JPH10136641A - Dc-dc converter apparatus - Google Patents

Dc-dc converter apparatus

Info

Publication number
JPH10136641A
JPH10136641A JP8290687A JP29068796A JPH10136641A JP H10136641 A JPH10136641 A JP H10136641A JP 8290687 A JP8290687 A JP 8290687A JP 29068796 A JP29068796 A JP 29068796A JP H10136641 A JPH10136641 A JP H10136641A
Authority
JP
Japan
Prior art keywords
switching means
diode
mosfet
built
sbd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8290687A
Other languages
Japanese (ja)
Other versions
JP3291439B2 (en
Inventor
Hiroki Eto
弘樹 江藤
Tadashi Natsume
正 夏目
Norifumi Ikeda
憲史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29068796A priority Critical patent/JP3291439B2/en
Publication of JPH10136641A publication Critical patent/JPH10136641A/en
Application granted granted Critical
Publication of JP3291439B2 publication Critical patent/JP3291439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC-DC converter apparatus which is miniaturized and whose efficiency is increased. SOLUTION: At least a first switching means 1 which turns on and off a DC input power supply, a second switching means 2 which is turned on and off in synchronization with the first switching means, a reactor 3 which is connected to the first and second switching means 1, 2 and which smoothes the DC input power supply and a capacitor 4, one end of which is connected to the reactor 3 are mounted on a wiring board. The second switching means 2 at a DC-DC converter apparatus, which converts the DC input power supply into a prescribed DC input power supply, uses a semiconductor element which uses a MOSFET and in which a diode 2A built in the MOSFET and a Schottky barrier diode 24 connected in parallel with the diode are formed on the same semiconductor substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、DC−DCコンバ
ータ装置に関し、特に、同期整流方式のDC−DCコン
バータ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC-DC converter, and more particularly to a synchronous rectification type DC-DC converter.

【0002】[0002]

【従来の技術】スイッチング電源の主要な部分を構成す
る同期整流型のDC−DCコンバータは、図5に示すよ
うに、直流入力電源をスイッチングする第1のスイッチ
ング手段1と、第1のスイッチング手段1に接続され第
1のスイッチング手段1に同期してスイッチングする第
2のスイッチング手段2と、両スイッチング手段1、2
と接続されたリアクタ3及びコンデンサー4とをから構
成される。
2. Description of the Related Art As shown in FIG. 5, a synchronous rectification type DC-DC converter constituting a main part of a switching power supply comprises a first switching means 1 for switching a DC input power supply, and a first switching means. A second switching means 2 connected to the first switching means 1 for switching in synchronization with the first switching means 1;
And a condenser 4 connected to the reactor 3.

【0003】第1のスイッチング手段1をONさせた
時、第2のスイッチング手段2をOFF状態として、両
スイッチング手段の同期期間を調整し、直流入力電源を
リアクタ3及びコンデンサー4により平滑化することに
より、負荷に所定の直流出力電源を供給する。上記のD
C−DCコンバータは電圧降下が小さく高効率化に大き
く寄与することからスイッチング電源に広く用いられつ
つある。
When the first switching means 1 is turned on, the second switching means 2 is turned off to adjust the synchronization period of the two switching means, and the DC input power is smoothed by the reactor 3 and the capacitor 4. Supplies a predetermined DC output power to the load. D above
C-DC converters are being widely used in switching power supplies because they have a small voltage drop and greatly contribute to higher efficiency.

【0004】上記DC−DCコンバータを構成する各要
素は、図示しないが、ガラスエポキシ、セラミックス、
金属等をベースにした配線基板上に実装され、上記第1
のスイッチング手段1はトタンジスタ或いはパワーMO
SFET、第2のスイッチング手段2はパワーMOSF
ETが用いられる。一般的な縦型パワーMOSFET素
子は、図6に示すように、N+/N−基板のN−層11
の表面にP型のベース領域12を多数形成し、ベース領
域12の表面にN+型のソース領域13を形成し、ベー
ス領域12のチャンネル部分の上にゲート電極14を配
置し、ベース領域12とソース領域13の両方にオーミ
ックコンタクトするソース電極15を形成した構造を持
つものである。
[0004] Although not shown, each element constituting the DC-DC converter is made of glass epoxy, ceramic,
Mounted on a wiring board based on metal or the like;
Switching means 1 is a transistor or power MO
SFET, the second switching means 2 is a power MOSF
ET is used. As shown in FIG. 6, a general vertical power MOSFET device has an N− layer 11 of an N + / N− substrate.
A large number of P-type base regions 12 are formed on the surface of the base region 12, an N + type source region 13 is formed on the surface of the base region 12, and a gate electrode 14 is disposed on a channel portion of the base region 12. It has a structure in which a source electrode 15 that makes ohmic contact with both of the source regions 13 is formed.

【0005】上記DC−DCコンバータの第2のスイッ
チング手段に、例えば、NchMOSFETを用いた場
合、以下の様な問題が確認された。第1のスイッチング
手段1がOFFの時、第2のスイッチング手段2のNc
hFETがONし、電流経路に接続されるリアクタ3の
回生電流は、コンデンサー4、MOSFET素子2(内
蔵ダイオード2A)、リアクタ3というループで流れ、
MOSFET素子2内部に形成された上記内蔵ダイオー
ド2Aにキャリア(電子)が蓄積される。
When the N-channel MOSFET is used as the second switching means of the DC-DC converter, for example, the following problems have been confirmed. When the first switching means 1 is OFF, Nc of the second switching means 2
The hFET is turned on, and the regenerative current of the reactor 3 connected to the current path flows through a loop of the capacitor 4, the MOSFET element 2 (built-in diode 2A), and the reactor 3.
Carriers (electrons) are accumulated in the built-in diode 2A formed inside the MOSFET element 2.

【0006】この内蔵ダイオードに蓄積されたキャリア
によって、第2のスイッチング手段2がOFFされ、第
1のスイッチング手段1がONされたとき、キャリアが
完全に放出される時間、即ち、逆回復時間中、直流入力
電源の一部が内蔵ダイオード2Aを介して流れることに
なり、負荷へ供給される電源効率が低下する。また、上
記直流入力電源の一部がOFF状態の第2のスイッチン
グ手段(NchMOSFET)の内蔵ダイオード2Aに
流れると新たなキャリアが蓄積され、このキャリアによ
る逆回復時間の間は、NchMOSFET2のゲートに
ON信号が印加されても、MOSFET素子2がON動
作しない。この逆回復時間は、N−型層11に蓄積され
たキャリア(電子)が内蔵ダイオード2Aを介して完全
に放出され内蔵ダイオード2AのPN接合が回復するま
での時間であり、ベース領域とN−型層とのPN接合が
不可避的にできるパワーMOSFETの寄生ダイオード
によって形成される。
When the second switching means 2 is turned off and the first switching means 1 is turned on by the carriers accumulated in the built-in diode, the time when the carriers are completely discharged, that is, during the reverse recovery time Part of the DC input power flows through the built-in diode 2A, and the efficiency of the power supplied to the load decreases. Further, when a part of the DC input power flows through the built-in diode 2A of the second switching means (NchMOSFET) in the OFF state, new carriers are accumulated, and during the reverse recovery time due to the carriers, the ON of the gate of the NchMOSFET2 is established. Even if the signal is applied, the MOSFET element 2 does not perform the ON operation. The reverse recovery time is the time until the carriers (electrons) accumulated in the N − -type layer 11 are completely released through the built-in diode 2A and the PN junction of the built-in diode 2A is recovered, and the base region and the N− The PN junction with the mold layer is formed by a parasitic diode of the power MOSFET which is inevitable.

【0007】従って、同期整流方式のDC−DCコンバ
ータ装置の電源効率の低下及び回路全体のスイッチング
タイムを向上することができないという結果になる。上
述した不具合を解決するために、図7に示すように、内
蔵ダイオード2Aと並列にショットキーバリアダイオー
ド(SBD)20を接続し、SBD20の順方向電圧V
FがPNダイオードより低いことを利用して、NchM
OSFETのドレイン電位を速やかにソース電位に落と
すことにより、回路全体のスイッチング速度を向上させ
てDC−DCコンバータの高効率化を向上させている。
As a result, the power efficiency of the synchronous rectification type DC-DC converter device cannot be reduced and the switching time of the entire circuit cannot be improved. In order to solve the above problem, as shown in FIG. 7, a Schottky barrier diode (SBD) 20 is connected in parallel with the built-in diode 2A, and the forward voltage V
Utilizing that F is lower than PN diode, NchM
By rapidly reducing the drain potential of the OSFET to the source potential, the switching speed of the entire circuit is improved, and the efficiency of the DC-DC converter is improved.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
回路を各々個別素子で構成するには、部品点数が増大し
電子機器の小型化に障害となる。そこでFETチップと
SBDチップとを1パッケージに収納することも検討し
たが、別個のウェハーで製造するために各々の良品数な
どの問題があり、また組立工程も煩雑になる問題点があ
った。
However, when each of the above circuits is constituted by individual elements, the number of components increases, which hinders miniaturization of electronic equipment. Therefore, it has been considered to house the FET chip and the SBD chip in one package. However, since they are manufactured on separate wafers, there are problems such as the number of non-defective products, and the assembly process becomes complicated.

【0009】また、上記の問題点を解決すべくFETと
SBDとをディスクリート部品を用いて構成した場合、
両部品を基板上に実装し、両者を接続する導体パターン
が基板上に形成されるために、この導体パターンがノイ
ズ発生源となり周辺回路に悪影響を及ぼす問題点が及び
部品実装面積が大きくなり、配線基板の小型化に影響を
及ぼし、ひいてはDC−DCコンバータ装置或いはスイ
ッチング電源装置の小型化に影響を及ぼし、ハンディ・
カムコーダ、ディジタルカメラ、ラップトップ型PC等
の電子部品が小型化高密度されるセット製品の小型化に
まで影響を及ぼす。
Further, when the FET and the SBD are configured by using discrete components in order to solve the above problems,
Since both parts are mounted on the board and the conductor pattern connecting them is formed on the board, this conductor pattern becomes a noise source and adversely affects peripheral circuits, and the component mounting area increases, This affects the miniaturization of the wiring board, which in turn affects the miniaturization of the DC-DC converter device or the switching power supply device.
Electronic components such as camcorders, digital cameras, and laptop PCs are downsized, which also affects the downsizing of high-density set products.

【0010】そこで本発明は、上記の事情について鑑み
てなされたもので、DC−DCコンバータを構成する部
品が実装される配線基板を小型化にし、セット製品の小
型化に寄与でき、且つ高効率化したDC−DCコンバー
タ装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made to reduce the size of a wiring board on which components constituting a DC-DC converter are mounted, to contribute to downsizing of a set product, and to achieve high efficiency. It is an object of the present invention to provide a simplified DC-DC converter device.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
するため、以下の構成を採用した。即ち、本発明のDC
−DCコンバータ装置は、少なくとも直流入力電源をO
N/OFFする第1のスイッチング手段と、前記第1の
スイッチング手段に同期しOFF/0Nする第2のスイ
ッチング手段と、前記第1、第2のスイッチング手段に
接続され前記直流入力電源を平滑するリアクタ及び前記
リアクタに一端が接続されたコンデンサーとが配線基板
上に実装され前記直流入力電源を所定の直流出力電源に
変換するDC−DCコンバータ装置において、前記第2
のスイッチング手段は、内蔵ダイオードと該内蔵ダイオ
ードに並列に接続されるショットキーバリアダイオード
とを備えたMOSFETであることを特徴としている。
The present invention has the following features to attain the object mentioned above. That is, the DC of the present invention
-The DC converter device has at least a DC input power supply
First switching means for turning on / off, second switching means for turning off / on in synchronization with the first switching means, and smoothing the DC input power supply connected to the first and second switching means; A DC-DC converter device, wherein a reactor and a capacitor having one end connected to the reactor are mounted on a wiring board and convert the DC input power to a predetermined DC output power;
Is characterized by being a MOSFET having a built-in diode and a Schottky barrier diode connected in parallel to the built-in diode.

【0012】上述したように、DC−DCコンバータ装
置の直流入力電源をスイッチングする第1のスイッチン
グ手段と同期してスイッチングする第2のスイッチング
手段に、パワーMOSFETに内蔵される内蔵ダイオー
ドに並列に接続されるショットキーバリアダイオード
(SBD)を同一の半導体基板に形成したパワーMOS
FETを用いることにより、MOSFET内部に形成し
SBDを形成しているので蓄積キャリアを瞬時に引き抜
いて完全遮断化を促進し、MOSFETの内蔵ダイオー
ドに順方向電流が流れた時であってもMOSFETのス
イッチングを高速にすることができ、DC−DCコンバ
ータ回路の更なる高効率化が可能となる。
As described above, the second switching means for switching in synchronization with the first switching means for switching the DC input power of the DC-DC converter device is connected in parallel with the built-in diode built in the power MOSFET. MOS with Schottky barrier diode (SBD) formed on the same semiconductor substrate
By using the FET, the SBD is formed inside the MOSFET to form the SBD, so that the accumulated carriers are instantaneously pulled out to promote complete shutoff, and even when a forward current flows through the internal diode of the MOSFET, Switching can be performed at high speed, and the efficiency of the DC-DC converter circuit can be further improved.

【0013】更に、MOSFETとSBDとを1チップ
化することにより、スイッチング手段であるパワーMO
SFETのサイズを高機能化して縮小することができ、
DC−DCコンバータ装置の用いられる配線基板の小型
化に寄与することができる。
Further, by integrating the MOSFET and the SBD into one chip, the power
It is possible to reduce the size of the SFET by enhancing its function,
This can contribute to downsizing of the wiring board used in the DC-DC converter device.

【0014】[0014]

【発明の実施の形態】以下に、本発明のDC−DCコン
バータ装置を図面を参照して詳細に説明する。図1は、
本発明のDC−DCコンバータ装置の等価回路図であ
る。等価回路は、図5に示した従来のDC−DCコンバ
ータ装置と同様に、直流入力電源をスイッチングする第
1のスイッチング手段1と、第1のスイッチング手段1
に接続され第1のスイッチング手段1に同期してスイッ
チングする第2のスイッチング手段2と、両スイッチン
グ手段1、2と接続されたリアクタ3及びコンデンサー
4とをから構成され、少なくともそれらの構成要素が配
線基板上に実装接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a DC-DC converter according to the present invention will be described in detail with reference to the drawings. FIG.
It is an equivalent circuit diagram of the DC-DC converter device of the present invention. The equivalent circuit includes a first switching unit 1 for switching a DC input power supply and a first switching unit 1 as in the conventional DC-DC converter shown in FIG.
And a second switching means 2 which is connected to the first switching means 1 and switches in synchronization with the first switching means 1, and a reactor 3 and a capacitor 4 which are connected to the two switching means 1 and 2, and at least those constituent elements are provided. It is mounted and connected on the wiring board.

【0015】第1のスイッチング手段1は、トランジス
タ、MOSFET等の半導体素子が用いられ、入力端子
に入力される所定周期のパルスでスイッチングされ、第
1のスイッチング手段に流れる直流入力電源をON/O
FFする。第2のスイッチング手段2は、パワーMOS
FETが用いられ、第1のスイッチング手段1と同期し
た所定周期のパルスが入力端子に入力されOFF/ON
される。この動作を繰り返し行い直流入力電源をリアク
タ3及びコンデンサー4により平滑化することにより、
負荷に所定の直流出力電源を供給する。
The first switching means 1 uses a semiconductor element such as a transistor or a MOSFET, is switched by a pulse having a predetermined cycle inputted to an input terminal, and turns on / off a DC input power supply flowing through the first switching means.
FF. The second switching means 2 is a power MOS
An FET is used, and a pulse of a predetermined cycle synchronized with the first switching means 1 is input to an input terminal to turn OFF / ON.
Is done. By repeating this operation and smoothing the DC input power by the reactor 3 and the capacitor 4,
A predetermined DC output power is supplied to the load.

【0016】DC−DCコンバータを構成する上記第1
のスイッチング手段1、第2のスイッチング手段2、リ
アクタ3及びコンデンサー4は、ガラスエポキシ基板、
ポリイミド基板、フェノール基板、セラミックス基板、
絶縁処理された金属基板等の配線基板上に銅箔等により
形成された回路パターンに実装接続される。本発明の特
徴とするところは、第1のスイッチング手段1と同期し
てスイッチングする第2のスイッチング手段2にある。
[0016] The first of the above constituting the DC-DC converter
The switching means 1, the second switching means 2, the reactor 3 and the capacitor 4 are a glass epoxy substrate,
Polyimide substrate, phenol substrate, ceramic substrate,
It is mounted and connected to a circuit pattern formed of a copper foil or the like on a wiring substrate such as a metal substrate that has been subjected to an insulation treatment. The feature of the present invention resides in a second switching means 2 that switches in synchronization with the first switching means 1.

【0017】本発明の第2のスイッチング手段2は、図
2に示すように、N+型基板の上にN−型エピタキシャ
ル層を形成したもの、あるいはN−型基板にN+型層を
拡散により形成したN+/Nー型の半導体基板21を基
体とし、N−型層22の表面にパワーMOSFET素子
23とショットキーバリアダイオード素子24(SBD
素子と称する)とを形成したものである。パワーMOS
FET素子23とショットキバリアダイオード素子24
とを併設することにより、各々所望の電流容量を持つ素
子を1チップ化した半導体素子である。
As shown in FIG. 2, the second switching means 2 of the present invention comprises an N + type epitaxial layer formed on an N + type substrate or an N + type layer formed on an N + type substrate by diffusion. With the N + / N− type semiconductor substrate 21 as a base, the power MOSFET element 23 and the Schottky barrier diode element 24 (SBD
(Referred to as an element). Power MOS
FET element 23 and Schottky barrier diode element 24
By combining these elements, the semiconductor elements each having a desired current capacity are integrated into one chip.

【0018】MOSFET素子23は、N−型層22を
共通ドレインとし、N−型層22の表面にP+型のベー
ス領域25を複数形成し、ベース領域25の表面にN+
型のソース領域26を形成し、ソース領域26とN−型
層22とに挟まれたベース領域25のP型層をチャンネ
ル領域27とし、チャンネル領域27の上にゲート酸化
膜28を挟んでポリシリコンゲート電極29を配置し、
ゲート電極29を被覆するPSG酸化膜30に形成した
コンタクトホールを介して、バリアメタル31とアルミ
電極32とがベース領域25とソース領域26とにオー
ミックコンタクトしている。
In the MOSFET element 23, the N− type layer 22 is used as a common drain, a plurality of P + type base regions 25 are formed on the surface of the N− type layer 22, and the N + type layer 22 is formed on the surface of the base region 25.
A source region 26 is formed, and a P-type layer of a base region 25 sandwiched between the source region 26 and the N− type layer 22 is defined as a channel region 27, and a poly oxide is formed on the channel region 27 with a gate oxide film 28 interposed therebetween. A silicon gate electrode 29 is arranged,
The barrier metal 31 and the aluminum electrode 32 are in ohmic contact with the base region 25 and the source region 26 via a contact hole formed in the PSG oxide film 30 covering the gate electrode 29.

【0019】SBD素子24は、N−型層22をカソー
ドとし、N−型層22の表面にP+型のガードリング領
域33を形成し、ガードリング領域33の上を端とする
酸化膜の開口を介してN−型層22の表面にバリアメタ
ル31がショットキーコンタクトし、その上にアルミ電
極32を形成している。アルミ電極32は、純粋アルミ
またはアルミニウム・シリコン合金が用いられ、MOS
FET素子23では多数のソース領域26を並列接続す
るソース電極となり、SBD素子24ではアノード電極
となる。
In the SBD element 24, an N− type layer 22 is used as a cathode, a P + type guard ring region 33 is formed on the surface of the N− type layer 22, and an opening of an oxide film having the upper end of the guard ring region 33 as an end. A barrier metal 31 is in Schottky contact with the surface of the N− type layer 22 via the via hole, and an aluminum electrode 32 is formed thereon. The aluminum electrode 32 is made of pure aluminum or aluminum-silicon alloy,
In the FET element 23, it becomes a source electrode for connecting a large number of source regions 26 in parallel, and in the SBD element 24, it becomes an anode electrode.

【0020】図3は、第2のスイッチング手段を構成す
る半導体素子の平面図を示す。詳細には図示していない
が、ゲート電極29は格子型のパターンを有し、ベース
領域25は前記格子型パターンの網目の部分に点在する
島状のパターンを持つ。反対にゲート電極29が島状、
ベース領域25が格子型のパターンもある。前記格子型
パターンの網目の各々が単位MOSセルとなり、該MO
Sセルを形成した領域がMOSFET領域23Bであ
る。
FIG. 3 is a plan view of a semiconductor device constituting the second switching means. Although not shown in detail, the gate electrode 29 has a lattice-type pattern, and the base region 25 has an island-like pattern scattered in a mesh portion of the lattice-type pattern. On the contrary, the gate electrode 29 has an island shape,
There is also a pattern in which the base region 25 has a lattice type. Each of the meshes of the lattice type pattern becomes a unit MOS cell, and the MO
The region where the S cell is formed is the MOSFET region 23B.

【0021】SBD素子24は、ガードリング領域33
が環状のパターンを具備し、該環状パターンの内側でバ
リアメタル31がN−型層22表面にショットキー接触
している。該ガードリング領域を含めた領域が、SBD
領域24Bである。MOSFET領域23B、SBD領
域24Bを囲むようにチップ周囲にはN+型のチャンネ
ルストッパ領域34を形成し、チャンネルストッパ領域
34はMOSFET領域23BとSBD領域24Bとの
間にも延在する。間に延在するチャンネルストッパ領域
34Bは、ベース領域25と、N−型層22と、ガード
リング領域33とで形成する寄生のPNPトランジスタ
の発生を抑制する役割を果たす。
The SBD element 24 has a guard ring region 33
Has an annular pattern, and the barrier metal 31 is in Schottky contact with the surface of the N− type layer 22 inside the annular pattern. The area including the guard ring area is SBD
This is the area 24B. An N + type channel stopper region 34 is formed around the chip so as to surround the MOSFET region 23B and the SBD region 24B, and the channel stopper region 34 also extends between the MOSFET region 23B and the SBD region 24B. The channel stopper region 34B extending therebetween plays a role of suppressing generation of a parasitic PNP transistor formed by the base region 25, the N − type layer 22, and the guard ring region 33.

【0022】ソース領域26を並列接続するアルミ電極
32は、最終パッシベーション膜としてのシリコン窒化
膜(図示せず)で被覆され、該シリコン窒化膜に開口を
形成することによってボンディングパッドを形成する。
アルミ電極32は、MOSFET領域の前記MOSセル
の上部でソース電極パッド35を形成する。ポリシリコ
ンゲート電極29は、ポリシリコン材料をチップ周辺部
分まで延在させ、該延在したポリシリコン材料にアルミ
電極をコンタクトさせることでゲート電極パッド36を
形成する。ゲート電極パッド36はソース電極となるア
ルミ電極32とは電気的に独立し、ポリシリコン層とア
ルミ材料との間にはバリアメタル31は特に必要ない。
The aluminum electrode 32 connecting the source regions 26 in parallel is covered with a silicon nitride film (not shown) as a final passivation film, and a bonding pad is formed by forming an opening in the silicon nitride film.
The aluminum electrode 32 forms a source electrode pad 35 above the MOS cell in the MOSFET region. The polysilicon gate electrode 29 extends the polysilicon material to the peripheral portion of the chip, and contacts the aluminum electrode to the extended polysilicon material to form the gate electrode pad 36. The gate electrode pad 36 is electrically independent of the aluminum electrode 32 serving as a source electrode, and the barrier metal 31 is not particularly required between the polysilicon layer and the aluminum material.

【0023】バリアメタル31とアルミ電極32はチャ
ンネルストッパ領域34Bの上方を横断してSBD領域
24Bまで延在し、延在したアルミ電極32はその上の
シリコン窒化膜の一部を開口することによってアノード
電極パッド37を形成する。チャンネルストッパ領域3
4B上を延在するアルミ電極32は、できるだけ電気抵
抗を下げるためおよび後述する熱的結合を強化するため
に、できるだけ幅広い線幅、例えば電極パッド35、3
7の幅より大きい線幅で延在している。
The barrier metal 31 and the aluminum electrode 32 extend over the channel stopper region 34B to the SBD region 24B, and the extended aluminum electrode 32 is formed by opening a part of the silicon nitride film thereon. An anode electrode pad 37 is formed. Channel stopper area 3
The aluminum electrode 32 extending on 4B has a line width as wide as possible, for example, the electrode pads 35, 3 to reduce the electric resistance as much as possible and to enhance the thermal coupling described later.
It extends with a line width larger than the width of 7.

【0024】このように、第2のスイッチング手段2内
部に、内蔵ダイオード2Aとその内蔵ダイオード2Aと
並列に接続されるショットキバリアダイオードを形成す
ることにより、DC−DCコンバータ装置の外付部品数
を削減できる。上記した第1、第2のスイッチング手段
1、2、リアクタ3、コンデンサー4は、図4に示すよ
うに、配線基板5上に形成された回路パターン6に接続
されDC−DCコンバータ装置が提供される。この実施
形態では、配線基板5上に実装する第1、第2のスッチ
ング素子は樹脂モールドされているが、半導体チップを
直接、ダイボンディングし周辺の回路パターン等にワイ
ヤでボンディング接続しても良い。
As described above, by forming the built-in diode 2A and the Schottky barrier diode connected in parallel with the built-in diode 2A inside the second switching means 2, the number of external parts of the DC-DC converter device can be reduced. Can be reduced. As shown in FIG. 4, the first and second switching means 1 and 2, the reactor 3, and the capacitor 4 are connected to a circuit pattern 6 formed on a wiring board 5 to provide a DC-DC converter device. You. In this embodiment, the first and second switching elements mounted on the wiring board 5 are resin-molded. However, the semiconductor chip may be directly die-bonded and connected to a peripheral circuit pattern or the like by a wire. .

【0025】ところで、SBD素子の順方向立ち上がり
電圧VFは、温度に対して−2mV/℃程度の温度特性
を持ち、高温の方が電圧VFが小さい。従って、MOS
FETとSBDとを1チップ化することにより、MOS
FET素子23のON動作時の発熱が同一チップに形成
されるSBD素子24に瞬時に伝導し、SBD素子24
が加熱されるので、図1に示したDC−DCコンバータ
回路の第1のスイッチング手段1をOFFし、第2にス
イッチング手段2をONした時、第2のスイッチング手
段2のMOSFET素子23の内蔵ダイオード、及びS
BD素子24に順方向電流が流れる。
Incidentally, the forward rise voltage VF of the SBD element has a temperature characteristic of about -2 mV / ° C. with respect to the temperature, and the voltage VF is smaller at a higher temperature. Therefore, MOS
By integrating FET and SBD into one chip, MOS
Heat generated during the ON operation of the FET element 23 is instantaneously transmitted to the SBD element 24 formed on the same chip, and the SBD element 24
Is heated, so that when the first switching means 1 of the DC-DC converter circuit shown in FIG. 1 is turned off and the second switching means 2 is turned on, the built-in MOSFET element 23 of the second switching means 2 Diode and S
A forward current flows through the BD element 24.

【0026】その後、第1のスイッチング手段1に同期
させて第2のスイッチング手段2をOFFし、OFFか
らON動作させるときであっても、第2のスイッチング
手段2に内蔵されたSBD素子24の順方向電圧VF
は、上記したように、MOSFET素子23の発熱によ
り、更に低減化されるために、MOSFET素子23内
部の蓄積キャリアはSBD素子により瞬時に引き抜いて
完全遮断化を促進することになる。
Thereafter, even when the second switching means 2 is turned off in synchronization with the first switching means 1 and turned on from the OFF state, the SBD element 24 built in the second switching means 2 is turned off. Forward voltage VF
As described above, since the heat generated by the MOSFET element 23 is further reduced, the accumulated carriers inside the MOSFET element 23 are instantaneously pulled out by the SBD element to promote complete shutoff.

【0027】従って、同期整流型のDC−DCコンバー
タ装置の第2のスッチング手段2に上記のMOSFET
とSBDとを内蔵した半導体素子を用いることで、MO
SFET23のスイッチングを高速にすることができ
る。また、DC−DCコンバータ装置の第2のスイッチ
ング手段をMOSFET素子23とSBD素子24とに
1チップ化することにより、SBDを内蔵しているにも
係わらず、第2のスイッチング手段のサイズを最小限と
することができ、実装される配線基板を小型化にでき
る。
Therefore, the above-mentioned MOSFET is provided in the second switching means 2 of the synchronous rectification type DC-DC converter device.
The use of a semiconductor device having a built-in SBD and
The switching speed of the SFET 23 can be increased. Further, by integrating the second switching means of the DC-DC converter into one chip of the MOSFET element 23 and the SBD element 24, the size of the second switching means can be minimized despite the fact that the SBD is built-in. The wiring board to be mounted can be reduced in size.

【0028】[0028]

【発明の効果】以上に詳述したように、本発明のDC−
DCコンバータ装置によれば、DC−DCコンバータ装
置の直流入力電源をスイッチングする第1のスイッチン
グ手段と同期してスイッチングする第2のスイッチング
手段に、パワーMOSFETに内蔵される内蔵ダイオー
ドに並列に接続されるショットキーバリアダイオード
(SBD)を同一の半導体基板に形成したパワーMOS
FETを用いることにより、MOSFET内部に形成し
SBDを形成しているので蓄積キャリアを瞬時に引き抜
いて完全遮断化を促進し、第2のスイッチング手段のM
OSFETの内蔵ダイオードに順方向電流が流れた時で
あっても第2のスイッチング手段のスイッチングを高速
にすることができ、DC−DCコンバータ回路の更なる
高効率化が可能となり、高性能なDC−DCコンバータ
装置を提供することができる。
As described in detail above, the DC-
According to the DC converter device, the second switching unit that switches in synchronization with the first switching unit that switches the DC input power of the DC-DC converter device is connected in parallel to the built-in diode built in the power MOSFET. MOS with Schottky barrier diode (SBD) formed on the same semiconductor substrate
Since the SBD is formed inside the MOSFET by using the FET, the accumulated carriers are instantaneously pulled out to promote complete shutoff, and the M
Even when a forward current flows through the built-in diode of the OSFET, the switching of the second switching means can be performed at high speed, and the efficiency of the DC-DC converter circuit can be further increased, and a high-performance DC -A DC converter device can be provided.

【0029】また、本発明のDC−DCコンバータ装置
では、第2のスイッチング手段はMOSFETとSBD
とが1チップ化されているために、SBDを内蔵したス
イッチング手段でありながらサイズを縮小できることか
ら配線基板小型化が実現できる。その結果、DC−DC
コンバータ装置自体の小型化が可能となり、セット製品
の更なる小型化及び高密度化が可能となる。
In the DC-DC converter according to the present invention, the second switching means includes a MOSFET and an SBD.
Since these are integrated into one chip, the size can be reduced even though the switching means has a built-in SBD, so that the wiring board can be downsized. As a result, DC-DC
The converter device itself can be reduced in size, and the set product can be further reduced in size and density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するDC−DCコンバータ回路
図。
FIG. 1 is a DC-DC converter circuit diagram illustrating the present invention.

【図2】本発明のDC−DCコンバータ装置に用いられ
る半導体素子の断面図。
FIG. 2 is a cross-sectional view of a semiconductor element used in the DC-DC converter device of the present invention.

【図3】本発明のDC−DCコンバータ装置に用いられ
る半導体素子の平面図。
FIG. 3 is a plan view of a semiconductor element used in the DC-DC converter device of the present invention.

【図4】本発明のDC−DCコンバータ装置の配線基板
の実装図。
FIG. 4 is a mounting diagram of a wiring board of the DC-DC converter device of the present invention.

【図5】従来のDC−DCコンバータ回路図。FIG. 5 is a circuit diagram of a conventional DC-DC converter.

【図6】従来のDC−DCコンバータ装置に用いられる
半導体素子の断面図。
FIG. 6 is a cross-sectional view of a semiconductor element used in a conventional DC-DC converter device.

【図7】従来のDC−DCコンバータ回路図。FIG. 7 is a circuit diagram of a conventional DC-DC converter.

【符号の説明】[Explanation of symbols]

1:第1のスイッチング手段 2:第2のスイッチング手段 23:パワーMOSFET 2A:内蔵ダイオード 24:ショットキバリアダイオード 3:リアクタ 4:コンデンサー 1: First switching means 2: Second switching means 23: Power MOSFET 2A: Built-in diode 24: Schottky barrier diode 3: Reactor 4: Condenser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも直流入力電源をON/OFF
する第1のスイッチング手段と、前記第1のスイッチン
グ手段に同期しOFF/0Nする第2のスイッチング手
段と、前記第1、第2のスイッチング手段に接続され前
記直流入力電源を平滑するリアクタ及び前記リアクタに
一端が接続されたコンデンサーとが配線基板上に実装さ
れ前記直流入力電源を所定の直流出力電源に変換するD
C−DCコンバータ装置において、前記第2のスイッチ
ング手段は、内蔵ダイオードと該内蔵ダイオードに並列
に接続されるショットキーバリアダイオードとを備えた
MOSFETであることを特徴とするDC−DCコンバ
ータ装置。
1. At least DC input power ON / OFF
A first switching means, a second switching means for turning OFF / 0N in synchronization with the first switching means, a reactor connected to the first and second switching means for smoothing the DC input power supply, and A capacitor having one end connected to the reactor is mounted on a wiring board and converts the DC input power to a predetermined DC output power.
In the C-DC converter device, the second switching means is a MOSFET having a built-in diode and a Schottky barrier diode connected in parallel to the built-in diode.
JP29068796A 1996-10-31 1996-10-31 DC-DC converter device Expired - Fee Related JP3291439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29068796A JP3291439B2 (en) 1996-10-31 1996-10-31 DC-DC converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29068796A JP3291439B2 (en) 1996-10-31 1996-10-31 DC-DC converter device

Publications (2)

Publication Number Publication Date
JPH10136641A true JPH10136641A (en) 1998-05-22
JP3291439B2 JP3291439B2 (en) 2002-06-10

Family

ID=17759210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29068796A Expired - Fee Related JP3291439B2 (en) 1996-10-31 1996-10-31 DC-DC converter device

Country Status (1)

Country Link
JP (1) JP3291439B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158844A (en) * 2002-10-15 2004-06-03 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
WO2007007670A1 (en) * 2005-07-08 2007-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and electric device
WO2007013377A1 (en) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. Semiconductor element and electric device
JP2007110869A (en) * 2005-10-17 2007-04-26 Matsushita Electric Ind Co Ltd Power converter
US7791308B2 (en) 2005-07-25 2010-09-07 Panasonic Corporation Semiconductor element and electrical apparatus
JP2011083104A (en) * 2009-10-06 2011-04-21 Rohm Co Ltd Step-down switching regulator and semiconductor integrated circuit device including the same
CN111370490A (en) * 2020-03-18 2020-07-03 鑫金微半导体(深圳)有限公司 Novel N-type silicon-based field effect transistor with performance similar to third-generation semiconductor and processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158844A (en) * 2002-10-15 2004-06-03 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
WO2007007670A1 (en) * 2005-07-08 2007-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor device and electric device
US7751215B2 (en) 2005-07-08 2010-07-06 Panasonic Corporation Semiconductor device and electric apparatus having a semiconductor layer divided into a plurality of square subregions
US7791308B2 (en) 2005-07-25 2010-09-07 Panasonic Corporation Semiconductor element and electrical apparatus
WO2007013377A1 (en) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. Semiconductor element and electric device
US7964911B2 (en) 2005-07-26 2011-06-21 Panasonic Corporation Semiconductor element and electrical apparatus
JP2007110869A (en) * 2005-10-17 2007-04-26 Matsushita Electric Ind Co Ltd Power converter
JP2011083104A (en) * 2009-10-06 2011-04-21 Rohm Co Ltd Step-down switching regulator and semiconductor integrated circuit device including the same
CN111370490A (en) * 2020-03-18 2020-07-03 鑫金微半导体(深圳)有限公司 Novel N-type silicon-based field effect transistor with performance similar to third-generation semiconductor and processing method

Also Published As

Publication number Publication date
JP3291439B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
US9355991B2 (en) Integrating multi-output devices having vertically stacked semiconductor chips
TWI525790B (en) A semiconductor device for dc/dc converter
JP3809168B2 (en) Semiconductor module
JP4426955B2 (en) Semiconductor device
US7786565B2 (en) Semiconductor apparatus including power semiconductor device constructed by using wide band gap semiconductor
JP2006073664A (en) Semiconductor module
US11742268B2 (en) Package structure applied to power converter
JP5315378B2 (en) Semiconductor device for DC / DC converter
JP3291441B2 (en) DC-DC converter device
JP3291439B2 (en) DC-DC converter device
JP3604843B2 (en) DC-DC converter device
JP5648095B2 (en) Semiconductor device
JP2011228719A (en) Semiconductor device for dc/dc converter
KR101754923B1 (en) Power module based on high electron mobility transistors
JPH04334066A (en) Resin seal type semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees