JPH10139594A - Piezoelectric thin film, its production and ink jet recording head using the same - Google Patents

Piezoelectric thin film, its production and ink jet recording head using the same

Info

Publication number
JPH10139594A
JPH10139594A JP28877096A JP28877096A JPH10139594A JP H10139594 A JPH10139594 A JP H10139594A JP 28877096 A JP28877096 A JP 28877096A JP 28877096 A JP28877096 A JP 28877096A JP H10139594 A JPH10139594 A JP H10139594A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
piezoelectric
layer
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28877096A
Other languages
Japanese (ja)
Inventor
Tadaaki Kuno
忠昭 久野
Satoru Miyashita
悟 宮下
Hiroshi Aoyama
拓 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28877096A priority Critical patent/JPH10139594A/en
Publication of JPH10139594A publication Critical patent/JPH10139594A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the piezoelectric thin film whose piezoelectric strain constant value is not reduced even at the time of increasing the thickness of the thin film and also to provide the production of the thin film. SOLUTION: This piezoelectric thin film 21 consists of a base layer(s) 14 formed from a three-component system piezoelectric material and a member layer(s) 13 formed from a two-component system piezoelectric material having a lower crystallization temp. than that of the base layer's) 14. Therefore, the crystal properties of the piezoelectric thin film 21 as a whole at the time of increasing the film thickness, are improved and the reduction in piezoelectric constant value of the thin film 21 having an increased thickness is inhibited from occurring. Further, the piezoelectric film 21 having an increased thickness is produced by many times forming coating layers of the above piezoelectric materials with a sol-gel method and annealing/crystallizing these piezoelectric material coating layers all together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インクジェット記
録装置等にアクチュエーターとして用いられる圧電体薄
膜素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric thin film element used as an actuator in an ink jet recording apparatus or the like.

【0002】[0002]

【従来の技術】PZTに代表される圧電体、強誘電体薄
膜は、スパッタ法、ゾルゲル法、CVD法、レ−ザアブ
レーション法等で形成することができる。膜厚を厚くす
るためには、成膜する堆積時間を増加させたり、成膜を
複数回繰り返すことにより対応している。ペロブスカイ
ト構造を得るために、通常500〜700℃の酸素雰囲
気中でアニールが行なわれている。
2. Description of the Related Art Piezoelectric and ferroelectric thin films represented by PZT can be formed by a sputtering method, a sol-gel method, a CVD method, a laser ablation method, or the like. In order to increase the film thickness, the deposition time for forming the film is increased or the film formation is repeated a plurality of times. In order to obtain a perovskite structure, annealing is usually performed in an oxygen atmosphere at 500 to 700 ° C.

【0003】特にゾルゲル法は組成制御性に優れてお
り、スピンコートと焼成を繰り返すことで容易に薄膜を
得ることができる。フォトエッチング工程を用いたパタ
ーニングが可能で、素子化も容易である。またこのよう
に製造した圧電体薄膜素子を用いたインクジェット記録
ヘッドも提言されている。(特公平5−504740)
ゾルゲル法にて二成分系圧電体薄膜の膜厚を厚くする場
合には、結晶性劣化に基づく圧電ひずみ定数低下が起こ
り易いという問題がある。そこで、厚膜時の圧電ひずみ
定数改善の目的で、二成分系圧電体材料においては、よ
り結晶化温度の低いPTからなる部分層を有する構造の
圧電体薄膜製造方法が実施されている。
In particular, the sol-gel method has excellent composition controllability, and a thin film can be easily obtained by repeating spin coating and baking. Patterning using a photo-etching process is possible, and device formation is easy. Further, an ink jet recording head using the piezoelectric thin film element manufactured as described above has been proposed. (Tokuhei 5-504740)
When the thickness of the two-component piezoelectric thin film is increased by the sol-gel method, there is a problem that the piezoelectric strain constant tends to decrease due to the deterioration of crystallinity. Therefore, for the purpose of improving the piezoelectric strain constant at the time of a thick film, a method of manufacturing a piezoelectric thin film having a structure having a partial layer made of PT having a lower crystallization temperature has been implemented for a two-component piezoelectric material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ゾルゲ
ル法による三成分系圧電体薄膜の厚膜化においては、二
成分系圧電体薄膜の場合に行なわれるような低結晶化温
度の材料からなる部分層を有する構造の圧電体薄膜とす
る方法は実施されていない。従って圧電ひずみ定数低下
についての課題は依然解決していない。
However, in increasing the thickness of a three-component piezoelectric thin film by the sol-gel method, a partial layer made of a material having a low crystallization temperature, which is performed in the case of a two-component piezoelectric thin film, is used. No method has been implemented to produce a piezoelectric thin film having a structure having Therefore, the problem regarding the reduction of the piezoelectric strain constant has not been solved yet.

【0005】そこで本発明は、このような問題点を解決
するもので、その目的とするところは、より低結晶化温
度の二成分系圧電体材料からなる部分層を有する構造の
三成分系圧電体薄膜を製造し、厚膜時の圧電ひずみ定数
低下を抑制した三成分系圧電体薄膜素子およびその製造
方法を提供するところにある。また前述のように製造し
た圧電体薄膜を振動子として用いてなるインクジェット
記録ヘッドを提言する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a three-component piezoelectric element having a partial layer made of a two-component piezoelectric material having a lower crystallization temperature. It is an object of the present invention to provide a three-component piezoelectric thin-film element which manufactures a body thin film and suppresses a decrease in piezoelectric strain constant when the film is thick, and a method for manufacturing the same. In addition, an ink jet recording head using the piezoelectric thin film manufactured as described above as a vibrator is proposed.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明の圧電体薄膜は、(1) 母層がPMN、P
ZおよびPTから形成される三成分系圧電体材料からな
り、部分層にPZおよびPTから形成される二成分系材
料を有する構造と、(2) 圧電体薄膜内に部分層が複
数層形成されている構造と、(3) 部分層を形成する
PZとPTの組成比が0.3以上0.7以下であること
を特徴とする。
Means for Solving the Problems To solve the above problems, the piezoelectric thin film of the present invention has the following features.
A structure composed of a three-component piezoelectric material formed of Z and PT and having a two-component material formed of PZ and PT in a partial layer; and (2) a plurality of partial layers formed in the piezoelectric thin film. And (3) the composition ratio of PZ and PT forming the partial layer is 0.3 or more and 0.7 or less.

【0007】また本発明の圧電体薄膜の製造方法は、
(1) 図1〜4に示した圧電体薄膜断面図において、
シリコン基板11の上に白金電極12を形成し、その上
にゾルゲル法を用いて部分層13と母層14から形成さ
れる多層薄膜を形成し、一括してアニールし、結晶化さ
せることで圧電体薄膜21とすること、(2) 図1は
最下層の部分層13の上に母層14を形成する場合を、
図2は母層14の中間部に部分層13を形成する場合
を、図3は母層14の最上層に部分層13を形成する場
合、といった圧電体薄膜21内の任意の層位置に一層の
部分層を形成すること、(3) 図4は圧電体薄膜21
内の任意の層位置に複数個の部分層を形成すること、
(4) 上記製造工程を繰り返し、圧電体材料を複数回
積層して厚膜化すること、(5) アニールを600℃
〜900℃の温度範囲で行い、結晶化させること、を特
徴とする。
Further, the method of manufacturing a piezoelectric thin film of the present invention
(1) In the cross-sectional view of the piezoelectric thin film shown in FIGS.
A platinum electrode 12 is formed on a silicon substrate 11, a multilayer thin film formed from a partial layer 13 and a mother layer 14 is formed thereon by using a sol-gel method, and annealed and crystallized collectively to form a piezoelectric film. FIG. 1 shows a case where the mother layer 14 is formed on the lowermost partial layer 13.
FIG. 2 shows a case where the partial layer 13 is formed in the middle of the mother layer 14, and FIG. 3 shows a case where the partial layer 13 is formed on the uppermost layer of the mother layer 14. (3) FIG. 4 shows the piezoelectric thin film 21.
Forming a plurality of partial layers at arbitrary layer positions in the
(4) Repeating the above manufacturing process, laminating the piezoelectric material a plurality of times to increase the thickness, and (5) annealing at 600 ° C.
The crystallization is performed in a temperature range of up to 900 ° C.

【0008】さらに、本発明のインクジェット記録ヘッ
ドは、本発明の圧電体薄膜を振動子として用いてなるこ
とを特徴とする。
Furthermore, an ink jet recording head of the present invention is characterized in that the piezoelectric thin film of the present invention is used as a vibrator.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】(実施例1)酢酸鉛0.105モル、ジル
コニウムアセチルアセトナート0.045モル、酢酸マ
グネシウム0.005モルと30ミリリットルの酢酸
を、100℃に加熱して溶解させた。室温まで冷却し、
チタンテトライソプロポキシド0.040モル、ペンタ
エトキシニオブ0.010モルをエチルセラソルブ50
ミリリットルに溶解させて添加した。アセチルアセトン
を30ミリリットル添加して安定化させた後、ポリエチ
レングリコールをゾル中の金属酸化物に対し30重量%
添加し、よく攪拌して均質なPMN、PT、PZの三成
分系の母層のゾルとした。
(Example 1) 0.105 mol of lead acetate, 0.045 mol of zirconium acetylacetonate, 0.005 mol of magnesium acetate and 30 ml of acetic acid were dissolved by heating to 100 ° C. Cool to room temperature,
0.040 mol of titanium tetraisopropoxide and 0.010 mol of pentaethoxyniobium
Dissolved in milliliter and added. After stabilizing by adding 30 ml of acetylacetone, polyethylene glycol was added in an amount of 30% by weight to the metal oxide in the sol.
The mixture was added and stirred well to obtain a homogeneous three-component mother layer sol of PMN, PT and PZ.

【0011】それとは別に、酢酸鉛0.105モル、ジ
ルコニウムアセチルアセトナート0.050モルと30
ミリリットルの酢酸を、100℃に加熱して溶解させ
た。室温まで冷却し、チタンテトライソプロポキシド
0.050モルをエチルセラソルブ50ミリリットルに
溶解させて添加した。アセチルアセトンを30ミリリッ
トル添加して安定化させた後、ポリエチレングリコール
をゾル中の金属酸化物に対し30重量%添加し、よく攪
拌して均質なPZT二成分系の部分層のゾルとした。
Separately, 0.105 mol of lead acetate, 0.050 mol of zirconium acetylacetonate and 30 mol of
Milliliter of acetic acid was dissolved by heating to 100 ° C. After cooling to room temperature, 0.050 mol of titanium tetraisopropoxide was dissolved in 50 ml of ethyl cerasolve and added. After 30 ml of acetylacetone was added to stabilize, 30% by weight of polyethylene glycol was added to the metal oxide in the sol, and the mixture was thoroughly stirred to obtain a homogeneous PZT binary partial layer sol.

【0012】図1に圧電体薄膜を模式的に表す断面図を
示す。11のシリコン基板上に12の白金電極をスパッ
タ法で形成し、その上に調製した部分層のゾルをスピン
コートで塗布し、400℃で仮焼成した。クラックを生
じることなく、0.3μmの膜厚の非晶質の部分層13
を形成できた。更に母層のゾルの塗布と400℃の仮焼
成を5度繰り返し、1.5μmの膜厚の母層14を形成
した。次にRTA(Rapid Thermal Annealing)を用い
て酸素雰囲気中850℃に加熱し、1分間保持してアニ
ールした。1.2μm厚の圧電体薄膜21が得られた。
エックス線解析でペロブスカイト型結晶の鋭く強いピー
クが検出された圧電体薄膜21上にアルミニウム電極を
蒸着法で形成し、分極後、物性を測定したところ比誘電
率2000、圧電ひずみ定数200pC/Nと優れた特
性を示した。比誘電率は極端に高くないが、電気機械結
合係数が高いため、大きな圧電ひずみ定数が得られた。
FIG. 1 is a sectional view schematically showing a piezoelectric thin film. Twelve platinum electrodes were formed on the eleventh silicon substrate by a sputtering method, and the prepared partial layer sol was applied thereon by spin coating and calcined at 400 ° C. An amorphous partial layer 13 having a thickness of 0.3 μm without cracking
Could be formed. Further, the application of the sol of the mother layer and the preliminary baking at 400 ° C. were repeated five times to form the mother layer 14 having a thickness of 1.5 μm. Next, the substrate was heated to 850 ° C. in an oxygen atmosphere using RTA (Rapid Thermal Annealing) and held for 1 minute for annealing. A 1.2 μm thick piezoelectric thin film 21 was obtained.
An aluminum electrode was formed by a vapor deposition method on the piezoelectric thin film 21 where a sharp and strong peak of perovskite type crystal was detected by X-ray analysis, and after polarization, the physical properties were measured. The relative dielectric constant was 2000 and the piezoelectric strain constant was 200 pC / N. Characteristics. Although the dielectric constant was not extremely high, a large piezoelectric strain constant was obtained because of the high electromechanical coupling coefficient.

【0013】図6にこの製造方法で作成した圧電体薄膜
素子を、インクジェット記録装置に用いた時の概念を模
式的に表す断面図を示す。シリコンウェハ31上に窒化
珪素の振動板32をスパッタ法で形成し、前述の方法で
下電極33と圧電体薄膜34を形成した。圧電体薄膜を
フォトエッチングにより幅0.2mm、長さ4mmにパ
ターニングし、シリコンウェハーに異方性エッチングに
より幅0.3mmの溝を形成した。金の上電極35を形
成した後、ガラス製の第二基板36と接合し、インク流
路37を形成した。基板ごと切断してインクジェットヘ
ッドを組み立て、インクを吐出させたところ、充分な吐
出力が得られた。インクジェット記録装置に組み込んで
印字すると、良好な印字品質が得られた。フォトエッチ
ングを用いるため高精細化が可能で、一枚の基板から多
数の素子が取れるため低コスト化も可能である。また製
造安定性、特性の再現性も大変優れていた。
FIG. 6 is a sectional view schematically showing a concept when the piezoelectric thin film element produced by this manufacturing method is used in an ink jet recording apparatus. A vibration plate 32 of silicon nitride was formed on a silicon wafer 31 by a sputtering method, and a lower electrode 33 and a piezoelectric thin film 34 were formed by the above-described method. The piezoelectric thin film was patterned into a width of 0.2 mm and a length of 4 mm by photoetching, and a groove having a width of 0.3 mm was formed in the silicon wafer by anisotropic etching. After forming the gold upper electrode 35, it was joined to a glass second substrate 36 to form an ink channel 37. When the ink jet head was assembled by cutting the entire substrate and the ink was ejected, a sufficient ejection force was obtained. When printing was performed by incorporating the ink jet recording apparatus in an ink jet recording apparatus, good printing quality was obtained. High definition can be achieved by using photoetching, and cost can be reduced because a large number of elements can be obtained from one substrate. The production stability and the reproducibility of the characteristics were also very excellent.

【0014】(実施例2〜9)実施例1と同様にして、
PMN,PT,PZの三成分系の母層のゾルを用意し
た。
(Examples 2 to 9) In the same manner as in Example 1,
A sol of a ternary base layer of PMN, PT and PZ was prepared.

【0015】それとは別に、ジルコニウムアセチルアセ
トナートとチタンテトライソプロポキシドの添加比を調
製して、PT/PZの組成比を変えたPZT二成分系の
部分層のゾルを8種類用意した。
Separately, the addition ratios of zirconium acetylacetonate and titanium tetraisopropoxide were adjusted to prepare eight kinds of PZT binary partial layer sols having different PT / PZ composition ratios.

【0016】実施例1と同様に図1に示す構成の圧電体
薄膜を製造した。まず、11のシリコン基板上に12の
白金電極をスパッタ法で形成し、その上に各組成比に調
製した部分層のゾルをスピンコートで塗布し、400℃
で仮焼成した。クラックを生じることなく、0.3μm
の膜厚の非晶質の部分層13を形成できた。更に母層の
ゾルの塗布と400℃の仮焼成を5度繰り返し、1.5
μmの膜厚の母層14を形成した。次にRTAを用いて
酸素雰囲気中850℃に加熱し、1分間保持してアニー
ルした。1.2μm厚の圧電体薄膜21が得られた。圧
電体薄膜21上にアルミニウム電極を蒸着法で形成し、
分極後、電気特性を測定した結果を表1に示す。
A piezoelectric thin film having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1. First, 12 platinum electrodes were formed on a 11 silicon substrate by a sputtering method, and the sol of a partial layer adjusted to each composition ratio was applied thereon by spin coating.
Was calcined. 0.3μm without crack
Thus, an amorphous partial layer 13 having a film thickness of 5 mm was formed. Further, the application of the mother layer sol and the temporary baking at 400 ° C. were repeated 5 times,
A mother layer 14 having a thickness of μm was formed. Next, the substrate was heated to 850 ° C. in an oxygen atmosphere using RTA, held for 1 minute, and annealed. A 1.2 μm thick piezoelectric thin film 21 was obtained. An aluminum electrode is formed on the piezoelectric thin film 21 by a vapor deposition method,
Table 1 shows the results of measuring the electrical characteristics after the polarization.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明かなように、部分層の組成比P
Z/PTが0.3以上0.7以下において、高い圧電特
性が得られた。
As is clear from Table 1, the composition ratio P of the partial layer
When Z / PT was 0.3 or more and 0.7 or less, high piezoelectric characteristics were obtained.

【0019】(比較例1)実施例1と同様にして、PM
N,PT,PZの三成分系の母層のゾルを用意した。
Comparative Example 1 In the same manner as in Example 1, PM
A sol of a three-component base layer of N, PT, and PZ was prepared.

【0020】それとは別に、部分層としてPT一成分系
の部分層のゾルを調製した。
Separately, a PT single-component partial layer sol was prepared as a partial layer.

【0021】実施例1と同様に図1に示す構成の圧電体
薄膜を製造した。まず、11のシリコン基板上に12の
白金電極をスパッタ法で形成し、その上に各組成比に調
製した部分層のゾルをスピンコートで塗布し、400℃
で仮焼成した。クラックを生じることなく、0.3μm
の膜厚の非晶質の部分層13を形成できた。更に母層の
ゾルの塗布と400℃の仮焼成を5度繰り返し、1.5
μmの膜厚の母層14を形成した。次にRTAを用いて
酸素雰囲気中850℃に加熱し、1分間保持してアニー
ルした。1.2μm厚の圧電体薄膜21が得られた。
A piezoelectric thin film having the structure shown in FIG. 1 was manufactured in the same manner as in Example 1. First, 12 platinum electrodes were formed on a 11 silicon substrate by a sputtering method, and the sol of a partial layer adjusted to each composition ratio was applied thereon by spin coating.
Was calcined. 0.3μm without crack
Thus, an amorphous partial layer 13 having a film thickness of 5 mm was formed. Further, the application of the mother layer sol and the temporary baking at 400 ° C. were repeated 5 times,
A mother layer 14 having a thickness of μm was formed. Next, the substrate was heated to 850 ° C. in an oxygen atmosphere using RTA, held for 1 minute, and annealed. A 1.2 μm thick piezoelectric thin film 21 was obtained.

【0022】圧電体薄膜21上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定したところ比誘
電率300、圧電ひずみ定数10pC/Nという結果が
得られた。この結果よりPT一成分系の部分層の場合に
はPZT二成分系の部分層の場合に比べて高い圧電特性
が得られなかった。
An aluminum electrode was formed on the piezoelectric thin film 21 by vapor deposition, and after polarization, the electrical characteristics were measured. The results were a relative dielectric constant of 300 and a piezoelectric strain constant of 10 pC / N. As a result, no higher piezoelectric characteristics were obtained in the case of the PT one-component partial layer than in the case of the PZT two-component partial layer.

【0023】(比較例2)実施例1と同様にして、PM
N,PT,PZの三成分系の母層のゾルを用意した。
(Comparative Example 2) In the same manner as in Example 1, PM
A sol of a three-component base layer of N, PT, and PZ was prepared.

【0024】まず、シリコン基板上に白金電極をスパッ
タ法で形成し、その上に母層のゾルの塗布と400℃の
仮焼成を6度繰り返し1.8μmの膜厚の母層を形成し
た。次にRTAを用いて酸素雰囲気中850℃に加熱
し、1分間保持してアニールした。1.2μm厚の圧電
体薄膜が得られた。この圧電体薄膜上にアルミニウム電
極を蒸着法で形成し、分極後、電気特性を測定した結果
したところ比誘電率1500、圧電ひずみ定数60pC
/Nという結果が得られた。この結果はPZT二成分系
の部分層形成の効果について示している。
First, a platinum electrode was formed on a silicon substrate by sputtering, and the application of the sol of the mother layer and the preliminary baking at 400 ° C. were repeated six times to form a mother layer having a thickness of 1.8 μm. Next, the substrate was heated to 850 ° C. in an oxygen atmosphere using RTA, held for 1 minute, and annealed. A 1.2 μm thick piezoelectric thin film was obtained. An aluminum electrode was formed on the piezoelectric thin film by a vapor deposition method, and after polarization, the electrical characteristics were measured. As a result, the relative dielectric constant was 1500 and the piezoelectric strain constant was 60 pC.
/ N was obtained. This result shows the effect of forming a PZT binary partial layer.

【0025】(実施例10)実施例1と同様にして、P
MN,PT,PZの三成分系の母層のゾルと、PZT二
成分系の部分層のゾルを用意した。
(Embodiment 10) In the same manner as in Embodiment 1, P
A sol of a three-component base layer of MN, PT, and PZ and a sol of a partial layer of a two-component PZT were prepared.

【0026】図2に圧電体薄膜を模式的に表す断面図を
示す。11のシリコン基板上に12の白金電極をスパッ
タ法で形成し、その上に母層のゾルの塗布と400℃の
仮焼成を3度繰り返し0.9μmの膜厚の母層14を形
成した。更に部分層のゾルの塗布と400℃の仮焼成を
し0.3μmの膜厚の部分層13を形成した。更にその
上に母層のゾルの塗布と400℃の仮焼成を3度繰り返
し0.9μmの膜厚の母層14を形成した。次にRTA
を用いて酸素雰囲気中850℃に加熱し、1分間保持し
てアニールした。1.4μm厚の圧電体薄膜21が得ら
れた。
FIG. 2 is a sectional view schematically showing a piezoelectric thin film. Twelve platinum electrodes were formed on the eleventh silicon substrate by sputtering, and the application of the sol of the mother layer and the preliminary baking at 400 ° C. were repeated three times to form the mother layer 14 having a thickness of 0.9 μm. Further, the sol of the partial layer was applied and calcined at 400 ° C. to form a partial layer 13 having a thickness of 0.3 μm. Further, the application of the sol of the mother layer and the preliminary baking at 400 ° C. were repeated three times to form the mother layer 14 having a thickness of 0.9 μm. Then RTA
Was heated to 850 ° C. in an oxygen atmosphere, and kept for 1 minute for annealing. A piezoelectric thin film 21 having a thickness of 1.4 μm was obtained.

【0027】圧電体薄膜21上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定した結果したと
ころ比誘電率1800、圧電ひずみ定数180pC/N
と優れた特性を示した。
An aluminum electrode was formed on the piezoelectric thin film 21 by vapor deposition, and after polarization, the electrical characteristics were measured. The relative dielectric constant was 1800 and the piezoelectric strain constant was 180 pC / N.
And showed excellent characteristics.

【0028】(実施例11)実施例1と同様にして、P
MN,PT,PZの三成分系の母層のゾルと、PZT二
成分系の部分層のゾルを用意した。
(Embodiment 11) In the same manner as in Embodiment 1, P
A sol of a three-component base layer of MN, PT, and PZ and a sol of a partial layer of a two-component PZT were prepared.

【0029】図3に圧電体薄膜を模式的に表す断面図を
示す。11のシリコン基板上に12の白金電極をスパッ
タ法で形成し、その上に母層のゾルの塗布と400℃の
仮焼成を5度繰り返し1.5μmの膜厚の母層14を形
成した。更にその上に部分層のゾルの塗布と400℃の
仮焼成をし0.3μmの膜厚の部分層13を形成した。
次にRTAを用いて酸素雰囲気中850℃に加熱し、1
分間保持してアニールした。1.2μm厚の圧電体薄膜
21が得られた。
FIG. 3 is a sectional view schematically showing a piezoelectric thin film. Twelve platinum electrodes were formed on the eleventh silicon substrate by sputtering, and the application of the sol of the mother layer and the preliminary baking at 400 ° C. were repeated five times to form the mother layer 14 having a thickness of 1.5 μm. Further, a partial layer 13 having a thickness of 0.3 μm was formed thereon by applying a sol of the partial layer and performing preliminary baking at 400 ° C.
Next, it is heated to 850 ° C. in an oxygen atmosphere using RTA,
Hold for 10 minutes and anneal. A 1.2 μm thick piezoelectric thin film 21 was obtained.

【0030】圧電体薄膜21上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定した結果したと
ころ比誘電率1800、圧電ひずみ定数160pC/N
と優れた特性を示した。
An aluminum electrode was formed on the piezoelectric thin film 21 by vapor deposition, and after polarization, the electrical characteristics were measured. As a result, the relative dielectric constant was 1800, and the piezoelectric strain constant was 160 pC / N.
And showed excellent characteristics.

【0031】(実施例12)実施例1と同様にして、P
MN,PT,PZの三成分系の母層のゾルと、PZT二
成分系の部分層のゾルを用意した。
(Embodiment 12) As in Embodiment 1, P
A sol of a three-component base layer of MN, PT, and PZ and a sol of a partial layer of a two-component PZT were prepared.

【0032】図4に圧電体薄膜を模式的に表す断面図を
示す。11のシリコン基板上に12の白金電極をスパッ
タ法で形成し、その上に部分層のゾルの塗布と400℃
の仮焼成をし0.3μmの膜厚の部分層13を形成し、
更にその上に母層のゾルの塗布と400℃の仮焼成を3
度繰り返し0.9μmの膜厚の母層14を形成した。同
様にしてその上に0.3μm厚の部分層13と0.9μ
m厚の母層14を形成した。 次にRTAを用いて酸素
雰囲気中850℃に加熱し、1分間保持してアニールし
た。1.6μm厚の圧電体薄膜21が得られた。
FIG. 4 is a sectional view schematically showing a piezoelectric thin film. 12 platinum electrodes are formed by sputtering on 11 silicon substrates, and a partial layer sol is applied thereon and 400 ° C.
And forming a partial layer 13 having a thickness of 0.3 μm,
Further, sol application of the mother layer and preliminary baking at 400 ° C.
Each time, a mother layer 14 having a thickness of 0.9 μm was formed. Similarly, a 0.3 μm thick partial layer 13 and 0.9 μm
An m-thick mother layer 14 was formed. Next, the substrate was heated to 850 ° C. in an oxygen atmosphere using RTA, held for 1 minute, and annealed. A 1.6 μm thick piezoelectric thin film 21 was obtained.

【0033】圧電体薄膜21上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定した結果したと
ころ比誘電率1700、圧電ひずみ定数190pC/N
と優れた特性を示した。
An aluminum electrode was formed on the piezoelectric thin film 21 by vapor deposition, and after polarization, the electrical characteristics were measured. The relative dielectric constant was 1700, and the piezoelectric strain constant was 190 pC / N.
And showed excellent characteristics.

【0034】(実施例13)実施例1と同様にして、P
MN,PT,PZの三成分系の母層のゾルと、PZT二
成分系の部分層のゾルを用意した。
(Embodiment 13) In the same manner as in Embodiment 1, P
A sol of a three-component base layer of MN, PT, and PZ and a sol of a partial layer of a two-component PZT were prepared.

【0035】シリコン基板上に白金電極をスパッタ法で
形成した上に、実施例1に記述と同様の製造方法で1.
2μm厚の圧電体薄膜を形成した。更にその上に同様の
製造方法を二回繰り返して2.4μm厚の圧電体薄膜を
積層し、合計3.6μm厚の圧電体薄膜を形成した。
A platinum electrode was formed on a silicon substrate by a sputtering method.
A 2 μm thick piezoelectric thin film was formed. Further, the same manufacturing method was repeated twice thereon, and a 2.4 μm-thick piezoelectric thin film was laminated to form a total 3.6 μm-thick piezoelectric thin film.

【0036】この圧電体薄膜上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定した結果したと
ころ比誘電率1600、圧電ひずみ定数180pC/N
と優れた特性を示した。
An aluminum electrode was formed on the piezoelectric thin film by vapor deposition, and after polarization, the electrical characteristics were measured. The relative dielectric constant was 1600 and the piezoelectric strain constant was 180 pC / N.
And showed excellent characteristics.

【0037】(実施例14〜24)酢酸鉛0.105モ
ル、ジルコニウムアセチルアセトナート0.042モ
ル、酢酸マグネシウム0.007モルと30ミリリット
ルの酢酸を、100℃に加熱して溶解させた。室温まで
冷却し、チタンテトライソプロポキシド0.038モ
ル、ペンタエトキシニオブ0.013モルをエチルセラ
ソルブ50ミリリットルに溶解させて添加した。アセチ
ルアセトンを30ミリリットル添加して安定化させた
後、ポリエチレングリコールをゾル中の金属酸化物に対
し30重量%添加し、よく攪拌して均質なPMN、P
T、PZの三成分系の母層のゾルとした。
(Examples 14 to 24) 0.105 mol of lead acetate, 0.042 mol of zirconium acetylacetonate, 0.007 mol of magnesium acetate and 30 ml of acetic acid were dissolved by heating to 100 ° C. After cooling to room temperature, 0.038 mol of titanium tetraisopropoxide and 0.013 mol of pentaethoxyniobium were dissolved in 50 ml of ethyl cerasolve and added. After 30 ml of acetylacetone was added to stabilize, 30% by weight of polyethylene glycol was added to the metal oxide in the sol, and the mixture was thoroughly stirred to obtain homogeneous PMN and P.
The sol was a ternary base layer of T and PZ.

【0038】また、実施例1と同様にして、PZT二成
分系の部分層のゾルを用意した。
In the same manner as in Example 1, a PZT binary partial layer sol was prepared.

【0039】シリコン基板上に白金電極をスパッタ法で
形成した上に、実施例1に記述と同様に部分層1層と母
層5層を400℃の仮焼成で積層した。次にアニール過
程温度のみを11段階変化させ、1.2μm厚の圧電体
薄膜を形成した。
A platinum electrode was formed on a silicon substrate by sputtering, and one partial layer and five mother layers were laminated by calcination at 400 ° C. in the same manner as described in Example 1. Next, only the annealing process temperature was changed in 11 steps to form a 1.2 μm thick piezoelectric thin film.

【0040】この圧電体薄膜上にアルミニウム電極を蒸
着法で形成し、分極後、電気特性を測定した結果を表2
に示す。
An aluminum electrode was formed on the piezoelectric thin film by vapor deposition, and after polarization, the electrical characteristics were measured.
Shown in

【0041】[0041]

【表2】 [Table 2]

【0042】表2から明かなように、アニール温度60
0℃〜900℃において高い圧電特性が得られた。
As is clear from Table 2, the annealing temperature of 60
High piezoelectric characteristics were obtained at 0 ° C to 900 ° C.

【0043】[0043]

【発明の効果】以上述べてきたように本発明の圧電体薄
膜は、広範に応用可能な高い誘電率と高い圧電ひずみ定
数を持つ。また本発明の圧電体薄膜の製造方法は、ゾル
ゲル法による厚膜化の際に発生する圧電定数の低下を防
止し、厚膜の場合においても高い誘電率と高い圧電ひず
み定数を持つ圧電体薄膜を提供できた。またフォトエッ
チングによる微細化も容易であり、本発明の圧電体薄膜
を用いた高精細な印字が可能となるインクジェット記録
ヘッドを提供できた。
As described above, the piezoelectric thin film of the present invention has a high dielectric constant and a high piezoelectric strain constant which can be widely applied. Further, the method of manufacturing a piezoelectric thin film of the present invention prevents a decrease in the piezoelectric constant that occurs when the film is thickened by the sol-gel method, and has a high dielectric constant and a high piezoelectric strain constant even in the case of a thick film. Could be provided. In addition, it was easy to miniaturize by photoetching, and it was possible to provide an ink jet recording head capable of performing high-definition printing using the piezoelectric thin film of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の圧電体薄膜の製造法を模式的に表す断
面図である。
FIG. 1 is a cross-sectional view schematically illustrating a method for manufacturing a piezoelectric thin film of the present invention.

【図2】本発明の圧電体薄膜の製造法を模式的に表す断
面図である。
FIG. 2 is a cross-sectional view schematically illustrating a method for manufacturing a piezoelectric thin film of the present invention.

【図3】本発明の圧電体薄膜の製造法を模式的に表す断
面図である。
FIG. 3 is a cross-sectional view schematically illustrating a method for manufacturing a piezoelectric thin film according to the present invention.

【図4】本発明の圧電体薄膜の製造法を模式的に表す断
面図である。
FIG. 4 is a cross-sectional view schematically illustrating a method for manufacturing a piezoelectric thin film of the present invention.

【図5】本発明による圧電体薄膜の好ましい組成を示す
三成分組成図である図である。
FIG. 5 is a three-component composition diagram showing a preferred composition of a piezoelectric thin film according to the present invention.

【図6】本発明の実施例1における、インクジェット記
録装置に用いるインクジェット記録ヘッドの概念を模式
的に表す断面図である。
FIG. 6 is a cross-sectional view schematically illustrating a concept of an ink jet recording head used in the ink jet recording apparatus according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 ‥‥‥ シリコン基板 12 ‥‥‥ 白金電極 13 ‥‥‥ 部分層 14 ‥‥‥ 母層 21 ‥‥‥ 圧電体薄膜 31 ‥‥‥ シリコン基板 32 ‥‥‥ 振動板 33 ‥‥‥ 下電極 34 ‥‥‥ 圧電体薄膜 35 ‥‥‥ 上電極 36 ‥‥‥ 第二基板 37 ‥‥‥ インク流路 11 Silicon substrate 12 シ リ コ ン Platinum electrode 13 部分 Partial layer 14 ‥‥‥ Base layer 21 ‥‥‥ Piezoelectric thin film 31 シ リ コ ン Silicon substrate 32 振動 Vibrating plate 33 34 Lower electrode 34 ‥‥‥ Piezoelectric thin film 35 ‥‥‥ Upper electrode 36 第二 Second substrate 37 イ ン ク Ink flow path

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/187 H01L 41/22 Z 41/22 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 41/187 H01L 41/22 Z 41/22

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 母層がマグネシウム酸ニオブ酸鉛(以
下、「PMN」と記す)、ジルコン酸鉛(以下、「P
Z」と記す)およびチタン酸鉛(以下、「PT」と記
す)から形成される三成分系圧電体材料からなり、母層
の下地層、中間層、表面層といった部分層にPZおよび
PTから形成されるチタン酸ジルコン酸鉛(以下、「P
ZT」と記す)から形成された二成分系材料を有する構
造の圧電体薄膜。
1. A base layer comprising lead magnesium niobate (hereinafter referred to as “PMN”) and lead zirconate (hereinafter referred to as “PN”).
Z ") and lead titanate (hereinafter, referred to as" PT "), and is made of a ternary piezoelectric material. PZ and PT are used for partial layers such as a base layer, an intermediate layer, and a surface layer of a mother layer. The lead zirconate titanate (hereinafter referred to as “P
ZT)), a piezoelectric thin film having a structure having a binary material.
【請求項2】 請求項1に記載の部分層が圧電体薄膜内
に複数層形成されていることを特徴とする圧電体薄膜。
2. A piezoelectric thin film, wherein a plurality of partial layers according to claim 1 are formed in the piezoelectric thin film.
【請求項3】 請求項1に記載の母層を形成する三成分
系圧電体材料において、その組成がxPb(Mg1/3
2/3)−yPbZrO3−zPbTiO3(x,y,z
はモル比を表し、x+y+z=1)で表される三成分系
圧電体材料からなり、かつこの式の三成分系組成図にお
いて以下に示すA,B,C,D4点の組成範囲内にある
ことを特徴とする圧電体薄膜。 A(x=0.05,y=0.40,z=0.55) B(x=0.05,y=0.55,z=0.40) C(x=0.25,y=0.30,z=0.30) D(x=0.25,y=0.45,z=0.30)
3. The ternary piezoelectric material according to claim 1, wherein the composition is xPb (Mg 1/3 N).
b 2/3 ) -yPbZrO 3 -zPbTiO 3 (x, y, z
Represents a molar ratio, is composed of a ternary piezoelectric material represented by x + y + z = 1), and is within a composition range of A, B, C, and D4 points shown below in the ternary composition diagram of this equation. A piezoelectric thin film, characterized in that: A (x = 0.05, y = 0.40, z = 0.55) B (x = 0.05, y = 0.55, z = 0.40) C (x = 0.25, y = 0.30, z = 0.30) D (x = 0.25, y = 0.45, z = 0.30)
【請求項4】 請求項1および2に記載の部分層におい
て二成分系圧電体材料を形成するPZとPTの組成比
(PZ/PT)が0.3以上0.7以下であることを特
徴とする圧電体薄膜。
4. The partial layer according to claim 1, wherein the composition ratio (PZ / PT) of PZ and PT forming the two-component piezoelectric material is 0.3 or more and 0.7 or less. Piezoelectric thin film.
【請求項5】 請求項1〜4に記載の圧電体薄膜を、ゾ
ルゲル法により製造する過程において、三成分系圧電体
材料からなる母層と、二成分系圧電体材料からなる部分
層とによって形成される多層膜を一括してアニールし、
結晶化させることを特徴とする圧電体薄膜の製造方法。
5. In the process of producing the piezoelectric thin film according to claim 1 by a sol-gel method, a base layer made of a three-component piezoelectric material and a partial layer made of a two-component piezoelectric material are used. Anneal the formed multilayer film at once,
A method for producing a piezoelectric thin film, characterized by crystallizing.
【請求項6】 請求項5の方法で製造された圧電体薄膜
を複数回積層することを特徴とする圧電体薄膜の製造方
法。
6. A method of manufacturing a piezoelectric thin film, comprising laminating the piezoelectric thin film manufactured by the method of claim 5 a plurality of times.
【請求項7】 アニールを600℃〜900℃の温度範
囲で行なうことを特徴とする請求項5、6のいずれか記
載の圧電体薄膜の製造方法。
7. The method for manufacturing a piezoelectric thin film according to claim 5, wherein the annealing is performed in a temperature range of 600 ° C. to 900 ° C.
【請求項8】 請求項1〜4のいずれかに記載の圧電体
薄膜を振動子として用いてなる、インクジェット記録ヘ
ッド。
8. An ink jet recording head using the piezoelectric thin film according to claim 1 as a vibrator.
JP28877096A 1996-10-30 1996-10-30 Piezoelectric thin film, its production and ink jet recording head using the same Withdrawn JPH10139594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28877096A JPH10139594A (en) 1996-10-30 1996-10-30 Piezoelectric thin film, its production and ink jet recording head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28877096A JPH10139594A (en) 1996-10-30 1996-10-30 Piezoelectric thin film, its production and ink jet recording head using the same

Publications (1)

Publication Number Publication Date
JPH10139594A true JPH10139594A (en) 1998-05-26

Family

ID=17734496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28877096A Withdrawn JPH10139594A (en) 1996-10-30 1996-10-30 Piezoelectric thin film, its production and ink jet recording head using the same

Country Status (1)

Country Link
JP (1) JPH10139594A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219460A (en) * 1997-02-04 1998-08-18 Seiko Epson Corp Ceramic thin film and its production
JP2000164947A (en) * 1998-11-30 2000-06-16 Seiko Epson Corp Piezoelectric thin film element
US6362558B1 (en) 1999-12-24 2002-03-26 Kansai Research Institute Piezoelectric element, process for producing the same and ink jet recording head
US6523943B1 (en) 1999-11-01 2003-02-25 Kansai Research Institute, Inc. Piezoelectric element, process for producing the piezoelectric element, and head for ink-jet printer using the piezoelectric element
US6884649B2 (en) 2002-09-20 2005-04-26 Canon Kabushiki Kaisha Method for manufacturing piezoelectric film, piezoelectric element and ink jet recording head
JP2006032627A (en) * 2004-07-15 2006-02-02 Seiko Epson Corp Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet-type recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic apparatus
JP2006032628A (en) * 2004-07-15 2006-02-02 Seiko Epson Corp Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet-type recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic apparatus
US7036915B2 (en) 2002-09-20 2006-05-02 Canon Kabushiki Kaisha Composition for forming piezoelectric film, producing method for piezoelectric film, piezoelectric element and ink jet recording head
US7059709B2 (en) 2002-09-20 2006-06-13 Canon Kabushika Kaisha Composition for forming piezoelectric, method for producing piezoelectric film, piezoelectric element and ink jet recording head
US7187024B2 (en) 2002-09-20 2007-03-06 Canon Kabushiki Kaisha Piezoelectric element, ink jet recording head and method for manufacturing piezoelectric element
CN100376395C (en) * 2003-09-03 2008-03-26 佳能株式会社 Piezoelectric element,ink jet recording head and piezoelectric element mfg method
EP1630842A3 (en) * 2004-08-25 2008-05-28 Ngk Insulators, Ltd. Electron emitter
US7399067B2 (en) 2004-02-27 2008-07-15 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
US7511409B2 (en) 2004-08-25 2009-03-31 Ngk Insulators, Ltd. Dielectric film element and composition
JP2009117852A (en) * 2000-06-21 2009-05-28 Seiko Epson Corp Ceramic film and manufacturing method thereof, semiconductor device, piezoelectric element, and actuator
JP2010028129A (en) * 2009-10-26 2010-02-04 Seiko Epson Corp Composite oxide laminate, manufacturing method thereof, and device
JP2010221640A (en) * 2009-03-25 2010-10-07 Seiko Epson Corp Liquid ejecting head, liquid ejecting apparatus, and actuator
JP2015099838A (en) * 2013-11-19 2015-05-28 株式会社リコー Method for depositing ferroelectric film, electronic element, and electronic apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219460A (en) * 1997-02-04 1998-08-18 Seiko Epson Corp Ceramic thin film and its production
JP2000164947A (en) * 1998-11-30 2000-06-16 Seiko Epson Corp Piezoelectric thin film element
US6523943B1 (en) 1999-11-01 2003-02-25 Kansai Research Institute, Inc. Piezoelectric element, process for producing the piezoelectric element, and head for ink-jet printer using the piezoelectric element
US6362558B1 (en) 1999-12-24 2002-03-26 Kansai Research Institute Piezoelectric element, process for producing the same and ink jet recording head
JP2009117852A (en) * 2000-06-21 2009-05-28 Seiko Epson Corp Ceramic film and manufacturing method thereof, semiconductor device, piezoelectric element, and actuator
JP2009117851A (en) * 2000-06-21 2009-05-28 Seiko Epson Corp Ceramic film and manufacturing method thereof, semiconductor device, piezoelectric element, and actuator
US6884649B2 (en) 2002-09-20 2005-04-26 Canon Kabushiki Kaisha Method for manufacturing piezoelectric film, piezoelectric element and ink jet recording head
US7036915B2 (en) 2002-09-20 2006-05-02 Canon Kabushiki Kaisha Composition for forming piezoelectric film, producing method for piezoelectric film, piezoelectric element and ink jet recording head
US7059709B2 (en) 2002-09-20 2006-06-13 Canon Kabushika Kaisha Composition for forming piezoelectric, method for producing piezoelectric film, piezoelectric element and ink jet recording head
US7187024B2 (en) 2002-09-20 2007-03-06 Canon Kabushiki Kaisha Piezoelectric element, ink jet recording head and method for manufacturing piezoelectric element
CN100376395C (en) * 2003-09-03 2008-03-26 佳能株式会社 Piezoelectric element,ink jet recording head and piezoelectric element mfg method
US7399066B2 (en) 2003-09-03 2008-07-15 Canon Kabushiki Kaisha Piezoelectric element, ink jet recording head and producing method for piezoelectric element
US8715823B2 (en) 2004-02-27 2014-05-06 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
US8227021B2 (en) 2004-02-27 2012-07-24 Canon Kabushiki Kaisha Method of manufacturing piezoelectric thin film
US7399067B2 (en) 2004-02-27 2008-07-15 Canon Kabushiki Kaisha Piezoelectric thin film, method of manufacturing piezoelectric thin film, piezoelectric element, and ink jet recording head
JP2006032628A (en) * 2004-07-15 2006-02-02 Seiko Epson Corp Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet-type recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic apparatus
JP4605348B2 (en) * 2004-07-15 2011-01-05 セイコーエプソン株式会社 Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device
JP4605349B2 (en) * 2004-07-15 2011-01-05 セイコーエプソン株式会社 Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device
JP2006032627A (en) * 2004-07-15 2006-02-02 Seiko Epson Corp Piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet-type recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator, and electronic apparatus
US7511409B2 (en) 2004-08-25 2009-03-31 Ngk Insulators, Ltd. Dielectric film element and composition
EP1630842A3 (en) * 2004-08-25 2008-05-28 Ngk Insulators, Ltd. Electron emitter
JP2010221640A (en) * 2009-03-25 2010-10-07 Seiko Epson Corp Liquid ejecting head, liquid ejecting apparatus, and actuator
JP2010028129A (en) * 2009-10-26 2010-02-04 Seiko Epson Corp Composite oxide laminate, manufacturing method thereof, and device
JP2015099838A (en) * 2013-11-19 2015-05-28 株式会社リコー Method for depositing ferroelectric film, electronic element, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6013970A (en) Piezoelectric thin-film device process for manufacturing the same, and ink-jet recording head using the same
JPH10139594A (en) Piezoelectric thin film, its production and ink jet recording head using the same
JP3487068B2 (en) Piezoelectric thin film, method of manufacturing the same, and ink jet recording head using the same
US6149968A (en) Thin film piezoelectric device and ink jet recording head comprising the same
US9054293B2 (en) Piezoelectric element and method for manufacturing the same
JP3405498B2 (en) Piezoelectric thin film, method of manufacturing the same, and ink jet recording head using the same
JP4572346B2 (en) Piezoelectric thin film element and ink jet recording head
JPH11214763A (en) Piezoelectric element, ink jet type recorder head using the same, ink jet printer and manufacture of piezoelectric thin-film element
JP3327149B2 (en) Piezoelectric thin film element and ink jet recording head using the same
JP3828116B2 (en) Piezoelectric element
JPH11126930A (en) Piezoelectric element and its manufacture
JP5370346B2 (en) Piezoelectric element and ink jet recording head
JPH0992897A (en) Piezoelectric thin-film device and manufacture thereof, and ink-jet recording head using this device
JP2006049792A (en) Manufacturing method of dielectric film and of liquid injecting head
JP5354876B2 (en) Piezoelectric manufacturing method, piezoelectric element, and liquid discharge head
JP3451700B2 (en) Ink jet recording head and method of manufacturing the same
JP2005119223A (en) Method for manufacturing piezoelectric film element, piezoelectric film element and inkjet head

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106