に反映されるから、セラ
ミックスの微粉を被覆した状態で計測することにより、
被測定物の表面状態を確実に計測することが可能にな
る。
In the above embodiment, the test was performed with the mold surface having the processing streak as the measurement object. However, the measurement object is not limited to the mold surface, and the laser light is totally reflected similarly to the mold surface. It is also possible to apply the same method to an easy measurement object by coating the same with fine powder of ceramics. Also, when the measurement surface of the object to be measured is covered with fine powder of ceramics or the like, since the shape of the measurement surface is reliably reflected, measurement is performed with the fine powder of ceramic covered.
It is possible to reliably measure the surface state of the object to be measured.

【0025】[0025]

【発明の効果】本発明に係るナイフエッジ法によるレー
ザ計測方法によれば、通常の測定方法では計測が困難な
傾斜面等の計測が容易に可能になり、レーザ計測方法が
適用できる測定対象物の範囲を広げることができる。ま
た、従来は計測が困難であった測定対象物の計測を容易
にし、これによってより高精度の計測を可能にする等の
著効を奏する。
According to the laser measuring method by the knife edge method according to the present invention, it is possible to easily measure an inclined surface or the like, which is difficult to measure by a normal measuring method, and to measure the object to which the laser measuring method can be applied. Range can be expanded. In addition, it is easy to measure an object to be measured, which has been difficult to measure in the past, and this has a remarkable effect such as enabling more accurate measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定面にセラミックスの微粉を吹き付ける様
子を示す説明図である。
FIG. 1 is an explanatory view showing a state in which fine ceramic powder is sprayed on a surface to be measured.

【図2】金型面の加工条痕とレーザ光の配置関係を示す
説明図である。
FIG. 2 is an explanatory view showing a positional relationship between a processing streak on a mold surface and a laser beam.

【図3】ナイフエッジ法によるレーザ計測方法を示す説
明図である。
FIG. 3 is an explanatory diagram showing a laser measurement method using a knife edge method.

【符号の説明】[Explanation of symbols]

10 金型 12 エアガン 14 ノズル 10 Mold 12 Air gun 14 Nozzle

フロントページの続き (71)出願人 392036072 株式会社日本デジテック 京都府京都市下京区綾小路通室町西入る善 長寺町143番地 (71)出願人 394023414 株式会社グラフィックプロダクツ 東京都豊島区高田2丁目17番22号 (72)発明者 垣野 義昭 京都府京都市左京区岩倉花園町256−5 (72)発明者 松原 厚 京都府京都市北区上賀茂南大路町43プチメ ゾン101 (72)発明者 山路 伊和夫 滋賀県彦根市後三条町465−5 (72)発明者 河井 友彦 京都府京都市下京区綾小路通室町西入る善 長寺町143番地 株式会社日本デジテック 内Continued on the front page (71) Applicant 392036072 Nippon Digitech Co., Ltd. 143 Zenchoji-cho, Ayakoji-dori Muromachi west of Shimogyo-ku, Kyoto-shi, Kyoto (71) Applicant 394023414 Graphic Products Co., Ltd. 2-17-22 Takada, Toshima-ku, Tokyo No. (72) Inventor Yoshiaki Kakino 256-5 Iwakura Hanazonocho, Sakyo-ku, Kyoto-shi, Kyoto (72) Inventor Atsushi Matsubara 43 Petit Maison 101, 43, Kamigamo Minami-Oji-cho, Kita-ku, Kyoto-shi, Kyoto (72) Inventor Igao Yamaji Shiga 465-5 Go-Sanjo-cho, Hikone-shi, Japan (72) Inventor Tomohiko Kawai 143 Zenchoji-cho, Ayakoji-dori Muromachi, Shimogyo-ku, Kyoto-shi, Kyoto Japan Digitech Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定体にレーザ光を照射し、オートフ
ォーカス位置を検出して被測定体の表面形状を計測する
レーザ計測方法において、 前記被測定体の測定対象部位をあらかじめセラミックス
等の微粉により被覆して計測を行うことを特徴とするレ
ーザ計測方法。
1. A laser measuring method for irradiating a laser beam to a measurement object, detecting an auto-focus position and measuring a surface shape of the measurement object, comprising: A laser measurement method characterized by performing measurement by coating with a laser.
【請求項2】 揮発油にセラミックスの微粉を混合し、
エアガンを用いて測定対象部位に吹き付けることにより
セラミックス等の微粉で測定対象部位を被覆することを
特徴とする請求項1記載のレーザ計測方法。
2. A ceramic fine powder is mixed with a volatile oil,
The laser measurement method according to claim 1, wherein the measurement target portion is coated with fine powder such as ceramics by spraying the measurement target portion with an air gun.
JP29356896A 1996-11-06 1996-11-06 Laser measuring method using knife-edge method Pending JPH10141924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29356896A JPH10141924A (en) 1996-11-06 1996-11-06 Laser measuring method using knife-edge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29356896A JPH10141924A (en) 1996-11-06 1996-11-06 Laser measuring method using knife-edge method

Publications (1)

Publication Number Publication Date
JPH10141924A true JPH10141924A (en) 1998-05-29

Family

ID=17796433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29356896A Pending JPH10141924A (en) 1996-11-06 1996-11-06 Laser measuring method using knife-edge method

Country Status (1)

Country Link
JP (1) JPH10141924A (en)

Similar Documents

Publication Publication Date Title
US11899421B2 (en) Calibrating a scanner device
TWI504463B (en) Method and apparatus for controlling the size of a laser beam focal spot
US6621060B1 (en) Autofocus feedback positioning system for laser processing
JP3605359B2 (en) METHOD AND APPARATUS FOR CALIBRATION OF LASER PROCESSING MACHINE FOR PROCESSING WORKING MATERIAL
JPS6240072B2 (en)
US8460754B2 (en) Needle coating and in-line curing of a coated workpiece
JPH10328867A (en) Laser beam machining device, focusing jig therefor and jig for measuring diameter of condensed laser beam
CA2925039A1 (en) Method for measuring the depth of penetration of a laser beam into a workpiece, and laser machining device
US11890675B2 (en) Arrangement for adjusting a powder flow in relation to the central longitudinal
JPH11119232A (en) Applicator for coating sealant
CN101522357A (en) Laser working apparatus
CN114787579A (en) Method for measuring distances for controlling the focus of laser-processed materials by means of OCT and associated computer program product
JPH08278117A (en) Attitude control device for work apparatus relative to work object plane, crucible instrumentation device with the control device and painting device
JP2005114615A (en) Method and apparatus for measuring wetting properties on solid surface
Karkantonis et al. Laser micro-machining of freeform surfaces: Accuracy, repeatability and reproducibility achievable with multi-axis processing strategies
Schmitt et al. Process monitoring in laser micro machining
US8184301B2 (en) Surface alignment and positioning method and apparatus
JPH10141924A (en) Laser measuring method using knife-edge method
JP2000317657A (en) Laser beam marking device
JP2005537928A (en) Apparatus and method for applying a fluid medium to a substrate
GB2181835A (en) Monitoring device
US20070181545A1 (en) Method and apparatus for controlling sample position during material removal or addition
EP0228765A2 (en) Device for monitoring the position of a surface of a body, in particular the thickness of a coating
Rizki et al. Development of adaptive laser head for compensating error of beam waist position during processing materials using laser beam spot detection method
US11737199B2 (en) Device and method for measuring the beam angle of a light beam guided by a beam guiding optical unit