JP5370346B2 - Piezoelectric element and ink jet recording head - Google Patents

Piezoelectric element and ink jet recording head Download PDF

Info

Publication number
JP5370346B2
JP5370346B2 JP2010263546A JP2010263546A JP5370346B2 JP 5370346 B2 JP5370346 B2 JP 5370346B2 JP 2010263546 A JP2010263546 A JP 2010263546A JP 2010263546 A JP2010263546 A JP 2010263546A JP 5370346 B2 JP5370346 B2 JP 5370346B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
thin film
width
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010263546A
Other languages
Japanese (ja)
Other versions
JP2011109112A (en
Inventor
勝人 島田
宏行 亀井
哲司 高橋
宏 邱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010263546A priority Critical patent/JP5370346B2/en
Publication of JP2011109112A publication Critical patent/JP2011109112A/en
Application granted granted Critical
Publication of JP5370346B2 publication Critical patent/JP5370346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric thin film element which dose not generate a crack in a film during manufacturing, has a high piezoelectric strain constant, and has good close contactness with a lower electrode; and to further provide an inkjet recording head using such piezoelectric thin film element, the inkjet recording head being capable of high resolution printing. <P>SOLUTION: The piezoelectric thin film element includes a piezoelectric film made of a polycrystal body, and an upper electrode and a lower electrode that are arranged by sandwiching the piezoelectric film. A crystal body of the piezoelectric film is formed in a direction substantially perpendicular to the electrode surfaces. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電気的エネルギーを機械的エネルギーに変換し、又は、その逆を行う薄膜型の圧電体素子に関する。この圧電体素子は、圧力センサ、温度センサ、インクジェット式記録ヘッド等のアクチュエータに使用される。本発明は、このインクジェット式記録ヘッドに関する。さらに、本発明は、この圧電体薄膜素子の製造方法に関する。   The present invention relates to a thin film piezoelectric element that converts electrical energy into mechanical energy or vice versa. This piezoelectric element is used in actuators such as pressure sensors, temperature sensors, and ink jet recording heads. The present invention relates to this ink jet recording head. Furthermore, the present invention relates to a method for manufacturing this piezoelectric thin film element.

従来のインクジェット式記録ヘッドでは、インクを吐出するための駆動源となる振動子が、圧電体薄膜素子から構成されている。この圧電体薄膜素子は、一般に、多結晶体からなる圧電体薄膜と、この圧電体薄膜を間に挟んで配置される上電極及び下電極と、を備えた構造を有している。   In a conventional ink jet recording head, a vibrator serving as a driving source for ejecting ink is composed of a piezoelectric thin film element. This piezoelectric thin film element generally has a structure including a piezoelectric thin film made of a polycrystalline body, and an upper electrode and a lower electrode disposed with the piezoelectric thin film interposed therebetween.

この圧電体薄膜の組成は、一般に、チタン酸ジルコン酸鉛(以下、「PZT」という。)を主成分とする二成分系、または、この二成分系のPZTに第三成分を加えた三成分系からなる。これらの組成の圧電体薄膜は、例えば、スパッタ法、ゾルゲル法、レーザアブレーション法及びCVD法等により形成される。   The composition of this piezoelectric thin film is generally a two-component system mainly composed of lead zirconate titanate (hereinafter referred to as “PZT”), or a three-component system in which a third component is added to this two-component system PZT. It consists of a system. The piezoelectric thin film having these compositions is formed by, for example, a sputtering method, a sol-gel method, a laser ablation method, a CVD method, or the like.

二成分系PZTを用いた強誘電体が、”Aied Physics Letters, 1991, Vol.58,No.11, pages 1161‐1163”、に記載されている。   Ferroelectrics using binary PZT are described in “Aied Physics Letters, 1991, Vol. 58, No. 11, pages 1161-1163”.

また、特開平6−40035号公報や、”Jornal of The American Ceramic Society, 1973, Vol.56, No.2,pages 91‐96”には、二成分系PZTを用いた圧電体が開示されている。   In addition, Japanese Patent Laid-Open No. 6-40035 and “Jornal of The American Ceramic Society, 1973, Vol. 56, No. 2, pages 91-96” disclose a piezoelectric body using a two-component PZT. Yes.

圧電体薄膜素子をインクジェット式記録ヘッドに適用する場合、0.5μm〜25μm程度の膜厚を備えた圧電体薄膜(PZT膜)を利用することが望ましく、そして、この圧電体薄膜には、高い圧電ひずみ定数が要求される。   When the piezoelectric thin film element is applied to an ink jet recording head, it is desirable to use a piezoelectric thin film (PZT film) having a film thickness of about 0.5 μm to 25 μm. A piezoelectric strain constant is required.

このような高い圧電ひずみ定数を備えた圧電体薄膜を得るためには、通常、700℃以上の温度でPZT膜の熱処理を行い、この圧電体薄膜の結晶粒を成長させることが必要であるとされている。圧電体薄膜素子の下電極を構成する材料として、プラチナ、チタン、白金、金、ニッケル等の導電体が使用されている。   In order to obtain a piezoelectric thin film having such a high piezoelectric strain constant, it is usually necessary to heat-treat the PZT film at a temperature of 700 ° C. or higher and grow crystal grains of the piezoelectric thin film. Has been. As a material constituting the lower electrode of the piezoelectric thin film element, a conductor such as platinum, titanium, platinum, gold, or nickel is used.

特開平6−116095号公報は、圧電体の結晶粒について述べている。この公報は、基板面が(111)面に配向した白金基板上にチタン酸ジルコン酸鉛またはランタン含有チタン酸ジルコン酸鉛の前駆体溶液を塗布し、加熱して強誘電体薄膜を形成する方法において、この前駆体溶液を基板上に塗布した後、まず所望の結晶配向をもたらす150〜550℃の温度範囲で熱処理を行い、その後550〜800℃で焼成して結晶化させることにより、基板面方向に薄膜の特定結晶面を熱処理温度に従って優先的に配向させる、ことが開示されている。   Japanese Patent Application Laid-Open No. 6-116095 describes crystal grains of a piezoelectric body. This publication discloses a method of forming a ferroelectric thin film by applying a precursor solution of lead zirconate titanate or lanthanum-containing lead zirconate titanate on a platinum substrate whose substrate surface is oriented in the (111) plane and heating it. In this method, after the precursor solution is applied onto the substrate, first, heat treatment is performed in a temperature range of 150 to 550 ° C. which brings about a desired crystal orientation, and then the substrate surface is baked and crystallized at 550 to 800 ° C. It is disclosed that a specific crystal plane of a thin film is preferentially oriented in a direction according to a heat treatment temperature.

その他、本発明に関する従来技術として、例えば特開平3−232755号公報に記載されたバルク圧電磁器の製法が存在する。この従来例に示されているとおり、圧電磁器の場合、緻密な(密度が高い)ほど高い圧電特性が得られると考えられている。   In addition, as a prior art relating to the present invention, there is a method for manufacturing a bulk piezoelectric ceramic described in, for example, Japanese Patent Application Laid-Open No. 3-232755. As shown in this conventional example, in the case of a piezoelectric ceramic, it is considered that the higher the density (the higher the density), the higher the piezoelectric characteristics.

また、特開昭50−145899号公報に、バルク圧電磁器をガス器具等の高電圧発生用に用いた例が開示されている。この公報は、圧電性磁器中に直径4〜10μmの空孔を4×105〜8×105個/cm2均一に分散させ、比重が真比重の90〜93%の場合に於いて、放電率が100%と良い特性を持つことが記載されている。 Japanese Patent Application Laid-Open No. 50-145899 discloses an example in which a bulk piezoelectric ceramic is used for generating a high voltage such as a gas appliance. In this publication, holes having a diameter of 4 to 10 μm are uniformly dispersed in a piezoelectric porcelain 4 × 10 5 to 8 × 10 5 holes / cm 2 , and the specific gravity is 90 to 93% of the true specific gravity. It is described that the discharge rate has a good characteristic of 100%.

薄膜の圧電体素子を用いたインクジェット記録ヘッドの従来例として、例えば米国特許第5265315号明細書が存在する。   As a conventional example of an ink jet recording head using a thin film piezoelectric element, there is, for example, US Pat. No. 5,265,315.

特開平6−40035号公報JP-A-6-40035 特開平6−116095号公報JP-A-6-116095 特開平3−232755号公報JP-A-3-232755 特開昭50−145899号公報JP 50-145899 A 米国特許第5265315号明細書US Pat. No. 5,265,315

”Aied Physics Letters, 1991, Vol.58,No.11, pages 1161‐1163”"Aied Physics Letters, 1991, Vol. 58, No. 11, pages 1161-1163" ”Jornal of The American Ceramic Society, 1973, Vol.56, No.2,pages 91‐96”"Jornal of The American Ceramic Society, 1973, Vol. 56, No. 2, pages 91-96" ”Philips J. Res.47 (1993’) pages 263‐285”"Philips J. Res. 47 (1993 ') pages 263-285"

1μm以上の膜厚を備えた圧電体薄膜(PZT膜)を形成する場合、前述した高い圧電ひずみ定数を得るために、既述の熱処理を行うと、膜内にクラックが発生する問題がある。特開平3−232755号公報に記載されているように、バルク磁器に於いては、密度が高いほど圧電特性が良いとされているが、非常に緻密な膜をインクジェット記録ヘッド等のアクチュエータとして好適に用いるためには、圧電体膜の膜厚が0.5〜25μm程度が良く、この程度の厚みの圧電体膜を一回の製造工程で、製造しようとしたときには、通常、膜にクラックが入ってしまう。クラックが入らないように、薄い膜厚で積層して行く場合に於いては、製造工程が長くなり、工業的に不適合である。   When a piezoelectric thin film (PZT film) having a film thickness of 1 μm or more is formed, there is a problem that cracks are generated in the film when the above-described heat treatment is performed in order to obtain the above-described high piezoelectric strain constant. As described in JP-A-3-232755, in bulk ceramics, the higher the density, the better the piezoelectric characteristics. However, a very dense film is suitable as an actuator for an ink jet recording head or the like. Therefore, when the piezoelectric film having such a thickness is about to be manufactured in one manufacturing process, the film usually has cracks. I will enter. In the case of laminating with a thin film thickness so as not to cause cracks, the manufacturing process becomes long, which is industrially incompatible.

また、ゾル、又はゲル組成物を基板に塗布して高温で焼成して結晶化させ、これを繰り返すことで、圧電体薄膜の膜厚を厚くする方法が、”Philips J. Res.47 (1993’) pages 263‐285”に開示されている。しかしながら、この方法によって得られた圧電体薄膜は、層状の積層界面を有し、良好な圧電特性を得ることができないとともに、加工性が悪くなるという問題がある。   A method for increasing the film thickness of a piezoelectric thin film by applying a sol or gel composition to a substrate, baking it at a high temperature for crystallization, and repeating this is described in “Philips J. Res. 47 (1993). ') Pages 263-285 ". However, the piezoelectric thin film obtained by this method has a layered laminated interface, and there are problems that good piezoelectric characteristics cannot be obtained and workability is deteriorated.

圧電体薄膜は、通常、基板上に形成された下電極である金属膜上に形成されるが、この圧電体薄膜を形成する際に行われる熱処理により、基板に反りやひずみが生じるという問題がある。下電極と圧電体薄膜との間に、良好な密着性が得られることも必要である。   A piezoelectric thin film is usually formed on a metal film, which is a lower electrode formed on a substrate. However, there is a problem that the substrate is warped or distorted by heat treatment performed when the piezoelectric thin film is formed. is there. It is also necessary to obtain good adhesion between the lower electrode and the piezoelectric thin film.

特開昭50−145899号公報は、高電圧発生用の用途に適するバルク磁器を用いた圧電体素子であるため、薄膜の圧電体素子であって、しかも、これをインクジェット式記録ヘッドに応用した場合とは、用途が異なる。   Japanese Laid-Open Patent Publication No. 50-145899 is a piezoelectric element using a bulk porcelain suitable for high voltage generation, and is a thin film piezoelectric element and applied to an ink jet recording head. Use is different from the case.

米国特許第5265315号明細書は、本発明と同様インクジェット記録ヘッドについて述べているが、圧電体膜としてのPZTの気孔、或いは、その密度については、記載されていないし、圧電体膜の製法もゾルゲル法を用いている為、複数層の堆積、及び熱処理工程が必要となり、工業的には不向きである。   US Pat. No. 5,265,315 describes an ink jet recording head as in the present invention, but does not describe the pores of PZT as a piezoelectric film or the density thereof, and the method for producing the piezoelectric film is also sol-gel. Since this method is used, deposition of a plurality of layers and a heat treatment step are required, which is not suitable industrially.

既述の特開平6−116095号公報においては、X線回折広角法による配向、つまり基板平行方向に対する結晶面の配向度を議論しており、X線回折薄膜法による議論はされていない。   In the above-mentioned Japanese Patent Laid-Open No. 6-116095, the orientation by the X-ray diffraction wide angle method, that is, the degree of orientation of the crystal plane with respect to the substrate parallel direction is discussed, but the discussion by the X-ray diffraction thin film method is not made.

また、圧電体素子をインクジェット記録装置等のアクチュエーターとして用いる場合は、高い圧電特性が要求されるが、結晶配向性に対する圧電特性との関係は、特開平6−116095号には示されていない。   In addition, when the piezoelectric element is used as an actuator for an ink jet recording apparatus or the like, high piezoelectric characteristics are required, but the relationship between the piezoelectric characteristics with respect to crystal orientation is not disclosed in Japanese Patent Laid-Open No. 6-116095.

本発明は、このような従来の問題点を解決することを課題とするものであり、従来よりも圧電特性が向上された圧電体薄膜素子、並びにこの製造方法を提供することを目的とする。   An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a piezoelectric thin film element having improved piezoelectric characteristics as compared with the conventional one, and a method for manufacturing the same.

本発明の他の目的は、高い圧電ひずみ定数を備えた圧電体薄膜素子の製造方法を提供することである。本発明の他の目的は、クラックを生じることなく、必要な膜厚を持った圧電体薄膜を備える圧電体薄膜素子を提供することにある。   Another object of the present invention is to provide a method of manufacturing a piezoelectric thin film element having a high piezoelectric strain constant. Another object of the present invention is to provide a piezoelectric thin film element including a piezoelectric thin film having a required film thickness without causing cracks.

さらに、本発明の他の目的は、クラックを生じることなく、必要な膜厚を持った圧電体薄膜を備える圧電体薄膜素子を1回の工程によって提供できる、圧電体薄膜素子の製造方法を提供することにある。   Furthermore, another object of the present invention is to provide a method for manufacturing a piezoelectric thin film element that can provide a piezoelectric thin film element including a piezoelectric thin film having a required film thickness without causing cracks in a single process. There is to do.

さらに、本発明の他の目的は、下電極との密着性が良好である圧電体薄膜を備えた圧電体素子を提供することにある。さらに、本発明の他の目的は、このような圧電体薄膜素子を用いた高精細な印字が可能となるインクジェット記録ヘッドを提供することにある。   Furthermore, another object of the present invention is to provide a piezoelectric element provided with a piezoelectric thin film having good adhesion to a lower electrode. Furthermore, another object of the present invention is to provide an ink jet recording head capable of high-definition printing using such a piezoelectric thin film element.

この目的を達成する本発明は、改良された新規な圧電体薄膜素子に関する。すなわち、圧電体薄膜素子の圧電特性を向上するために、基板上に形成された金属膜と、この金属膜上に形成された、チタン酸ジルコン酸鉛に第3成分を加えたPZT薄膜と、を備えた圧電体薄膜素子において、PZT薄膜は菱面体晶系の結晶構造を備え、かつ、その結晶構造の、X線回折薄膜法で測定した(100)配向度が、30%以上であることを特徴とする。   The present invention that achieves this object relates to a novel improved piezoelectric thin film element. That is, in order to improve the piezoelectric characteristics of the piezoelectric thin film element, a metal film formed on the substrate, and a PZT thin film formed on the metal film by adding a third component to lead zirconate titanate; The PZT thin film has a rhombohedral crystal structure, and the degree of (100) orientation of the crystal structure measured by the X-ray diffraction thin film method is 30% or more. It is characterized by.

配向度をこのようにするために、PZT薄膜のアニーリング温度を750℃より大きく、かつ1000℃より小さく、好ましくは800℃以上1000℃以下とし、さらに、好ましくは、Zr/Tiがモル比で、35/45≦(Zr/Ti)≦45/35とした。   In order to make the orientation degree in this way, the annealing temperature of the PZT thin film is higher than 750 ° C. and lower than 1000 ° C., preferably 800 ° C. or higher and 1000 ° C. or lower, more preferably, Zr / Ti is a molar ratio, 35/45 ≦ (Zr / Ti) ≦ 45/35.

さらに、好適には、圧電体薄膜の結晶構造がさらに改良されて、多結晶体からなる圧電体膜と、この圧電体膜を挟んで配置される上電極と下電極と、を備えた圧電体薄膜素子において、圧電体膜の結晶体が、電極面に対して略垂直方向に形成される。すなわち、圧電体の結晶体の粒界が、電極面に対して略垂直方向に形成される。   Further, preferably, the crystal structure of the piezoelectric thin film is further improved, and a piezoelectric body comprising a piezoelectric film made of a polycrystalline body, and an upper electrode and a lower electrode arranged with the piezoelectric film interposed therebetween. In the thin film element, the crystal of the piezoelectric film is formed in a direction substantially perpendicular to the electrode surface. That is, the grain boundaries of the piezoelectric crystal are formed in a direction substantially perpendicular to the electrode surface.

この圧電体薄膜素子の好適な実施形態では、圧電体膜は、その結晶構造を菱面体晶(rhombohedral)にされ、面方位(111)の結晶面、あるいは面方位(100)の結晶面、あるいは面方位(111)と面方位(100)の結晶面のいずれかに強く配向される。   In a preferred embodiment of the piezoelectric thin film element, the piezoelectric film has a rhombohedral crystal structure, a crystal plane with a plane orientation (111), a crystal plane with a plane orientation (100), or It is strongly oriented to either the crystal orientation of the plane orientation (111) or the plane orientation (100).

また、圧電体膜は、結晶構造を正方晶(tetragonal)にされ、面方位(001)の結晶面に強く配向される。   The piezoelectric film has a tetragonal crystal structure and is strongly oriented to a crystal plane having a plane orientation (001).

結晶体の結晶粒の膜厚方向の幅を、結晶粒の膜面方向の幅より長くすることにより、さらに高い圧電ひずみ定数が得られる。好適には、結晶体の結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係を、膜面方向の幅/膜厚方向の幅=1/10以上1/3以下にされる。   An even higher piezoelectric strain constant can be obtained by making the width of the crystal grains in the film thickness direction longer than the width of the crystal grains in the film surface direction. Preferably, the relationship between the width of the crystal grains in the film thickness direction and the width of the crystal grains in the film surface direction is expressed as follows: width in the film surface direction / width in the film thickness direction = 1/10 or more 1/3 It is made below.

好適には、下電極は、プラチナと、圧電体膜の構成要素である金属元素の酸化物との化合物から構成される。このようにすることで、圧電体膜と下電極との密着性を向上させる。この酸化物は、例えば、酸化チタン、酸化鉛、酸化ジルコニウム、酸化マグネシウム及び酸化ニオブからなる群の中から選ばれる少なくとも1種から構成される。   Preferably, the lower electrode is made of a compound of platinum and an oxide of a metal element that is a constituent element of the piezoelectric film. By doing so, the adhesion between the piezoelectric film and the lower electrode is improved. This oxide is composed of, for example, at least one selected from the group consisting of titanium oxide, lead oxide, zirconium oxide, magnesium oxide, and niobium oxide.

より好適には、下電極を構成する結晶体の粒界を、圧電体膜の膜面に対して略垂直方向に存在させる。また、下電極を構成する結晶体の結晶粒の膜厚方向の幅は、結晶粒の膜面方向の幅より長くする。さらに、下電極を構成する結晶体の結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係は、膜面方向の幅/膜厚方向の幅=1/10以上1/3以下にされる。このようにすることで、前記圧電体膜を形成する際に行われる熱処理によって、基板が反ったり、歪んだりすることを抑制する。   More preferably, the grain boundaries of the crystal constituting the lower electrode are present in a direction substantially perpendicular to the film surface of the piezoelectric film. Further, the width in the film thickness direction of the crystal grains of the crystal constituting the lower electrode is made longer than the width in the film surface direction of the crystal grains. Further, the relationship between the width in the film thickness direction of the crystal grains of the crystal constituting the lower electrode and the width in the film surface direction of the crystal grains is as follows: width in the film surface direction / width in the film thickness direction = 1/10 or more 1/3 or less. By doing so, the substrate is prevented from being warped or distorted by the heat treatment performed when the piezoelectric film is formed.

PZT薄膜はゾルゲル法、又はスパッタリング法によって成膜される。圧電体膜は、二成分系のPZT、またはこの二成分系のPZTに第三成分を加えた三成分系のPZTから構成される。PZT薄膜の第3成分としては、ゾルゲル法の場合、例えばマグネシウムニオブ酸鉛である。第3成分としてマグネシウムニオブ酸鉛を加えたPZT薄膜において、Pb(Mg1/3Nb2/30.2ZrxTi0.8‐x3のxは、好適には、0.35〜0.45である。 The PZT thin film is formed by a sol-gel method or a sputtering method. The piezoelectric film is composed of two-component PZT or three-component PZT obtained by adding a third component to this two-component PZT. In the case of the sol-gel method, the third component of the PZT thin film is, for example, lead magnesium niobate. In the PZT thin film to which lead magnesium niobate is added as the third component, x of Pb (Mg 1/3 Nb 2/3 ) 0.2 Zr x Ti 0.8-x O 3 is preferably 0.35 to 0.45. It is.

圧電体薄膜にクラックが発生しないように、膜厚0.5〜25μmの多結晶体よりなる圧電体膜と、該圧電体膜を挟む2つの電極とを含んでなる薄膜圧電体素子において、圧電体膜中に気孔が存在し、この気孔の平均気孔径が、0.01μm以上であり、かつ、その面密度が0.3%以上に調整される。好適には、気孔の平均気孔径が、0.1μm以下であり、かつ、その面積密度が5%以下である。このような気孔は、PZT膜製造用のゾル組成物をゲル化して熱処理するときに、ゾル組成物中の有機物を蒸発除去される際に、例えば形成される。PZT膜をスパッタリングによって形成される場合は、後述の加熱条件等を制御することによって、例えば形成される。   In a thin film piezoelectric element including a piezoelectric film made of a polycrystalline body having a film thickness of 0.5 to 25 μm and two electrodes sandwiching the piezoelectric film so as not to cause cracks in the piezoelectric thin film, There are pores in the body membrane, the average pore diameter of the pores is 0.01 μm or more, and the surface density is adjusted to 0.3% or more. Preferably, the average pore diameter of the pores is 0.1 μm or less, and the area density is 5% or less. Such pores are formed, for example, when the organic substance in the sol composition is evaporated and removed when the sol composition for producing the PZT film is gelled and heat-treated. When the PZT film is formed by sputtering, it is formed, for example, by controlling the heating conditions described later.

また、好適には、金属膜が形成された基板上にPZT薄膜を形成する製造方法において、ゾルゲル法の場合、PZT薄膜の熱処理温度が800〜1000℃であることを特徴とする。その場合、PZT薄膜は、チタン酸ジルコン酸鉛に第3成分を加えたものを使用しても良い。   Preferably, in the manufacturing method for forming the PZT thin film on the substrate on which the metal film is formed, the heat treatment temperature of the PZT thin film is 800 to 1000 ° C. in the case of the sol-gel method. In that case, the PZT thin film obtained by adding a third component to lead zirconate titanate may be used.

既述のように、圧電体薄膜の結晶を柱状にするために、好適には、基板上の金属膜にPZTの前駆体膜を酸素を含有しない雰囲気でスパッタリングする。この際のPZTターゲットの組成範囲は、PbZrO3:PbTiO3:Pb(Agh)O3=a:b:cとし、a,b,cをそれぞれモル比とした場合、
a+b+c=1、
0.10≦a≦0.55、
0.25≦b≦0.55、
0≦c≦0.5、
であることを特徴とする。
As described above, in order to make the crystal of the piezoelectric thin film into a columnar shape, a PZT precursor film is preferably sputtered on the metal film on the substrate in an atmosphere containing no oxygen. In this case, the composition range of the PZT target is PbZrO 3 : PbTiO 3 : Pb (A g B h ) O 3 = a: b: c, and a, b, and c are in molar ratios,
a + b + c = 1,
0.10 ≦ a ≦ 0.55,
0.25 ≦ b ≦ 0.55,
0 ≦ c ≦ 0.5,
It is characterized by being.

但し、Aは、Mg,Co,Zn,Cd,Mn及びNiからなる群から選択される2価の金属またはY,Fe,Sc,Yb,Lu,In及びCrからなる群から選択される3価の金属を表し、Bは、Nb,Ta及びSbからなる群から選択される5価の金属、またはW及びTeからなる群から選択される6価の金属を表す。Aが3価の金属であり、かつBが6価の金属でなく、また、Aが2価の金属であり、かつBが5価の金属である場合、gは1/3であり、hは2/3である。好適には、AはMg、BがNbである。   Where A is a divalent metal selected from the group consisting of Mg, Co, Zn, Cd, Mn and Ni, or a trivalent selected from the group consisting of Y, Fe, Sc, Yb, Lu, In and Cr. B represents a pentavalent metal selected from the group consisting of Nb, Ta and Sb, or a hexavalent metal selected from the group consisting of W and Te. When A is a trivalent metal and B is not a hexavalent metal, A is a divalent metal and B is a pentavalent metal, g is 1/3, h Is 2/3. Preferably, A is Mg and B is Nb.

好適には、前記a:b:cをそれぞれモル%とした時、(a,b,c)がA’,B’,C
’,D’,E’,F’で囲まれた領域にある。
Preferably, (a, b, c) is A ′, B ′, C, where a: b: c is mol%, respectively.
It is in the area surrounded by ', D', E ', F'.

A’:(45,55,0)
B’:(50,50,0)
C’:(25,25,50)
D’:(10,40,50)
E’:(10,45,40)
F’:(35,45,20)
すなわち、前記圧電体膜を構成するPZT膜が、前記成分から構成されている。
A ': (45, 55, 0)
B ': (50, 50, 0)
C ': (25, 25, 50)
D ′: (10, 40, 50)
E ': (10, 45, 40)
F ': (35, 45, 20)
That is, the PZT film constituting the piezoelectric film is composed of the components.

本発明は、さらに、インク室が形成された基板と、当該インク室の一方を封止すると共に、表面にたわみ振動モードの圧電体薄膜素子が固定された振動板と、前記インク室の他方の面を封止すると共に、インク吐出用のノズル口が形成されたノズル板と、を備えてなるインクジェット式記録ヘッドにおいて、圧電体薄膜素子が、既述の新規かつ有用な圧電体薄膜素子からなることを特徴とする。   The present invention further includes a substrate on which an ink chamber is formed, a vibration plate that seals one of the ink chambers and has a piezoelectric thin film element in a flexural vibration mode fixed to the surface, and the other of the ink chambers. In an ink jet recording head comprising a nozzle plate having a surface sealed and an ink ejection nozzle opening, the piezoelectric thin film element is composed of the above-described novel and useful piezoelectric thin film element It is characterized by that.

本発明による圧電体薄膜素子をアクチェータ(インクジェット記録式ヘッド)に応用した場合の概略斜視図である。It is a schematic perspective view at the time of applying the piezoelectric thin film element by this invention to an actuator (inkjet recording head). 図1の圧電体薄膜素子の詳細な断面図である。FIG. 2 is a detailed cross-sectional view of the piezoelectric thin film element of FIG. 1. 900℃でアニールしたPZT薄膜の薄膜法によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray-diffraction pattern by the thin film method of the PZT thin film annealed at 900 degreeC. 750℃でアニールしたPZT薄膜の薄膜法によるX線回折パターンを示す特性図である。It is a characteristic view which shows the X-ray-diffraction pattern by the thin film method of the PZT thin film annealed at 750 degreeC. (A)は本発明に係わる、圧電体薄膜素子を構成する柱状結晶のPZT膜の断面を示す走査型電子顕微鏡(SEM)写真であり、(B)はその平面を示す走査型電子顕微鏡写真である。(A) is a scanning electron microscope (SEM) photograph showing a cross section of a PZT film of columnar crystals constituting a piezoelectric thin film element according to the present invention, and (B) is a scanning electron microscope photograph showing the plane. is there. (a)ないし(c)は、図5の圧電体薄膜素子の製造工程を示す、各工程の断面図である。(A) thru | or (c) is sectional drawing of each process which shows the manufacturing process of the piezoelectric material thin film element of FIG. 図5の圧電体薄膜の組成範囲を示す特性図である。It is a characteristic view which shows the composition range of the piezoelectric material thin film of FIG. 比較品1を構成するPZT膜の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of a PZT film constituting Comparative Product 1. FIG. 図8に示すPZT膜の平面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the plane of the PZT film | membrane shown in FIG. 圧電体薄膜素子を構成する、柱状結晶の下電極の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the lower electrode of the columnar crystal which comprises a piezoelectric material thin film element. 比較品を構成する下電極の断面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross section of the lower electrode which comprises a comparative product. 図1の点線部の拡大断面図である。It is an expanded sectional view of the dotted line part of FIG. 本発明による薄膜圧電体素子をバイモルフ型のアクチュエータに応用した場合の斜視図である。It is a perspective view at the time of applying the thin film piezoelectric element by this invention to a bimorph type actuator. 本発明の圧電体薄膜素子をインクジェット記録装置に用いた断面図である。It is sectional drawing which used the piezoelectric material thin film element of this invention for the inkjet recording device. 発明の詳細な説明中の(I)式で示される組成範囲が、図15に示されている。The composition range represented by the formula (I) in the detailed description of the invention is shown in FIG.

次に、本発明に係る実施の形態及び図面について、以下に、必要に応じて図面を参照しながら説明する。なお、本実施の形態では、圧電体膜としてPZT膜を形成した場合について説明する。   Next, embodiments and drawings according to the present invention will be described below with reference to the drawings as necessary. In the present embodiment, a case where a PZT film is formed as a piezoelectric film will be described.

I.先ず、具体的な薄膜圧電体素子の構造を図面を用いて説明する。図1において、薄膜圧電体素子は、シリコン(Si)基板10と、下電極(例えば、Ptからなる)12と、圧電体膜(例えば、2成分系PZT)14と、上電極16(例えば、Ptからなる)とから構成される。   I. First, a specific structure of a thin film piezoelectric element will be described with reference to the drawings. In FIG. 1, a thin film piezoelectric element includes a silicon (Si) substrate 10, a lower electrode (for example, made of Pt) 12, a piezoelectric film (for example, two-component PZT) 14, and an upper electrode 16 (for example, Pt).

図2は、この圧電体薄膜素子の構造をより詳しく示した断面図であり、シリコン基板10と、シリコン基板上に形成されたシリコン酸化膜11と、シリコン酸化膜上に形成されたチタン酸化膜11Aと、チタン酸化膜上に形成された下電極12と、下電極上に形成されたPZT膜(圧電体膜)14と、PZT膜上に形成された上電極16と、を備えて構成されている。   FIG. 2 is a cross-sectional view showing the structure of the piezoelectric thin film element in more detail. The silicon substrate 10, the silicon oxide film 11 formed on the silicon substrate, and the titanium oxide film formed on the silicon oxide film. 11A, a lower electrode 12 formed on the titanium oxide film, a PZT film (piezoelectric film) 14 formed on the lower electrode, and an upper electrode 16 formed on the PZT film. ing.

下電極を例えばプラチナから形成することにより、下電極の格子定数とPZT膜の格子定数を近づけて、下電極と後に形成されるPZT膜との密着性を向上させることができる。   By forming the lower electrode from, for example, platinum, the lattice constant of the lower electrode can be brought close to the lattice constant of the PZT film, and the adhesion between the lower electrode and the PZT film to be formed later can be improved.

(参考例1)
この参考例1においては、まず、シリコン基板10上に下電極12として白金をスパッタ法で形成した。次に、圧電体薄膜14をゾルゲル法により形成した。ゾルは次のように調製した。酢酸鉛0.105モル、ジルコニウムアセチルアセトナート0.045モル、酢酸マグネシウム0.005モルと30ミリリットルの酢酸を、100℃に加熱して溶解させた。
(Reference Example 1)
In Reference Example 1, first, platinum was formed as the lower electrode 12 on the silicon substrate 10 by sputtering. Next, the piezoelectric thin film 14 was formed by a sol-gel method. The sol was prepared as follows. 0.105 mol of lead acetate, 0.045 mol of zirconium acetylacetonate, 0.005 mol of magnesium acetate and 30 ml of acetic acid were heated to 100 ° C. and dissolved.

このゾルを室温まで冷却し、チタンテトライソプロポキシド0.040モル、ペンタエトキシニオブ0.010モルをエチルセラソルブ50ミリリットルに溶解させて添加した。アセチルアセトンを30ミリリットル添加して安定化させた後、ポリエチレングリコールをゾル中の金属酸化物に対し30重量%添加し、よく攪拌して均質なゾルとした。   The sol was cooled to room temperature, and 0.040 mol of titanium tetraisopropoxide and 0.010 mol of pentaethoxyniobium were dissolved in 50 ml of ethyl cerasolve and added. After stabilizing by adding 30 ml of acetylacetone, 30% by weight of polyethylene glycol was added to the metal oxide in the sol, and stirred well to obtain a homogeneous sol.

下電極を形成した基板上に調製したゾルをスピンコートで塗布し、400℃で仮焼成し、非晶質の多孔質ゲル薄膜を形成し、さらに、ゾルの塗布と400℃の仮焼成を2度繰り返し、多孔質ゲル薄膜を形成した。この加熱の際に、ゾル中のポリエチレングルコールが蒸発して、多孔質を形成する。   The sol prepared on the substrate on which the lower electrode is formed is applied by spin coating, and calcined at 400 ° C. to form an amorphous porous gel thin film. Repeatedly, a porous gel thin film was formed. During this heating, the polyethylene glycol in the sol evaporates to form a porous material.

次に、ペロブスカイト結晶を得るためRTA(Raid Thermal Anneaing)炉を用いて酸素雰囲気中、5秒間で650℃に加熱して1分間保持しプレアニールを行い、緻密なPZT薄膜とした。   Next, in order to obtain a perovskite crystal, an RTA (Raid Thermal Anneaing) furnace was used, heated to 650 ° C. for 5 seconds in an oxygen atmosphere, held for 1 minute, and pre-annealed to obtain a dense PZT thin film.

再びこのゾルをスピンコートで塗布して400℃に仮焼成する工程を3度繰り返し、非晶質の多孔質ゲル薄膜を積層した。次に、RTAを用いて650℃でプレアニールして1分間保持することにより、結晶質の緻密な薄膜とした。このプレアニールの際の温度を400乃至800℃、好ましくは、450乃至750℃、さらに好ましくは、550乃至750℃にすることによって、既述の多孔質薄膜の積層界面を一体化することができる。   The process of applying this sol again by spin coating and pre-baking at 400 ° C. was repeated three times to laminate an amorphous porous gel thin film. Next, it was pre-annealed at 650 ° C. using RTA and held for 1 minute to obtain a dense crystalline thin film. By setting the temperature during this pre-annealing to 400 to 800 ° C., preferably 450 to 750 ° C., and more preferably 550 to 750 ° C., it is possible to integrate the porous thin film laminated interface described above.

さらに、RTA炉を用いて酸素雰囲気中750、800、850、900、950、1000、1050℃の各温度に加熱し1分間保持してアニールした。その結果1.0μmの膜厚の圧電体薄膜14が得られた。   Furthermore, using an RTA furnace, annealing was performed by heating to each temperature of 750, 800, 850, 900, 950, 1000, and 1050 ° C. in an oxygen atmosphere for 1 minute. As a result, a piezoelectric thin film 14 having a thickness of 1.0 μm was obtained.

このようにして得られたPZT薄膜をX線回折薄膜法によって分析を行った。測定は、理学電機製 RINT−1400を用い、銅管球でX線入射角度1°で行った。   The PZT thin film thus obtained was analyzed by the X-ray diffraction thin film method. The measurement was performed using RINT-1400 manufactured by Rigaku Corporation with a copper tube at an X-ray incident angle of 1 °.

図3に、900℃でアニールしたPZT薄膜の薄膜法によるX線回折パターンを示す。図4に、750℃でアニールしたPZT薄膜の薄膜法によるX線回折パターンを示す。   FIG. 3 shows an X-ray diffraction pattern of a PZT thin film annealed at 900 ° C. by a thin film method. FIG. 4 shows an X-ray diffraction pattern of a PZT thin film annealed at 750 ° C. by a thin film method.

図3、図4に示したX線回折パターンの全てのピークがペロブスカイト構造のPZTの反射ピークである。さらに、このPZT薄膜は結晶系としては菱面体晶あるいは正方晶を採るが、(100)、(110)等のピークが分離せず1つの鋭いピークになっていることから、菱面体晶系の結晶である。   All peaks in the X-ray diffraction patterns shown in FIGS. 3 and 4 are reflection peaks of PZT having a perovskite structure. Furthermore, although this PZT thin film adopts rhombohedral or tetragonal crystals as the crystal system, the peaks of (100), (110), etc. are not separated but become one sharp peak. It is a crystal.

また、圧電薄膜上にアルミニウム電極を蒸着法で形成し、圧電定数d31を測定した。表1にアニール温度と(100)配向度と圧電定数d31の関係を示す。   In addition, an aluminum electrode was formed on the piezoelectric thin film by vapor deposition, and the piezoelectric constant d31 was measured. Table 1 shows the relationship between the annealing temperature, the (100) orientation degree, and the piezoelectric constant d31.

ここで、(100)の配向度P(100)は、P(100)=I(100)/ΣI(hkl)で表す。ΣI(hkl)は、X線回折薄膜法で、波長にCuKα線を用いたときの2θが20度〜60度のPZTの全回折強度の和を表す。   Here, the degree of orientation P (100) of (100) is represented by P (100) = I (100) / ΣI (hkl). ΣI (hkl) is the X-ray diffraction thin film method and represents the sum of the total diffraction intensities of PZT with 2θ of 20 ° to 60 ° when CuKα rays are used for the wavelength.

ただし、(200)面は(100)面と等価な結晶面であるため、ΣI(hkl)には含めない。具体的には、(100)、(110)、(111)、(210)、(211)、結晶面反射強度の総和である。I(100)は、同じくPZTの(100)結晶面反射強度を表す。   However, since the (200) plane is a crystal plane equivalent to the (100) plane, it is not included in ΣI (hkl). Specifically, (100), (110), (111), (210), (211), and the total sum of crystal plane reflection intensities. I (100) similarly represents the (100) crystal plane reflection intensity of PZT.

(100)の配向度P(100)が高くなるほど、圧電定数d31が大きくなっており、アクチュエーターとして特性が向上する。   As the orientation degree P (100) of (100) increases, the piezoelectric constant d31 increases and the characteristics of the actuator are improved.

(実施例1)
シリコン基板上に下電極として金をスパッタ法で形成した。次に、圧電体薄膜をゾルゲル法により形成した。ゾルは次のように調製した。酢酸鉛0.105モル、ジルコニウムアセチルアセトナート0.030モル、酢酸マグネシウム0.007モルと30ミリリットルの酢酸を、100℃に加熱して溶解させた。
Example 1
Gold was formed by sputtering on the silicon substrate as the lower electrode. Next, a piezoelectric thin film was formed by a sol-gel method. The sol was prepared as follows. 0.105 mol of lead acetate, 0.030 mol of zirconium acetylacetonate, 0.007 mol of magnesium acetate and 30 ml of acetic acid were dissolved by heating to 100 ° C.

このゾルを室温まで冷却し、チタンテトライソプロポキシド0.050モル、ペンタエトキシニオブ0.013モルをエチルセラソルブ50ミリリットルに溶解させて添加した。アセチルアセトンを30ミリリットル添加して安定化させた後、ポリエチレングリコールをゾル中の金属酸化物に対し30重量%添加し、よく攪拌して均質なゾルとした(Zr/Ti=30/50)。   The sol was cooled to room temperature, and 0.050 mol of titanium tetraisopropoxide and 0.013 mol of pentaethoxyniobium were dissolved in 50 ml of ethyl cerasolve and added. After stabilization by adding 30 ml of acetylacetone, 30% by weight of polyethylene glycol was added to the metal oxide in the sol and stirred well to obtain a homogeneous sol (Zr / Ti = 30/50).

同様にジルコニウムアセチルアセトナート0.035モル、チタンテトライソプロポキシド0.045モル(Zr/Ti=35/45)、更にジルコニウムアセチルアセトナート0.040モル、チタンテトライソプロポキシド0.040モル(Zr/Ti=40/40)、さらに、ジルコニウムアセチルアセトナート0.045モル、チタンテトライソプロポキシド0.035モル(Zr/Ti=45/35)のジルコニウムとチタンの組成の異なる4種類のゾル液を調製した。   Similarly, 0.035 mol of zirconium acetylacetonate, 0.045 mol of titanium tetraisopropoxide (Zr / Ti = 35/45), 0.040 mol of zirconium acetylacetonate, 0.040 mol of titanium tetraisopropoxide ( Zr / Ti = 40/40), zirconium acetylacetonate 0.045 mol, titanium tetraisopropoxide 0.035 mol (Zr / Ti = 45/35), four types of sols having different compositions of zirconium and titanium A liquid was prepared.

以降は参考例1と同様に、各ゾル液で積層し圧電体薄膜素子を作製し、評価を行った。表2にZr/Tiと(100)配向度と圧電定数d31の関係を示す。   Thereafter, in the same manner as in Reference Example 1, a piezoelectric thin film element was prepared by laminating with each sol solution and evaluated. Table 2 shows the relationship between Zr / Ti, (100) orientation, and piezoelectric constant d31.

参考例1と同様に(100)配向度P(100)が高くなるほど、圧電定数d31が大きくなっており、アクチュエーターとして特性が向上する。   As in Reference Example 1, the higher the (100) orientation degree P (100), the greater the piezoelectric constant d31, and the better the characteristics as an actuator.

以上の参考例1及び実施例1に於いて、下部電極として、Pt,Auを用いて説明したが、PZT薄膜の(100)配向度が、30%以上となれば良く、Au、Pt−Ir、Pt−Pd、Pt−Ni、Pt−Ti等他の金属膜でも良い。   In Reference Example 1 and Example 1 described above, Pt and Au are used as the lower electrode. However, the (100) orientation degree of the PZT thin film only needs to be 30% or more. Au, Pt—Ir Other metal films such as Pt—Pd, Pt—Ni, and Pt—Ti may be used.

さらに、第3成分としてマグネシウムニオブ酸鉛を用いて説明したが、PZT薄膜の(100)配向度が、30%以上となれば良く、ニッケルニオブ酸鉛、コバルトニオブ酸鉛、等ほかのものでも良く、不純物としてNb、La、Mo、W、Ba、Sr、Bi等が含有されることを妨げない。   Furthermore, although the description has been made using lead magnesium niobate as the third component, it is sufficient that the (100) orientation degree of the PZT thin film is 30% or more, and other things such as lead nickel niobate, lead cobalt niobate, etc. It does not prevent that Nb, La, Mo, W, Ba, Sr, Bi, etc. are contained as impurities.

II.次に、電極面に対して、結晶粒が略垂直方向に形成された圧電体薄膜を備えた圧電体素子について説明する。図5の(A)は、圧電体薄膜素子を構成するPZT膜の断面を示す走査型電子顕微鏡(SEM)写真、図5の(B)は(A)に示すPZT膜の平面を示す走査型電子顕微鏡写真である。   II. Next, a piezoelectric element including a piezoelectric thin film in which crystal grains are formed in a direction substantially perpendicular to the electrode surface will be described. 5A is a scanning electron microscope (SEM) photograph showing a cross section of the PZT film constituting the piezoelectric thin film element, and FIG. 5B is a scanning type showing the plane of the PZT film shown in FIG. It is an electron micrograph.

図1,2のPZT膜14は、多結晶体からなり、この結晶体の粒界が、図5に示すように、上下の電極の平面に対して略垂直方向に存在している。図5において、中間の白く表示されているのがPZT膜であり、その結晶粒が図5の上下に延びる柱状に形成されているのが確認される。このPZT膜の下方にある白く表示される層が下電極であり、この下電極のさらに下にSiO2が配置されている。結晶体の粒界とは、隣接する結晶粒の境界であり、結晶粒がペロブスカイト型構造を持つ結晶であるのに対して、結晶粒界は非晶質から構成されている。 The PZT film 14 shown in FIGS. 1 and 2 is made of a polycrystal, and grain boundaries of the crystal exist in a direction substantially perpendicular to the planes of the upper and lower electrodes as shown in FIG. In FIG. 5, it is confirmed that the intermediate white is the PZT film, and the crystal grains are formed in a column shape extending vertically in FIG. A layer displayed in white below the PZT film is a lower electrode, and SiO 2 is disposed further below the lower electrode. The grain boundary of a crystal is a boundary between adjacent crystal grains. The crystal grain is a crystal having a perovskite structure, whereas the crystal grain boundary is composed of an amorphous material.

この結晶体は、結晶粒の膜厚方向(図5においてYで示す。)の幅が、結晶粒の膜面方向(図5においてXで示す。)の幅より大きく、結晶粒の膜厚方向の幅と、結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10以上1/3以下の範囲内とされる。   This crystal body has a width in the film thickness direction (indicated by Y in FIG. 5) larger than the width in the film surface direction (indicated by X in FIG. 5) of the crystal grain, and the film thickness direction of the crystal grain. And the width of the crystal grain in the film surface direction are within the range of the width in the film surface direction / the width in the film thickness direction = 1/10 or more and 1/3 or less.

さらに、このPZT膜の結晶構造は、菱面体晶であり、面方位(111)の結晶面に強く配向している。ここで示す、「配向度」とは、例えば、広角XRD法にてPZT膜の面方位(XYZ)面の反射強度をI(XYZ)で表した時に、次のように定義される。   Furthermore, the crystal structure of this PZT film is rhombohedral and is strongly oriented to the crystal plane of the plane orientation (111). The “degree of orientation” shown here is defined as follows when, for example, the reflection intensity of the plane orientation (XYZ) plane of the PZT film is expressed by I (XYZ) by the wide angle XRD method.

I(XYZ)/{I(100)+I(110)+I(111)}
面方位(111)の配向度と、圧電ひずみ定数との関係は、以下の通りである。
I (XYZ) / {I (100) + I (110) + I (111)}
The relationship between the orientation degree of the plane orientation (111) and the piezoelectric strain constant is as follows.

(111)面の配向度 電圧ひずみ定数
50% 80pC/N
70% 120pC/N
90% 150pC/N
既述の参考例1,実施例1では、(100)の配向度が30%であることが好適であると説明した。ここで明らかなように、(111)の配向度を50%以上にすることにより、参考例1,実施例1と同様な電圧ひずみ定数を得て圧電特性を得ることができる。
Orientation degree of (111) plane Voltage distortion constant 50% 80 pC / N
70% 120pC / N
90% 150pC / N
In the above-described Reference Example 1 and Example 1, it has been described that the degree of orientation of (100) is preferably 30%. As can be seen, by setting the degree of orientation of (111) to 50% or more, the same voltage distortion constant as in Reference Example 1 and Example 1 can be obtained to obtain piezoelectric characteristics.

圧電ひずみ定数は、比誘電率と電圧出力係数の積に比例する。この比誘電率は、電界印加方向(図5のY方向)の結晶粒の大きさが大きいほど大きく、圧電出力係数は、結晶粒が横方向(図5のX方向)に大きく、結晶粒界の幅が狭いほど大きい、という理由から、このような構造を備えたPZT膜15は、圧電ひずみ定数が向上される。   The piezoelectric strain constant is proportional to the product of the relative permittivity and the voltage output coefficient. The relative dielectric constant increases as the size of the crystal grain in the direction of electric field application (Y direction in FIG. 5) increases, and the piezoelectric output coefficient increases in the lateral direction (X direction in FIG. 5). The PZT film 15 having such a structure has an improved piezoelectric strain constant because the width is larger as the width is smaller.

この理由から、既述のように、圧電体薄膜の結晶の膜面方向の幅/膜厚方向の幅の値が1/10以上1/3以下の範囲内におかれている。好ましくは1/8以上3/10以下であり、さらに好ましくは、1/6以上3/11以下である。   For this reason, as described above, the value of the width in the film surface direction / the width in the film thickness direction of the crystal of the piezoelectric thin film is in the range of 1/10 to 1/3. Preferably they are 1/8 or more and 3/10 or less, More preferably, they are 1/6 or more and 3/11 or less.

ここで、PZT膜は、二成分系を主成分とするもの、この二成分系に第三成分を加えた三成分系を主成分とするものが好適に用いられる。二成分系PZTの好ましい具体例としては、ゾルゲルによって、PZT膜を形成する場合は、例えば、次の化学式の組成を有するものである。   Here, a PZT film having a two-component system as a main component and a ternary system obtained by adding a third component to the two-component system as a main component is preferably used. As a preferred specific example of the two-component PZT, when a PZT film is formed by sol-gel, for example, it has a composition of the following chemical formula.

Pb(ZrxTi1‐x)O3+YPbO
(ここで、0.40≦X≦0.6,0≦Y≦0.1)
また、スパッタリング法によって、PZT膜を形成する場合の二成分系のPZT膜は、例えば、次の化学式で表わされる組成を有するものである。
Pb (Zr x Ti 1-x ) O 3 + YPbO
(Where 0.40 ≦ X ≦ 0.6, 0 ≦ Y ≦ 0.1)
In addition, a binary PZT film in the case of forming a PZT film by sputtering has, for example, a composition represented by the following chemical formula.

Pb(ZrxTi1‐x)O3+YPbO
(ここで、0.40≦X≦0.6,0≦Y≦0.3)
また、三成分系PZTの好ましい具体例としては、スパッタリング法では、前記二成分系のPZTに、例えば、第三成分(好適には、マグネシウムニオブ酸鉛である。)を添加した以下に示す化学式で表わされる組成を有するものが挙げられる。
Pb (Zr x Ti 1-x ) O 3 + YPbO
(Where 0.40 ≦ X ≦ 0.6, 0 ≦ Y ≦ 0.3)
As a preferred specific example of the ternary PZT, in the sputtering method, for example, a third component (preferably lead magnesium niobate) is added to the two-component PZT. What has a composition represented by these is mentioned.

PbTibZra(Aghc3+ePbO+(fMgO)n・・・(I式)
(ここで、Aは、Mg,Co,Zn,Cd,Mn及びNiからなる群から選択される2価の金属またはY,Fe,Sc,Yb,Lu,In及びCrからなる群から選択される3価の金属を表す。また、Bは、Nb,Ta及びSbからなる群から選択される5価の金属、またはW及びTeからなる群から選択される6価の金属を表す。また、a,b,cをそれぞれモル比とした場合、a+b+c=1,0.10≦a≦0.55,0.25≦b≦0.55,0≦c≦0.5,0≦e≦0.3,0≦f≦0.15c,g=h=1/2,n=0であるが、但し、Aが3価の金属であり、かつBが6価の金属でなく、また、Aが2価の金属であり、かつBが5価の金属である場合、gは1/3であり、hは2/3であり、また、AはMg、BがNbの場合に限り、nは1を表す。)
三成分系のより好ましい具体例としては、マグネシウムニオブ酸鉛で、AがMgであり、BがNbであり、gが1/3、hが2/3であるものが挙げられる。
PbTi b Zr a (A g B h ) c O 3 + ePbO + (fMgO) n (formula I)
(Here, A is selected from a divalent metal selected from the group consisting of Mg, Co, Zn, Cd, Mn and Ni or a group consisting of Y, Fe, Sc, Yb, Lu, In and Cr. B represents a trivalent metal, and B represents a pentavalent metal selected from the group consisting of Nb, Ta and Sb, or a hexavalent metal selected from the group consisting of W and Te. , B, and c, respectively, a + b + c = 1, 0.10 ≦ a ≦ 0.55, 0.25 ≦ b ≦ 0.55, 0 ≦ c ≦ 0.5, 0 ≦ e ≦ 0. 3, 0 ≦ f ≦ 0.15c, g = h = 1/2, n = 0, provided that A is a trivalent metal, B is not a hexavalent metal, and A is When divalent metal and B is pentavalent metal, g is 1/3, h is 2/3, A is Mg, and B is Nb. Only, n represents represents 1.)
More preferable specific examples of the ternary system include lead magnesium niobate, wherein A is Mg, B is Nb, g is 1/3, and h is 2/3.

ゾルゲル法に依る場合の、第3成分としてマグネシウムニオブ酸鉛を加えたPZT膜は、例えば、Pb(Mg1/3Nb2/30.2ZrxTi0.8‐x3(xが0.35〜0.45)からなる組成で表示される。 The PZT film to which lead magnesium niobate is added as the third component when using the sol-gel method is, for example, Pb (Mg 1/3 Nb 2/3 ) 0.2 Zr x Ti 0.8-x O 3 (x is 0.35). ~ 0.45).

さらに、これら二成分系PZT及び三成分系PZTのいずれであっても、その圧電特性を改善するために、微量のBa,Sr,La,Nd,Nb,Ta,Sb,Bi,W,Mo及びCa等が添加されてもよい。とりわけ、三成分系では、0.10モル%以下のSr,Baの添加が圧電特性の改善に一層好ましい。また、三成分系では、0.10モル%以下のMn,Niの添加が、その焼結性を改善するので好ましい。第3成分の一部を第4成分で置き換えても良い。その場合、第4成分は、上記第3成分の内の一つを用いる。   Further, in any of these two-component PZT and three-component PZT, in order to improve the piezoelectric characteristics, a small amount of Ba, Sr, La, Nd, Nb, Ta, Sb, Bi, W, Mo and Ca etc. may be added. In particular, in a ternary system, addition of 0.10 mol% or less of Sr, Ba is more preferable for improving piezoelectric characteristics. Further, in the case of a ternary system, addition of 0.10 mol% or less of Mn and Ni is preferable because the sinterability is improved. A part of the third component may be replaced with the fourth component. In that case, one of the third components is used as the fourth component.

なお、PZT膜は、前述した配向の他、面方位(100)の結晶面、あるいは面方位(111)と面方位(100)の結晶面のいずれかに強く配向していても良い。また、PZT膜の結晶構造が、正方晶であり、面方位(001)の結晶面に強く配向していてもよい。   In addition to the above-described orientation, the PZT film may be strongly oriented in either the crystal plane of the plane orientation (100) or the crystal plane of the plane orientation (111) and the plane orientation (100). Further, the crystal structure of the PZT film may be tetragonal and may be strongly oriented on the crystal plane with the plane orientation (001).

(参考例2)
次に、この構造を備えた圧電体薄膜素子の製造方法について図面を参照して説明する。
図6の(a)から(c)は、前述した圧電体薄膜素子の各製造工程に於ける断面図である。
(Reference Example 2)
Next, a method for manufacturing a piezoelectric thin film element having this structure will be described with reference to the drawings.
6A to 6C are cross-sectional views in each manufacturing process of the piezoelectric thin film element described above.

図6(a)に示す工程では、シリコン基板10に熱酸化を行い、シリコン基板上に、膜厚が0.3〜1.2μm程度のシリコン酸化膜11を形成する。次に、スパッタ法により、シリコン酸化膜上に、膜厚が0.005〜0.04μm程度のチタン酸化膜11Aを形成する。   In the step shown in FIG. 6A, thermal oxidation is performed on the silicon substrate 10 to form a silicon oxide film 11 having a thickness of about 0.3 to 1.2 μm on the silicon substrate. Next, a titanium oxide film 11A having a thickness of about 0.005 to 0.04 μm is formed on the silicon oxide film by sputtering.

次いで、チタン酸化膜上に、プラチナからなる下電極12を、0.2〜0.8μm程度の膜厚で形成する。次に、図6(b)に示す工程では、図6(a)に示す工程で形成した下電極上にPZT膜14を、0.5〜3.0μm程度の膜厚で形成する。なお、さらに、PZT膜の製造をスパッタ法を依った場合と、ゾルゲル法に依った場合について説明する。   Next, the lower electrode 12 made of platinum is formed on the titanium oxide film with a film thickness of about 0.2 to 0.8 μm. Next, in the step shown in FIG. 6B, the PZT film 14 is formed to a thickness of about 0.5 to 3.0 μm on the lower electrode formed in the step shown in FIG. Further, the case where the PZT film is manufactured by the sputtering method and the case of the sol-gel method will be described.

参考例2−1:スパッタ法によるPZT膜の製造方法
先ず、特定成分のPZT焼結体をスパッタリングのターゲットとして用い、基板温度を200℃以下とし、Arガス100%雰囲気中で、RFマグネトロンスパッタリングにより、アモルファス、又はパイロクロア相からなるPZT膜の前駆体膜を基板上に形成する。
Reference Example 2-1: Method for Producing PZT Film by Sputtering Method First, a PZT sintered body having a specific component is used as a sputtering target, the substrate temperature is set to 200 ° C. or less, and RF magnetron sputtering is performed in an Ar gas 100% atmosphere. A precursor film of a PZT film made of an amorphous or pyrochlore phase is formed on a substrate.

次に、この前駆体膜を加熱し結晶化して焼結させる。この加熱は、酸素雰囲気中(例えば、酸素中、または酸素とアルゴン等の不活性ガスとの混合ガス中)において、二段階に分けて行われるのが好ましい。   Next, this precursor film is heated, crystallized and sintered. This heating is preferably performed in two stages in an oxygen atmosphere (for example, in oxygen or a mixed gas of oxygen and an inert gas such as argon).

すなわち、第1の加熱工程においては、アモルファス状の前駆体膜を、酸素雰囲気中で500〜700℃程度の温度で加熱し、これによって前駆体膜を結晶化させる。この第1の加熱工程は、前駆体膜が均一に結晶化した時点で終了させれば良い。   That is, in the first heating step, the amorphous precursor film is heated at a temperature of about 500 to 700 ° C. in an oxygen atmosphere, thereby crystallizing the precursor film. This first heating step may be terminated when the precursor film is uniformly crystallized.

次に、第2の加熱工程においては、生じた結晶粒を成長させ、さらに結晶粒同士の焼結を促進させる。具体的には、第1の加熱工程で結晶化した前駆体膜を750〜1200℃程度の温度で加熱する。この加熱は、結晶体の粒界が、下電極14面に対して略垂直方向に存在し、結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/3〜1/10の範囲で構成されるまで実施される。   Next, in the second heating step, the generated crystal grains are grown and further the sintering of the crystal grains is promoted. Specifically, the precursor film crystallized in the first heating step is heated at a temperature of about 750 to 1200 ° C. In this heating, the grain boundary of the crystal exists in a direction substantially perpendicular to the surface of the lower electrode 14, and the relationship between the width in the film thickness direction of the crystal grain and the width in the film surface direction of the crystal grain is The process is performed until the width in the plane direction / the width in the film thickness direction is within a range of 1/3 to 1/10.

このようにして、下電極上に、多結晶体からなり、かつ粒界が下電極面に対して略垂直方向(図5のY方向)に存在するとともに、結晶体の結晶粒の膜厚方向(図5のY方向)の幅が結晶粒の膜面方向の幅(X方向)より長く、結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/3〜1/10の範囲にあるPZT膜を形成した。   In this way, the lower electrode is made of a polycrystal and the grain boundary exists in a direction substantially perpendicular to the lower electrode surface (Y direction in FIG. 5), and the film thickness direction of the crystal grains of the crystal The width of the crystal grain in the film surface direction (X direction) is longer than the width of the crystal grain (X direction), and the relationship between the width of the crystal grain in the film thickness direction and the width of the crystal grain in the film surface direction is A PZT film having a width in the plane direction / width in the film thickness direction = 1/3 to 1/10 was formed.

ここで、第1の加熱工程と、第2の加熱工程は、連続して行ってもよく、また第1の加熱工程を行った後、室温まで冷却し、その後に第2の加熱工程を行ってもよい。   Here, the first heating step and the second heating step may be performed continuously, and after the first heating step, the first heating step is cooled to room temperature, and then the second heating step is performed. May be.

第1及び第2の加熱工程では、前駆体膜が前述した構造のPZT膜15を形成させ得る限り、種々の加熱炉が使用されるが、昇温速度の大きな加熱炉を利用することが好ましい。例えば、ランプアニール炉の利用が好ましい。なお、第1及び第2の加熱工程における好ましい昇温速度は、50℃/秒以上であり、より好ましくは、100℃/秒以上である。   In the first and second heating steps, various heating furnaces are used as long as the precursor film can form the PZT film 15 having the structure described above. However, it is preferable to use a heating furnace with a high heating rate. . For example, it is preferable to use a lamp annealing furnace. In addition, the preferable temperature increase rate in a 1st and 2nd heating process is 50 degreeC / second or more, More preferably, it is 100 degreeC / second or more.

図7は、スパッタ法によってPZTの前駆体膜を形成する場合における、PZT膜(又は、PZTターゲット)の好ましい組成範囲を示している。ここでは、第3成分として、既述の(I式)のPb(Agh)O3の中から、Pb(Mg1/3Nb2/3)O3を用いている。図7のA,B,C,D,E,Fで囲まれた領域がこの組成範囲に相当する。 FIG. 7 shows a preferable composition range of the PZT film (or PZT target) when the PZT precursor film is formed by sputtering. Here, Pb (Mg 1/3 Nb 2/3 ) O 3 is used as the third component from the Pb (A g B h ) O 3 of the above-described (formula I). A region surrounded by A, B, C, D, E, and F in FIG. 7 corresponds to this composition range.

PbZrO3:PbTiO3:Pb(Mg1/3Nb2/3)O3=a:b:cとおいたとき、(a,b,c)をモル%で表すと、次のようになる。 When PbZrO 3 : PbTiO 3 : Pb (Mg 1/3 Nb 2/3 ) O 3 = a: b: c, (a, b, c) is expressed in mol%, the following results.

A:(45,55,0)
B:(50,50,0)
C:(25,25,50)
D:(10,40,50)
E:(10,45,40)
F:(35,45,20)
すなわち、10≦a≦50,20≦b≦55,0≦c≦50である。この範囲は、前記(I)式で説明した範囲の好適な範囲である。
A: (45, 55, 0)
B: (50, 50, 0)
C: (25, 25, 50)
D: (10, 40, 50)
E: (10, 45, 40)
F: (35, 45, 20)
That is, 10 ≦ a ≦ 50, 20 ≦ b ≦ 55, and 0 ≦ c ≦ 50. This range is a preferable range of the range described in the formula (I).

図7の右側の境界(C−B)を定めた意義は、次のとおりである。   The significance of defining the right boundary (C-B) in FIG. 7 is as follows.

PbTiO3を、PbZrO3より、多くすることにより、スパッタ成膜の手法にて、柱状の膜が好適に形成されることが判明した。 It has been found that when PbTiO 3 is increased from PbZrO 3 , a columnar film is suitably formed by the sputter film formation method.

また、図7の左側の境界(D−E−F−A)は、高い電圧歪み定数(100pC/N以上)を得るために定められた。さらに、図7の上側の境界(D−C)は、キュリー温度が室温に近づくため、デバイスとしての安定性が悪くなる虞があるので、この虞を避けるために定められた。なお、キュリー温度以上では、圧電体素子の圧電特性が十分には発揮されない。また、前記(I)式で示される組成範囲が、図15に示されている。   Further, the left boundary (D-E-F-A) in FIG. 7 was determined in order to obtain a high voltage distortion constant (100 pC / N or more). Further, since the Curie temperature approaches room temperature, the upper boundary (D-C) in FIG. 7 may be deteriorated in stability as a device. In addition, above the Curie temperature, the piezoelectric characteristics of the piezoelectric element are not sufficiently exhibited. The composition range represented by the formula (I) is shown in FIG.

参考例2−2:ゾルゲル法による製造方法
この製造方法では、PZT膜を形成可能な金属成分の水酸化物の水和錯体、すなわちゾルを脱水処理してゲルとし、このゲルを加熱焼成して無機酸化物を調整する二つの方法について説明する。これらのゾルゲル法は、先に説明した参考例1及び実施例1とほぼ同様であるが、ここに改めて詳説することとする。
Reference Example 2-2: Manufacturing Method by Sol-Gel Method In this manufacturing method, a hydroxide hydrate complex of a metal component capable of forming a PZT film, that is, a sol is dehydrated into a gel, and the gel is heated and fired. Two methods for adjusting the inorganic oxide will be described. These sol-gel methods are substantially the same as those in Reference Example 1 and Example 1 described above, but will be described in detail here.

(その1)
a.ゾル組成物の成膜工程
本参考例において、PZT膜を構成する金属成分のゾルは、PZT膜を形成可能な金属のアルコキシドまたはアセテートを、例えば酸で加水分解して調整することができる。本発明においては、ゾル中の金属の組成を制御することで、既述のPZT膜の組成を得ることができる。すなわち、チタン、ジルコニウム、鉛、さらには他の金属成分のそれぞれのアルコキシドまたはアセテートを出発原料とする。
(Part 1)
a. In the present reference example, the metal component sol constituting the PZT film can be prepared by hydrolyzing a metal alkoxide or acetate capable of forming the PZT film with, for example, an acid. In the present invention, the composition of the PZT film described above can be obtained by controlling the composition of the metal in the sol. That is, titanium, zirconium, lead, and alkoxides or acetates of other metal components are used as starting materials.

本参考例では、最終的にPZT膜(圧電体薄膜)とされるまでに、PZT膜を構成する金属成分の組成がほぼ維持されるという利点がある。すなわち、焼成およびアニール処理中に金属成分、とりわけ鉛成分の蒸発等による変動が極めて少なく、したがって、これらの出発原料における金属成分の組成は、最終的に得られるPZT膜中の金属組成と一致することになる。つまり、ゲルの組成は生成しようとする圧電体膜(本参考例ではPZT膜)に応じて決定される。   In this reference example, there is an advantage that the composition of the metal component constituting the PZT film is substantially maintained until the PZT film (piezoelectric thin film) is finally formed. That is, there is very little variation due to evaporation of the metal component, particularly the lead component, during firing and annealing treatment, and therefore the composition of the metal component in these starting materials matches the metal composition in the finally obtained PZT film. It will be. That is, the composition of the gel is determined according to the piezoelectric film to be generated (PZT film in this reference example).

また、本参考例では、既述の鉛成分が過剰となるPZT膜を得るため、ゾルにおいて鉛成分を化学量論から要求される量よりも20モル%まで好ましくは15モル%まで過剰にすることが好ましい。   Further, in this reference example, in order to obtain a PZT film in which the above-described lead component is excessive, the lead component is excessively increased to 20 mol%, preferably 15 mol%, from the amount required from the stoichiometry. It is preferable.

本参考例では、このゾルは有機高分子化合物と混合された組成物として用いられるのが好ましい。この有機高分子化合物は、乾燥及び焼成時に薄膜の残留応力を吸収して、この薄膜にクラックが生じることを有効に防止する。具体的には、この有機高分子を含むゲルを用いると、後述するゲル化された薄膜に細孔が生じる。この細孔が、さらに後述するプレアニール及びアニール工程において薄膜の残留応力を吸収するものと考えられる。   In this reference example, this sol is preferably used as a composition mixed with an organic polymer compound. This organic polymer compound absorbs the residual stress of the thin film during drying and baking, and effectively prevents the thin film from cracking. Specifically, when a gel containing this organic polymer is used, pores are generated in the gelled thin film described later. These pores are considered to absorb the residual stress of the thin film in the pre-annealing and annealing processes described later.

好ましく用いられる有機高分子化合物としては、ポリ酢酸ビニル、ヒドロキシプロピルセルロース、ポリエチレングリコール、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコール、ポリビニルアルコール、ポリアクリル酸、ポリアミド、ポリアミク酸、アセチルセルロース及びその誘導体、ならびにそれらの共重合体がある。   Examples of the organic polymer compound preferably used include polyvinyl acetate, hydroxypropyl cellulose, polyethylene glycol, polyethylene glycol monomethyl ether, polypropylene glycol, polyvinyl alcohol, polyacrylic acid, polyamide, polyamic acid, acetylcellulose, and derivatives thereof, and There are copolymers.

なお、本参考例では、ポリ酢酸ビニルを添加することで、0.05μmφ程度の細孔を多数有する多孔質ゲル薄膜を、ヒドロキシプロプルセルロースを添加することで、0.1μm以下の大きさでかつ広い分布の細孔を持った多孔質ゲル薄膜を形成することができる。   In addition, in this reference example, by adding polyvinyl acetate, a porous gel thin film having a large number of pores of about 0.05 μmφ is added to a size of 0.1 μm or less by adding hydroxypropylcellulose. In addition, a porous gel thin film having a wide distribution of pores can be formed.

本参考例では、ポリエチレングリコールとして、平均分子量285〜420程度のものが好適に用いられる。また、ポリプロピレングリコールとしては、平均分子量300〜800程度のものが好適に用いられる。   In this reference example, polyethylene glycol having an average molecular weight of about 285 to 420 is preferably used. Further, as the polypropylene glycol, those having an average molecular weight of about 300 to 800 are preferably used.

本参考例に係る製造方法では、先ず、このゾル組成物をPZT膜を形成しようとする下電極(図6(b)参照)上に塗布する。この時の塗布方法は特に限定されず、通常行われている方法、例えば、スピンコート、ディップコート、ロールコート、バーコート等によって行うことができる。また、フレキソ印刷、スクリーン印刷、オフセット印刷等によって塗布することもできる。   In the manufacturing method according to this reference example, first, this sol composition is applied on the lower electrode (see FIG. 6B) on which a PZT film is to be formed. The coating method at this time is not particularly limited, and can be performed by a commonly performed method such as spin coating, dip coating, roll coating, bar coating, or the like. Moreover, it can also apply | coat by flexographic printing, screen printing, offset printing, etc.

また、塗布により形成された膜の厚さは、それ以降の工程を考慮すると、後述するゲル化工程において形成される多孔質ゲル薄膜の厚さが0.01μm以上となるように制御することが望ましく、より好ましくは0.1〜1μm程度とすることがよい。   In addition, the thickness of the film formed by coating can be controlled so that the thickness of the porous gel thin film formed in the gelation step described later becomes 0.01 μm or more in consideration of the subsequent steps. Desirably, more preferably about 0.1 to 1 μm.

次に、塗布されたゾル組成物を自然乾燥、または200℃以下の温度で加熱する。ここで、この乾燥(加熱)された膜上に、ゾル組成物をさらに塗布して膜厚を厚くすることもできる。この場合は、下地となる膜は、80℃以上の温度で乾燥されることが望ましい。   Next, the applied sol composition is naturally dried or heated at a temperature of 200 ° C. or lower. Here, the sol composition can be further applied on the dried (heated) film to increase the film thickness. In this case, the underlying film is desirably dried at a temperature of 80 ° C. or higher.

b.ゾル組成物からなる膜のゲル化工程
次に、前述したゾル組成物の成膜工程で得た膜を焼成し、残留有機物を実質的に含まない非晶質の金属酸化物からなる多孔質ゲル薄膜を形成する。
b. Next, the film obtained in the above-described sol composition film-forming step is fired to form a porous gel made of an amorphous metal oxide substantially free of residual organic substances. A thin film is formed.

焼成は、ゾル組成物の膜をゲル化し、かつ膜中から有機物を除去するのに十分な温度で、十分な時間加熱することによって行う。   Firing is performed by heating the sol composition film at a temperature sufficient to gel the sol composition film and remove organic substances from the film for a sufficient time.

本参考例では、焼成温度を300〜450℃にすることが好ましく、350〜400℃にすることがさらに好ましい。焼成時間は、温度及び使用する炉の形式によって変化するが、例えば、脱脂炉を用いた場合には、10〜120分程度が好ましく、15〜60分程度とすることがより好ましい。また、ホットプレートを用いた場合には、1〜60分程度が好ましく、5〜30分程度とすることがさらに好ましい。以上の工程によって、下電極上に多孔質ゲル薄膜が形成された。   In this reference example, the firing temperature is preferably 300 to 450 ° C, more preferably 350 to 400 ° C. The firing time varies depending on the temperature and the type of furnace used. For example, when a degreasing furnace is used, it is preferably about 10 to 120 minutes, more preferably about 15 to 60 minutes. When a hot plate is used, it is preferably about 1 to 60 minutes, and more preferably about 5 to 30 minutes. Through the above steps, a porous gel thin film was formed on the lower electrode.

c.プレアニール工程
次に、前述した工程bで得た多孔質ゲル薄膜を加熱焼成し、この膜を結晶質の金属酸化膜からなる膜に変換する。焼成は、多孔質ゲル薄膜を結晶質の金属酸化物からなる膜に変換するために必要な温度で行うが、結晶中にペロブスカイト型結晶が大部分を占めるまで行う必要はなく、ゲル薄膜が均一に結晶化された時点で終了させればよい。
c. Pre-annealing step Next, the porous gel thin film obtained in the above-described step b is heated and fired, and this film is converted into a film made of a crystalline metal oxide film. Firing is performed at a temperature necessary to convert the porous gel thin film into a film made of a crystalline metal oxide, but it is not necessary to perform perovskite crystals in the crystal, and the gel thin film is uniform. It may be terminated when it is crystallized.

本実施例では、焼成温度として400〜800℃の範囲が好ましく、550〜750℃の範囲で焼成することが、より好ましい。焼成時間は、焼成温度及び使用する炉の形式によって変化するが、例えばアニール炉を使用する場合は、0.1〜5時間程度が好ましく、0.5〜2時間程度がより好ましい。また、RTA(Rapid Thermal Annealing)炉を用いた場合、0.1〜10分程度が好ましく、1〜5分程度がより好ましい。   In this embodiment, the firing temperature is preferably in the range of 400 to 800 ° C, and more preferably in the range of 550 to 750 ° C. The firing time varies depending on the firing temperature and the type of furnace used. For example, when an annealing furnace is used, it is preferably about 0.1 to 5 hours, more preferably about 0.5 to 2 hours. Further, when an RTA (Rapid Thermal Annealing) furnace is used, it is preferably about 0.1 to 10 minutes, and more preferably about 1 to 5 minutes.

また、本参考例では、このプレアニール工程を二段階に分けて実施している。具体的には、先ず、第一段階として、400〜600℃の範囲の温度でプレアニールを行い、次に、第二段階として、600〜800℃の範囲の温度でプレアニールを行う。また、さらに好ましくは、第一段階として、450〜550℃の範囲の温度でプレアニールを行い、次に、第二段階として、600〜750℃の範囲の温度でプレアニールを行う。この工程によって、多孔質ゲル薄膜を結晶質の金属酸化膜からなる膜に変換させた。   In this reference example, the pre-annealing process is performed in two stages. Specifically, first, pre-annealing is performed at a temperature in the range of 400 to 600 ° C. as the first stage, and then pre-annealing is performed at a temperature in the range of 600 to 800 ° C. as the second stage. More preferably, pre-annealing is performed at a temperature in the range of 450 to 550 ° C. as the first stage, and then pre-annealing is performed at a temperature in the range of 600 to 750 ° C. as the second stage. By this step, the porous gel thin film was converted into a film made of a crystalline metal oxide film.

d.繰り返し工程
次に、前述した工程a、b及びcを少なくとも1回以上繰り返し、結晶質の金属酸化物の膜を積層する。ここで、この繰り返し工程で得られる膜の膜厚、焼成温度、プレアニール条件は、下電極上に第1回の膜を形成した場合と同様である。
d. Repeating Steps Next, steps a, b and c described above are repeated at least once to deposit a crystalline metal oxide film. Here, the film thickness, baking temperature, and pre-annealing conditions of the film obtained in this repeating process are the same as those in the case where the first film is formed on the lower electrode.

この繰り返し工程の結果得られる積層膜の膜厚は、最終的なPZT膜の膜厚を考慮して適宜決定すればよいが、後述する次工程(工程e)においてクラック等が発生しない適切な膜厚であることが好ましい。   The film thickness of the laminated film obtained as a result of this repeating process may be appropriately determined in consideration of the final film thickness of the PZT film, but an appropriate film that does not generate cracks or the like in the subsequent process (process e) described later. Thickness is preferred.

この繰り返し工程では、先に形成した膜上に新たに多孔質ゲル薄膜を形成し、その後のプレアニールの結果、新たに形成された多孔質ゲル薄膜は、先に形成された膜と実質的に一体化された膜となる。   In this repeating process, a new porous gel thin film is formed on the previously formed film, and as a result of the subsequent pre-annealing, the newly formed porous gel thin film is substantially integrated with the previously formed film. It becomes the film made into.

ここで、実質的に一体化された膜とは、積層された層間に不連続層がない場合のみならず、本参考例に係る最終的に得られるPZT膜15の場合と異なり、積層された層間に不連続層があってもよい。そして、さらに工程a、b及びcを繰り返す場合には、さらに新たな多孔質ゲル薄膜が形成され、その後のプレアニールの結果、この新たな多孔質ゲル薄膜は、先に得た結晶質の積層膜と実質的に一体化された膜となる。   Here, the substantially integrated film is not only the case where there is no discontinuous layer between the laminated layers, but is different from the case of the finally obtained PZT film 15 according to this reference example. There may be discontinuous layers between the layers. When the steps a, b and c are further repeated, a new porous gel thin film is further formed. As a result of the subsequent pre-annealing, this new porous gel thin film is obtained from the previously obtained crystalline laminated film. And a film that is substantially integrated.

なお、圧電体薄膜素子を形成するためのパターニングや、上電極の形成は、この段階で行うことが好ましい。   The patterning for forming the piezoelectric thin film element and the formation of the upper electrode are preferably performed at this stage.

e.ペロブスカイト型結晶成長工程
次に、工程dで得た膜に、焼成温度600〜1200℃、さらに好ましくは800〜1000℃の範囲でアニールを行う。焼成時間は、焼成温度や、使用する炉の形式によって変化するが、例えば、アニール炉を用いた場合、0.1〜5時間程度が好ましく、0.5〜2時間程度がより好ましい。また、RTA炉を用いた場合には、0.1〜10分程度が好ましく、0.5〜3分程度がより好ましい。
e. Perovskite-type crystal growth step Next, the film obtained in step d is annealed at a firing temperature of 600 to 1200 ° C, more preferably 800 to 1000 ° C. The firing time varies depending on the firing temperature and the type of furnace used. For example, when an annealing furnace is used, about 0.1 to 5 hours is preferable, and about 0.5 to 2 hours is more preferable. Moreover, when using an RTA furnace, about 0.1 to 10 minutes are preferable and about 0.5 to 3 minutes are more preferable.

このペロブスカイト型結晶成長工程、すなわち、アニールを二段階に分けて実施することもできる。具体的には、第一段階では、600〜800℃程度の温度でアニールを行い、第二段階では、800〜1000℃の温度でアニールを行う。また、さらに好ましくは、第一段階では、600〜750℃程度の温度でアニールを行い、第二段階では、800〜950℃の温度でアニールを行うことができる。   This perovskite crystal growth process, that is, annealing can be performed in two stages. Specifically, annealing is performed at a temperature of about 600 to 800 ° C. in the first stage, and annealing is performed at a temperature of 800 to 1000 ° C. in the second stage. More preferably, annealing can be performed at a temperature of about 600 to 750 ° C. in the first stage, and annealing can be performed at a temperature of 800 to 950 ° C. in the second stage.

以上の操作によって、下電極14上に、多結晶体からなり、かつ粒界が下電極14面に対して略垂直方向に存在するとともに、結晶体の結晶粒の膜厚方向の幅が、当該結晶粒の膜面方向の幅より長く、結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3の範囲であるPZT膜15を形成した。   By the above operation, the lower electrode 14 is made of a polycrystal, the grain boundary exists in a direction substantially perpendicular to the surface of the lower electrode 14, and the width of the crystal grain in the film thickness direction is It is longer than the width of the crystal grain in the film surface direction, and the relationship between the width of the crystal grain in the film thickness direction and the width of the crystal grain in the film surface direction is: width in the film surface direction / width in the film thickness direction = 1/10. A PZT film 15 in a range of ˜1 / 3 was formed.

(その2)
次に、もう一つのゾルゲル法を利用した圧電体薄膜素子の製造方法について説明する。
(Part 2)
Next, another method for manufacturing a piezoelectric thin film element using the sol-gel method will be described.

f.多孔質ゲル薄膜形成工程
先ず、前述した工程a及びbを、少なくとも1回以上繰り返し、多孔質ゲル薄膜の積層膜を形成する。なお、工程a及びbにおいて形成される膜厚、焼成温度は、前述した製造工程(その1)に準じる。
f. Step of forming porous gel thin film First, steps a and b described above are repeated at least once to form a laminated film of porous gel thin films. In addition, the film thickness formed in processes a and b and the firing temperature are in accordance with the manufacturing process (part 1) described above.

本参考例では、積層膜の膜厚を、1μm以下に設定することが好ましく、0.5μm以下にすることがさらに好ましい。この積層膜の膜厚をこの程度にすることで、次の工程(工程c’)におけるプレアニールの際に、膜にクラックが発生することを防止することができる。この工程によって、多孔質ゲル薄膜が複数枚積層された積層膜が得られた。   In this reference example, the thickness of the laminated film is preferably set to 1 μm or less, and more preferably 0.5 μm or less. By setting the thickness of the laminated film to this level, it is possible to prevent the film from cracking during the pre-annealing in the next step (step c ′). By this step, a laminated film in which a plurality of porous gel thin films were laminated was obtained.

c’.プレアニール工程
次に、工程fで得た積層膜を焼成して、この積層膜を結晶質の金属酸化物からなる膜に変換する。この焼成は、積層膜を結晶質の金属酸化物からなる膜に変換するのに必要な温度で行うが、結晶中にペロブスカイト型結晶が大部分を占めるまで行う必要はなく、ゲル薄膜が均一に結晶化した時点で終了させればよい。また、この焼成の温度及び時間は、工程cとほぼ同じにすればよい。そしてまた、この焼成は、工程cと同様に、二段階に分けて行ってもよい。この工程により、多結晶質ゲル薄膜が複数枚積層された積層膜が、結晶質の薄膜に変換された。
c '. Pre-annealing step Next, the laminated film obtained in the step f is baked to convert the laminated film into a film made of a crystalline metal oxide. This firing is performed at a temperature necessary to convert the laminated film into a film made of a crystalline metal oxide, but it is not necessary to perform perovskite crystals in the crystal, and the gel thin film is uniformly formed. What is necessary is just to complete | finish when it crystallizes. The firing temperature and time may be substantially the same as in step c. In addition, this firing may be performed in two steps as in the step c. By this step, a laminated film in which a plurality of polycrystalline gel thin films were laminated was converted into a crystalline thin film.

d’.繰り返し工程
次に、工程f及びc’を、少なくとも1回以上繰り返す。すなわち、この工程では、工程a及びbを少なくとも1回以上繰り返して、多孔質ゲル薄膜の積層膜を形成し、これを焼成して結晶質の金属酸化物からなる膜に変換する工程をさらに1回以上繰り返す。このようにして、結晶質の金属酸化膜からなる膜を複数枚積層した積層膜を形成する。なお、繰り返される工程a、b及びc’における種々の条件は、前述した条件と同様にした。
d '. Repeat Steps Next, steps f and c ′ are repeated at least once. That is, in this step, the steps a and b are repeated at least once more to form a laminated film of a porous gel thin film, which is further baked to convert it into a film made of crystalline metal oxide. Repeat more than once. In this manner, a laminated film in which a plurality of films made of a crystalline metal oxide film are laminated is formed. Various conditions in the repeated steps a, b and c ′ were the same as those described above.

この工程d’によって得られた積層膜の膜厚は、最終的に得られるPZT膜15の膜厚を考慮して適宜決定されるが、後述する次工程(工程e’)において、膜にクラック等が発生しない膜厚にすることが好ましい。   The film thickness of the laminated film obtained in this step d ′ is appropriately determined in consideration of the film thickness of the finally obtained PZT film 15, but in the next step (step e ′) described later, the film is cracked. It is preferable to set the film thickness so that no such phenomenon occurs.

この繰り返し工程では、先に形成した膜上に新たに多孔質ゲル薄膜を形成し、その後のプレアニールの結果、新たに形成された多孔質ゲル薄膜は、先に形成された膜と実質的に一体化された膜となる。ここで、実質的に一体化された膜の定義は、前述した通りである。   In this repeating process, a new porous gel thin film is formed on the previously formed film, and as a result of the subsequent pre-annealing, the newly formed porous gel thin film is substantially integrated with the previously formed film. It becomes the film made into. Here, the definition of the substantially integrated film is as described above.

なお、圧電体薄膜素子を形成するためのパターニングや、上電極16の形成は、この段階で行うことが好ましい。   The patterning for forming the piezoelectric thin film element and the formation of the upper electrode 16 are preferably performed at this stage.

その後、工程eを行い、下電極14上に、多結晶体からなり、かつ粒界が下電極14面に対して略垂直方向に存在するとともに、結晶体の結晶粒の膜厚方向の幅が、当該結晶粒の膜面方向の幅より長く、結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3の範囲であるPZT膜を形成した。   Thereafter, the step e is performed, and the lower electrode 14 is made of a polycrystal, the grain boundary is present in a direction substantially perpendicular to the surface of the lower electrode 14, and the width of the crystal grain in the film thickness direction is The width of the crystal grain in the film surface direction is longer than the width of the crystal grain in the film surface direction, and the relationship between the width of the crystal grain in the film surface direction is as follows. A PZT film having a range of / 10 to 1/3 was formed.

次に、図6(c)に示す工程では、図6(b)に示す工程で得たPZT膜上に、スパッタ法によって、膜厚が、0.2〜1.0μm程度のアルミニウムからなる上電極16を形成する。   Next, in the step shown in FIG. 6 (c), the PZT film obtained in the step shown in FIG. 6 (b) is made of aluminum having a thickness of about 0.2 to 1.0 μm by sputtering. The electrode 16 is formed.

このようにして、図2に示す圧電体薄膜素子を得た。なお、得られたPZT膜14には、クラックの発生がなく、また断面には前述した積層による層状の不連続面も存在していないことが確認された。   In this way, the piezoelectric thin film element shown in FIG. 2 was obtained. In addition, it was confirmed that the obtained PZT film 14 had no cracks, and the cross-section had no layered discontinuous surface due to the above-described lamination.

(参考例3)
次に、参考例3に係る圧電体薄膜素子(発明品1)と、PZT膜を構成する結晶体の粒界が下電極の面に対して略垂直方向に存在していない以外は、発明品1と同様の構造を備えた圧電体薄膜素子(比較品1)との圧電ひずみ定数(pC/N)を測定したところ、発明品1の圧電ひずみ定数は、150pC/Nであり、比較品1の圧電ひずみ定数は、100pC/Nであった。
(Reference Example 3)
Next, the piezoelectric thin film element (invention product 1) according to Reference Example 3 and the crystal product constituting the PZT film were invented except that the grain boundaries did not exist in a direction substantially perpendicular to the surface of the lower electrode. When the piezoelectric strain constant (pC / N) of the piezoelectric thin film element (comparative product 1) having the same structure as in FIG. 1 was measured, the piezoelectric strain constant of invention product 1 was 150 pC / N. The piezoelectric strain constant of was 100 pC / N.

この結果、発明品1は、比較品1に比べ、高い圧電ひずみ定数を示すことが確認された。なお、圧電ひずみ定数の測定は、2mmφのPZTドットパターンのインピーダンスアナライザを用いた誘電率測定と、片持ち梁の自由端に加重をかけた時に、ドットパターンに発生する電圧より求めた電圧出力係数との積により求めた。また、比較品1のPZT膜の断面を示すSEM写真を図8に、図8に示すPZT膜の平面を示すSEM写真を図9に示す。発明品1は、反りや歪みが少なく、良好な外観を備えていた。   As a result, it was confirmed that the inventive product 1 exhibits a higher piezoelectric strain constant than the comparative product 1. The piezoelectric strain constant is measured by measuring the dielectric constant using an impedance analyzer with a PZT dot pattern of 2 mmφ and the voltage output coefficient obtained from the voltage generated in the dot pattern when the free end of the cantilever is applied. It was calculated by the product of Further, FIG. 8 shows an SEM photograph showing a cross section of the PZT film of Comparative Product 1, and FIG. 9 shows an SEM photograph showing a plane of the PZT film shown in FIG. Invention 1 had a good appearance with little warpage and distortion.

なお、参考例3では、PZT膜を、スパッタ法あるいはゾルゲル法によって製造する場合について説明したが、これに限らず、結晶体の粒界が下電極の面に対して略垂直方向に存在した構造を備えたPZT膜を形成可能であれば、他の方法により製造してもよいことは勿論である。   In Reference Example 3, the case where the PZT film is manufactured by the sputtering method or the sol-gel method has been described. However, the present invention is not limited to this, and a structure in which the grain boundary of the crystal exists in a direction substantially perpendicular to the surface of the lower electrode. Of course, other methods may be used as long as a PZT film having the above can be formed.

また、参考例3では、結晶体の粒界が、電極の平面に対して略垂直方向に存在し、結晶体の結晶粒の膜厚方向の幅が、この結晶粒の膜面方向の幅より長く、結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3の範囲で構成されているPZT膜について説明したが、PZT膜は、少なくとも結晶体の粒界が、電極の平面に対して略垂直方向に存在していれば良い。   In Reference Example 3, the grain boundary of the crystal exists in a direction substantially perpendicular to the plane of the electrode, and the width of the crystal grain in the film thickness direction is larger than the width of the crystal grain in the film surface direction. The relationship between the width in the film thickness direction of the crystal grain and the width in the film surface direction of the crystal grain is configured in the range of the width in the film surface direction / the width in the film thickness direction = 1/10 to 1/3. Although the PZT film has been described, it is sufficient that at least the grain boundary of the crystal body exists in a direction substantially perpendicular to the plane of the electrode.

(参考例4)
図10は、他の圧電体薄膜素子を構成する下電極の断面を示す走査型電子顕微鏡(SEM)写真である。なお、この参考例4では、既述の参考例3との相違点について説明し、参考例2と同様の構成及び工程に関しては、同一の符号を使用して、その詳細な説明は省略する。
(Reference Example 4)
FIG. 10 is a scanning electron microscope (SEM) photograph showing a cross section of a lower electrode constituting another piezoelectric thin film element. In Reference Example 4, differences from Reference Example 3 described above will be described, and the same configurations and processes as in Reference Example 2 will be denoted by the same reference numerals, and detailed description thereof will be omitted.

この参考例に係る圧電体薄膜素子と、参考例2の圧電体薄膜素子と異なる点は、下電極の構造及び製造方法についてである。すなわち、本参考例に係る圧電体薄膜素子の下電極は、プラチナと酸化チタンとの化合物(プラチナ99重量%、酸化チタン1重量%)からなり、かつ、この化合物の結晶体の粒界が、図10に示すように、基板の表面に対して略垂直方向に存在した構造を有している。   The difference between the piezoelectric thin film element according to the reference example and the piezoelectric thin film element according to the reference example 2 is the structure and manufacturing method of the lower electrode. That is, the lower electrode of the piezoelectric thin film element according to this reference example is composed of a compound of platinum and titanium oxide (platinum 99 wt%, titanium oxide 1 wt%), and the grain boundary of the crystal of this compound is As shown in FIG. 10, it has a structure that exists in a direction substantially perpendicular to the surface of the substrate.

また、この下電極を構成する結晶体は、その粒界が、PZT膜の膜面に対して略垂直方向に存在し、結晶粒の膜厚方向の幅と、膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3となる範囲で構成されている。   Further, the crystal body constituting the lower electrode has a grain boundary substantially perpendicular to the film surface of the PZT film, and the relationship between the width in the film thickness direction of the crystal grain and the width in the film surface direction. However, the width in the film surface direction / the width in the film thickness direction = 1/10 to 1/3.

このような構造を備えた下電極は、酸化チタンがプラチナの収縮を抑制するという理由から、PZT膜を形成する際に行われる熱処理によって、基板が、反ったり、歪んだりすることを抑制することができる。また、PZT膜及びチタン酸化膜との密着性を向上させることができる。   The lower electrode having such a structure suppresses the substrate from being warped or distorted by the heat treatment performed when forming the PZT film because titanium oxide suppresses the shrinkage of platinum. Can do. In addition, the adhesion between the PZT film and the titanium oxide film can be improved.

次に、この構造を備えた下電極の製造方法について説明する。   Next, the manufacturing method of the lower electrode provided with this structure is demonstrated.

先ず、図6(a)に示す工程と同様の方法で、シリコン基板10上に、シリコン酸化膜11及びチタン酸化膜11Aを形成する。次に、チタン酸化膜上に、プラチナターゲットと酸化チタンターゲットを同時に放電させ、成膜するマルチスパッタ法により、下電極12を形成する。このようにすることで、プラチナと酸化チタンとの化合物(プラチナ99重量%、酸化チタン1重量%)からなり、かつ、この化合物の結晶体の粒界が、基板10の表面に対して略垂直方向に存在した構造を有し、さらに結晶粒の膜厚方向の幅と、膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3となる範囲で構成された下電極12を得ることができる。   First, a silicon oxide film 11 and a titanium oxide film 11A are formed on a silicon substrate 10 by a method similar to the process shown in FIG. Next, the lower electrode 12 is formed on the titanium oxide film by a multi-sputtering method in which a platinum target and a titanium oxide target are simultaneously discharged to form a film. By doing so, it is composed of a compound of platinum and titanium oxide (platinum 99 wt%, titanium oxide 1 wt%), and the grain boundary of the crystal of this compound is substantially perpendicular to the surface of the substrate 10. The relationship between the width in the film thickness direction of the crystal grain and the width in the film surface direction is as follows: width in the film surface direction / width in the film thickness direction = 1/10 to 1/3 The lower electrode 12 configured in such a range can be obtained.

その後、前述した参考例3と同様の方法で、下電極12上にPZT膜14及び上電極16を形成し、圧電体薄膜素子を得た。この参考例4に係る圧電体薄膜素子も、高い圧電ひずみ定数を示すことが確認された。   Thereafter, the PZT film 14 and the upper electrode 16 were formed on the lower electrode 12 by the same method as in Reference Example 3 described above, and a piezoelectric thin film element was obtained. It was confirmed that the piezoelectric thin film element according to Reference Example 4 also showed a high piezoelectric strain constant.

次に、参考例4に係わる圧電体薄膜素子(発明品2)と、下電極をプラチナのみで形成した以外は、発明品2と同様の構造を備えた圧電体薄膜素子(比較品2)について、反りや歪みの発生を調査した。なお、図11は、この比較品2を構成する下電極の断面を示す走査型電子顕微鏡写真である。図11は、図10に対する比較例であり、PZTが柱状でない構造を示している。この調査は、前記圧電体薄膜素子が形成された基板の反りを測定することによって行った。   Next, a piezoelectric thin film element (Invention product 2) according to Reference Example 4 and a piezoelectric thin film element (Comparative product 2) having the same structure as that of Invention product 2 except that the lower electrode is made of only platinum. The occurrence of warpage and distortion was investigated. FIG. 11 is a scanning electron micrograph showing a cross section of the lower electrode constituting the comparative product 2. FIG. 11 is a comparative example with respect to FIG. 10 and shows a structure in which PZT is not columnar. This investigation was performed by measuring the warpage of the substrate on which the piezoelectric thin film element was formed.

この結果、発明品2は、反りや歪みが殆ど生じなかったが、比較品2は、発明品2に比べ、反りや歪みの発生が大きいことが確認された。   As a result, it was confirmed that the inventive product 2 hardly warped or distorted, but the comparative product 2 produced more warp or distorted than the inventive product 2.

また、発明品2と比較品2について、下電極12のPZT膜14との接着性、及び下電極12とチタン酸化膜11Aとの接着性を調査した。なお、この調査は、スクラッチ試験機によって行った。この結果、発明品2は、比較品2に比べ、下電極とPZT膜との接着性、及び下電極とチタン酸化膜との接着性とも、良好であることが確認された。   In addition, regarding the inventive product 2 and the comparative product 2, the adhesion between the lower electrode 12 and the PZT film 14 and the adhesion between the lower electrode 12 and the titanium oxide film 11A were investigated. This investigation was conducted with a scratch testing machine. As a result, it was confirmed that the inventive product 2 was better in both the adhesion between the lower electrode and the PZT film and the adhesion between the lower electrode and the titanium oxide film than the comparative product 2.

なお、本参考例では、下電極を既述の組成としたが、これに限らず、プラチナと酸化チタンの含有率は、プラチナが90〜99.5重量%、酸化チタンが0.5〜10重量%とすることができる。   In this reference example, the lower electrode has the composition described above. However, the present invention is not limited to this, and the platinum and titanium oxide content is 90 to 99.5 wt% for platinum and 0.5 to 10 for titanium oxide. % By weight.

また、本参考例では、下電極の結晶体の粒界が、基板10の表面に対して略垂直方向に存在し、さらに結晶粒の膜厚方向の幅と、膜面方向の幅との関係が、膜面方向の幅/膜厚方向の幅=1/10〜1/3となる範囲で構成された下電極14について説明したが、これに限らず、下電極は、少なくとも結晶体の粒界が、基板10の表面に対して略垂直方向に存在していればよい。   In this reference example, the grain boundary of the crystal body of the lower electrode exists in a direction substantially perpendicular to the surface of the substrate 10, and the relationship between the width in the film thickness direction of the crystal grain and the width in the film surface direction However, the lower electrode 14 configured in a range of width in the film surface direction / width in the film thickness direction = 1/10 to 1/3 has been described. However, the lower electrode is not limited thereto, and at least the crystal grains are formed. The field only needs to exist in a direction substantially perpendicular to the surface of the substrate 10.

また、本参考例では、下電極を、プラチナと酸化チタンとの化合物から構成した場合について説明したが、これに限らず、下電極は、プラチナとPZT膜の構成要素である他の金属元素の酸化物との化合物から構成してもよい。この酸化物としては、酸化チタンの他、例えば、酸化鉛、酸化ジルコニウム、酸化マグネシウム及び酸化ニオブ等が挙げられる。   In this reference example, the case where the lower electrode is composed of a compound of platinum and titanium oxide has been described. However, the present invention is not limited thereto, and the lower electrode is made of platinum and other metal elements that are constituent elements of the PZT film. You may comprise from a compound with an oxide. Examples of the oxide include lead oxide, zirconium oxide, magnesium oxide, niobium oxide and the like in addition to titanium oxide.

(参考例5)
次に、閉気孔(気孔)の径を制御することにより、圧電体薄膜中のクラックの発生を防止するようにした本発明の参考例について説明する。図1の点線部の断面拡大図を図12に示す。この図12に示すように、圧電体膜10中には、気孔20が存在しており、しかもその気孔は、角が丸く、結晶粒内、あるいは、結晶粒と結晶粒の間に、閉じこめられた閉気孔(個々の結晶粒は、図中に記載していない。)であり、その平均気孔径が、0.01〜0.1μmで且つ、面積密度が0.3〜5%である。
(Reference Example 5)
Next, a description will be given of a reference example of the present invention in which cracks in the piezoelectric thin film are prevented by controlling the diameter of closed pores (pores). FIG. 12 shows an enlarged cross-sectional view of the dotted line portion in FIG. As shown in FIG. 12, pores 20 are present in the piezoelectric film 10, and the pores are rounded and confined within crystal grains or between crystal grains. Closed pores (individual crystal grains are not shown in the figure), the average pore diameter is 0.01 to 0.1 μm, and the area density is 0.3 to 5%.

圧電体膜の膜厚は、0.5〜25μm程度が好ましく、より好ましくは、1〜5μm程度である。更に、他の膜の厚さは、適宜決定されて良いが、例えばSi基板は、10〜1000μm程度、Si熱酸化膜は、0.05〜3μm程度、上電極及び下電極は、0.05〜2μm程度が好ましい。   The film thickness of the piezoelectric film is preferably about 0.5 to 25 μm, and more preferably about 1 to 5 μm. Furthermore, the thicknesses of the other films may be appropriately determined. For example, the Si substrate has a thickness of about 10 to 1000 μm, the Si thermal oxide film has a thickness of about 0.05 to 3 μm, and the upper electrode and the lower electrode have a thickness of 0.05. About ~ 2 μm is preferable.

以下に、この圧電体膜を用いた圧電体素子の製造方法を詳細に説明するが、製造方法は、これら参考例の製造方法に限定されない。   Hereinafter, a method for manufacturing a piezoelectric element using the piezoelectric film will be described in detail, but the manufacturing method is not limited to the manufacturing method of these reference examples.

厚さ400μm、直径3インチのSi基板を硫酸で洗浄した後、1000℃で4時間、水蒸気を含む酸素雰囲気中で、加熱して湿式酸化を行い、1μmの厚さのSi熱酸化膜を形成した。次に、直流マグネトロンスパッタ法によって、膜厚200オングストロームのTi膜と、膜厚2000オングストロームのPt膜とを連続して形成した。更に、スパッタリングターゲットとして組成の制御されたPZTの焼結体を用い、RFマグネトロンスパッタ法によって、Pt膜上に膜厚1μmの圧電体膜前駆体膜を形成した。加熱せず、スパッタ成膜した為に、この前駆体膜は、アモルファス状態であった。   A Si substrate having a thickness of 400 μm and a diameter of 3 inches is washed with sulfuric acid and then heated in an oxygen atmosphere containing water vapor at 1000 ° C. for 4 hours to form wet thermal oxidation to form a 1 μm thick Si thermal oxide film. did. Next, a Ti film having a film thickness of 200 angstroms and a Pt film having a film thickness of 2000 angstroms were successively formed by direct current magnetron sputtering. Further, a PZT sintered body having a controlled composition was used as a sputtering target, and a 1 μm-thick piezoelectric film precursor film was formed on the Pt film by RF magnetron sputtering. This precursor film was in an amorphous state because it was sputtered without heating.

前駆体膜が形成されたSi基板を、拡散炉中で酸素雰囲気中にて加熱して、前駆体膜を結晶化し、焼結させて圧電体膜とした。その際の温度条件は、第1加熱工程として600℃で結晶化するまで加熱し、更にその後第2加熱工程として、750℃で焼結を行った。圧電体膜中の気孔の平均気孔径と面積密度の調整には、主にアモルファス状態での膜中のPb組成比、第1加熱工程温度、第2加熱工程時間が効く。アモルファス膜中Pbが多いと気孔径及び面積密度とも大きくなる傾向がある。第2加熱工程の温度が高いこと、あるいは、その加熱時間が長いと、気孔径が大きくなる傾向がある。   The Si substrate on which the precursor film was formed was heated in an oxygen atmosphere in a diffusion furnace to crystallize and sinter the precursor film to obtain a piezoelectric film. The temperature condition at that time was heating until crystallization at 600 ° C. as the first heating step, and then sintering was performed at 750 ° C. as the second heating step. Adjustment of the average pore diameter and area density of the pores in the piezoelectric film mainly takes effect of the Pb composition ratio in the film in the amorphous state, the first heating step temperature, and the second heating step time. When the amount of Pb in the amorphous film is large, both the pore diameter and the area density tend to increase. If the temperature of the second heating step is high or the heating time is long, the pore diameter tends to increase.

圧電体膜の上にさらに、直流マグネトロンスパッタ法によって、膜厚2000オングストロームのPt膜を形成し、最終的には、図1に示すように加工して、圧電体素子の形状とした。   A Pt film having a film thickness of 2000 angstroms was further formed on the piezoelectric film by direct current magnetron sputtering, and finally processed as shown in FIG. 1 to obtain the shape of the piezoelectric element.

上記に示すような製造条件の変更により、気孔の平均気孔径を変えて、圧電体素子を作成したところ、圧電体膜中のクラックの発生と上下電極間の電気リークは、表3に示すようになった。   When the piezoelectric element was prepared by changing the average pore diameter of the pores by changing the manufacturing conditions as described above, the occurrence of cracks in the piezoelectric film and the electric leakage between the upper and lower electrodes are as shown in Table 3. Became.

気孔の観察は、サンプルを破断し、その破断面を走査型電子顕微鏡(SEM)にて、観察することによって行った。   The pores were observed by breaking the sample and observing the fractured surface with a scanning electron microscope (SEM).

但し、表3中に示すサンプルの気孔の面積密度は、1〜2%の範囲内とした。電気リークの測定は、直径2mmの円形の上電極を形成したサンプルを用い、電圧100Vを上下電極間に印加し測定した。クラックのあるサンプルは、クラック部でリークが生じていると思われる。   However, the area density of the pores of the samples shown in Table 3 was in the range of 1 to 2%. The electric leakage was measured by using a sample in which a circular upper electrode having a diameter of 2 mm was formed and applying a voltage of 100 V between the upper and lower electrodes. The sample with cracks seems to have leaked at the cracks.

この結果により、平均気孔径が、0.01〜0.1μmで、クラックもなく、電気リークもないアクチュエータを得ることが出来ることが分かった。   From this result, it was found that an actuator having an average pore diameter of 0.01 to 0.1 μm, no cracks, and no electric leakage can be obtained.

この理由は、以下のようであると考えられる。圧電体は、キュリー温度を境にして、結晶構造が変わる相転移を起こすが、結晶化する為の熱処理温度は、キュリー温度より高いために、室温まで温度降下するときに、圧電体膜が緻密でありすぎると、その時の歪みを吸収できなくなり、クラックを生じてしまう。   The reason is considered as follows. A piezoelectric body undergoes a phase transition where the crystal structure changes at the boundary of the Curie temperature, but since the heat treatment temperature for crystallization is higher than the Curie temperature, the piezoelectric film becomes dense when the temperature drops to room temperature. If it is too much, the strain at that time cannot be absorbed and a crack is generated.

また、熱膨張係数もシリコン基板に比べて大きいため、その熱応力を圧電体膜が吸収できない場合には、クラックを発生する可能性がある。   Further, since the thermal expansion coefficient is larger than that of the silicon substrate, cracks may occur when the piezoelectric film cannot absorb the thermal stress.

つまり、気孔がある程度あったほうが、歪み及び応力を吸収できるために、クラックなしの膜を得ることができるのである。   That is, if there are some pores, strain and stress can be absorbed, so that a film without cracks can be obtained.

一方、気孔の直径が上記範囲より大きい場合には、圧電体膜に実行的にかかる電界強度が大きくなるために、リーク破壊の虞がある。   On the other hand, when the pore diameter is larger than the above range, the electric field strength applied to the piezoelectric film is effectively increased, and there is a risk of breakage.

また、圧電体素子としての耐久加速試験を行った。条件としては、上下電極間にデューティー10%、周波数10KHz、30Vのパルス電圧を印加し、圧電体素子先端の変位量の変化を調べた。   In addition, a durability acceleration test as a piezoelectric element was performed. As conditions, a pulse voltage having a duty of 10%, a frequency of 10 KHz, and 30 V was applied between the upper and lower electrodes, and the change in the displacement amount at the tip of the piezoelectric element was examined.

その結果、平均気孔径が0.05μm以下の場合には、2×109回以上の繰り返し耐久性を示したが、平均気孔径が0.05μmを越え、0.1μm以下の場合に於いては、2×109回までに、変位量が低下してしまう。 As a result, when the average pore diameter was 0.05 μm or less, repeated durability of 2 × 10 9 times or more was shown, but when the average pore diameter was more than 0.05 μm and 0.1 μm or less. Will be reduced by 2 × 10 9 times.

(参考例6)
参考例5と同様にして、気孔の面積密度を変えて、アクチュエータを作成したところ、圧電体膜中のクラックの発生と上下電極間の電気リークは、表4に示すようになった。
(Reference Example 6)
When actuators were prepared by changing the area density of the pores in the same manner as in Reference Example 5, the occurrence of cracks in the piezoelectric film and the electric leakage between the upper and lower electrodes were as shown in Table 4.

但し、表4中に示すサンプルの気孔の平均気孔径は、0.03〜0.07μmの範囲内とした。この結果により、気孔の面積密度が0.3〜3%で、クラックもなく、電気リークもないアクチュエータを得ることが出来ることが分かった。気孔の面積密度が上記範囲より大きい場合には、圧電体膜に実行的にかかる電界強度が大きくなるために、リーク破壊の虞がある。   However, the average pore diameter of the samples shown in Table 4 was set in the range of 0.03 to 0.07 μm. From this result, it was found that an actuator having a pore area density of 0.3 to 3%, no cracks, and no electric leakage can be obtained. When the area density of the pores is larger than the above range, the electric field strength that is practically applied to the piezoelectric film is increased, and there is a risk of leak destruction.

また、圧電体素子としての耐久加速試験を行った。条件としては、参考例1と同じとした。その結果、気孔の面積密度が1%以下の場合には、2×109回以上の耐久性を示したが、気孔の面積密度が、1%を越え、5%以下の場合に於いては、2×109回までに、変位量が低下してしまう。 In addition, a durability acceleration test as a piezoelectric element was performed. The conditions were the same as in Reference Example 1. As a result, when the area density of the pores was 1% or less, the durability was 2 × 10 9 times or more. However, when the area density of the pores was more than 1% and 5% or less, The displacement amount decreases by 2 × 10 9 times.

参考例5及び6に於いて、基板としてSi基板を用いたが、マグネシア、アルミナ、ジルコニア等のセラミック基板を用いても良いし、圧電体膜として、2成分系PZTを用いて、説明したが、もちろん用途によって、圧電体膜の材料を変えることが望ましく、例えば、後述するインクジェット記録ヘッドの場合に於いては、キュリー点が200℃以上で、高い圧電歪定数d31を得ることが出来る3成分系PZTであることが望ましく、更に望ましくは、第3成分としてマグネシウムニオブ酸鉛を用いた、3成分系PZTであることが望ましい。   In Reference Examples 5 and 6, although the Si substrate was used as the substrate, a ceramic substrate such as magnesia, alumina, zirconia, etc. may be used, and the description has been made using the two-component PZT as the piezoelectric film. Of course, it is desirable to change the material of the piezoelectric film depending on the application. For example, in the case of an ink jet recording head described later, a three-component that can obtain a high piezoelectric strain constant d31 at a Curie point of 200 ° C. or higher. A PZT system is desirable, and a 3-component system PZT using lead magnesium niobate as the third component is more desirable.

図1には、ユニモルフ型のアクチュエータの例で、説明したが、図13に示すように、バイモルフ型のアクチュエータにも応用は可能である。これは、12の下電極に対して対称になった構造をなしており、101、201は、共に、圧電体膜であり、103、203は、共に、上電極である。   Although FIG. 1 illustrates an example of a unimorph type actuator, as shown in FIG. 13, the present invention can also be applied to a bimorph type actuator. This has a symmetrical structure with respect to 12 lower electrodes, 101 and 201 are both piezoelectric films, and 103 and 203 are both upper electrodes.

他の実施の形態
III.次に、以上説明した圧電体薄膜素子を備えたインクジェット記録装置について説明する。このインクジェット式記録ヘッドを模式的に表す断面図を示す。図14は、本発明に係る圧電体薄膜素子を振動子として使用したインクジェット式記録ヘッドの一つのインク溜め部分を示す。
Other Embodiments III. Next, an ink jet recording apparatus provided with the piezoelectric thin film element described above will be described. A sectional view schematically showing this ink jet recording head is shown. FIG. 14 shows one ink reservoir portion of an ink jet recording head using the piezoelectric thin film element according to the present invention as a vibrator.

このインクジェット式記録ヘッドは、インク溜め27が形成されたシリコン基板21と、シリコン基板21上に形成された振動板22と、振動板22上の所望位置に形成された下電極23と、下電極23上であって、インク溜め27に対応した位置に形成された圧電体薄膜24と、圧電体薄膜24上に形成された上電極25と、シリコン基板21の下面に接合された第2の基板26と、を備えて構成されている。この基板26には、インク溜27に連通するインク吐出ノズル26Aが設けられている。   The ink jet recording head includes a silicon substrate 21 on which an ink reservoir 27 is formed, a diaphragm 22 formed on the silicon substrate 21, a lower electrode 23 formed at a desired position on the diaphragm 22, and a lower electrode. 23, a piezoelectric thin film 24 formed at a position corresponding to the ink reservoir 27, an upper electrode 25 formed on the piezoelectric thin film 24, and a second substrate bonded to the lower surface of the silicon substrate 21 26. The substrate 26 is provided with an ink discharge nozzle 26 </ b> A communicating with the ink reservoir 27.

下電極23は、既述の参考例及び実施例で説明された構成を有している。また、圧電体薄膜24についても同様である。   The lower electrode 23 has the configuration described in the above-described reference examples and examples. The same applies to the piezoelectric thin film 24.

このインクジェット式記録ヘッドは、図示しないインク流路を介してインク溜め27にインクが供給される。ここで、下電極23と上電極25とを介して、圧電体膜24に電圧を印加すると、圧電体膜24が変形してインク溜め27内を負圧にし、インクに圧力を加える。この圧力によって、インクが図示しないノズルから吐出され、インクジェット記録を行う。   In the ink jet recording head, ink is supplied to the ink reservoir 27 via an ink flow path (not shown). Here, when a voltage is applied to the piezoelectric film 24 via the lower electrode 23 and the upper electrode 25, the piezoelectric film 24 is deformed to create a negative pressure in the ink reservoir 27 and apply pressure to the ink. With this pressure, ink is ejected from a nozzle (not shown), and ink jet recording is performed.

ここで、インクジェット式記録ヘッドは、既述の圧電特性に優れた圧電体薄膜素子を振動子として用いているため、大きな圧力でインクを吐出させることができる。   Here, since the ink jet recording head uses the piezoelectric thin film element having excellent piezoelectric characteristics described above as a vibrator, ink can be ejected with a large pressure.

より具体的には、次のとおりである。圧電体薄膜は、フォトエッチングにより幅0.2mm、長さ4mmにパターニングし、シリコン基板に異方性エッチングにより幅0.3mmの溝を形成した。上電極を形成した後、ガラス製の第2基板と接合し、インク流路を形成した。基板ごと切断してインクジェットヘッドを組み立て、インクを吐出させたところ、充分な吐出力が得られた。インクジェット記録装置に組み込んで印字すると、良好な印字品質が得られた。   More specifically, it is as follows. The piezoelectric thin film was patterned to a width of 0.2 mm and a length of 4 mm by photoetching, and a groove having a width of 0.3 mm was formed on the silicon substrate by anisotropic etching. After forming the upper electrode, it was bonded to a second glass substrate to form an ink flow path. When the entire substrate was cut to assemble the inkjet head and the ink was ejected, a sufficient ejection force was obtained. When printing was carried out by incorporating it in an ink jet recording apparatus, good printing quality was obtained.

また、この記録ヘッドは、例えば、Si熱酸化膜を振動板とし、その上部に、下電極、圧電体膜、上電極で構成される薄膜圧電体素子を薄膜プロセスにより一体成形し、且つキャビティー(インク溜)が形成された単結晶シリコン基板からなるチップと、インク吐出するノズルを備えたステンレス製のノズル板(第2の基板)が、接着剤により、張り合わせた構造となっている。ここでは、より大きな変位量が稼げるように、圧電体膜として、圧電歪定数d31の高い材料として、例えば第3成分としてマグネシウムニオブ酸鉛を添加した3成分系PZTを用い、その厚みを2μmとした。圧電体膜は、その断面にて、気孔が存在し、平均気孔径が、0.01〜0.1μmで且つ、面積密度が0.3〜5%の範囲内にあると、実際のインクジェット記録ヘッドの信頼性5年に対応する、耐久性試験を行い、インク噴射させ、印字したところ、4×109回の印字に問題はなかった。 The recording head has, for example, a silicon thermal oxide film as a diaphragm, and a thin film piezoelectric element composed of a lower electrode, a piezoelectric film, and an upper electrode is integrally formed thereon by a thin film process, and a cavity A chip made of a single crystal silicon substrate on which (ink reservoir) is formed and a nozzle plate (second substrate) made of stainless steel provided with a nozzle for discharging ink are bonded together with an adhesive. Here, as a piezoelectric film, for example, a ternary PZT to which lead magnesium niobate is added as a third component is used as the piezoelectric film so that a larger displacement amount can be obtained, and the thickness is 2 μm. did. When the piezoelectric film has pores in its cross section, the average pore diameter is 0.01 to 0.1 μm, and the area density is in the range of 0.3 to 5%, actual ink jet recording is performed. When a durability test corresponding to a head reliability of 5 years was performed, ink was ejected, and printing was performed, there was no problem in printing 4 × 10 9 times.

フォトエッチングを用いると、印字の高精細化が可能で、一枚の基板から多数の素子が取れるため低コスト化も可能である。また製造安定性、特性の再現性も大変優れていた。すなわち、本発明による薄膜圧電体素子を利用することで、製造工程が簡略で、高密度なインクジェット記録ヘッドを歩留り良く作ることが可能となる。   When photoetching is used, high-definition printing can be achieved, and a large number of elements can be obtained from a single substrate, thereby reducing the cost. In addition, the production stability and reproducibility of the characteristics were also excellent. That is, by using the thin film piezoelectric element according to the present invention, it is possible to manufacture a high-density ink jet recording head with a high yield with a simple manufacturing process.

本発明による薄膜圧電体素子は、その良好な特性を利用して、種々の用途に用いられて良い。例えば、既述のように、インクジェット記録ヘッドの振動子として利用されることである。   The thin film piezoelectric element according to the present invention may be used for various applications by utilizing its good characteristics. For example, as described above, it is used as a vibrator of an ink jet recording head.

以上述べたように本発明の圧電体薄膜素子は、最適な結晶配向性を持ったPZT薄膜を用いることにより、圧電特性を向上することができる。   As described above, the piezoelectric thin film element of the present invention can improve the piezoelectric characteristics by using the PZT thin film having the optimum crystal orientation.

本発明に係る圧電体薄膜素子は、この構成要素である圧電体膜の結晶体の粒界が、電極面に対して略垂直方向に存在しているため、クラックを発生させることなく、圧電ひずみ定数を向上させることができる。この結果、信頼性の高い、高性能な圧電体薄膜素子を提供することができる。   In the piezoelectric thin film element according to the present invention, the grain boundary of the crystal of the piezoelectric film as the constituent element exists in a direction substantially perpendicular to the electrode surface. The constant can be improved. As a result, a highly reliable and high performance piezoelectric thin film element can be provided.

また、結晶体の結晶粒の膜厚方向の幅を、結晶粒の膜面方向の幅より長くすることで、この効果を向上することができる。結晶体の結晶粒の膜厚方向の幅と、当該結晶粒の膜面方向の幅との関係を、既述の範囲に具体的に定めることによって、この効果をより一層向上することができる。   Moreover, this effect can be improved by making the width of the crystal grains in the film thickness direction longer than the width of the crystal grains in the film surface direction. This effect can be further improved by specifically defining the relationship between the width of the crystal grains in the film thickness direction and the width of the crystal grains in the film surface direction within the range described above.

そしてまた、下電極をプラチナと、圧電体膜の構成要素である金属元素の酸化物との化合物から構成することで、圧電体膜を形成する際に行われる熱処理によって、基板が、反ったり、歪んだりすることを抑制することができる。また、圧電体膜や基板との密着性を向上させることもできる。   And, by constructing the lower electrode from a compound of platinum and an oxide of a metal element that is a component of the piezoelectric film, the substrate is warped by heat treatment performed when the piezoelectric film is formed, Distortion can be suppressed. In addition, the adhesion to the piezoelectric film and the substrate can be improved.

また、下電極を構成する結晶体の粒界を、圧電体膜の膜面に対して略垂直方向に存在させることで、この効果を向上させることができる。さらにまた、下電極を構成する結晶体の結晶粒の膜厚方向の幅を、この結晶粒の膜面方向の幅より長くすることで、この効果をさらに向上することができる。   Further, this effect can be improved by causing the grain boundary of the crystal constituting the lower electrode to exist in a direction substantially perpendicular to the film surface of the piezoelectric film. Furthermore, this effect can be further improved by making the width of the crystal grains of the crystal constituting the lower electrode in the film thickness direction longer than the width of the crystal grains in the film surface direction.

また、本発明の薄膜圧電体素子は、膜厚が、0.5μm以上と比較的厚い薄膜でもクラックなしで、容易に製造することが可能となり、インクジェット記録ヘッドに用いた場合に於いても、高密度の記録ヘッドを歩留り良く製造できる。さらに、本発明の薄膜圧電体素子をアクチュエータに用いた場合に於いて、変位駆動させた時の繰り返し耐久性試験に於いても、良好な再現性を示す。   In addition, the thin film piezoelectric element of the present invention can be easily manufactured without cracking even with a relatively thin film having a film thickness of 0.5 μm or more. High density recording heads can be manufactured with good yield. Further, when the thin film piezoelectric element of the present invention is used as an actuator, it shows good reproducibility even in repeated durability tests when it is displaced.

また、本発明に係るインクジェット式記録ヘッドは、既述の圧電体薄膜素子を振動子として備えるため、大きな圧力でインクを吐出させることができるという効果を有する。   In addition, since the ink jet recording head according to the present invention includes the above-described piezoelectric thin film element as a vibrator, the ink can be ejected with a large pressure.

10…シリコン基板、12…下電極、14…圧電体膜、16…上電極。   DESCRIPTION OF SYMBOLS 10 ... Silicon substrate, 12 ... Lower electrode, 14 ... Piezoelectric film, 16 ... Upper electrode.

Claims (9)

下電極、圧電体膜および上電極を有する圧電体素子であって、前記下電極が、プラチナと酸化チタン、及び酸化鉛または酸化ジルコニウムを含み、前記下電極において、前記プラチナが0.2〜0.8μmの膜厚から形成され、前記酸化チタンが0.005〜0.04μmの膜厚から形成され、前記酸化チタンの含有率が0.5重量%以上10重量%以下であることを特徴とする圧電体素子。 A piezoelectric element having a lower electrode, a piezoelectric film, and an upper electrode, wherein the lower electrode includes platinum and titanium oxide, and lead oxide or zirconium oxide, and the platinum is 0.2 to 0 in the lower electrode. The titanium oxide is formed from a film thickness of 0.005 to 0.04 μm, and the titanium oxide content is 0.5 wt% to 10 wt%. Piezoelectric element. 前記圧電体膜は、Pb、ZrおよびTiを構成元素として含むことを特徴とする請求項1に記載の圧電体素子。   The piezoelectric element according to claim 1, wherein the piezoelectric film includes Pb, Zr, and Ti as constituent elements. 前記下電極の結晶粒の粒界が、膜厚方向に延びることを特徴とする請求項1または2に記載の圧電体素子。 3. The piezoelectric element according to claim 1, wherein grain boundaries of crystal grains of the lower electrode extend in a film thickness direction. 前記下電極の結晶粒は、膜面方向の幅と膜厚方向の幅との関係(膜面方向の幅/膜厚方向の幅)が、1/10〜1/3の範囲であることを特徴とする請求項に記載の圧電体素子。 The crystal grain of the lower electrode is such that the relationship between the width in the film surface direction and the width in the film thickness direction (width in the film surface direction / width in the film thickness direction) is in the range of 1/10 to 1/3. 4. The piezoelectric element according to claim 3 , wherein 前記圧電体膜は、チタン酸ジルコン酸鉛を含み、菱面体晶系の結晶構造を備え、X線回折薄膜法で測定した(100)、(110)、(111)、(210)および(211)の結晶面反射強度の総和に対する(100)の配向度が、30%以上であることを特徴とする請求項1乃至何れか一項に記載の圧電体素子。 The piezoelectric film includes lead zirconate titanate, has a rhombohedral crystal structure, and is measured by an X-ray diffraction thin film method (100), (110), (111), (210), and (211). ) degree of orientation of (100) to the total crystal surface reflection intensity, the piezoelectric element according to any one of claims 1 to 4, characterized in that 30% or more. 前記圧電体膜の結晶粒が、前記下電極から前記上電極方向に延びる柱状であることを特徴とする請求項1乃至何れか一項に記載の圧電体素子。 The piezoelectric crystal grains in the film, a piezoelectric element according to any one of claims 1 to 5, characterized in that a columnar extending on said electrode direction from the lower electrode. 前記圧電体膜の結晶粒の膜面方向の幅と膜厚方向の幅との関係(膜面方向の幅/膜厚方向の幅)が、1/10〜1/3の範囲であることを特徴とする請求項に記載の圧電体素子。 The relationship (width in the film surface direction / width in the film thickness direction) between the width in the film surface direction and the width in the film thickness direction of the crystal grains of the piezoelectric film is in the range of 1/10 to 1/3. The piezoelectric element according to claim 6 . 前記圧電体膜中に気孔を有し、前記気孔の平均気孔径が0.03μm以上0.07μm
以下であり、前記気孔の面積密度が0.3%以上3%以下であることを特徴とする請求項
1乃至何れか一項に記載の圧電体素子。
The piezoelectric film has pores, and the average pore diameter of the pores is 0.03 μm or more and 0.07 μm.
The piezoelectric element according to any one of claims 1 to 7 , wherein the area density of the pores is 0.3% or more and 3% or less.
請求項1乃至何れか一項に記載の圧電体素子を備えることを特徴とするインクジェット式記録ヘッド。 Ink-jet recording head, characterized in that it comprises a piezoelectric device according to any one of claims 1 to 8.
JP2010263546A 1995-09-19 2010-11-26 Piezoelectric element and ink jet recording head Expired - Lifetime JP5370346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263546A JP5370346B2 (en) 1995-09-19 2010-11-26 Piezoelectric element and ink jet recording head

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP1995240372 1995-09-19
JP24037295 1995-09-19
JP32267095 1995-12-12
JP1995322670 1995-12-12
JP19084896 1996-07-19
JP1996190848 1996-07-19
JP2010263546A JP5370346B2 (en) 1995-09-19 2010-11-26 Piezoelectric element and ink jet recording head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010228976A Division JP5370332B2 (en) 1995-09-19 2010-10-08 Piezoelectric element and ink jet recording head

Publications (2)

Publication Number Publication Date
JP2011109112A JP2011109112A (en) 2011-06-02
JP5370346B2 true JP5370346B2 (en) 2013-12-18

Family

ID=43943606

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010228976A Expired - Lifetime JP5370332B2 (en) 1995-09-19 2010-10-08 Piezoelectric element and ink jet recording head
JP2010263546A Expired - Lifetime JP5370346B2 (en) 1995-09-19 2010-11-26 Piezoelectric element and ink jet recording head

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010228976A Expired - Lifetime JP5370332B2 (en) 1995-09-19 2010-10-08 Piezoelectric element and ink jet recording head

Country Status (1)

Country Link
JP (2) JP5370332B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394435B2 (en) * 2011-05-13 2014-01-22 株式会社アドバンテスト Manufacturing method, switch device, transmission path switching device, and test device
US9689748B2 (en) 2011-08-08 2017-06-27 Panasonic Corporation Infrared detection element
WO2013021614A1 (en) * 2011-08-08 2013-02-14 パナソニック株式会社 Piezoelectric element
JP6075145B2 (en) * 2013-03-25 2017-02-08 三菱マテリアル株式会社 Method for producing composition for forming PZT-based ferroelectric thin film and method for forming PZT-based ferroelectric thin film using the composition
JP6075152B2 (en) * 2013-03-27 2017-02-08 三菱マテリアル株式会社 Method for producing composition for forming PZT-based ferroelectric thin film and method for forming PZT-based ferroelectric thin film using the composition
JPWO2015072095A1 (en) * 2013-11-14 2017-03-16 パナソニックIpマネジメント株式会社 Infrared detector, infrared detector, piezoelectric element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045874A (en) * 1990-04-21 1992-01-09 Matsushita Electric Ind Co Ltd Ferroelectric thin-film and manufacture thereof
JPH05257103A (en) * 1992-03-11 1993-10-08 Ricoh Co Ltd Ferroelectric thin film and its production
JP3218406B2 (en) * 1992-04-23 2001-10-15 キヤノン株式会社 Cantilever type displacement element, cantilever type probe using the same, scanning tunneling microscope using this cantilever type probe, information processing apparatus
JP2950052B2 (en) * 1992-10-15 1999-09-20 トヨタ自動車株式会社 Conductive paste for piezoelectric elements
JP3207315B2 (en) * 1993-03-12 2001-09-10 日本碍子株式会社 Piezoelectric / electrostrictive film type element
JP3461398B2 (en) * 1994-01-13 2003-10-27 ローム株式会社 Dielectric capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011054977A (en) 2011-03-17
JP2011109112A (en) 2011-06-02
JP5370332B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP4921863B2 (en) Piezoelectric element and ink jet recording head
US7240409B2 (en) Process of making a piezoelectric thin film component
US5825121A (en) Thin film piezoelectric device and ink jet recording head comprising the same
US6543107B1 (en) Method of producing a piezoelectric thin film
JP3487068B2 (en) Piezoelectric thin film, method of manufacturing the same, and ink jet recording head using the same
JP5370346B2 (en) Piezoelectric element and ink jet recording head
CN103733366B (en) Piezoelectric element
JP6967008B2 (en) Piezoelectric thin film element
JP3903474B2 (en) Actuator, ink jet recording head, and method of manufacturing piezoelectric thin film element
JP5010132B2 (en) Piezoelectric film and manufacturing method thereof
JP5354876B2 (en) Piezoelectric manufacturing method, piezoelectric element, and liquid discharge head
JP2012147021A (en) Piezoelectric film and liquid discharge head provided with the same
JP4144653B2 (en) Inkjet recording head
JP2015216195A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term